
Qualifying Examination     2019 Artificial Intelligence 
There are six questions on this exam. You must answer them all. All answers must 
be in the test booklets. All questions have the same value for grading. 

Your grade depends on the correctness, completeness and style of your answers. 

1. Consider the problem of using a truck to move boxes among warehouses in Manhattan. Boxes 
can be loaded on the truck or unloaded from the truck. The truck can drive from one 
warehouse to another, and can carry at most 10 boxes at a time. 

 
There is one truck and 100 boxes. There are five warehouses: A, B, C, D and E. The truck 
starts at warehouse A. Initially there are 25 boxes in each of the warehouses B, C, D, and E 
(the warehouses can each hold an unlimited number of boxes). The goal is to move all the 
boxes to warehouse A. The distances between the warehouses are (in kilometers): 

 
 A B C D E 

A 0 1 2 4 9 

B 1 0 3 6 8 

C 2 3 0 4   4 

D 4 6 4 0 5 

E 9 8 4 5 0 

 
You will formulate this as a planning problem using STRIPS (PDDL) action schemas. 

 
(a) Describe the start and goal states for this problem using STRIPS notation. You don’t 

have to write out every necessary literal (all 100 boxes, for example) but indicate what 
literals are needed and give a few examples.  

(b) Write action schemas for loading a box on the truck, for driving the truck from one 
warehouse to another, and for unloading a box.  

(c) Using your schemas from part (b), show how resolution is used to load one box on the 
truck at warehouse C, drive it to warehouse E then unload it. 

(d) Give an admissible A* heuristic to guide the search, so as to minimize the total distance 
traveled by the truck. 

 
(a) 
Init(At(B1,WB) & At(B2,WB) … & At(B26,WC) … & At(B51,WD) … & At(B76,WE) & 
At(T,WA) & Dist(WA,WB,1) … & Dist(WE,WD,5) & Truck(T) & Box(B1) & … & Box(B100) 
& Warehouse(WA) & … & Warehouse(WE) & Numboxes(T,0)) 
 
Goal(At(B1,WA) & … & At(B100,WA)) 
 
(b) 



Action(Load(b,t,w) 
PRECOND: Box(b) & Truck(t) & Warehouse(w) & At(t,w) & At(b,w) & Numboxes(T,n) & 
<(n,10) 
EFFECT: In(b,t) & -At(b,w) & Numboxes(T,n+1) ) 
 
Action(Drive(t,x,y) 
PRECOND: Truck(t) & Warehouse(x) & Warehouse(y) & At(t,x) 
EFFECT: At(t,y) & -At(t,x) ) 
 
Action(Unload(b,t) 
PRECOND: Box(b) & Truck(t) & Warehouse(w) & At(t,w) & In(b,t) & Numboxes(T,n) & 
>(n,0) 
EFFECT: -In(b,t) & At(b,w) & Numboxes(T,n-1) ) 
 
(c) 
Load(B1,T,WB) 
 Box(B1) & Truck(T) & Warehouse(WB) & At(T,WB) & At(B1,WB) & Numboxes(T,0) 
-> Box(B1) & Truck(T) & Warehouse(WB) & At(T,WB) & In(B1,T) & Numboxes(T,1) 
 
Drive(T,WB,WA) 
 Box(B1) & Truck(T) & Warehouse(WB) & Warehouse(WA) & At(T,WB) & In(B1,T) 
-> Box(B1) & Truck(T) & Warehouse(WB) & Warehouse(WA) & At(T,WA) & In(B1,T) 
 
Unload(B1, T) 
 Box(B1) & Truck(T) & Warehouse(WA) & At(T,WA) & In(B1,T) & Numboxes(T,1) 
-> Box(B1) & Truck(T) & Warehouse(WA) & At(T,WA) & At(B1,WA) & Numboxes(T,0) 
 
(d) 
One possible heuristic is to divide the number of remaining boxes at each warehouse (other than 
A) by 10 to get the minimum number of trips necessary from that warehouse, and then add up 
those numbers times the distance from each warehouse to A. 
 
2.  Bayes Nets 

The network below concerns the probability of a car starting. 

