The Compiler Generator Coco/R
User Manual

Hanspeter M dssenbdck
Johannes Kepler University Linz
Institute of System Software

Coco/R* isacompiler generator, which takes an attributed grammar of a source language
and generates a scanner and a parser for this language. The scanner works as a
deterministic finite automaton. The parser uses recursive descent. LL (1) conflicts can be
resolved by a multi-symbol lookahead or by semantic checks. Thus the class of accepted
grammarsis LL (k) for an arbitrary k.

There are versions of Coco/R for C#, Java, C++, Delphi, Modula-2, Oberon and other
languages. This manual describes the versions for C#, Java and C++ from the University
of Linz.

Download from: http://ssw.jku.at/Coco/

Compiler Generator Coco/R,
Copyright © 1990, 2005 Hanspeter M dssenbock, University of Linz

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Asan exception, it is allowed towrite an extension of Coco/R that is used as a plugin in non-free software.

If not otherwise stated, any source code generated by Coco/R (other than Coco/R itself) does not fall under the
GNU General Public License.

! CocolR stands for compiler compiler generating recursive descent parsers.

Contents

1. OVEIVIEW. ..ot
1.1 Sample Production..............
1.2 Sample Parsing Method
1.3 SUMMEIY Of FEBIUIEScucveieeetreecie ettt sttt bbb s bt s st et s s s sesensantetas

2. INPUL LANQUEBGE.cucueueriiririeiiisieisisiessssiessasssssssssssssssssssssssssssssssesssssssssssssesases
2.1 Vocabularyccceevevvenvunne
2.2 Overall Structure
PG RS o 01 = S o 1= ot o 14 o] o TR 7
2.3.1 Character sets
G T o = o P
B I B =6 1= TSP RT
2.3.4 Comments........cccceunee
2.3.5 White space
2.3.6 CBSE SENSIIVITY w.vueeeeeeerieeireireseereeises st sesstses ettt s s b s s s ses et n bttt rnnes 1
2.4 Parser Specification
2.4, L PrOUUCLIONS........cceeteeccteteise ettt ss bbbt a et a et s st s s ae s s s an s naes
2.4.2 Semantic Actions
2.4.3 Attributes.........ccu....
2.4.4 The Symbol ANY
2.4.5 LL(L) CONFHICES coutuetreireetrirerieistressssssesssssssssesssseessesssssessssssssessssesssssesssssssssssssssessssssssssesssssssesssnssnseses
2.4.6 LL(2) Conflict Resolvers
2.4.7 SyntaxX EFror HaNAliNGcccoceeerireeineeeeieer s s sssessssessses
B = 0= 1 =T

T =< U o R
3.1 Installation
BT 1 a1V 0Tz 11 o] o OO
3.3 Interfaces of the Generated Classes
TR T o= 1 [=
3.3.2 TOKEN....oucverricrrae
3.3.3 Buffer....
3.3.4 Parser.....
BT = 1 (] £SO

3.4 Main Class of the COMPILErcccevvirerreeerreee e

T r= 101 10T= 1= £

4. A SAMPIE COMPITEN ...ttt 28
5. APPliCatioNS OF COCOMRcuiieiereetset ettt et 31
6. ACKNOWIEUGEIMENTS......coieiiieciieetete e e b st 32
AL SYNEAX OF COCOI/R......ceiiiriiciriieiti it 3

B. Sources of the SampPle COMPIIEN ... bbbt s s sate
B.L TASIEATG. .ottt sttt s sttt s s R R n s
B.2 SymTab.CS (SYMDOI tAIE)......c.cvviiieiriccece ettt st
B.3 CodeGen.cs (code generator)
B.4 Taste.CS (IMAIN PrOGIAM) ..cvcvveeeureereeetresesssessssessssssesesssesesssssssssssssssssssssssssessssssssssssssssessssssssessssssssesssssnsas

1. Overview

Coco/R is a compiler generator, which takes an attributed grammar of a source
language and generates a scanner and a recursive descent parser for this language. The
user has to supply a main class that calls the parser as well as semantic classes (e.g. a
symbol table handler or a code generator) that are used by semantic actions in the
parser. Thisis shown in Figure 1.

Main
> [Fas]

——Jp Coco/lR
| [|
compiler | Scanner| | | | |

description

semantic classes

Figure 1 Input and output of Coco/R

1.1 Sample Production

In order to give you an idea of how attributed grammars look like in Coco/R, let us
look at a sample production for variable declarations in a Pascal- like language:

Var Decl aration<ref int adr> (. string nane, TypeDesc type; .)
= |l dent <out nane> (. Obj x = syniab. Ent er (nane);
int n=1; .)
{ '," ldent<out nane> (. oj y = syniab. Enter (nane);
X.next =y, x =y,
n++;)

' Type<out type> (. adr += n * typ.size;
for (int a =adr; x !'=null; x = x.next) {
a -= type.size;
X.adr = a;

)

The core of this specification is the EBNF production

VarDeclaration = Ildent {',' Ildent} ':' Type ';'

It is augmented with attributes and semantic actions. The attributes (e.g. <out name>)
specify the parameters of the symbols. There are input attributes (e.g. <x, y>) and
output attributes (e.g. <out z> or <ref z>). A semantic action is a piece of code that
is written in the target language of Coco/R (e.g. in C#, Java or C++) and is executed
by the generated parser at its position in the production.

1.2 Sample Parsing Method

Every production is trandated into a parsing method. The method for var Decl ar at i on,
for example, looks like this in C# (code parts originating from attributes or semantic
actions are shown in gray):

voi d VarDeclaration(ref int adr) {
string name; TypeDesc type;
I dent (out nane);
Obj x = syniTab. Ent er (nane) ;
int n=1;
while (la.kind == comm) {
Get();
I dent (out nane);
Cbj y = synirab. Ent er (nane) ;
X.next =vy; x =y,
n++;

}

Expect (col on);

Type(out type);

adr += n * type.size;

for (int a =adr; x !'=null; x = x.next) {
a -= type.size;
x.adr = a;

Expect (semni col on);

}

Coco/R aso generates a scanner that reads the input stream and returns a stream of
tokens to the parser.

1.3 Summary of Features
Scanner

The scanner is specified by a list of token declarations. Literals (e.g. "if" or
"whi l e") do not have to be declared as tokens but can be used directly in the
productions of the grammar.

The scanner is implemented as a deterministic finite automaton (DFA). Therefore
the terminal symbols (or tokens) have to be described by a regular EBNF grammar.
Comments may be nested. One can specify multiple kinds of comments for a
language.

Tokens must be made up of characters from the extended ASCII set (i.e. 256
values).

The scanner can be made case-sensitive or case-insensitive.

The scanner can recognize tokens depending on their context in the input stream.
The scanner can read from any input stream (not just from a file). However, all
input must come from a single stream (no includes).

The scanner can handle so-called pragmas, which are tokens that are not part of the
syntax but can occur anywhere in the input stream (e.g. compiler directives or end-
of-line characters).

The user can suppress the generation of a scanner and can provide a hand-written
scanner instead.

Parser

= The parser is specified by a set of EBNF productions with attributes and semantic
actions. The productions allow for alternatives, repetition and optional parts.
Coco/R trandates the productions into an efficient recursive descent parser. The
parser is reentrant, so multiple instances of it canbe active at the same time.

= Nontermina symbols can have any number of input and output attributes (the Java
version alows just one output attribute, which may, however, be an object of a
suitable composite class). Termina symbols do not have explicit atributes, but the
tokens returned by the scanner contain information that can be viewed as attributes.
All attributes are evaluated during parsing (i.e. the grammar is processed as an L-
attributed grammar).

= Semantic actions can be placed anywhere in the gammar (not just at the end of
productions). They may contain arbitrary statements or declarations written in the
language of the generated parser (e.g. C#, Javaor C++).

