
Practice Qualifying Examination 2022   Artificial Intelligence 
There are six questions on this exam. You must answer them all. All answers must 
be in the test booklets. All questions have the same value for grading. 

Your grade depends on the correctness, completeness and style of your answers. 

PhD students must answer all questions. MS students do not have to answer 
questions 3d, 4c, 5b, 5d, 6. 

1. Consider the 8-Puzzle. In this puzzle there are eight sliding tiles and one open blank spot. 
Each move consists of sliding one tile into the blank spot. The initial state and goal state 
are given below. 
 

 
 

You will formulate this as a planning problem using STRIPS (PDDL) action schemas. 
 

(a) Describe the start and goal states for this problem using STRIPS notation.  
 
Init(At(T7,Square(S13)) & … & At(T1,Square(S31)) & At(Blank,Square(S22)) 
& Adj(Square(S11),Square(S12)) & Adj(Square(S11),Square(S21) & … & 
Tile(T1) & Tile(T2) & …) 
 
Goal(At(Blank,Square(S13)) & … & At(T8,Square(S31))) 
 

(b) Write an action schema for moving a tile. 
 
Action(Move(t,x,y) 
 PRECOND: Tile(t) & Square(x) & Square(y) & Adj(x,y) & At(t,x) 
 EFFECT: At(t,y) & -At(t,x) 
 

(c) Using your schema from part (b), show how resolution is used to move two tiles, for 
example how to move the 5 tile to the right and then the 7 tile down. 
 
Move(T5,S12,S22) 
 Tile(T5) & Square(S12) & Square(S22) & Adj(S12,S22) & At(T5,S12) 



-> Tile(T5) & Square(S12) & Square(S22) & Adj(S12,S22) & At(T5,S22) 
Move(T7,S13,S12) 
 Tile(T7) & Square(S13) & Square(S12) & Adj(S13,S12) & At(T7,S13) 
-> Tile(T7) & Square(S13) & Square(S12) & Adj(S13,S12) & At(T7,S12) 
  

(d) Give an admissible A* heuristic to guide the search, so as to minimize the total moves to 
solve the problem. 

Manhattan distance, or number of tiles in correct locations 



2.  Bayes Nets 
 
You are given the Bayesian network structure below, consisting of 5 binary random variables A, 
B, C, D, E.  Each variable corresponds to a gene, whose expression can be either “ON” or 
“OFF”. 
 

 

Part 1: 
 
We covered the chain rule of probability for Bayes Nets, which allows us to factor the joint 
probability over all the variables into terms of conditional probabilities. For each of the 
following cases, factor P(A,B,C,D,E) according to the independencies specified and give the 
minimum number of parameters required to fully specify the distribution. 
 
1: A,B,C,D,E are all mutually independent  

 
P(A,B,C,D,E) = P(A)P(B)P(C)P(D)P(E)  
5 parameters (probability that each of the 5 genes is ON, independent of others)  

 
2: A,B,C,D,E follow the independence assumptions of the above network 
 
 P(A,B,C,D,E) = P(A)P(B|A)P(C|A)P(D|A,B)P(E|D)  
11 parameters:  1 for P(A), 2 for P(B|A), 2 for P(C|A), 4 for P(D|A,B), 2 for P(E|D) 

Part 2: 

You are given the conditional probabilities below for the network. 



 

Calculate the following: 

1: P(A=ON, B=ON, C=ON, D=ON, E=ON) 

P(A=ON, B=ON, C=ON, D=ON, E=ON)  = 
P(A=ON)P(B=ON|A=ON)P(C=ON|A=ON)P(D=ON|A=ON,B=ON)P(E=ON|D=ON)  = 
(0.6)(0.95)(0.5)(0.95)(0.1)  = 0.0271 

2: P(E=ON | A=ON) 

 

 

 

 

 

 



3. Suppose you were locked in a windowless room for several days so that you could not see the 
weather outside. There are three types of weather: sunny, foggy and rainy. The only clue you 
have to the weather is whether the caretaker who comes into the room carrying your daily meal 
has an umbrella. 
 
The probabilities of tomorrow’s weather given today’s weather are: 

 
 
And the probabilities of seeing an umbrella based on the weather are: 
 

 
The prior probability of the caretaker carrying the umbrella on any day is 0.5. 
 
a. Suppose the day you were locked in was sunny. The next day the caretaker carried an 

umbrella. What is the probability that the second day was rainy? 
 
Answer: 
 

 

 



 
b. Suppose the day you were locked in was sunny. The next day the caretaker carried an 

umbrella but on the third day he did not. What is the probability that the third day was 
foggy? 

