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Types of learning
• Supervised learning

– Learning mapping between inputs x and desired outputs y
– Teacher gives me y’s for the learning purposes

• Unsupervised learning
– Learning relations between data components
– No specific outputs given by a teacher

• Reinforcement learning
– Learning mapping between inputs x and desired outputs y
– Critic does not give me y’s but instead a signal 

(reinforcement) of how good my answer was
• Other types of learning:

– Concept learning, explanation-based learning, etc.
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Supervised learning

Data:                                     a set of n examples                                 

is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping 
s.t.

Two types of problems:
• Regression: X discrete or continuous

Y is continuous
• Classification: X discrete or continuous

Y is discrete
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Supervised learning examples

• Regression:  Y is continuous

Debt/equity
Earnings company stock price
Future product orders

• Classification: Y is discrete

Handwritten digit (array of 0,1s)

Label “3”
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Unsupervised learning

• Data:
vector of values

No target value (output) y 

• Objective:
– learn relations between samples, components of samples

Types of problems:
• Clustering

Group together “similar” examples, e.g. patient cases
• Density estimation

– Model probabilistically the population of samples, e.g. 
relations between the diseases, symptoms, lab tests etc.
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Unsupervised learning example. 

• Density estimation. We want to build the probability model of 
a population from which we draw samples 
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Unsupervised learning. Density estimation
• A probability density of a point in the two dimensional space

– Model used here: Mixture of Gaussians
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Reinforcement learning

• We want to learn:
• We see samples of x but not y 
• Instead of y we get a feedback (reinforcement) from a critic

about how good our output was 

• The goal is to select output that leads to the best reinforcement

Learner
input sample output

Critic

reinforcement

YXf →:
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Learning
• Assume we see examples of pairs (x , y) and we want to learn 

the mapping                      to predict future ys for values of x
• We get the data what should we do?

YXf →:
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Learning bias
• Problem: many possible functions                      exists for 

representing the mapping between x and y                      
• Which one to choose?  Many examples still unseen!

YXf →:
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Learning bias
• Problem is easier when we make an assumption about the 

model, say,
• Restriction to a linear model is an example of the learning bias
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Learning bias
• Bias provides the learner with some basis for choosing among 

possible representations of the function.
• Forms of bias: constraints, restrictions, model preferences
• Important: There is no learning without a bias!
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Learning bias
• Choosing a parametric model or a set of models is not enough 

Still too many functions
– One for every pair of parameters a, b
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Fitting the data to the model
We are interested in finding the best set of model parameters
How is the best set defined?  
Our goal is to have the parameters that:
• reduce the misfit between the model and data
• Or, (in other words) that explain the data the best 
Error function:

Gives a measure of misfit between the data and the model
• Examples of error functions:

– Mean square error

– Misclassification error
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Fitting the data to the model
• Linear regression 

– Least squares fit with the linear model 
– minimizes
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Typical learning

Three basic steps:
• Select a model or a set of models (with parameters)

E.g.
• Select the error function to be optimized

E.g.

• Find the set of parameters optimizing the error function
– The model and parameters with the smallest error represent 

the best fit of the model to the data

But there are problems one must be careful about …
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Learning
Problem
• We fit the model based on past experience (past examples seen)
• But ultimately we are interested in learning the mapping that 

performs well on the whole population of examples
Training data: Data used to fit the parameters of the model
Training error:

True (generalization) error (over the whole and not completely 
known population):

The training error tries to approximate the true error.
But does a good training error always imply a good 

generalization error?
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Overfitting

• Assume we have a set of 10 points and we consider 
polynomial functions as our possible models
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Overfitting

• Fitting a linear function with mean-squares error
• Error is nonzero
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Overfitting
• Linear vs. cubic polynomial
• Higher order polynomial leads to a better fit, smaller error 
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Overfitting