= The special symbol ANY can be used to denote a set of complementary tokens.

* In principle, the grammar must be LL(1). However, Coco/R can aso handle non
LL(2) grammars by using so-called resolvers that make a parsing decision based on
a multi-symbol lookahead or on semantic information.

= Every production can have its own loca variables. In addition to these, one can
declare global variables or methods, which are trandated into fields and methods of
the parser. Semantic actions can also access other objects or methods from user-
written classes or from library classes.

= Coco/R checks the grammar for completeness, consistency and non-redundancy. It
also reports LL (1) conflicts.

= The error messages printed by the generated parser can be configured to conform to
a user-specific format.

= The generated parser and scanner can be specified to belong to a certain namespace
(or package).

2. Input Language

This section specifies the compiler description language Cocol/R that is used as the
input language for Coco/R . A compiler description consists of a set of grammar rules
that describe the lexica and syntactical structure of a language as well as its
trandation to atarget language.

2.1 Vocabulary

The basic elements of Cocol/R are identifiers, numbers, strings and character
constants, which are defined as follows:

ident = letter {letter | digit}.
nunber = digit {digit}.

string = '"" {anyBut Quote} '"'.
char = '"\'"'" anyBut Apostrophe "\"'

Upper case letters are distinct from lower case letters. Strings must not extend across
multiple lines. Both strings and character constants may contain the following escape
sequences:

\\ backsl ash \r carriage return \ f form feed
' apost rophe \n new | i ne \a bel |
\ " quot e \t hori zontal tab \'b backspace
\0 nul | character \v vertical tab \ uxxxx hex char val ue

The following identifiers are reserved keywords (in the C# version of Cocol/R the
identifier usi ng is aso a keyword, in the Java version the identifier i nport):

ANY CONTEXT | GNORE PRAGVAS TOKENS
CHARACTERS END | GNORECASE PRODUCTI ONS VEAK
COMMENTS FROM NESTED SYNC

COWPI LER I F out TO

Comments are enclosed in /+ and */ and may be nested. Alternatively they can start
with // and go to the end of the line.

EBNF

All syntax descriptions in Cocol/R are written in Extended Backus-Naur Form
(EBNF) [Wirth77]. By convention, identifiers starting with a lower case letter denote
terminal symbols, identifiers starting with an upper case letter denote nonterminal
symbols. Strings denote themselves. The following meta-characters are used:

symbol meaning example

= separatesthe sides of aproduction A =abc.

. terminates a production A=abc.

| separates alternatives ablc|de meansab or c or de

0 groups alternatives (alb)c meansac or bc

[] option [ab meansab or b

{} iteration (O or more times) {& b meanshb or ab or aab or...

Attributes are written between < and >. Semantic actions are enclosed in (. and .).
The operators + and - are used to form character sets.

2.2 Overall Structure
A Cocol/R compiler description has the following structure:

Cocol =
[mports]
" COWPI LER" i dent
[A obal Fi el dsAndMet hods]
Scanner Speci fi cation
Par ser Speci fi cation
"END' ident '.'

The name after the keyword cowvpi LER is the grammar name and must match the name
after the keyword enp. The grammar name also denotes the topmost nonterminal
symbol (the start symbol). The parser specification must contain a production for this
symbol.

Imports. In front of the keyword cowi LER one can import namespaces (in C#) or
packages (in Java) or include header files (in C++), for example:

usi ng System
usi ng System Col | ecti ons;

GlobalFieldsAndM ethods. After the grammar name one may declare arbitrary fields
and methods of the generated parser, for example:

int sum

voi d Add(int x) {
sum = sum + X;

}
These declarations are written in the language of the generated parser (i.e. in C#, Java
or C++) and are not checked by Coco/R. They can be used in the semantic actions of
the parser specification. In the C++ version of Coco/R global fields and methods are
copied to the header file of the generated parser.

The remaining parts of the compiler description specify the scanner and the parser
that are to be generated. They are now described in more detail.

2.3 Scanner Specification

A scanner has to read source text, skip meaningless characters, recognize tokens and
pass them to the parser. Thisis described in a scanner specification, which consists of

five optional parts:

Scanner Speci fication =
["] GNORECASE"]
[" CHARACTERS" { Set Decl }]
["TOKENS" {TokenDecl }]
[" PRAGVAS" {PragnmabDecl }]
{ Conmmrent Decl }
{ Wi t eSpaceDecl }.

2.3.1 Character sets

This section allows the user to declare character sets such as letters or digits. Thelr
names can then be used in the other sections of the scanner specification. Coco/R
grammars are expressed in an extended ASCII character set (256 characters).

SetDecl = ident '='" Set '.'.
Set = BasicSet {('+'|'-") BasicSet}.
BasicSet = string | ident | char [".." char] | "ANY".

Set Decl associates a name with a character set. Basic character sets are denoted as:

string aset consisting of al the charactersin the string
i dent apreviously declared character set with this name
char a set containing the character char
char1..char2 the set of all characters from char 1 t0 char 2
ANY the set of all charactersin therangeO .. 255
Character sets may be formed from basic sets using the operators
+ set union
set difference
Examples
digit = "0123456789". /* the set of all digits */
hexDigit = digit + "ABCDEF'. /* the set of all hexadecimal digits */
letter ='A .. 'Z. /* the set of all upper case letters */
eol ="\r". /* the end-of-line character */

noDi gi t ANY - digit. /* any character that is not a digit */

2.3.2Tokens

This is the main section of the scanner specification, in which the tokens (or terminal
symbols) of the language are declared. Tokens may be divided into literals and token
classes.

= Literals (such aswhi | e or >=) have a fixed representation in the source language. In
the grammar they are written as strings (e.g. "while" or ">=") and denote
themselves. They don't have to be declared in the tokens section but are implicitly
declared at their first use in the productions of the grammar.

= Token classes (such as identifiers or numbers) have a certain structure that must be
explicitly declared by a regular expression in EBNF. There are usually many
instances of a token class (e.g. many different identifiers), which have the same
token code, but different lexeme values.

The syntax of token declarationsis as follows:

"{'" TokenExpr '}'.
ident | string | char.

TokenDecl = Synbol ['=" TokenExpr '.'].
TokenExpr = TokenTerm {'|' TokenTern}.
TokenTerm = TokenFactor {TokenFactor} ["CONTEXT" '(' TokenExpr ')'].
TokenFact or = Synbol
| "(" TokenExpr ')'
| "[" TokenExpr ']®
|

Synbol

A token declaration defines the syntax of a terminal symbol by a regular EBNF ex-
pression. This expresson may contain strings or character constants denoting
themselves (e.g. ">=" or' ;') aswell as names of character sets (e.g. I et t er) denoting
an arbitrary character from this set. It must not contain other token names, which
implies that EBNF expressions in token declarations cannot be recursive.

Examples
ident = letter {letter | digit | "_'}.
number = digit {digit}
| "Ox" hexDigit hexDigit hexDigit hexDigit.
float = digit {digit} '." {digit} ['E ['+|'-"] digit {digit}].

The token declarations need not be LL(1) as can be seen in the declaration of nunber,
where both aternatives can start with a ' o'. Coco/R automatically resolves any
ambiguities and generates a deterministic finite scanner automaton.

Tokens may be declared in any order. However, if atoken is declared as a literal that
matches an instance of a more general token, the litera has to be declared after the
more general token.

Example
ident = letter {letter | digit}.
while = "while".

Since the string "whi | e matches both the tokens whi | e and i dent, the declaration of
whi I e must come after the declaration of i dent. In principle, literal tokens don't have
to be declared in the token declarations at al, but can smply be introduced directly in
the productions of the grammar. In some situations, however, it makes sense to
declare them explicitly, for example, in order to get a token name for them that can be
used in resolver methods (see Section 2.4.6).

