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Abstract— The objective is to study an on-line Hidden
Markov model (HMM) estimation-based Q-learning algorithm
for partially observable Markov decision process (POMDP) on
finite state and action sets. When the full state observation is
available, Q-learning finds the optimal action-value function
given the current action (Q-function). However, Q-learning can
perform poorly when the full state observation is not available.
In this paper, we formulate the POMDP estimation into a
HMM estimation problem and propose a recursive algorithm to
estimate both the POMDP parameter and Q-function concur-
rently. Also, we show that the POMDP estimation converges
to a set of stationary points for the maximum likelihood
estimate, and the Q-function estimation converges to a fixed
point that satisfies the Bellman optimality equation weighted
on the invariant distribution of the state belief determined by
the HMM estimation process.

I. INTRODUCTION

Reinforcement learning (RL) is getting significant at-

tention due to the recent successful demonstration of the

‘Go game’, where the RL agents outperform humans in

certain tasks (video game [1], playing Go [2]). Although

the demonstration shows the great potential of the RL, those

game environments are confined and restrictive compared to

what ordinary humans go through in their everyday life. One

of the major differences between the game environment and

the real-life is the presence of unknown factors, i.e. the obser-

vation of the state of the environment is incomplete. Most

RL algorithms are based on the assumption that complete

state observation is available, and the state transition depends

on the current state and the action (Markovian assumption).

Markov decision process (MDP) is a modeling framework

with the Markovian assumption. Development and analysis

of the standard RL algorithm are based on MDP. Applying

those RL algorithms with incomplete observation may lead to

poor performance. In [3], the authors showed that a standard

policy evaluation algorithm can result in an arbitrary error

due to the incomplete state observation.

Partially observable Markov decision process (POMDP)

is a generalization of MDP that incorporates the incomplete

state observation model. When the model parameter of

a POMDP is given, the optimal policy is determined by

using dynamic programming on the belief state of MDP,

which is transformed from the POMDP [4]. The belief

state of MDP has continuous state space, even though the
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corresponding POMDP has finite state space. Hence, solving

a dynamic programming problem on the belief state of

MDP is computationally challenging. There exists a number

of results to obtain approximate solutions to the optimal

policy, when the model is given, [4]–[6]. When the model of

POMDP is not given (model-free), a choice is in the policy

gradient approach without relying on Bellman’s optimality.

However, the policy gradient estimate has high variance so

that convergence to the optimal policy typically takes longer

as compared to other RL algorithms, which use Bellman’s

optimality principle.

In this paper, we aim to develop a recursive estimation

algorithm for a POMDP to estimate the parameters of the

model, predict the hidden state, and also determine the

optimal value state function concurrently. The idea of using

a recursive state predictor (Bayesian state belief filter) in

RL was investigated in [7]–[10]. However, the algorithms

in [7]–[9] require the POMDP model parameter knowledge1.

A parameter-free reinforcement learning that uses HMM

formulation is presented in [10]. The result in [10] shares

the same idea as ours, where we use HMM estimator

with a fixed behavior policy, in order to disambiguate the

hidden state, learn the POMDP parameters, and find optimal

policy. However, the algorithm in [10] involves multiple

phases, including identification and design, which are hard

to apply online to real-time learning tasks, whereas recursive

estimation is more suitable (e.g., DQN, DDPG, or Q-learning

are online algorithms). The main contribution of this paper is

to present and analyze a new on-line estimation algorithm to

simultaneously estimate the POMDP model parameters and

corresponding optimal action-value function (Q-function),

where we employ online HMM estimation techniques [11],

[12].

The remainder of the paper is organized as follows. In

Section II, HMM interpretation of the POMDP with a

behavior policy is presented. In Section III, the proposed

recursive estimation of the HMM, POMDP, and Q-function is

presented, and the convergence of the estimator is analyzed.

In Section IV, a numerical example is presented. Section V

summarizes the paper.

