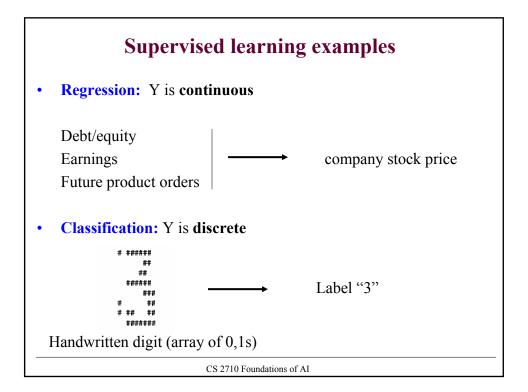


Supervised learning
 Learning mapping between inputs x and desired outputs
- Teacher gives me y's for the learning purposes
Unsupervised learning
 Learning relations between data components
- No specific outputs given by a teacher
Reinforcement learning
- Learning mapping between inputs x and desired outputs
- Critic does not give me y's but instead a signal
(reinforcement) of how good my answer was
Other types of learning:
- Concept learning, explanation-based learning, etc.

Supervised learning

Data: D = {d₁, d₂,...,d_n} a set of n examples d_i =< x_i, y_i > x_i is input vector, and y is desired output (given by a teacher)
Objective: learn the mapping f: X → Y s.t. y_i ≈ f(x_i) for all i = 1,..., n
Two types of problems:
Regression: X discrete or continuous → Y is continuous
Classification: X discrete or continuous → Y is discrete



Unsupervised learning

• Data: $D = \{d_1, d_2, ..., d_n\}$ $d_i = \mathbf{x}_i$ vector of values No target value (output) y

• Objective:

- learn relations between samples, components of samples

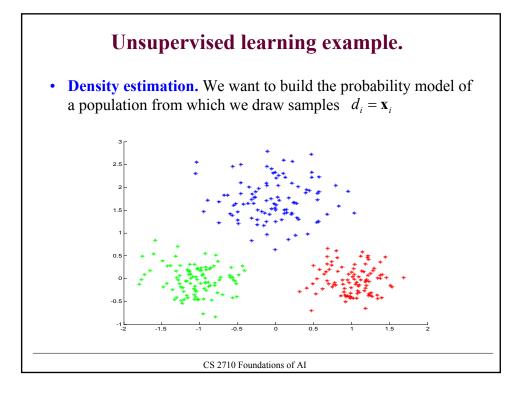
Types of problems:

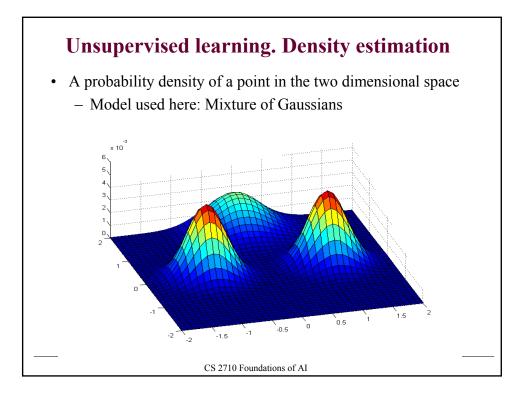
• Clustering

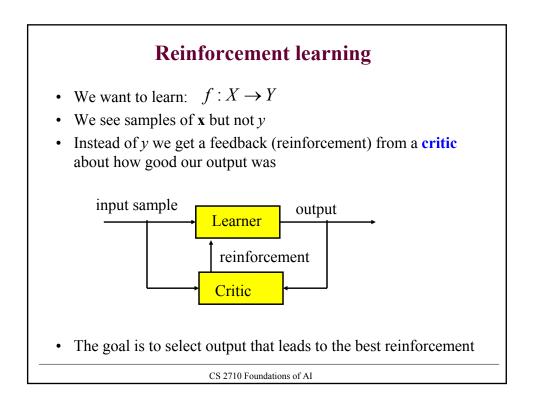
Group together "similar" examples, e.g. patient cases