Context-dependent tokens. The conTEXT phrase in a TokenTer mmeans that the term is
only recognized if its context (i.e. the characters that follow the term in the input
stream) matches the Tokenexpr specified in brackets. Note that the TokenExpr iS not
part of the token.

Example

number = digit {digit}
digit {digit} CONTEXT ("..").
digit {digit} '.' {digit} ['E ['+]'-'] digit {digit}].
The conTexT phrase in this example allows the scanner to distinguish between f 1 oat
tokens (e.g. 1. 23) and integer ranges (e.g. 1. . 2) that could otherwise not be scanned
with a single character lookahead. This works as follows: after having read "1. " the
scanner still works on both tokens. If the next character isa ' .' the characters . .*
are pushed back to the input stream and anunber token with the value1 is returned to
the parser. If the next character isnot a' . ' the scanner continues with the recognition
of afloat token.

fl oat

Hand-written scanners. If the right-hand sides of the token declarations are missing
no scanner is generated. This gives the user the chance to provide a hand-written
scanner, which must conform to the interface described in Section 3.3.1.

Example

TOKENS
i dent
nunber
" i f "
"whil e"

Tokens are assigned numbers in the order of their declaration. The first token gets the
number 1, the second the number 2, and so on. The number o is reserved for the end-
of-file token. The hand-written scanner must return the token numbers according to
these conventions. In particular, it must return an end-of-file token if no more input is
available.

It is hardly ever necessary to supply a hand-written scanner, because the scanner
generated by Coco/R is highly optimized. A user-supplied scanner would be needed,
for example, if the scanner were required to process include directives.

2.3.3 Pragmas

Pragmas are tokens that may occur anywhere in the input stream (for example, end-
of-line symbols or compiler directives). It would be too tedious to handle all their
possible occurrences in the grammar. Therefore they are excluded from the token
stream that is passed to the parser. Pragmas are declared like tokens, but they may
have a semantic action associated with them that is executed whenever they are
recognized by the scanner.

PragmaDecl = TokenDecl [SemAction].
SemAction = "(." ArbitraryStatenents ".)".

10

Example
PRAGVAS
option = '$ {letter}. (. foreach (char ch in la.val)
if (ch =="'A) ...

else if (ch=="8B) ...
)
This pragma defines a compiler option that can be written, for example, as $A.
Whenever it occurs in the input stream it is not forwarded to the parser but
immediately processed by executing its associated semantic action. Note that | a. val
accesses the value of the lookahead token 1a, which is in this case the pragma that
was just read (see Section 3.3.4).

2.3.4Comments

Comments are difficult to specify with regular expressions; nested comments are even
impossible to specify that way. This makes it necessary to have a specia construct to
define their structure.

Comments are declared by specifying their opening and closing brackets. The
keyword NesTED denotes that they can be nested.

Conment Decl = "COWMMENTS" "FROM' TokenExpr "TO' TokenExpr ["NESTED'].
Comment delimiters must be sequences of 1 or 2 characters, which can be specified as
literals or as single-element character sets. They must not be structured (for example
with alternatives). It is possible to declare multiple kinds of comments.

Example

COMMENTS FROM "/*" TO "*/" NESTED
COMMENTS FROM "//" TO eol

Alternatively, if comments cannot be nested one can define themas pragmas, e.g.:

CHARACTERS
other = ANY - "/' - '*',
PRAGVAS
coment = "/*" {'/' | other | '"*' {'*'} other} "*'" ['"*"'} "/['.

This has the advantage that such comments can be processed semantically, for
example, by counting them or by processing compiler options within them.

2.3.5White space

Characters such as blanks, tabulators or end-of-line symbols are usually considered as
white space that should be ignored by the scanner. Blanks are ignored by default. If
other characters should be ignored as well the user has to specify them in the
following way:

Whi t eSpaceDecl = "1 GNORE" Set.
Example

IGNORE "\t' + '"\r' + "\n'

11

2.3.6 Case sensitivity

Some languages such as Pascal or XML are case insensitive. In Pascal, for example,
one can write the keyword whi | e alSo as whi | e or wHI LE. By default, Coco/R generates
scanners that are case senditive. If this is not desired, one has to write | GNORECASE at
the beginning of the scanner specification.

The effect of | avorecask is that all input to the scanner is treated in a case-insensitive
way. The production

Wil eStatenent = "while" '(' Expr ')' Statenent.

will therefore also recognize while statements that start with wile oOr W LE.
Similarly, the declaration:

TOKENS
float = digit {digit} '." ['E ("+|'-') digit {digit}].

will cause the scanner to recognize not only 1.2e2 but also 1.2e2 asa f1oat token.

However, the origina casing of tokens is preserved in the val field of every token

(see Section 3.3.2) so that the lexical value of tokens such as dentifiers and strings is

delivered exactly as it was written in the input text.

2.4 Parser Specification

The parser specification is the main part of a compiler description. It contains the
productions of an attributed grammar, which specify the syntax of the language to be
parsed as well as its trandation.

Par ser Speci fi cation = "PRODUCTI ONS" {Producti on}.
Pr oducti on ident [Formal Attributes] [Local Decl] '='" Expression '.'

Expression = Term{'|' Tern}.
Term = [[Resol ver] Factor {Factor}].
Fact or = ["WEAK"] Synbol [Actual Attri butes]

| "(' Expression ')’

| '"['" Expression ']’

| "{" Expression '}’

| " ANY"

| "SYNC'

| SemActi on.
Synbol = ident | string | char.
SemAction = "(." ArbitraryStatenents ".)".
Local Decl = SemActi on.

Formal Attributes = '<' ArbitraryText '>'.
Actual Attributes = '<' ArbitraryText '>'.
Resol ver ="IF "(" {ANY} ")'.

2.4.1 Productions

A production specifies the syntactical structure of a nonterminal symbol. It consists of
aleft-hand side and a right-hand side which are separated by an equal sign. The left-
hand side specifies the name of the nonterminal together with its formal attributes and
the local variables of the production. The right-hand side consists of an EBNF
expression that specifies the structure of the nonterminal as well as its trandlation in
form of attributes and semantic actions.

The productions may be given in any order. References to as yet undeclared
nonterminals are alowed. For every nonterminal there must be exactly one
production. In particular, there must be a production for the grammar name, which is
the start symbol of the grammar.

12

2.4.2 Semantic Actions

A semantic action is a piece of code written in the target language of Coco/R (i.e. in
C#, Java or C++). It is executed by the generated parser at the position where it has
been specified in the grammar. Semantic actions are simply copied to the generated
parser without being checked by Coco/R.

A semantic action can aso contain the declarations of local variables. Every
production has its own set of loca variables, which are retained in recursive
productions. The optional semantic action on the left-hand side of a production
(Local Decl) isintended for such declarations, but variables can also be declared in any
other semantic action.

Here is an example that counts the number of identifiersin an identifier list:

I dentLi st =
i dent (. int n=1; .)
{"," ident (. n++; L)
} (. Console.WiteLine("n =" +n); .)

As amatter of style, it is good practice to write all syntax parts on the left side and all
semantic actions on the right side of a page. This makes a production better readable
because the syntax is separated from its processing.

Semantic actions cannot only access local variables but also fields and methods
declared at the beginning of the attributed grammar (see Section 2.2) as well as fields
and methods of imported classes.

2.4.3 Attributes

Productions are considered as (and are actually trandated to) parsing methods. The
occurrence of a nonterminal on the right- hand side of a production can be viewed as a
call of that nonterminal's parsing method.

Nonterminals may have attributes, which correspond to parameters of the nontermi-
nal's parsing method. There are input attributes, which are used to pass values to the
production of a nonterminal, and output attributes, which are used to return values
from the production of a nonterminal to its caler (i.e. to the place where this
nonterminal occu'sin some other production).