II. A HMM: POMDP EXCITED BY BEHAVIOR POLICY

We consider a partially observable Markov decision pro-

cess (POMDP) on finite state and action sets. A fixed

behavior policy excites the POMDP so that all pairs of state-

action are realized infinitely often.

1In [8], the algorithm needs full state observation for the system identi-
fication of POMDP.
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A. POMDP on finite state-action sets

The POMDP (S,A, Ta(s, s
′), R(s, a),O, O(o, s), γ) com-

prises: a finite state space S := {1, . . . , I}, a finite ac-

tion space A := {1, . . . ,K}, a state transition probability

Ta(s, s
′) = P (sn+1 = s′|sn = s, an = a), for s, s′ ∈ S and

a ∈ A, a reward model R ∈ R such that R(s, a) = r(s, a)+
δ, where δ denotes independent identically distributed (i.i.d.)

Gaussian noise δ ∼ N (0, σ2), a finite observation space

O := {1, . . . , J}, an observation probability O(o, s) =
P (on = o|sn = s), and the discount factor γ ∈ [0, 1). At

each time step n, the agent first observes on ∈ O from the

environment at the state sn ∈ S , does action an ∈ A on the

environment and gets the reward rn ∈ R in accordance to

R(s, a).

B. Behavior policy and HMM

The behavior policy’s purpose is system identification

(in other words, estimation of the POMDP parameter). We

denote the behavior policy by µ, which is a conditional

probability, i.e. µ(o) = P (a|o). The POMDP with µ(o)
becomes a hidden Markov model (HMM), as illustrated in

Fig. 1.

Fig. 1: A POMDP Estimation Framework.

The HMM comprises: state transition probability

P (sn+1 = s′|sn = s) = P (sn+1 = s′|sn = s, an = a;µ,O)
for all pairs of (s, s′) and the extended observation

probability, i.e. P (o, a, r|s) that is determined by the

POMDP model parameters: O(o, s), R(s, a) and the

behavior policy µ(o).

For the ease of notation, we define the following tensor

and matrices: T ∈ R
K×I×I such that Tijk = P (sn+1 =

k|sn = j, an = i), R ∈ R
K×I such that Rij = r(s = j, a =

i), O ∈ R
I×J such that Oij = P (on = j|sn = i), and

P ∈ R
I×I such that Pij = P (sn+1 = j|sn = j;µ).

The HMM estimator in Fig. 1 learns the model parameters

P,O,R, σ, and also provides the state estimate (or belief

state) to the MDP and Q-function estimator. Given the transi-

tion of the state estimates and the action, the MDP estimator

learns the transition model parameter T. Also, the optimal

action-value function Q∗(s, a) is recursively estimated based

on the transition of the state estimates, reward sample and

the action taken.

Algorithm 1 HMM Q-Learning

1: Set n = 0.

2: Observe o0 from the environment.

3: Initialize: the parameter (θ0, Q0, T0), the states (u0, ω0),

p̂
(prev)
n ∈ P(S) as uniform distribution, randomly choose

a
(prev)
n ∈ A, and set r

(prev)
n = 0.

4: repeat

5: Act a with µ(on) = P (a|on), get reward r and the

next observation o′ from the environment.

6: Use yn = (on, a, r) and (θn,un, ωn) to update the

estimator as follows:

θn+1 = ΠH [θn + ǫnS (yn,un, ωn; θn)] ,

un+1 = f(yn,un; θn),

ω
(l)
n+1 = Φ(yn,un; θn)ω

(l)
n +

∂f(yn,un; θn)

∂θ(l)
,

where

f(yn,un; θn) ,
P

⊤
θn
B(yn; θn)un

b⊤(yn; θn)un

,

S (yn,un, ωn; θn) =
∂ log

(

b
⊤(yn; θn)un

)

∂θ
,

ΠH denotes the projection on the convex constraint set

H ⊆ Θ, ǫn ≥ 0 denotes the step size, ωn ∈ R
I×L

denotes the Jacobian of the state prediction vector un

with respect to the parameter vector θn.

7: Calculate p̂n := [P (s = i|yn,un; θn)]i∈I as in (15).