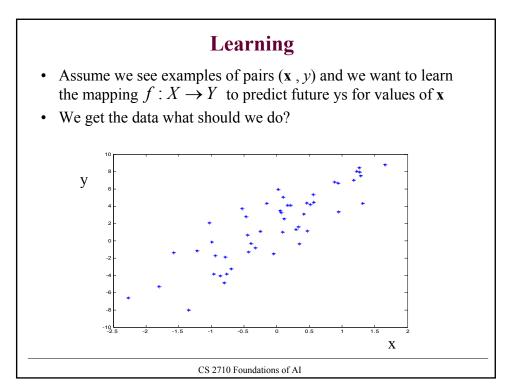
• Density estimation

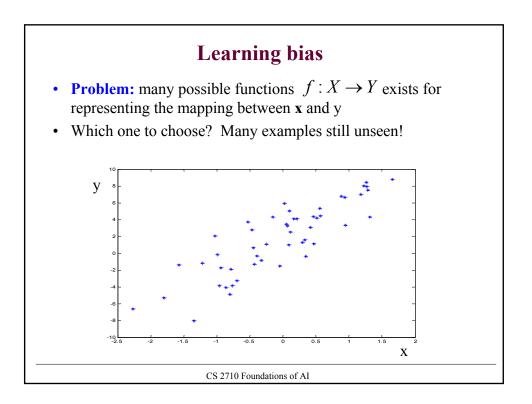
 Model probabilistically the population of samples, e.g. relations between the diseases, symptoms, lab tests etc.