As with parameters, we distinguish between formal attributes, which are specified at
the nonterminal’'s declaration on the left-hand side of a production, and actual
attributes, which are specified at the nonterminal’s occurrerce on the right-hand side
of a production.

Note that expressions that are passed as actua input attributes must not contain the
operator ' >, which is the closing attribute bracket. Such expressions must be
assigned to a temporary variable, which can then be passed as an attribute.

Coco/R checks that nonterminals with attributes are always used with attributes and
that nonterminals without attributes are always used without attributes. However, it
does not check the correspondence between formal and actual attributes, which is left
to the compiler of the target language.

13

Attributesin C#. A forma attribute looks like a parameter declaration. In C#, output
attributes must be preceded by the keyword out or ref. The following example
declares a nonterminal s with an input attribute x and two output attributesy and z:

S<int x, out int y, ref string z> =

An actua attribute looks like an actual parameter. Actua input attributes may be
expressions, which are evaluated and assigned to the corresponding formal attributes.
In C#, actual output attributes must be preceded by the keywordsout or ref. They are
passed by reference like output parameters in C#. Here is an example @ and b are
assumed to be of typei nt, ¢ is assumed to be of typestring):

. S<3*a + 1, out b, ref c> ...

The production of the nonterminal s is trandated to the following parsing method:

void S(int x, out int y, ref string z) {
}

Attributes in Java. Since Java does not support output parameters, the Java version
of Coco/R alows only a single output attribute which is passed to the caller as a
return value. However, the return value can be an object of a class that contains
multiple values.

If a nonterminal has an output attribute it must be the first attribute. It is denoted by
the keyword out both in its declaration and in its use. The following example shows a
nonterminal s with an output attribute x and two input attributes y and z (for
compatibility with older versions of Coco/R the symbol * ~* can be substituted for the
keyword out):

S<out int x, char vy, int z> =
This nonterminal is used as follows:
. S<out a, 'b', c+3> ...
The production of the nonterminal T is trandated to the following parsing method:
int S(char y, int z) {
int x;
.réiurn X;
}

Attributes in C++. In the C++ version of Coco/R, input attributes are trandated to
value parameters and output attributes to reference parameters. The following
example declares a nonterminal s with an input attribute x and an output attribute y:

S<int x, int &> =

Actual attributes are written like actual parameters in C++, i.e., there is no distinction
between value parameters and reference parameters:

. S<a+3, b> ...

Attributes of terminal symbols. Termina symbols do not have attributes in Cocol/R.
For every token, however, the scanner returns the token value (i.e. the token's string
representation) as well as the line and column number of the token (see Section 3.3.4).
This information can be viewed as output attributes of that token. If users want to
access this data they can wrap a token into a nonterminal with the desired attributes,
for example:

14

| dent <out string nanme> =
i dent (. nane =t.val; .) .

Nunmber <out int value> =
nunmber (. value = Convert.Tolnt32(t.val); .) .

The variable t is the most recently recognized token. Its field t. val holds the textual
representation of the token (see Section 3.3.4).

2.4.4The Symbol ANY

In the productions of the grammar the symbol any denotes any token that is not an
aternative to that Any symbol. It can be used to conveniently parse structures that
contain arbitrary text. The following production, for example, processes an attribute
list in Cocol/R and returns the number of characters between the angle brackets:

Attributes < out int len> =
‘< (. int beg =t.pos + 1; .)
{ ANY}
Car

(. len =t.pos - beg; .) .

In this example the token ' > is an implicit alternative of the any symbol in curly
braces. The meaning is that this ANy matches any token except® >' . t. pos is the source
text position of the most recently recognized token (see Section 3.3.4).

Here is another example that counts the number of statementsin a block:

Bl ock <out int stnts> = (. int n; .)
{ (. stms =0; .)

v (. strmts++)
| Bl ock<out n> (. stnts +=n; .)
| ANY
}
e
In this example the ANy matches any token except ';', '{* and '}' which are

aternatives of it (' {* isatermina start symbol of Bl ock).

2.4.5LL(1) Conflicts

Recursive descent parsing requires that the grammar of the parsed language is LL(1)
(i.e. parsable from Left to right with Left-canonical derivations and 1 lookahead
symbol). This means that at any point in the grammar the parser must be able to
decide on the basis of a single lookahead symbol which of several possible
aternatives have to be selected. The following production, for example, is not LL(1):
Statenment = ident '='" Expression ';'
| ident '(' [Actual Parameters] ')' ';'
| ...
Both alternatives start with the symbol i dent . When the parser comes to the beginning
of astatenment andi dent isthe next input token, it cannot distinguish between the two
aternatives. However, this production can easily be transformed to
Statenent = ident ('='" Expression ';'
| "(" [Actual Paraneters] ')' ';'

)
| ...

where al dternatives start with distinct symbols and the LL(1) conflict has dis-
appeared.

15

LL(2) conflicts can arise not only from explicit aternatives like those in the example
above but also from implicit alternatives that are hidden in optional or iterative EBNF
expressions. The following list shows how to check for LL(1) conflicts in these
situations (Greek symbols denote arbitrary EBNF expressions such as a[b] ¢, first(a)
denotes the set of terminal start symbols of the EBNF expression a; follow(a) denotes
the set of termina symbols that can follow the nonterminal A in any other production):

= Explicit alternatives
A =a|blg checkthatfirst@@)C first(b) = {} Ufirst(a) C first(g) = {} Ufirst(b) C first(g) = {}.
A =(al)b. check that first(a) ¢ first(b) ={}

A =(al). check that first(a) C follow(A) = {}
= Options

A =T[a] b. checkthatfirst(a) C first(b) ={}

A=1[a]. check that first(a) C follow(A) ={}
= |terations

A = {a} b. checkthatfirst(a)C first(b) ={}

A = {a}. check that first(a) C follow(A) = {}

It would be very tedious and error-prone to check al these conditions manually for a
grammar of arealistic size. Fortunately, Coco/R does that automatically. For example,
the grammar

A= (a]| BCAd).
B=1[b] a
C=c {d}.

will result in the following LL(1) warnings:

LL1 warning in A. a is start of several alternatives

LL1 warning in C d is start & successor of deletable structure
Thefirst conflict arises because B can start with an a. The second conflict comes from
the fact that ¢ may be followed by a d, and so the parser does not know whether it
should do another iteration of {d} in cor terminate c and continue with the d outside.

Another situation that leads to a conflict is when an expression in curly or square
brackets is deletable, e.q.:

A=1[B] a.
B = {b}.

If the parser tries to recognize A and sees an a it cannot decide whether to enter the
deletable symbol B or to skip [B] . Therefore Coco/R prints the warning:
LL1 warning in A: contents of [...] or {...} nust not be deletable

Note that Coco/R reports LL(1) conflicts as warnings, not as errors. Whenever the
parser sees two or more alternatives that can start with the same token it always
chooses the first one. If this is what the user intends then everything is fine, like in the
well-known example of the dangling else that occurs in many programming
languages.

Statenent = "if" '(' Expression ')' Statenent ["else" Statenent]

| ...
Input for this grammar like

if (a>Db) if (a>c) max = a; else max = b;

16

is ambiguous. does the el se” belongs to the inner or to the outer if statement? The
LL(2) conflict arises because

first("el se” sStatenent) C follow(statenment) ={"el se"}

However, this is not a big problem, because the parser chooses the first matching
dternative, which is the "el se" of the inner if statement. This is exactly what we
want.

Resolving LL(1) conflicts by grammar transformations

If Coco/R reports an LL (1) conflict the user should try to eliminate it by transforming
the grammar as it is shown in the following examples.

Factorization. Most LL(1) conflicts can be resolved by factorization, i.e. by extract-
ing the common parts of conflicting aternatives and moving them to the front. For
example, the production

A=abc| abd.

can be transformed to
A=ab(c| d).