8: Calculate p̂(sn−1, sn) with p̂
(prev)
n and p̂n as in (14).

9: Use r
prev
n , a

prev
n and p̂(sn−1, sn) to update Qn accord-

ing to (16).

10: Use p̂(sn−1, sn) to update Tn according to (18).

11: (p̂
(prev)
n , r

prev
n , a

prev
n )← (p̂n, r, a).

12: on ← o′.

13: n← n+ 1.

14: until a certain stopping criterion is satisfied.

III. HMM Q-LEARNING ALGORITHM FOR POMDPS

We present a new HMM model estimation-based Q-

learning algorithm, called HMM Q-learning, for POMDPs.

The pseudo code of the recursive algorithm is in Algorithm 1.

The recursive algorithm integrates (a) the HMM estima-

tion, (b) MDP transition model estimation, and (c) the Q-

function estimation steps. Through the remaining subsec-

tions, we prove the convergence of Algorithm 1. To this end,

we first make the following assumptions.

Assumption 1: The transition probability matrix P de-

termined by the transition T, the observation O, and the

behavior policy µ(o) are aperiodic and irreducible [13].

Furthermore, we assume that the state-action pair visit prob-

ability is strictly positive under the behavior policy.

We additionally assume the following.

Assumption 2: All elements in the observation probabil-

ity matrix O are strictly positive, i.e. Oi,j > 0 for all i ∈ S
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and j ∈ O.

Under these assumptions, we will prove the following con-

vergence result.

Proposition 1 (Main convergence result): Suppose that

Assumption 1 and Assumption 2 hold. Then the following

statements are true:

(i) The iterate θn in Algorithm 1 converges almost

surely to the stationary point θ∗ of the conditional log-

likelihood density function based on the sequence of the

extended observations {yi = (oi, ri, ai)}
n
i=0, ln(θ) =

1
n+1 log pn(y0, y1, . . . , yn|s0, s1, . . . , sn; θ), i.e., the point θ

is satisfying

E

[

∂ log
(

b
⊤(yn; θ)un

)

∂θ

]

∈ NH(θ),

where NH(θ) is the normal cone [14, pp. 343] of the convex

set H at θ ∈ H , and the expectation E is taken with respect

to the invariant distribution of yn and un.

(ii) Define p̄(s, s′) := limn→∞ p̂(sn−1, sn) in the almost

sure convergence sense. Then the iterate {Qn} in Algo-

rithm 1 converges in distribution to the optimal Q-function

Q̂∗, satisfying

Q̂∗(s, a) =
∑

s′

p̄(s, s′)
(

r(s, a) + γmax
a′

Q̂∗(s′, a′)
)

.

A. HMM Estimation

We employ the recursive estimators of HMM from [11],

[12] for our estimation problem, where we estimate the true

parameter θ∗ with the model parameters (P,R,O, σ) being

parametrized as continuously differentiable functions of the

vector of real numbers θ ∈ Θ ⊂ R
L, such that θ∗ ∈ Θ and

(Pθ∗ ,Rθ∗ ,Oθ∗ , σθ∗) = (P,R,O, σ). We denote the func-

tions of the parameter as (Pθ,Rθ,Oθ, σθ) respectively. In

this paper, we consider the normalized exponential function

(or softmax function)2 to parametrize the probability matrices

Pθ, Oθ. The reward matrix Rθ is a matrix in R
I×K , and

σθ is a scalar.

The iterate θn of the recursive estimator converges to the

set of the stationary points, where the gradient of the log-

likelihood density function is zero [11], [12]. The conditional

log-likelihood density function based on the sequence of the

extended observations {yi = (oi, ri, ai)}
n
i=0 is

ln(θ) =
1

n+ 1
log pn(y0, y1, . . . , yn|s0, s1, . . . , sn; θ). (1)

When the state transition and observation model parameters

are available, the state estimate

un = [un,1, un,2, . . . , un,I ]
⊤, (2)

where un,i = P (sn = i|y0, y1, . . . , yn; θ) is calculated from

the recursive state predictor (Bayesian state belief filter) [15].