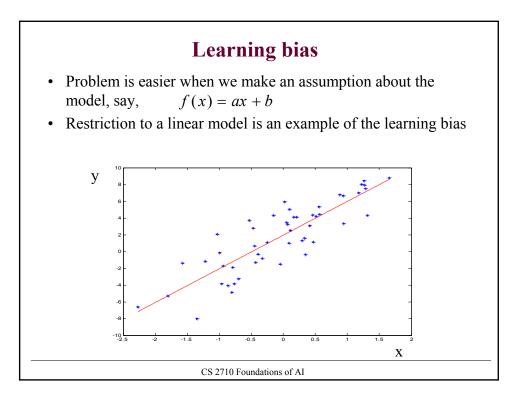


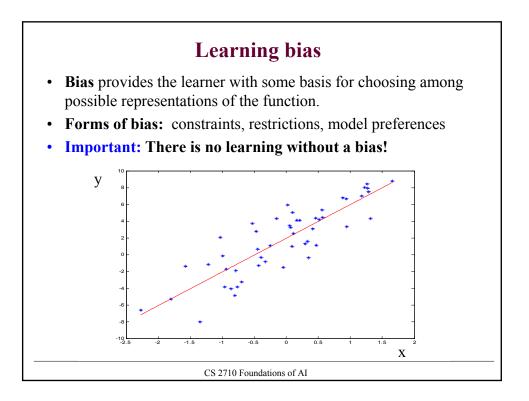


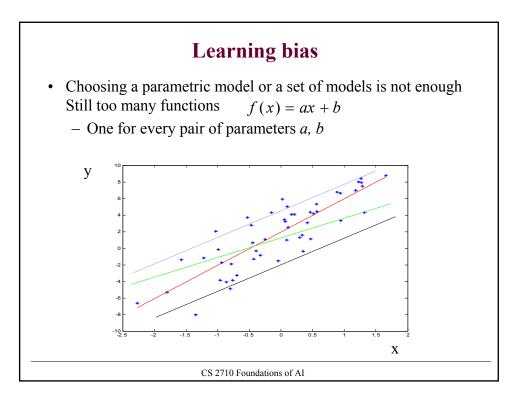


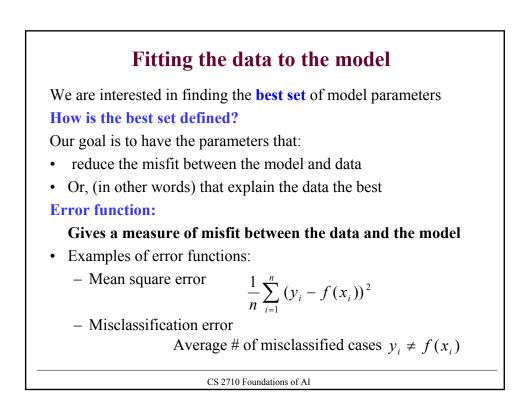














<section-header><text><text><equation-block><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Learning

Problem

- We fit the model based on past experience (past examples seen)
- But ultimately we are interested in learning the mapping that performs well on the whole population of examples

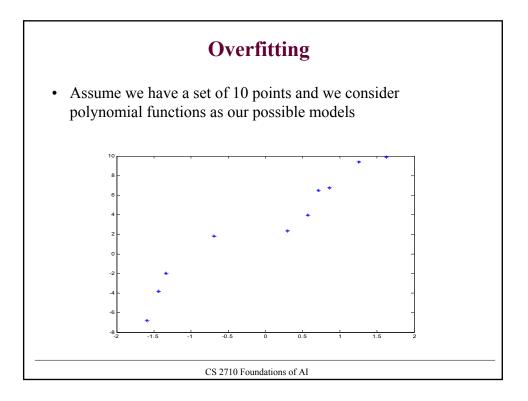
Training data: Data used to fit the parameters of the model Training error: $\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$

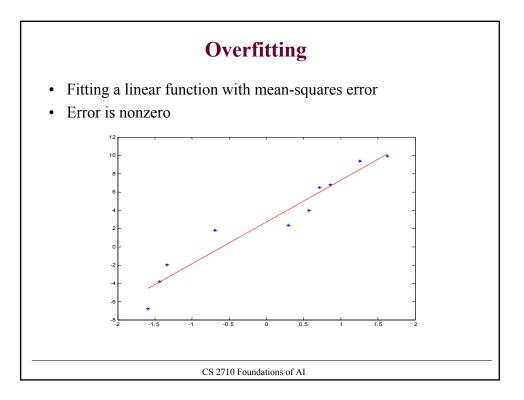
True (generalization) error (over the whole and not completely known population):

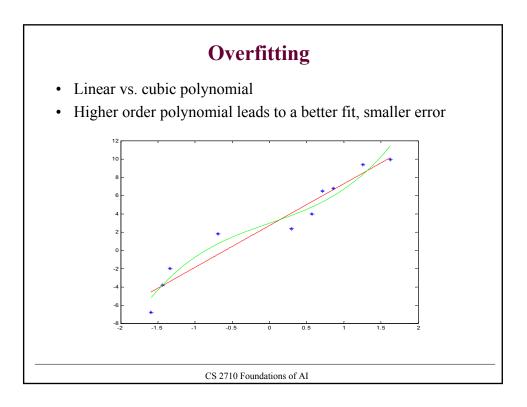
 $E_{(x,y)}(y-f(x))^2$ Expected squared error

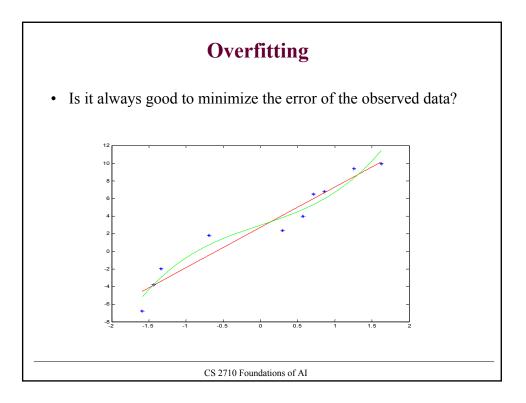
The training error tries to approximate the true error.