 



You know the following facts (b = battery, s = start, f = fuel, t = turn over, g = gauge): 

p(b = bad) = 0.02 
p(g = empty | b = good, f = not empty) = 0.04  
p(g = empty | b = bad, f = not empty) = 0.1  
p(t = false | b = good) = 0.03 
p(s = false | t = true, f = not empty) = 0.01 
p(s = false | t = false, f = not empty) = 1.0  
p(f = empty) = 0.05 
p(g = empty | b = good, f = empty) = 0.97  
p(g = empty | b = bad, f = empty) = 0.99  
p(t=false | b=bad)=0.98 
p(s = false | t = true, f = empty) = 0.92 
p(s = false | t = false, f = empty) = 0.99  

Calculate P (f = empty | s = false), the probability of the fuel tank being empty given that the car 
does not start.  

Answer: 
 
Using Bayes’ rule, we have: 
P(f=empty | s = false) = P(s=false | f = empty) P(f=empty) / P(s = false) 
 
We know P(f=empty) = .05 from the given, so we need compute the first term P(s=false | 
f=empty), and then P(s=false). To figure out s we need to sum over its predecessors, f and t, 
since those probabilities are given. 
 
P(s = false | f = empty) = P(s = false | f=empty, t=true) P (t=true) +  

P(s=false | f=empty, t=false) P(t=false) 
 
To know this, we need to figure out P(t=true) and P(t=false). To figure out t we need to sum over 
its predecessor, which is b. 
 
P(t = false) = P(t=false | b=good) P(b=good) + P(t=false | b=bad) P(b=bad) 
 = .03 * .98 + .98 * .02 = .049 
P(t = true) = .951 
 
Plug these back into the equation for P(s=false | f=empty): 
 
P(s=false | f=empty) = .92 * .951 + .99 * .049 = .87492 + .04851 = .92343 
 
To compute P(s=false) we’ll also need P(s=false | f=not empty) to combine with the above. 
 
P(s=false | f=not empty) = P(s=false | f=not empty, t=true) P(t=true) +  
    P(s=false | f=not empty, t=false) P(t=false) 
   = .01 * ,951 + 1 * .049 = .05851 



 
Combine them: 
P(s=false) = P(s=false | f=empty) P(f=empty) + P(s=false | f=not empty) P(f=not empty) 
 = ,92343 * .05 + .05851 * .95 = .0461715 + .0555845 = .1017560 
 
Plug back into the first equation: 
P(f=empty | s=false) = .92343 * .05 / .1017560 = .0461715 / .1017560 = .453747 
 
 
3. Consider a village where all villagers are either healthy or have a fever and only the village 
doctor can determine whether each has a fever. The doctor diagnoses fever by asking patients 
how they feel. The villagers may only answer that they feel normal, dizzy, or cold. There are two 
states, "Healthy" and "Fever", but the doctor cannot observe them directly. The prior probability 
of being Healthy is 0.6.  
 
On each day, there is a certain chance that the patient will tell the doctor he/she is "normal", 
"cold", or "dizzy", depending on their health condition. If the patient is Healthy, the probability 
for “normal” is 0.5, for “cold” is 0.4, and for “dizzy” is 0.1. If the patient has a Fever, the 
probability for “normal” is 0.1, for “cold” is 0.3, and for “dizzy” is 0.6. 
 
A Healthy patient remains Healthy on the next day 70% of the time, and a patient with a Fever 
has a Fever the next day 60% of the time. 
 
a. Show how this can be formulated as an HMM, including the probability tables. 

 
b. A patient visits the doctor three days in a row and tells the doctor that that on the first day he 

feels normal, on the second day he feels cold, on the third day he feels dizzy. Use the 
filtering algorithm to determine the probability of being in each state for t = 1, 2, 3. 

 
c. What is the time complexity of filtering in an HMM? 
 