The state predictor is given as follows:

un+1 =
P

⊤
θ B(yn; θ)un

b⊤(yn; θ)un

, (3)

2Let {α1,1, . . . , αI,I} denote the parameters for the probability matrix

Pθ . Then the (i, j)th element of Pθ is
exp(αi,j)

∑
I
j′=1

exp(αi,j′ )
.

where

b(yn; θ) = [b1(yn; θ), b2(yn; θ), . . . , bI(yn; θ)]
⊤, (4)

bi(yn; θ) = p(yn|sn = i; θ)

= P (on|sn = i; θ)P (an|on)p(rn|sn = i, an; θ),

and B(yn; θ) is the diagonal matrix with b(yn; θ). Using

Markov property of the state transitions and the conditional

independence of the observations given the states, the con-

ditional likelihood density (1) is written as follows:

ln(θ) =
1

n+ 1

n
∑

k=0

log
(

b
⊤(yn; θ)un

)

. (5)

We first introduce the HMM estimator [11], [12] and then

apply the convergence result [11] to our estimation task. The

recursive HMM estimation in Algorithm 1 is given by:

θn+1 = ΠH [θn + ǫnS (yn,un, ωn; θn)] , (6)

S (yn,un, ωn; θn) =
∂ log

(

b
⊤(yn; θn)un

)

∂θ
, (7)

where ΠH denotes the projection onto the convex constraint

set H ⊆ Θ, ǫn ≥ 0 denotes the diminishing step-size such

that ǫn → 0,
∑

n ǫn =∞, ωn ∈ R
I×L denotes the Jacobian

of the state prediction vector un with respect to the parameter

vector θn.
Equation (7) can be written in terms of un, ωn, b(yn; θn),

and its partial derivatives as follows:

S(l) (yn,un, ωn; θn)

=
b
⊤(yn; θn)ω

(l)
n

b⊤(yn; θn)un

+

(

(∂/∂θ(l))b⊤(yn; θn)
)

un

b⊤(yn; θn)un

,
(8)

where the superscript l of S(l)(·) denotes the lth element of

S(·), and ω
(l)
n is the lth column of the ωn ∈ R

I×L, un(θn)
is recursively updated using the state predictor in (3) as

un+1 =
P

⊤
θn
B(yn; θn)un

b⊤(yn; θn)un

, f(yn,un; θn), (9)

with u0 being initialized as an arbitrary distribution on the

finite state set, Pθn being the state transition probability

matrix for the current iterate θn. The predicted state estimate

is used recursively to calculate the state prediction in the next

step. Taking derivative on the update law (9), the update law

for ω
(l)
n is

ω
(l)
n+1 = Φ(yn,un; θn)ω

(l)
n +

∂f(yn,un; θn)

∂θ(l)
, (10)

where

Φ(yn,un; θn) =
P

⊤

θn
B(yn; θn)

b⊤(yn; θn)un

(

I−
unb

⊤(yn; θn)

b⊤(yn; θn)un

)

,

∂f(yn,un; θn)

∂θ(l)

= P
⊤

θn

(

I−
B(yn; θn)une

⊤

b⊤(yn; θn)un

)

(

∂B(yn; θn)/∂θ
(l)
)

un

b⊤(yn; θn)un

+

(

∂P⊤

θn
/∂θ(l)

)

B(yn; θn)un

b⊤(yn; θn)un

,
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and θ(l) denotes the lth element of the parameter θn, I

denotes the I× I identity matrix, e = [1, . . . , 1]⊤, the initial

ω
(l)
0 is arbitrarily chosen from Σ = {ω(l) ∈ R

I : e⊤ω(l) =
0}.

At each time step n, the HMM estimator defined

by (6), (8), (9), and (10) updates θn based on the current

sample yn = (on, rn, an), while keeping track of the state

estimate un, and its partial derivative ωn.

Now we state the convergence of the estimator.