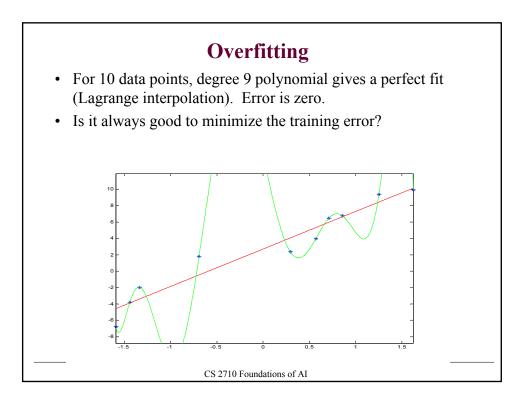
But does a good training error always imply a good generalization error?

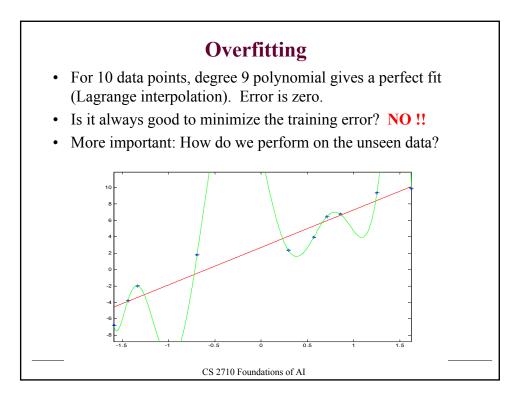


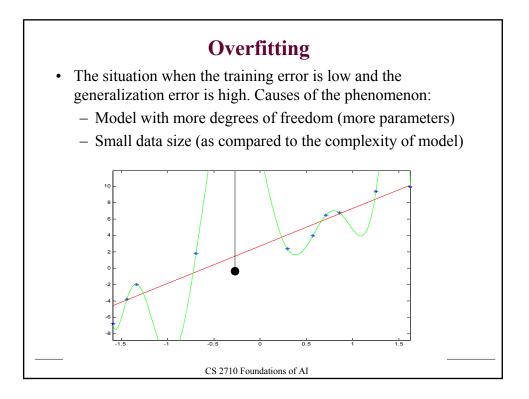


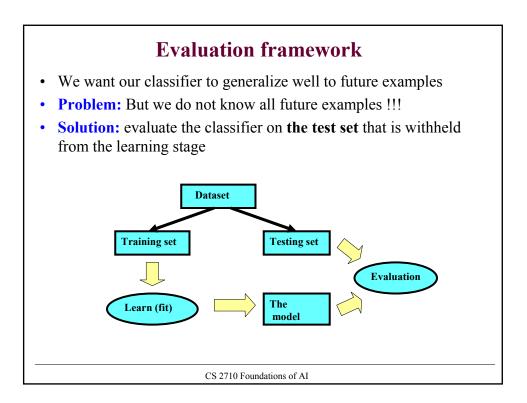


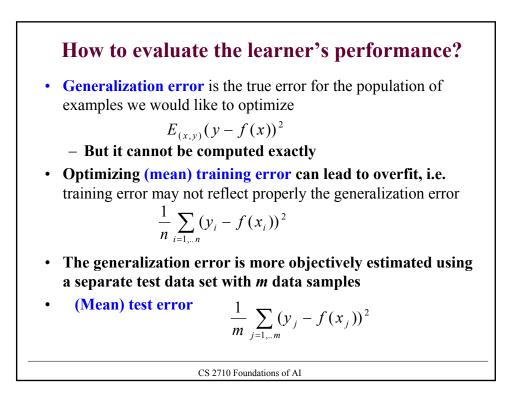


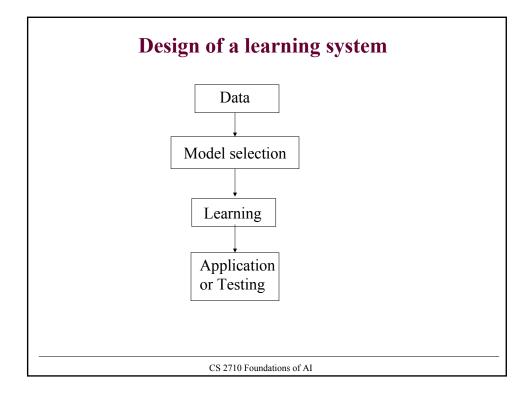




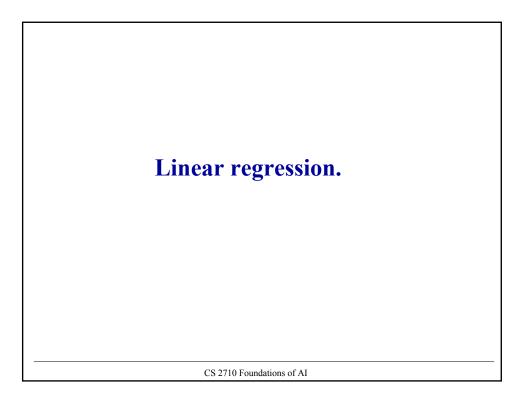






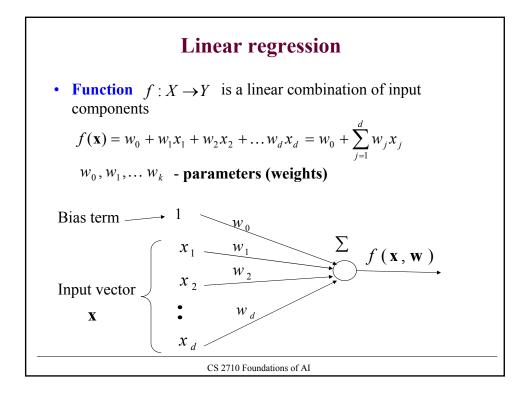


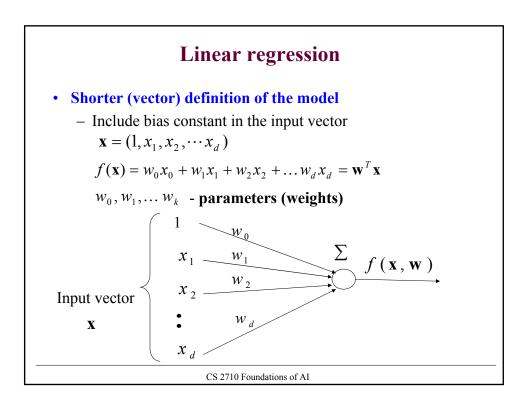
Design of a learning system		
. Data:	$D = \{d_1, d_2,, d_n\}$	
. Model	selection:	
Select	a model or a set of models (with parameters)	
E.g.	y = ax + b	
Select	the error function to be optimized	
E.g.	$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$	
. Learni	ng:	
Find t	he set of parameters optimizing the error function	
– The	e model and parameters with the smallest error	
. Applic	ation:	
Apply	the learned model	
– E.g	. predict ys for new inputs x using learned $f(\mathbf{x})$	
	CS 2710 Foundations of AI	