Answer: 



 

Healthy: 0.30000 0.08400 0.00588 
Fever: 0.04000 0.02700 0.01512 
The steps of states are Healthy Healthy Fever with highest probability of 0.01512 

All eight possible state trajectories: 
 
Healthy - Healthy - Healthy: 
 
P(Healthy) = 0.6 * P(Normal | Healthy) = 0.5 -> answer = 0.3 
 
P(Healthy | Healthy) = 0.7 * P(Cold | Healthy) = 0.4 = 0.28 * previous answer = 0.3 = 
0.084 
 
P(Healthy | Healthy) = 0.7 * P(Dizzy | Healthy) = 0.1 = 0.07 * previous answer = 0.00588 
 
Healthy - Healthy - Fever: 
 
P(Healthy) = 0.6 * P(Normal | Healthy) = 0.5 -> answer = 0.3 
 
P(Healthy | Healthy) = 0.7 * P(Cold | Healthy) = 0.4 = 0.28 * previous answer = 0.3 = 
0.084 
 
P(Fever | Healthy) = 0.3 * P(Dizzy | Fever) = 0.6 = 0.18 * previous answer = 0.01512 
 



Healthy - Fever - Healthy: 
 
P(Healthy) = 0.6 * P(Normal | Healthy) = 0.5 -> answer = 0.3 
 
P(Fever | Healthy) = 0.3 * P(Cold | Fever) = 0.3 = 0.09 * previous answer = 0.3 = 0.027 
 
P(Healthy | Fever) = 0.4 * P(Dizzy | Healthy) = 0.1 = 0.04 * previous answer = 0.0108 
 
Healthy - Fever - Fever: 
 
P(Healthy) = 0.6 * P(Normal | Healthy) = 0.5 -> answer = 0.3 
 
P(Fever | Healthy) = 0.3 * P(Cold | Fever) = 0.3 = 0.09 * previous answer = 0.3 = 0.027 
 
P(Fever | Fever) = 0.6 * P(Dizzy | Fever) = 0.6 = 0.036 * previous answer = 0.00972 
 
Fever - Healthy - Healthy: 
 
P(Fever) = 0.4 * P(Normal | Fever) = 0.1 -> answer = 0.04 
 
P(Healthy | Fever) = 0.4 * P(Cold | Healthy) = 0.4 = 0.16 * previous answer = 0.3 = 
0.048 
 
P(Healthy | Healthy) = 0.7 * P(Dizzy | Healthy) = 0.1 = 0.07 * previous answer = 0.00336 
 
Fever - Healthy - Fever: 
 
P(Fever) = 0.4 * P(Normal | Fever) = 0.1 -> answer = 0.04 
 
P(Healthy | Fever) = 0.4 * P(Cold | Healthy) = 0.4 = 0.16 * previous answer = 0.3 = 
0.048 
 
P(Fever | Healthy) = 0.3 * P(Dizzy | Fever) = 0.6 = 0.18 * previous answer = 0.00864 
 
Fever - Fever - Healthy: 
 
P(Fever) = 0.4 * P(Normal | Fever) = 0.1 -> answer = 0.04 
 
P(Fever | Fever) = 0.6 * P(Cold | Fever) = 0.3 = 0.18 * prev answer = 0.0072 
 
P(Healthy | Fever) = 0.4 * P(Dizzy | Healthy) = 0.1 = 0.04 * prev answer = 0.00288 
 
Fever - Fever - Fever: 
 



P(Fever) = 0.4 * P(Normal | Fever) = 0.1 -> answer = 0.04 
 
P(Fever | Fever) = 0.6 * P(Cold | Fever) = 0.3 = 0.18 * prev answer = 0.0072 
 
P(Fever | Fever) = 0.6 * P(Dizzy | Fever) = 0.6 = 0.36 * prev answer = 0.002592 
 
The highest probability for Healthy on day 1 is 0.3 (shared by 4 cases) 
and the highest for Fever is 0.04 (shared by 4 cases). 
The highest probability for Healthy on day 2 is 0.084 (2 cases) 
and the highest for Fever is 0.027 (2 cases). 
The highest probability for Healthy on day 3 is 0.00588 
and the highest for Fever is 0.01512. 
 
 
 
 
4. Markov Decision Processes 
 
The Bellman equation: 
 

 
a. An MDP may have cyclic paths in its states. What keeps us from performing infinite 

calculations when we solve such MDPs? 
 
Answer: discount < 1 
 
b. What is the time complexity of solving the Bellman equation for a system with n states? 
 
Answer: O(n^3) 
 
c. Is there an optimal policy for every MDP? 
 
Answer: Yes 
 
d. Why are iterative solution methods necessary for the Bellman equation? 
 
Answer: It’s nonlinear so it cannot be solved in closed form. 
 
e. Name three iterative solution methods for the Bellman equation. 
 
