
Joe Bergin & Fred Grossman
Computer Science and Information Systems

Pace University

XP in an Hour



2

• Extreme Programming is a high discipline
and very iterative development method

• XP avoids early commitment and early
infrastructure development to achieve:

• Low cost of change and

• Easy retargeting of a project

Introduction



Why Projects Fail
• Trying to over-control the dimensions

• Features

• Cost

• Schedule

• Quality

• In reality you can only control 3 of these



4

• Courage

• Communication

• Simplicity

• Feedback

• Respect

Values in XP



5

Key Ideas

• Practices are synergistic & support each
other

• Distance is expensive

• Schedules never slip

• Balance between rights & responsibilities

• Set of practices is humane



6

What It Gives You

• Rights AND Responsibilities

• Humane work environment

• Skills that are valuable

• Pride of workmanship



7

What It Requires

• Discipline

• Commitment

• Honesty

• Courage



8

• Upfront requirements gathering and sign-off
-- hence no need to commit early

• Upfront design documents -- hence easy to
retarget

• Early costs amortized over life of project

• Intimidation: schedule, cost, or value

What is missing?



9

• Write short “story cards” describing
features

• Answer questions throughout to add
specificity to the stories

• Write acceptance tests to verify stories

• Make all business decisions: function,
priority, feature value, acceptance

Roles: Customer



10

Sample Story

• The system will correctly classify triangles:
right triangles, equilateral, etc.

Story 3



11

Sample Acceptance
Test

These are created in Excel or HTML, but are
executable



12

After Execution

Failed tests show up in red.



13

• Estimate stories

• Break stories into tasks

• Build tasks -- with customer feedback

• Write unit tests (all tests always succeed)

• Do continuous integration

Roles: Developer



14

• Tracker (keep everyone aware of progress)

• Coach (conscience of the team)

• Big-Boss (management and shelter)

• Tester (write/run unit tests...)

• Consultant (extra knowledge as needed)

Roles: Other



15

• For best effort and full communication,
NOT for deliverables on a given date

• Customer may terminate project at any
time

• Short release cycles (4-6 weeks) ensure
constant delivery of customer value

• Schedule never slips, though features may
be dropped from an iteration

Contract



16

• Build the high value features first --
controlled by customer

• Make expensive decisions as late as possible

• When the cost and value curves cross -
quit!

Controlling Cost



17

• Customer steers like a bicycle

• If something is not “right” then write a new
story and prioritize it like any other

• Developers build only the stories in the
current iteration and always do the
simplest thing that could possibly work

• Stories are fine-grained to enable short
iterations

Staying Happy



18

Practices

• XP has a dozen or so key practices. The
most important overall are

• Onsite Customer

• Whole Team



19

• The most important practices for the
customer are:

• Onsite customer - available customer

• Planning Game

• Customer Written Acceptance Tests

Practices-- Customer



20

• Customer is needed on site because

• Developers should not make business
decisions but

• no upfront requirements

• no upfront design documents

• A story is a contract to talk in the future

Onsite Customer



21

Whole Team
• In addition to the customer, the “whole

team” includes all personnel with key skills
needed to develop the system

• Software developers

• Designers

• Information architects

• Others as appropriate



22

Whole Team
• The customers write stories and prioritize

them

• The other members task out the stories
and estimate them

• Members with appropriate skills estimate
and perform tasks

• Tasks support the stories



23

• This is a periodic task (every 2 weeks) in
which the customer chooses the high value
features for the next release or iteration

• Based on cost estimates from the
developers

• Estimates are not a contract, so re-steering
is required throughout the iteration.

Planning Game 1



24

Planning Game 2

• Customer writes stories

• Developers estimate stories

• Customer prioritizes stories

• Developers give the “velocity”

• Customer chooses stories up to velocity



25

Planning Game 3

• Developers/Customer discuss stories

• Developers divide stories up into tasks

• Individual developer with appropriate skills
chooses a task and estimates it

• If sum of task times > velocity then back to
planning, otherwise build & test



26

Build Phase 1
• Tracker keeps track of everyone’s progress

• If all tasks/stories can’t be completed on
time some are dropped. Customer chooses

• At end of each task, all tests pass.
Customer verifies

• If the customer still isn’t happy, write a new
story



27

Build Phase 2

• If developers finish early, go back to
customer for more work. Customer
chooses

• Developers give a new “mini velocity”

• Next iteration velocity is adjusted based on
what we complete this iteration



28

Practices--Developer
• Standup Meeting

• Sustainable Pace

• Coding Standard

• Test Driven Development

• Collective Code Ownership

• Small Releases



29

Practices--Developer
• Pair Programming

• Constant Refactoring

• Continuous Integration

• Simple Design

• Metaphor

• Retrospectives



30

New Practices
• The above practices may not all be

appropriate as stated for an integrated
team

• Practices are built on principles to give
benefits

• Need to discover and implement
appropriate practices for THIS team to
achieve desired goals