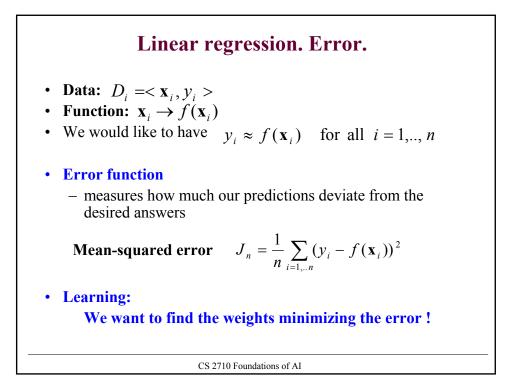


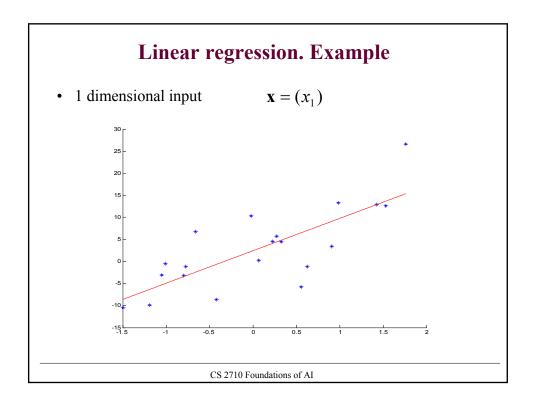
Supervised learning

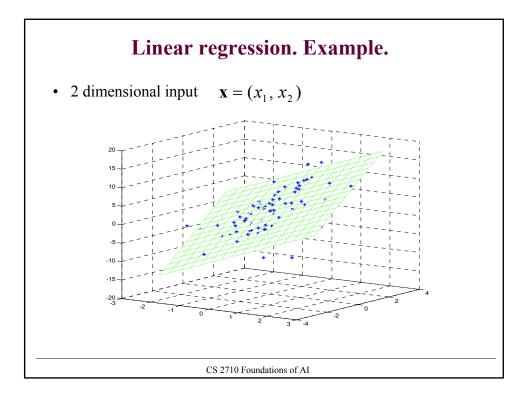
Data: D = {D₁, D₂,...,D_n} a set of *n* examples D_i =< x_i, y_i > x_i = (x_{i,1}, x_{i,2}, ... x_{i,d}) is an input vector of size d y_i is the desired output (given by a teacher)
Objective: learn the mapping f : X → Y s.t. y_i ≈ f(x_i) for all i = 1,..., n
Regression: Y is continuous Example: earnings, product orders → company stock price
Classification: Y is discrete Example: handwritten digit in binary form → digit label











Linear regression. Optimization. • We want the weights minimizing the error $J_n = \frac{1}{n} \sum_{i=1,.n} (y_i - f(\mathbf{x}_i))^2 = \frac{1}{n} \sum_{i=1,.n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$ • For the optimal set of parameters, derivatives of the error with respect to each parameter must be 0 $\frac{\partial}{\partial w_j} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \dots - w_d x_{i,d}) x_{i,j} = 0$ • Vector of derivatives: $grad_{\mathbf{w}} (J_n(\mathbf{w})) = \nabla_{\mathbf{w}} (J_n(\mathbf{w})) = -\frac{2}{n} \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i) \mathbf{x}_i = \overline{\mathbf{0}}$

Linear regression. Optimization.

• grad $_{\mathbf{w}}(J_n(\mathbf{w})) = \overline{\mathbf{0}}$ defines a set of equations in \mathbf{w}

$$\frac{\partial}{\partial w_0} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \dots - w_d x_{i,d}) = 0$$

$$\frac{\partial}{\partial w_1} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \dots - w_d x_{i,d}) x_{i,1} = 0$$

...
$$\frac{\partial}{\partial w_j} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \dots - w_d x_{i,d}) x_{i,j} = 0$$

...
$$\frac{\partial}{\partial w_d} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \dots - w_d x_{i,d}) x_{i,d} = 0$$