L eft recursion. Left recursion always represents an LL (1) conflict. In the production
A=Ab]| c.

both alternatives start with ¢ (because first(a) = {c}). However, left recursion can
always be transformed into an iteration, e.g. the previous production becomes

A =c {b}.

Hard conflicts. Some LL(1) conflicts cannot be resolved by grammar transfor-
mations. Consider the following (simplified) productions from the C# grammar:

Expr = Factor {'+' Factor}.
Factor = '(' ident ')' Factor [/* type cast */

| "(" Expr ')’ /* nested expression */

| ident | nunber.
The conflict arises, because two aternatives o Factor Start with ' (' . Even worse,
Expr can also be derived to an ident. There is no way to get rid of this conflict by
transforming the grammar. The only way to resolveit isto look at thei dent following
the' (' : if it denotes a type the parser has to select the first alternative otherwise the
second one. We will deal with thiskind of conflict resolution in Section 2.4.6.

Readability issues. Some grammar transformations can degrade the readability of the
grammar. Consider the following example (again taken from a simplified form of the
C# grammar):

Usi ngCl ause = "using" [ident '='] Qualident ';'
Qual i dent = ident {'.' ident}.
The conflict is in Usi ngc ause where both [ident '='] and Qualident Start with
i dent . Although this conflict could be eliminated by transforming the production to
Usi ngCl ause = "using"” ident ({'.' ident}

| '=" Qualident
) I

the readability would clearly deteriorate. It is better to resolve this conflict as shown

in Section 2.4.6.

17

Semantic issues. Finaly, factorization is sometimes inhibited by the fact that the se-
mantic processing of conflicting alternatives differs, e.q.:
A=ident (. x =1; .) {'," ident (. x++ .) } "'
| ident (. Foo(); .) {',' ident (. Bar(); .) } ';
The common parts of these two alternatives cannot be factored out, because each
aternative has its own way to be processed semantically. Again this problem can be
solved with the technique explained in Section 2.4.6.

2.4.6 LL(1) Conflict Resolvers

A conflict resolver is a boolean expression that is inserted into the grammar at the
beginning of the first of two conflicting alternatives and decides, using a multi-
symbol lookahead or a semantic check, whether this alternative matches the actual
input. If the resolver yields true, the aternative prefixed by the resolver is selected,
otherwise the next alternative will be checked. A conflict resolver is written as

Resolver = "IF" '(' ... any expression ... ')’

where any boolean expression can be written between the parentheses. In most cases
thiswill be afunction cal that returnstrue or fal se.

Thus we can resolve the LL (1) conflict from Section 2.4.5 in the following way:
Usi ngCl ause = "using" [IF(IsAlias()) ident '='"] Qualident '

IsAlias IS a user-defined method that reads two tokens ahead. It returnst r ue, if i dent
isfollowed by ' =, otherwise it returnsf al se.

Conflict resolution by a multi-symbol lookahead

The generated parser remembers the most recently recognized token as well as the
current lookahead token in two global variables (see also Section 3.3.4):

Token t; /1 most recently recognized token
Token la; // | ookahead token

The generated scanner offers a method peek() that can be used to read ahead beyond
the lookahead token without removing any tokens from the input stream. When
normal parsing resumes the scanner will return these tokens aggain.

With peek() we can implement 1 sAli as() in the following way:

bool IsAlias() {
Token next = scanner. Peek();
return la.kind == _ident && next.kind == _eql;

}

The conflict mentioned at the end of Section 2.4.5 can be resolved by the production

A = | F(Fol | onedByCol on())
ident (. x =1; .) {"," ident (. x++ .) } ':'
| ident (. Foo(); .) {'," ident (. Bar(); .) } ';'

and the following implementation of the function Fol | owedByCol on() :

bool Fol | owedByCol on() {
Token x = | a;
while (x.kind == _comma || x.kind == _ident)
X = scanner. Peek();
return x.kind == _col on;

}

18

Token names. For peeking it is convenient to be able to refer to the token numbers by
names such as_i dent or _comma. Coco/R generates such names for all tokens declared
in the Tokens section of the scanner specification. For example, if the tokens are
declared like this:

TOKENS
i dent
nunber
eql
conma
col on

letter {letter | digit}.
digit {digit}.

Coco/R will generate the following constant declarations in the parser:

const int EOF = 0;
const int _ident = 1;
const int _number = 2;
const int _eql = 3;
const int _comma
const int _colon

4
5

The token names are preceded by an underscore in order to avoid conflicts with
reserved keywords and other identifiers.

Normally the Tokens section will only contain declarations for token classes like
i dent Or nunber . However, if the name of a literal token is needed for peeking, it has
to be declared there as well. In the productions of the grammar this token can then be
referred to either by its name (e.g. _commma) or by itsliteral value (e.g.',").

Resetting the peek position. The scanner makes sure that a sequence of peek() calls
will return the tokens following the lookahead token | a. In rare situations, however,
the user has to reset the peek position manually. Consider the following grammar:

A= (IF (IsFirstAlternative()) ...
| I'F (IsSecondAlternative()) ...

| ...
).

Assume that the function 1 sFirst A ternative() Starts peeking and finds out that the

input does not match the first alternative. So it returnsf al se and the parser checks the

second aternative. The function 1sSecondAl ternative() starts peeking again, but

before that, it should reset the peek position to the first symbol after the lookahead
token | a. This can be done by calling scanner . Reset Peek() .

bool |sSecondAlternative() {
scanner . Reset Peek() ;
Token x = scanner.Peek(); [// returns the first token after the
. /'l | ookahead token again

}

The peek position is reset automatically every time aregular token is recognized by
scanner. Scan() (See Section 3.3.1).

Trandation of conflict resolvers. Coco/R treats resolvers like semantic actions and
simply copies them into the generated parser at the position where they appear in the
grammar. For example, the production

Usi ngCl ause = "using" [IF(IsAlias()) ident '="] Qualident ';'
is trandated into the following parsing method:

19

voi d Usi ngC ause() {
Expect (_usi ng);
if (IsAlias()) {
Expect (_i dent);
Expect (_eql);

}
Qualident();
Expect (_semni col on);

}

Conflict resolution by exploiting semantic information

A conflict resolver can base its decision not only on lookahead tokens but also on any
other information. For example it could access a symbol table to find out semantic
properties about a token. Consider the following LL(1) conflict between type casts
and nested expressions, which can be found in many programming languages:

Expr
Fact or

Factor {'+ Factor}.

"(' ident '")' Factor [/* type cast */

(' Expr ')’ /* nested expression */
i dent | nunber.

Since expr can start with an i dent as well the conflict can be resolved by checking
whether thisi dent denotes atype or some other object:
Factor = I F (IsCast())
(' ident ')' Factor [/* type cast */
| "(" Expr ')’ /* nested expression */
| ident | nunber.

I scast () looks up ident inthe symbol table and returnst r ue, if it is a type name:

bool IsCast() {
Token x = scanner. Peek();

if (la.kind == _Ipar & x.kind == _ident) {
obj ect obj = synirab. Fi nd(x. val);
return obj !'= null && obj.kind == Type;

} else return fal se

}

Placing resolvers correctly
Coco/R checks if resolvers are placed correctly. The following rules must be obeyed:

1. If two dternatives start with the same token, the resolver must be placed in front
of the first one. Otherwise it would never be executed because the parser would
always choose the first matching alternative. More precisely, a resolver must be
placed at the earliest possible point where an LL (1) conflict arises.

2. A resolver may only be placed in front of an aternative that is in conflict with
some other aternative. Otherwise it would be illegal.

Here is an example of incorrectly placed resolvers:

b /'l resolver not evaluated. Place it at first alt.

A =

(a(lF(...) b) ¢ // msplaced resolver. No LL(1) conflict.
| 1 ...) a

| 1 ..) b /1 msplaced resolver. No LL(1) conflict
)

20

Here is how the resolvers should have been placed in this example:

A =

(IF(...) ab /'l resolves conflict betw the first two alternatives
| ac

| b
).