Answer: policy iteration, value iteration, Q-learning 
 

5. In the following, we describe whether a person is ill. We use a representation based on 
conjunctive constraints (three per subject) to describe each individual person. These constraints 



are “running nose”, “coughing”, and “reddened skin”, each of which can take the value true (‘+’) 
or false (‘–’). We say that somebody is ill, if he is coughing and has a runny nose — each single 
symptom individually does not mean that the person is ill.  
 

a. Specify the space of hypotheses that is being managed by the version space approach. To 
do so, arrange all hypotheses in a graph structure using the more-specific-than relation. I 
hypotheses are vectors of constraints, denoted by <N, C, R> with N, C, R = {−, +, ∅, ∗}. 

b. Apply the candidate elimination (CE) algorithm to the sequence of training examples 
specified in the table and name the contents of the sets S and G after each step. 

 
c. We now extend the number of constraints used for describing training instances by one 

additional constraint named “fever”. We say that somebody is ill, if he has a running nose 
and is coughing (as we did before), or if he has fever. 
What steps does the CE algorithm perform now, and what is the result, given the training 
examples specified below? 

 
d. What is the reason for this result? What modification to the hypothesis space will fix 

things? 
 
Answer: 
Start (init): G = {<∗ ∗ ∗>}, S = {<∅	∅	∅>}  
foreach d ∈ D do  

d1 = [<+ + +>, pos] ⇒ G = {<∗ ∗ ∗>}, S = {<+ + +>}  
d2 = [<+ + −>, pos] ⇒ G = {<∗ ∗ ∗>}, S = {<+ + ∗>}  
d3 = [<+ − +>, neg]  

no change to S: S = {<+ + ∗>}  
specializations of G: G = {<− ∗ ∗>,<∗ + ∗>,<∗ ∗ −>}  
there is no element in S that is more specific than the first and third element of G 

→ remove them from G ⇒ G = {<∗ + ∗>} 
d4 = [<− + +>, neg]  



no change to S: S = {<+ + ∗>}  
specializations of G: G = {<+ + ∗>,<∗ + −>} I there is no element in S that is more specific 
than the second element of G → remove it from G ⇒ G = {<+ + ∗>} 
d5 = [<− − +>, neg] ⇒ Both, G = {<+ + ∗>} and S = {<+ + ∗>} are consistent with d5.  
d6 = [<− − −>, neg] ⇒ Both, G = {<+ + ∗>} and S = {<+ + ∗>} are consistent with d6. 
 
 Part d:  
Initially: S = {<∅∅∅∅>}, G = {<∗ ∗ ∗	∗>}  
d1 = [<+ + +−>, pos] ⇒ S = {<+ + + −>}, G = {<∗ ∗ ∗	∗>}  
d2 = [<+ + −−>, pos] ⇒ S = {<+ + ∗	−>}, G = {<∗ ∗ ∗	∗>}  
d3 = [<− − ++>, pos] ⇒ S = {<∗ ∗ ∗	∗>}, G = {<∗ ∗ ∗	∗>} → We already arrive at S = G.  
d4 = [<+ − −−>, neg] ⇒ S = {<∗ ∗ ∗	∗>}, G = {<∗ ∗ ∗	∗>}  
Now, S becomes empty since <∗ ∗ ∗	∗> is inconsistent with d4 and is removed from S.  
G would be specialized to {<− ∗ ∗	∗>,<∗ + ∗	∗>,<∗ ∗ + ∗>,<∗ ∗ ∗	+>}. But it is required that 
at least one element from S must be more specific than any element from G. → This 
requirement cannot be fulfilled since S = ∅. ⇒ G = ∅. 
 
Reason: The informally specified target concept of an “ill person” represents a disjunctive 
concept. 
Fix by using disjunctive concepts. 



6. Q-learning 
 
a.  Q-learning is called “model-free”. Why? 
 
b.  Q-learning is called “off-policy”. Why? 
 
c.  Suppose we create a very optimistic prior distribution of values over the states. How does this 
affect a Q-learning agent? 
 
Answers: 
 

a. Q-learning does not use the model, i.e. the transition probabilities and the reward 
function. 

b. An off-policy learning algorithm learns the optimal policy independently of the agent’s 
actions. Q-learning does this. 

c. Increases exploration. 