• Is it always good to minimize the error of the observed data?
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Overfitting
• For 10 data points, degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.
• Is it always good to minimize the training error?  
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Overfitting
• For 10 data points, degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.
• Is it always good to minimize the training error?  NO !!
• More important: How do we perform on the unseen data?
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Overfitting
• The situation when the training error is low and the 

generalization error is high. Causes of the phenomenon:
– Model with more degrees of freedom (more parameters)
– Small data size (as compared to the complexity of model)
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Evaluation framework 
• We want our classifier to generalize well to future examples
• Problem: But we do not know all future examples !!!
• Solution: evaluate the classifier on the test set that is withheld 

from the learning stage

Learn (fit)

Dataset

Training set Testing set

Evaluation

The
model

CS 2710 Foundations of AI

• Generalization error is the true error for the population of 
examples we would like to optimize

– But it cannot be computed exactly
• Optimizing (mean) training error can lead to overfit, i.e.  

training error may not reflect properly the generalization error

• The generalization error is more objectively estimated using 
a separate test data set with m data samples

• (Mean) test error

2
),( ))(( xfyE yx −

2

,..1

))((1
ii

ni

xfy
n

−∑
=

2

,..1

))((1
jj

mj

xfy
m

−∑
=

How to evaluate the learner’s performance?



14

CS 2710 Foundations of AI

Design of a learning system

Data

Model selection

Learning

Application
or Testing

CS 2710 Foundations of AI

Design of a learning system

1. Data:
2. Model selection:
• Select a model or a set of models (with parameters)

E.g.
• Select the error function to be optimized

E.g.

3. Learning:
• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error 
4. Application:
• Apply the learned model

– E.g. predict ys for new inputs x using learned

baxy +=

2

1
))((1

ii

n

i
xfy

n
−∑

=

},..,,{ 21 ndddD =

)(xf



15

CS 2710 Foundations of AI

Linear regression.

CS 2710 Foundations of AI

Supervised learning

Data:                                     a set of n examples                                 

is an input vector of size d
is the desired output (given by a teacher)

Objective: learn the mapping 
s.t.

• Regression: Y is continuous
Example: earnings, product orders       company stock price

• Classification: Y is discrete
Example: handwritten digit in binary form        digit label
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Linear regression

• Function is a linear combination of input 
components

∑
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Linear regression

• Shorter (vector) definition of the model
– Include bias constant in the input vector
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Linear regression. Error.

• Data:
• Function:
• We would like to have

• Error function
– measures how much our predictions deviate from the 

desired answers

• Learning: 
We want to find the weights minimizing the error !
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Linear regression. Example

• 1 dimensional input
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Linear regression. Example.

• 2 dimensional input
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Linear regression. Optimization.

• We want the weights minimizing the error

• For the optimal set of parameters, derivatives of the error with
respect to each parameter must be 0

• Vector of derivatives:
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Linear regression. Optimization.
• defines a set of equations in w
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Solving linear regression

By rearranging the terms we get a system of linear equations
with d+1 unknowns
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Solving linear regression

• The optimal set of weights satisfies:

Leads to a system of linear equations (SLE) with d+1
unknowns of the form

Solution to SLE: ?
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Solving linear regression

• The optimal set of weights satisfies:

Leads to a system of linear equations (SLE) with d+1
unknowns of the form

Solution to SLE:

• matrix inversion
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Gradient descent solution

Goal: the weight optimization in the linear regression model

An alternative to SLE solution: 
• Gradient descent

Idea:
– Adjust weights in the direction that improves the Error
– The gradient tells us what is the right direction

- a learning rate (scales the gradient changes)
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Gradient descent method
• Descend using the gradient information

• Change the value of w according to the gradient
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Direction of the descent
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Gradient descent method

• New value of the parameter

- a learning rate (scales the gradient changes)
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Gradient descent method

• Iteratively converge to the optimum of the Error function

w)0(w

)(wError

)2(w)1(w )3(w



23

CS 2710 Foundations of AI

Online gradient algorithm

• The error function is defined for the whole dataset D

• error for a sample

• Online gradient method: changes weights after every sample

• vector form: 
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Online gradient method
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Online regression algorithm

Online-linear-regression (D, number of iterations)
Initialize weights
for i=1:1: number of iterations

do      select a data point                          from D
set 
update weight vector

end for
return weights
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• Advantages: very easy to implement, continuous data streams
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On-line learning.   Example
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