Proposition 2: Suppose that Assumption 1 and Assump-

tion 2 hold. Then, the following statements hold:

(i) The extended Markov chain {sn, yn,un, ωn} is geo-

metrically ergodic3.

(ii) For θ ∈ Θ, the log-likelihood ln(θ) in (1) almost surely

converges to l(θ),

l(θ) =

∫

Y×P(S)

log[b⊤(y; θ)u] ν(dy, du), (11)

where Y := O × R × A, P(S) is the set of probability

distribution on S , and ν(dy, du) is the marginal distribution

of ν, which is the invariant distribution of the extended

Markov chain.

(iii) The iterate {θn} converges almost surely to the

invariant set (set of equilibrium points) of the ODE

θ̇ = H(θ) + m̃ = ΠTH(θ)[H(θ)], θ(0) = θ0, (12)

where H(θ) = E[S(yn,un, ωn; θ)], the expectation E[·] is

taken with respect to ν, and m̃(·) is the projection term to

keep θn in H , TH(θ) is the tangent cone of H at θ [14,

pp. 343].

Remark 1: The second equation in (12) is due to [16,

Appendix E]. Using the definitions of tangent and normal

cones [14, pp. 343], we can readily prove that the set of

stationary points of (12) is {θ ∈ H : ΠTH(θ)(H(θ)) =
0} = {θ ∈ H : H(θ) ∈ NH(θ)}, where NH(θ) is the

normal cone of H at θ ∈ H . Note that the set of stationary

points is identical to the set of KKT points of the constrained

nonlinear programming minθ∈H l(θ).
Proof: We prove that the HMM estimation converges

to the invariant set of ODE (12) by verifying the assumptions

in [11] for the POMDP with the behavior policy described in

Section II. Due to the space limitation, we defer the details

of the proof to the online full version [17].

B. Estimating Q-function with the HMM State Predictor

In addition to estimation of the HMM parameters

(P,R,O, σ), we aim to recursively estimate the optimal

action-value function Q∗(s, a) : S × A → R using partial

state observation.
From Bellman’s optimality principle, Q∗(s, a) function is

defined as

Q∗(s, a) =
∑

s′

P (s′|s, a)

(

r(s, a) + γmax
a′

Q∗(s′, a′)

)

, (13)

3 A Markov chain with transition probability matrix P is geometrically
ergodic, if for finite constants cij and a β < 1

|(Pn)i,j − πj | ≤ cijβ
n,

where π denotes the stationary distribution.

where P (s′|s, a) is the state transition probability, which
corresponds to Ta(s, s

′) in the POMDP model. The standard
Q-learning from [18] estimates Q∗(s, a) function using the
recursive form:

Qn+1(sn, an)

= Qn(sn, an) + ǫn

(

rn + γmax
a′

Qn(sn+1, a
′)−Qn(sn, an)

)

.

Since the state sn is not directly observed in POMDP,

the state estimate un in (9) from the HMM estimator is

used instead of sn. Define the estimated state transition

p̂(sn−1, sn) as

p̂(sn−1, sn)

= P (sn−1|yn−1,un−1; θn−1)P (sn|yn,un; θn),
(14)

where P (sn|yn,un; θn) is calculated using Bayes rule:

P (sn = i|yn,un; θn) =
bi(yn)un,i

∑

j bj(yn)un,j

. (15)

Using p̂(i, j) as a surrogate for P (s′|s, a) in (13), a recursive
estimator for Q∗(s, a) is proposed as follows:









qn+1(1, an)
qn+1(2, an)

...
qn+1(I, an)









=









qn(1, an)
qn(2, an)

...
qn(I, an)









+

ǫn













∑I

j
p̂n(1, j) (rn + γmaxa′ qn(j, a

′)− qn(1, an))
∑I

j
p̂n(2, j) (rn + γmaxa′ qn(j, a

′)− qn(2, an))
...