The following example is also interesting:

F(...) bc /'l resolver placed incorrectly.

Although the b in the second aternative constitutes an LL (1) conflict with the b after
the iteration, the resolver is placed incorrectly. It should rather be placed at the
beginning of the iteration like this:

A

{ IF (Anotherlteration())

a
b c

CTV’_\ -1

}
The function Anot her I teration() could then be implemented as follows:

bool Anotherlteration() {
Token next = scanner. Peek();
return la. kind == _a |
la.kind == _b && next.kind == _gc;
}

The reason why this resolver is placed incorrectly is that it should be called only once
in the parser (namely in the header of the while loop):

void A() {
while (Anotherlteration()) {
if (la.kind == _a)
Expect (_a);
else if (la.kind == _b) {

Expect (_b); Expect(_c);
}

}
Expect (_b);

and not both in the while header and at the beginning of the second alternative.
Remember, that the resolver must be placed at the earliest possible point where the
LL(2) conflict arises.

2.4.7 Syntax Error Handling

If a syntax error is detected during parsing the generated parser reports the error and
tries to recover by synchronizing the erroneous input with the grammar. While error
messages are generated automatically, the user has to give certain hints in the
grammar in order to enable the parser to recover from errors.

Invalid terminal symbols. If a certain terminal symbol was expected but not found in
the input the parser just reports that this symbol was expected. For example, if we had
aproduction

A=abec.

21

for which the input was

a X C

the parser reports

- line ... col ...: b expected

Invalid alternative lists. If the lookahead symbol does not match any aternative
from alist of expected alternatives in a nonterminal A the parser just reports that A was
invalid. For example, if we had a production

A =a (bjc|d) e.
for which the input was

ax e

the parser reports

- line ... col ...: invalid A

Obvioudly, this error message can be improved if we turn the aternative list into a
separate nonterminal symboal, i.e.:

A=aBe.
B = b|c|d.

In this case the error message would be

- line ... col ...: invalid B

which is more precise.

Synchronization. After an error was reported the parser continues until it getsto a so-
called synchronization point where it tries to synchronize the input with the grammar
again. Synchronization points have to be specified by the keyword sync . They are
points in the grammar where particularly safe tokens are expected, i.e. tokens that
hardly occur anywhere else and are unlikely to be mistyped. When the parser reaches
a synchronization point it skips al input until a token occurs that is expected at this
point.

In many languages good candidates for synchronization points are the beginning of a
statement (where keywords like i f, whil e oOr for are expected) or the beginning of a
declaration sequence (where keywords like public, private Or voi d are expected). A
semicolon is aso a good synchronization point in a statement sequence.

The following production, for example, specifies the beginning of a statement as well
as the semicolon after an assignment as synchronization points:

St at enent =
SYNC

(Designator '='" Expression SYNC';'
| "if" '('" Expression ')' Statenent ["else" Statenent]

| "while" "(' Expression ')' Statenent

| '{" {Statenent} '}’

| ...

).
In the generated parser, these synchronization points look as follows (written in
pseudo code here):

22

void Statement () {
while (la.kind T {_ECF, _ident, _if, while, _lbrace, ...}) {
Report an error,
Get next token;
}
if (la.kind == _ident) {
Designator(); Expect(_eql); Expression();
while (la.kind I { _EOF, _semicolon}) {
Report an error;
CGet next token;

}
} else if (la.kind == _if) { ...
b

}

Note that the end-of-file symbol is always included in the set of synchronization
symbols. This guarantees that the synchronization loop terminates at least at the end
of the input.

In order to avoid a proliferation of error messages during synchronization, an error is
only reported if at least two tokens have been recognized correctly since the last error.

Normally there are only a handful of synchronization points in a grammar for a real
programming language. This makes error recovery cheap in Coco/R and does not
slow down error-free parsing.

Weak tokens. Error recovery can further be improved by specifying tokens that are
"weak" in a certain context. A weak token is a symbol that is often mistyped or
missing such as a comma in a parameter list, which is often mistyped as a semicolon.
A weak token is preceded by the keyword weak. When the parser expects a weak
token but does not find it in the input stream it adjusts the input to the next token that
is either a legal successor of the weak token or a token expected at any synchroni-
zation point (symbols expected at synchronization points are considered to be
particularly "strong” so that it makes sense to never skip them).

Weak tokens are often separator symbols that occur at the beginning of an iteration.
For example, if we have the productions

ParameterList = ' (' Parameter { WEAK ',' Paraneter} ')'.
Paranmeter = ["ref"|"out"] Type ident.

and the parser doesnot finda ', ora')' after the first parameter it reports an error
and skips the input until it finds either alegal successor of the weak token (i.e., alegal
start of Paranet er), Or a successor of the iteration (i.e.*)'), or any symbol expected at
a synchronization point (including the end-of-file symbol). The effect is that the
parsing of the parameter list would not be terminated prematurely but would get a
chance to synchronize with the start of the next parameter after a possibly mistyped
separator symbol.

In order to get good error recovery the user of Coco/R should perform some
experiments with erroneous inputs and place sync and weak keywords appropriately to
recover from the most likely errors.

23

2.4.8 Frame Files

The scanner and the parser are generated from template files with the names
Scanner . frame and Parser.frame. Those files contain fixed code parts as well as
textual markers that denote positions at which grammar-specific parts are inserted by
Coco/R. In rare situations advanced users may want to modify the fixed parts of the
frame files by which they can influence the behavior of the scanner and the parser to a
certain degree.

3. User Guide

3.1 Installation
Coco/R can be downloaded from http://ssw.jku.at/Coco/.

C# and C++ version. Copy the following files to a new directory:

Coco. exe the executable
Scanner. frame the frame file from which the scanner is generated
Parser.frame the frame file from which the parser is generated

Java version. Copy the following files to a new directory:

Coco. j ar an archive containing all classes of Coco/R
Scanner. frame the frame file from which the scanner is generated
Parser frame theframe file from which the parser is generated

3.2 Invocation

Coco/R can be invoked from the command line as follows:

C# or C++: Coco fileNane [Options]

Java: java -jar Coco.jar fileName [Options]
fileNare IS the name of the file containing the Cocol/R compiler description. As a
convention, compiler descriptions have the extension . ATG (for attributed grammar).

Options. The following options may be specified:

Options =
{ "-namespace" nanespaceName /* in Java: "-package" packageNane */
| "-frames" framesDirectory
| "-trace" traceString

}.
The user can specify a namespace (or package) to which the generated scanner and
parser should belong (eg. at.jku.ssw Coco). If no namespace is specified the
generated classes belong to the default namespace. In the C++ version, the namespace
name must be a simple identifier (e.9. M/Pr oj ect).

The - frames option can be used to specify the directory that contains the frame files
Scanner . frame and Par ser . f rame (See Section 2.4.8). If this option is missing Coco/R
expects the frame files to be in the same directory as the attributed grammar.

24

The -trace option alows the user to specify a string of switches (e.g. Asx) that cause
internal data structures of Coco/R to be dumped to the file trace. txt. The switches
are denoted by the following characters:

A print the states of the scanner automaton

print the first sets and follow sets of all nonterminals

print the syntax graph of al productions

trace the computation of first sets

list the ANY and SYNC sets used in error recovery

print statistics about the run of Coco/R

print the symbol table and the list of declared literals

print a cross reference list of all terminals and nonterminals

X 0O T« — o T

Instead of in the command line these switches can also be specified in the attributed
grammar in the form

${letter}

For example, the option $asx will cause the states of the automaton, the symbol table
and a cross reference list to be printed to the file trace. txt .