 
Answer: 

 
 
c. Is a Markov Chain a polytree? 
 
Yes 
 
d. Explain the key advantages of the Markov assumption. (In other words, explain how using 

the Markov assumption helps us analyze a problem.) 
 
Permits solving the filtering, smoothing problems quickly (linear time) that would otherwise be 
intractable. 
 
 
 
 
 
 
 
 



4. Markov Decision Processes 
 
The Bellman equation: 
 

 
 
a. The table below specifies a Markov Decision Process. There are four states. In each state 

there are one or two actions possible. The table shows the results of executing each action 
and the probabilities of each result, as well as the initial utilities of the states. For 
example, action A1 is possible in state A and has a 50% chance of ending in state B and 
50% chance of staying in state A. 

 
The value of gamma (the discount factor) is 0.9 
 
State Utility Actions Result Probability 
 
A 12 A1  A .5 
    B .5 
  A2  C .7 
    D .3 
B 8 B1  A .4 
    D .6 
C -3 C1  A .5 
    C .5 
D 4 D1  B .4 
    C .6 
  D2  B .8 
    D .2 
 
Using the value iteration algorithm, perform one update step to the utilities. 
Show all work. 
 
 
Initial values: 
 A 12 
 B 8 
 C -3 
 D 4 
 
One step: 
 A A1 .5 * 12 + .5 * 8 = 10 
  A2 .7 * -3 + .3 * 4 = -.9 
  0.9 * 10 = 9 
 B B1 .4 * 12 + .6 * 4 = 7.2 
  0.9 * 7.2 = .648 



 C C1 .5 * 12 + .5 * -3 = 4.5 
  0.9 * 4.5 = 4.05 
 D D1 .4 * 8 + .6 * -3 = 1.4 
  D2 .8 * 8 + .2 * 4 = 7.2 
  0.9 * 7.2 = .648 
Final values: 
 A 9 
 B .648 
 C 4.05 
 D .648 

 
b. Does value iteration always converge to the optimal policy? 

 
Yes. 

 
c. Suppose that the Markov assumption doesn’t actually hold for a particular system. Is the 

Bellman equation still applicable? Describe specifically (in terms of the policy, rewards 
and utilities) how the situation has changed. 

 
The reward function is no longer a function of just the current state, but can depend on the 
previous states, and thus on what transitions were made, so the Bellman equation doesn’t 
hold. 
 



5. Consider the following set of training examples to train a robot janitor to predict when an 
office contains a recycling bin: 
 
STATUS FLOOR DEPT  OFFICE SIZE  RECYCLING BIN 
 
Faculty  4  CS  medium  yes 
Faculty  4  EE  medium  yes 
Student 4  CS  small   no 
Faculty  5  CS  medium  yes 
 
Assume that each of the attributes can have just the values that appear in the table. 
 
a – How many possible instances are there for this example? 
 
16 = 2*2*2*2 
 
b – What is the size of the hypothesis space? 
 
82 = 3*3*3*3 + 1 (null) 
 
c – Write the sequence of S and G boundary sets computed by the candidate elimination 
algorithm if it is given the above examples in the order in which they are listed in the table. 
 
S0 = {[*, *, *, *]} 
S1 = {[Faculty, 4, CS, medium]} 
S2 = {[ Faculty, 4, ?, medium]} 
S3 = S2 
S4 = {[ Faculty, ?, ?, medium]} 
 
G4 = G3 
G3 = {[Faculty, ?, ?, ?], [?, ?, ?, medium]} 
G2 = G1 
G1 = G0 
G0 = {[?, ?, ?, ?]} 
 
d – Write a query (an example) that is guaranteed to reduce the size of the final version space 
above (S4 and G4) regardless of whether it is classified as positive or negative. 
 
Query = [Faculty, 4, CS, small] 
 
 
 
 
 
 



6. Q-learning 
 

 
 
a.  a is the learning parameter. Discuss the difference between when a is small (near zero) and 
when it is large (near one). (Discuss how it affects Q learning.) 
 
Small alpha makes the agent learn nothing. Large alpha makes it consider only current info. 
 
b.  g is the discount factor. Discuss the difference between when g is small (near zero) and when 
it is large (near one). (Discuss how it affects Q learning.) 
 
Small gamma makes the agent value short-term rewards. Large gamma makes it value long-term 
rewards. 
 
c.  Suppose we create a very optimistic prior distribution of values over the states. How does this 
affect the behavior of a Q-learning agent? 
 
c. Increases exploration. 
 