∑I

j
p̂n(I, j) (rn + γmaxa′ qn(j, a

′)− qn(I, an))













,

(16)

where qn(i, an) = Qn(s = i, a = an). In the following

proposition we establish the convergence of (16).
Proposition 3: Suppose that Assumption 1 and Assump-

tion 2 hold. Then the following ODE has a unique globally
asymptotically stable equilibrium point:









q̇1,a
q̇2,a

...
q̇I,a









=
1

ūa













∑I

j
p̄(1, j)(r̄ + γmaxa′ qj,a′ − q1,a)

∑I

j
p̄(2, j)(r̄ + γmaxa′ qj,a′ − q2,a)

...
∑I

j
p̄(I, j)(r̄ + γmaxa′ qj,a′ − qI,a)













, a ∈ A,

where ūa is determined by the expected frequency of the
recurrence to the action a (for the detail, see Appendix B in
[17]), p̄(i, j) denotes the expectation of p̂(i, j), r̄ denotes the
expectation of R(s, a) and the expectations are taken with
the invariant distribution ν. As a result, the iterate {Qn} of
the recursive estimation law in (16) converges in distribution

to the unique equilibrium point Q̂∗ of the ODE, i.e., the
unique solution of the Bellman equation

Q̂(s, a) =
∑

s′

p̄(s, s′)

(

r̄(s, a) + γmax
a′

Q̂(s′, a′)

)

.

Proof: The update of Qǫ
n is asynchronous, as we update

the part of Qn(s, a) for the current action taken. Result on

stochastic approximation from [19] is invoked to prove the

convergence. The proof follows from the ergodicity of the

underlying Markov chain and the contraction of the operator

HQ =
∑

s′ p̂(s, s
′; θL) (r(s, a) + γmaxa′ Q(s′, a′)). Due to

the space limitation, we defer the details of the proof to the

online full version [17].
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C. Learning State Transition given Action with the HMM

State Predictor

We aim to estimate the expectation of the following

indicator function

Ts,a,s′ = E[1{sn=s,an=j,sn+1=s′}], (17)

where the expectation E is taken with respect to the sta-

tionary distribution corresponding to the true parameter θ∗.

Thus, Ts,a,s′ is the expectation of the counter of the transition

s, a, s′ divided by the total number of transitions (or the

stationary distribution P (s, a, s′)).
The proposed recursive estimation of Ts,a,s′ is given by









Tn+1(1, an, 1)
Tn+1(1, an, 2)

...
Tn+1(I, an, I)









=









Tn(1, an, 1)
Tn(1, an, 2)

...
Tn(I, an, I)









+ ǫn









p̂n(1, 1)(1− Tn(1, an, 1))
p̂n(1, 2)(1− Tn(1, an, 2))

...
p̂n(I, I)(1− Tn(I, an, I))









.

(18)

We note that the estimation in (18) uses p̂(s, s′) as a
surrogate for P (s′|s, a) in (13). The ODE corresponding
to (18) is











Ṫ1,a,1

Ṫ1,a,2

...

ṪI,a,I











=
1

ūa









p̄(1, a, 1)(1− T1,a,1)
p̄(1, a, 2)(1− T1,a,2)

...
p̄(I, a, I)(1− TI,a,I)









, a ∈ A.

Following the same procedure in the proof of Proposition 3,

we can show that tn(s, a, s
′) converges to p̄(s, a, s′), where

p̄(s, a, s′) denotes the marginal distribution of the transition

from s to s′ after taking a with respect to the invariant

distribution of the entire process. Since we estimate the

joint distribution, the conditional distribution Ta(s, s
′) can be

calculated by dividing the joint probabilities with marginal

probabilities.

IV. A NUMERICAL EXAMPLE

In this simulation, we implement the HMM Q-learning
for a finite state POMDP example, where 4 hidden states
are observed through 2 observations with the discount factor
γ = 0.95 as specified below:

T =













.6 .2 .1 .1

.2 .1 .6 .1

.1 .1 .1 .7

.4 .1 .1 .4






,







.1 .2 .2 .5

.1 .6 .1 .2

.1 .2 .6 .1

.1 .1 .2 .6












,

O =







.95 .05

.95 .05

.05 .95

.05 .95






, R =

[

0 0. −20. +20.
0 0. +20. −20.