Output files. Coco/R trandlates an attributed grammar into the following files:

= Scanner. cs (in Java: Scanner. j ava; in C++: Scanner. h and Scanner . cpp) containing
the classes scanner, Token and Buffer .

» parser.cs (inJava Parser.java;in C++: Parser. h and Parser. cpp) containing the
classes Parser and Errors.

» trace.txt containing trace output (if any).

All files are generated in the directory that contains the attributed grammar.

3.3 Interfaces of the Generated Classes

This section specifies the interfaces for the C# version of Coco/R. For Java and C++
the interfaces differ dightly (see the frame files scanner . frame and Par ser. fr ane).

3.3.1 Scanner
The generated scanner has the following interface:

public class Scanner {
public Buffer buffer;

public Scanner (string sourceFile);
public Scanner (Stream s);

public Token Scan();
public Token Peek();
public void Reset Peek();

}
The main class of the compiler (see Section 3.4) has to create a scanner object and
pass it either an input stream or the name of a file from where the tokens should be
read. The scanner's input buffer is exported in the field buffer. It can be used to
access the input text at random addresses (see Section 3.3.3).

25

The method scan() is the actual scanner. The parser calls it whenever it reeds the
next token. Once the input is exhausted scan() returns the end-of-file token, which
has the token number o. For invalid tokens (caused by illegal token syntax or by
invalid characters) scan() returns a special token kind, which normally causes the
parser to report an error.

Peek() can be used to read one or severa tokens ahead without removing them from
the input stream. With every cal of scan() (i.e. every time a token has been
recognized) the peek position is set to the scan position so that the first Peek() after a
scan() returns the first yet unscanned token. The method Reset Peek() can be used to
reset the peek position to the scan position after several calls of peek().

3.3.2Token
Every token returned by the scanner is an object of the following class:

public class Token {
public int kind; // token code (EOF has the code 0)

public string val; /'l token val ue
public int pos; /1 position in the source stream (starting at 0)
public int line; // line nunber (starting at 1)
public int col; /1 colum nunber (starting at 0)
}
3.3.3 Buffer

Thisisan auxiliary class that is used by the scanner (and possibly by other classes) to
read the source stream into a buffer and retrieve portions of it:

public class Buffer {
public const char EOF = (char) 256

public Buf fer(Streams)

public int Read() ;

public int Peek() ;

public int Pos {get; set;}

public string GetString(int beg, int end);

}
A buffer is initidlized with the source stream. Read() returns the next character or 256
if the input is exhausted. peek() alows the scanner to read characters ahead without
consuming them. pos allows the scanner to get or set the reading position, which is

initially 0. Get string(a, b) can be used to retrieve the text interval [a..b[from the
input stream.

3.3.4 Parser
The generated parser has the following interface:

public class Parser {
public Scanner scanner; // the scanner of this parser
public Errors errors; [/ the error nessage stream

public Token t; /'l nmost recently recognized token
public Token | a; /1 | ookahead token

public Par ser (Scanner scanner);

public void Parse();

public void SenErr(string nsg);

26

The field t holds the most recently recognized token. It can be used in semantic
actions to access the token value or the token position. The field 1a holds the
lookahead token, i.e. the first token after t, which has not yet been parsed.

After creating a scanner, the main class of the compiler (see Section 3.4) hasto create
aparser object and call its method Par se in order to start parsing.

The method sentrr (msg) can be used to report semantic errors. It callserrors. Error
(see Section 3.3.5) and suppresses error messages that are too close to the position of
the previous error, thus avoiding spurious error messages (see Section 2.4.7).

3.3.5Errors

This class is used to print error messages. Coco/R distinguishes three kinds of errors:
syntax errors, semantic errors and runtime exceptions. Here is the interface of Errors:

public class Errors {

public int count = 0;

public string errMsgFormat = "-- line {0} col {1}: {2}";
public void SynErr(int line, int col, int n);

public void SenkErr(int line, int col, int n);

public void Error(int line, int col, string nsQ);
public void Exception(string nsg);

}
The field count holds the number of errors reported by Synerr, Sentrr and Error.

Errors can either be reported with an error number or with an error message. Syntax
errors are automatically reported by the generated parser, which calls the method
synkrr. Semantic errors should be reported by the user by calling either sentrr or
Error from the semantic actions of the attributed grammar.

The methods synkrr, sentrr and Error Simply print error messages to the console
using the format err MsgFor mat that can be changed by the user to obtain a custom
format of error messages. The placeholder {o} is filled with the line number, {1} is
filled with the column number, and {2} is filled with the error message.

The user can modify the methods synerr, sentrr and Error in the file Parser. frane.
This can be used, for example, to collect al error messages and insert them into the
compiled source code, if an Integrated Development Environment (IDE) is used.

The method Except i on is called for errors from which the compiler cannot recover. In
Coco/R it is called, for example, if the frame files cannot be found or are corrupt. It
prints an error message to the console and terminates the compiler.

3.4 Main Class of the Compiler

The main class of a compiler generated with Coco/R has to be provided by the user. It
has to create a scanner and a parser object, initiate parsing and possibly report the
number of errors detected. In its simplest form it can look like this:

public class Conpiler {
public static void Main(string[] arg) {
Scanner scanner = new Scanner(arg[0]);
Par ser parser = new Parser(scanner);
parser. Parse();
Consol e. WitelLi ne(parser.errors.count + " errors detected");

27

3.5 Grammar Tests

Coco/R checks if the grammar in the compiler specification is well-formed. This
includes the following tests:

Completeness
For every nonterminal symbol there must be a production. If a nonterminal x does
not have a production Coco/R prints the message

No production for X

Lack of redundancy
If the grammar contains productions for a nonterminal x that does not occur in any
other productions derived from the start symbol Coco/R prints the message

X cannot be reached
Derivability
If the grammar contains nonterminals that cannot be derived into a sequence of
terminals, such asin

X=Y";".
Y="(X")".

Coco/R prints the messages

X cannot be derived to terninals

Y cannot be derived to terninals
Lack of circularity
If the gammar contains circular productions, i.e. if nonterminals can be derived
into themselves (directly or indirectly) such asin

A=1Ja] B
B=(C b).
C=A{c}.

Coco/R prints the messages

A-->B
B-->C
C-->A

Lack of ambiguity

If two or more tokens are declared so that they can have the same structure and thus
cannot be distinguished by the scanner, as in the following example where the input
123 could either berecognized asan i nt eger Or asaf oat :

TOKENS
integer = digit {digit}.
float =digit {digit}['.' {digit}].
Coco/R prints the message

Tokens integer and float cannot be distinguished

In al these cases the compiler specification is erroneous and no scanner and parser is
generated.

28

Warnings

There are also situations in grammars that—although legal—might lead to problems.
In such cases Coco/R prints a warning but generates a scanner and a parser. The user
should carefully check if these situations are acceptable and, if not, repair the
grammar.

= Deletable symbols
Sometimes, nonterminals can be derived into the empty string such as in the
following grammar:

A=B]J[a].
B = {b}.

In such cases Coco/R prints the warnings

A del etabl e
B del et abl e

= LL(2) conflicts
If two or more alternatives start with the same token such asin

Statement = ident '='" Expression ';'
| ident ' (' Paraneters ')' ';'

Coco/R prints the warning

LL(1) warning in Statement: ident is start of several alternatives

If the start symbols and the successors of a deletable EBNF expression {...} or
[...] arenotdigoint such asin

Qalld =[id '."'] id.
ldlist =id {'," id} [','].

Coco/R prints the warnings

LL1 warning in Qualld: idis start & successor of deletable structure
LL1 warning in IdList: '," is start & successor of deletable structure

The resolution of LL(1) conflicts isdiscussed in Section 2.4.5.