CS 2710 Foundations of AI

Solving linear regression

$$\frac{\partial}{\partial w_{j}} J_{n}(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^{n} (y_{i} - w_{0}x_{i,0} - w_{1}x_{i,1} - \dots - w_{d}x_{i,d})x_{i,j} = 0$$
By rearranging the terms we get a system of linear equations
with $d+1$ unknowns

$$\mathbf{Aw} = \mathbf{b}$$

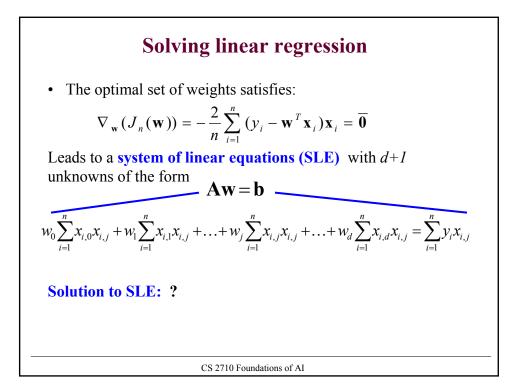
$$w_{0} \sum_{i=1}^{n} x_{i,0} 1 + w_{1} \sum_{i=1}^{n} x_{i,1} 1 + \dots + w_{j} \sum_{i=1}^{n} x_{i,j} 1 + \dots + w_{d} \sum_{i=1}^{n} x_{i,d} 1 = \sum_{i=1}^{n} y_{i} 1$$

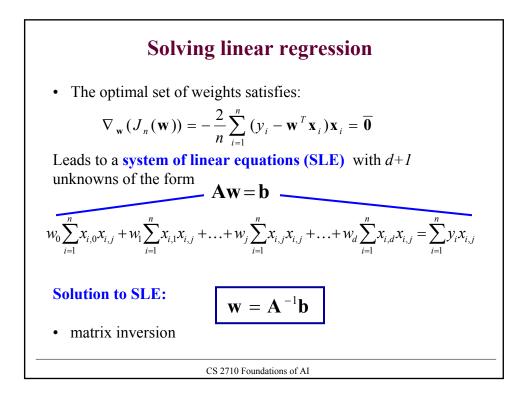
$$w_{0} \sum_{i=1}^{n} x_{i,0} x_{i,1} + w_{1} \sum_{i=1}^{n} x_{i,1} x_{i,1} + \dots + w_{j} \sum_{i=1}^{n} x_{i,j} x_{i,1} + \dots + w_{d} \sum_{i=1}^{n} x_{i,d} x_{i,1} = \sum_{i=1}^{n} y_{i} x_{i,1}$$

$$w_{0} \sum_{i=1}^{n} x_{i,0} x_{i,j} + w_{1} \sum_{i=1}^{n} x_{i,1} x_{i,j} + \dots + w_{j} \sum_{i=1}^{n} x_{i,j} x_{i,j} + \dots + w_{d} \sum_{i=1}^{n} x_{i,d} x_{i,i} = \sum_{i=1}^{n} y_{i} x_{i,j}$$

$$w_{0} \sum_{i=1}^{n} x_{i,0} x_{i,j} + w_{1} \sum_{i=1}^{n} x_{i,1} x_{i,j} + \dots + w_{j} \sum_{i=1}^{n} x_{i,j} x_{i,j} + \dots + w_{d} \sum_{i=1}^{n} x_{i,d} x_{i,j} = \sum_{i=1}^{n} y_{i} x_{i,j}$$

$$w_{0} \sum_{i=1}^{n} x_{i,0} x_{i,j} + w_{1} \sum_{i=1}^{n} x_{i,1} x_{i,j} + \dots + w_{j} \sum_{i=1}^{n} x_{i,j} x_{i,j} + \dots + w_{d} \sum_{i=1}^{n} x_{i,d} x_{i,j} = \sum_{i=1}^{n} y_{i} x_{i,j}$$





Gradient descent solution

Goal: the weight optimization in the linear regression model

$$J_n = Error (\mathbf{w}) = \frac{1}{n} \sum_{i=1,\dots,n} (y_i - f(\mathbf{x}_i, \mathbf{w}))^2$$

An alternative to SLE solution:

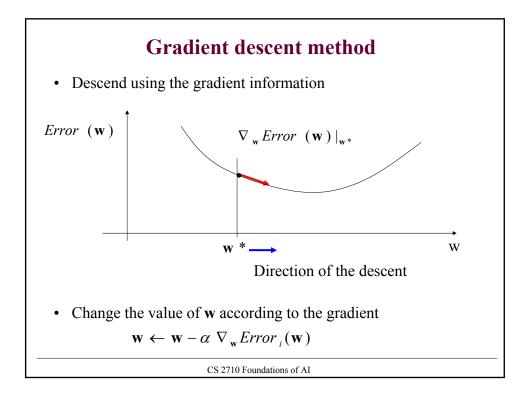
• Gradient descent

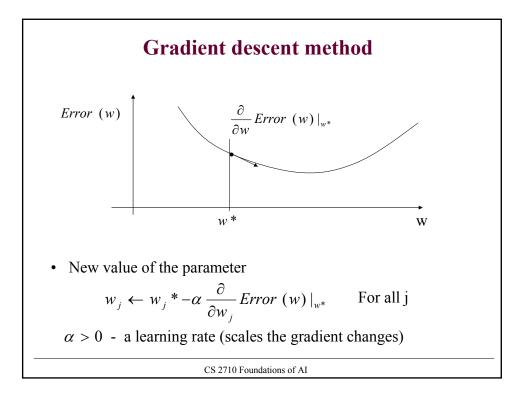
Idea:

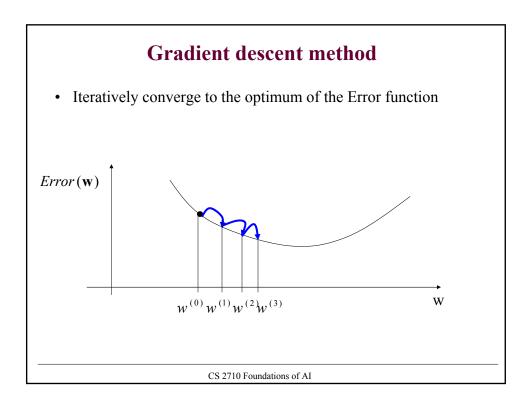
- Adjust weights in the direction that improves the Error
- The gradient tells us what is the right direction

 $\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} Error_{i}(\mathbf{w})$

 $\alpha > 0$ - a **learning rate** (scales the gradient changes)







Online gradient algorithm

• The error function is defined for the whole dataset D

$$J_n = Error(\mathbf{w}) = \frac{1}{n} \sum_{i=1,\dots,n} (y_i - f(\mathbf{x}_i, \mathbf{w}))^2$$

• error for a sample $D_i = \langle \mathbf{x}_i, y_i \rangle$

$$J_{\text{online}} = Error_i(\mathbf{w}) = \frac{1}{2}(y_i - f(\mathbf{x}_i, \mathbf{w}))^2$$

• Online gradient method: changes weights after every sample

vector form:
$$w_j \leftarrow w_j - \alpha \frac{\partial}{\partial w_j} Error_i(\mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} Error_i(\mathbf{w})$$

 $\alpha > 0$ - Learning rate that depends on the number of updates

CS 2710 Foundations of AI

Online gradient method Linear model $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ On-line error $J_{online} = Error_i(\mathbf{w}) = \frac{1}{2}(y_i - f(\mathbf{x}_i, \mathbf{w}))^2$ **On-line algorithm:** generates a sequence of online updates (i)-th update step with : $D_i = \langle \mathbf{x}_i, y_i \rangle$ j-th weight: $w_j^{(i)} \leftarrow w_j^{(i-1)} - \alpha(i) \frac{\partial Error_i(\mathbf{w})}{\partial w_j}|_{\mathbf{w}^{(i-1)}}$ $w_j^{(i)} \leftarrow w_j^{(i-1)} + \alpha(i)(y_i - f(\mathbf{x}_i, \mathbf{w}^{(i-1)}))x_{i,j}$ **Annealed learning rate:** $\alpha(i) \approx \frac{1}{i}$ - Gradually rescales changes in weights

Online regression algorithm