]

, σ = 1.

The following behavior policy µ(o) is used to estimate the
HMM, the transition model, and the Q-function

µ =

[

.6 .4

.3 .7

]

, µi,j = P (a = j|o = i).

The diminishing step size is chosen as ǫn = n−0.4 for n ≥ 1.
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Fig. 2: The mean of logb⊤(yn; θn)un.

A. Estimation of the HMM and Q-function

Figure 2 shows that the mean of the sample conditional

log-likelihood density logb⊤(yn; θn)un increases.

To validate the estimation of the Q-function in (16),

we run three estimations of Q-function in parallel: (i) Q-

learning [18] with full state observation s, (ii) Q-learning

with partial observation o, (iii) HMM Q-learning. Figure 3

shows maxs,a Qn(s, a) for all three algorithms.
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Fig. 3: maxs,a Qn(s, a) is greater with full observation than

partial observation.

After 200,000 steps, the iterates of Qfull
n , Q

partial
n and Qhmm

n

at n = 2× 105 are as follows:

Qfull
n =

[

107.4 103.4 99.3 133.8
114.7 107.6 102.4 98.0

]

⊤

,

Qpartial
n =

[

20.1 21.6
18.9 9.1

]

⊤

,

Qhmm
n =

[

133.0 106.0 105.9 99.1
98.1 111.2 111.7 105.4

]

⊤

,

where the (i, j) elements of the Q matrices are the estimates
of the Q-function value, when a = i, s = j. Similar to the
other HMM estimations (from unsupervised learning task),
the labels of the inferred hidden state do not match the
labels assigned to the true states. Permuting the state indices
{1, 2, 3, 4} to (2, 3, 4, 1) in order to have better matching
between the estimated and true Q-function, we compare the
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estimated Q-function as follows:

Qpermuted
n =

[

106.0 105.9 99.1 133.0
111.2 111.7 105.4 98.1

]

⊤

,

Qfull
n =

[

107.4 103.4 99.3 133.8
114.7 107.6 102.4 98.0

]

⊤

.

This permutation is consistent with the estimated observa-
tion O(θn) as below:

O(θn) =







.066 .934

.943 .057

.947 .053

.052 .948






, O(θ∗) =







.950 .050

.950 .050

.050 .950

.050 .950






.

B. Dynamic Policy with Partial Observations

After a certain stopping criterion is satisfied, we fix the pa-
rameter. The fixed POMDP parameters (Tθl ,Oθl ,Rθl , σθl)
are used in the following Bayesian state belief filter

un+1 =
T

⊤

θl
(an)B(yn; θl)un

b⊤(yn; θl)un

. (19)

The action a∗ is chosen based on the expectation of the
Q-function on the state belief distribution and the current
observation on

a∗ = argmaxa

I
∑

i

Qθl(s = i, a)P (sn = i|on,un; θl). (20)

We tested the dynamic policy consisting of (19) and (20) at

every thousand steps of the parameter estimation. Figure 4

shows that the proposed HMM Q-learning performs better

than the Q-learning with partial observation.

Fig. 4: mean rewards from Q-learning with full observation,

Q-learning with partial observation, and the proposed HMM

Q-learning.

V. CONCLUSION

We presented a model-based approach to the problem of

reinforcement learning with incomplete observation. Since

the controlled POMDP is an HMM, we invoked results from

Hidden Markov Model (HMM) estimation. Based on the

convergence of the HMM estimator, the optimal action-value

function Q∗(s, a) is learned despite the hidden states. The

proposed algorithm is recursive, i.e. only the current sample

is used so that there is no need for replay buffer, in contrast

to the other algorithms for POMDP [20], [21].

We proved the convergence of the recursive estimator

using the ergodicity of the underlying Markov chain for

the HMM estimation [11], [12] and presented a numerical

example where the simulation shows the convergent behavior

of the recursive estimator.
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