4. A Sample Compiler

This section shows how to use Coco/R for building a compiler for atiny programming
language called Taste Taste bears some similarities with C# or Java. It has variables
of type i nt and bool as well as functions without parameters. It alows assignments,
procedure cals, i f and whi | e Statements. Integers may be read from afile and written
to the console, each of them in asingle line. It has arithmetic expressions (+,-,*,/) and
relational expressions (==,<,>). Here is an example of a Taste program:

program Test {
int i; // global variable

/1 conpute the sumof 1..i
voi d Sunmp() {
int sum
sum = O;
while (i >0) { sum=sum+i; i =i - 1; }
wite sum

}

29

/1 the program starts here
void Main() {

read i;

while (i > 0) {
Sunmp() ;
read i;

}
}
}

Of course Taste is too restrictive to be used as a real programming language. Its
purpose is just to give you ataste of how to write a compiler with Coco/R.

The Taste compiler is a compile-and-go compiler, which means that it reads a source
program and trandates it into a target program which is executed (i.e. interpreted)
immediately after the compilation. In order to run it type

Taste Test. TAS

The file Test . TAs holds the sample program shown above. This file is now compiled
and immediately executed. If a program requires input (like Test. TAs does) the input
fileisaways Tast e. I N. FOr our sample program Tast e. | N [0oks like this:

35100

Classes

Figure 2 shows the classes of the compiler.
Taste

Parser

—1

Scanner SymbolTable CodeGenerator

Figure2 Classes of the Taste compiler

Tast e IS the main class. It creates the scanner and the parser and then calls the parser
and the interpreter. The symbol table has methods to handle scopes and to store and
retrieve object information. The code generator has methods to emit instructions. It
also contains the interpreter and its data structures. The source code of all classes as
well as the attributed grammar Tast e. ATG can be found in Appendix B.

Target Code

We define an abstract stack machine for the interpretation of Taste programs. The
compiler translates a source program into instructions of that machine, which are then
interpreted. The machine uses the following data structures:

char[] code; /1 object code (filled by the conpiler)

int[] globals; // data area for global variables

int[] stack; /1 stack with frames for |ocal variables

i nt top; /1 stack pointer (points to next free stack slot)
i nt pc; /| program counter

i nt bp; /1 base pointer of current franme

The architecture of the Taste VM is shown in Figure 3.

globals stack

0

0

30

code

locals of the
calling method

return address

A

pc -

bp of caller

bp > locals of the

current method

expression stack

\ 4

top

"
word-addressed

progStart |

-~
byte-addressed

Figure 3: Data structures of the Taste VM

Global variables are stored in the word-addressed array gl obal s at fixed addresses.
Local variables are stored in stack frames that are linked with the stack frame of their

caller. They are addressed with a

word offset relative to the base pointer (bp) of the

frame. At the end of the topmost stack frame there is the expression stack that is used
for expression evaluation. After every statement the expression stack is empty.

The machine code is stored in the
points to the currently executed

byte-addressed array code. The program counter pc
ingtruction. progstart is the address of the main

method. Thisis the point where the execution of the program starts.

The machine instructions are described by the following table (the initial values are:

stack[0] = 0; top = 1; bp = 0;)

CONST n Load constant
LOAD a Load local variable
LOADG a Load global variable
STO a Storelocal variable
STOG a Store global variable
ADD Add

SUB Subtract

DV Divide

ML Multiply

NEG Negate

EQU Compareif equal
LSS Compareif less
GIR Compareif greater
JW a Jump

FIMP a Jump if false

READ Read integer

VRI TE Write integer

CALL a Call method

RET Return from method
ENTER n Enter method
LEAVE Leave method

For example, the method

voi d Foo() {
int a, b, nax;
read a; read b;

Push(n);

Push(st ack[bp+a]);
Push(gl obal s[a]);

st ack[bp+a] =Pop() ;

gl obal s[a] =Pop() ;

Push(Pop() +Pop());

Push(- Pop() +Pop()) ;
x=Pop(); Push(Pop()/x);
Push(Pop() *Pop()) ;
Push(-Pop());

i f (Pop()==Pop()) Push(l);
if (Pop()>Pop()) Push(1);
if (Pop()<Pop()) Push(1l);
pc = a;

if (Pop()==0) pc=adr;
Push(Readlnt());

Wit eLine(Pop());

el se Push(0);
el se Push(0);
el se Push(0);

Push(pc+2); pc=a;
pc = Pop(); if (pc==0) return;
Push(bp); bp=top; top+=n;

t op=bp; bp=Pop();

if (a>Db) max = a; else max = b;

wite max;

31

is trandated into the following code

1: ENTER 3
4: READ

5. STO 0
8. READ

9: STO 1

12: LOAD O

15: LOAD 1

18: GIR

19: FIMP 31—
22: LOAD O
25: STO 2
28: JMP 37

31: LOAD
34: STO
37: LOAD 2%

40: WRITE

41: LEAVE

42: RET

Appendix B contains the source code of the following files, which can also be
downloaded from http://ssw.jku.at/Coco/:

Taste. ATG the attributed grammar

Taste.cs themain program

Synirab. cs the symbol table

CodeGen. cs the code generator and interpreter

5. Applications of Coco/R

Coco/R can be used not only to write proper compilers, but aso to build many kinds
of tools that process structured input data. Various people have used Coco/R for the
following applications:

An analyzer for the static complexity of programs. The analyzer evaluates the kind
of operators and statements, the nesting of statements and expressions as well as the
use of local and global variables to obtain a measure of the program complexity and
an indication if the program is well structured.

A cross reference generator which lists all occurrences of the objects in a program
according to their scope together with information where the objects have been
assigned a value and where they have been referenced.

An pretty printer which uses the structure and the length of statements for proper
indentation.

A program which generates an index for books and reports. The index is generated
from a little language that describes page numbers and the keywords occurring on
those pages.

The front end of a syntax oriented editor. A program is trandated into a tree
representation which is the internal data structure of the editor.

A program that builds a repository of symbols and their relations in a program. The
repository is accessed by a case toal.

32

A profiler that inserts counters and timers into the source code of a program and
evaluates them after the program has been run.

A white-box test tool that inserts counters into the source code of a program to find
out which paths of the programs have been executed.

= Various compilers for special-purpose scripting languages.

A log file analyzer that reads machine-generated information and evaluates it.

6. Acknowledgements

The author gratefully acknowledges the help of the following people, who contributed
ideas and improvements to Coco/R or ported it to other programming languages:

Pat Terry, Markus Loberbauer, Albrecht Wo6R3, Csaba Balazs, Frankie Arzu, Peter
Rechenberg, Josef Templ and John Gough.

References

[M8ss90] Méssenbock, H.: A Generator for Production Quality Compilers. 3rd Intl. Workshop on
Compiler Compilers (CC'90), Schwerin, LNCS 477, Springer-Verlag 1990

[Terry04] Terry, P.: Compiling with C# and Java. Pearson, 2004.

[Terry97] Terry, P.. Compilers and Compiler Generators — An Introduction Using C++. International
Thomson Computer Press, 1997.

[Wirth77] Wirth, N.: What Can We Do about the Unnecessary Diversity of Notation for Syntactic
Definitions? Communications of the ACM, November 1977

[WLMO3] W6 A., Loberbauer M., Méssenbdck H.: LL(1) Conflict Resolution in a Recursive Descent
Compiler Generator, Joint Modular Languages Conference (JIMLC'03), Klagenfurt, 2003

A. Syntax

Cocol =
{ ANY}

" COWPI LER" i
{ ANY}

Scanner Speci

of Cocol/R
/* using clauses in C#, inport clauses in Java,
#i nclude cl auses in C++ */
dent
/* global fields and nethods */

fication

Par ser speci fication

"END" ident

33

Scanner Speci fication =
["1 GNORECASE"]
[" CHARACTERS" {Set Decl }]
["TOKENS' {TokenDecl}]
[" PRAGVAS" {PragmabDecl }]
{ Comment Decl }
{Whi t eSpaceDecl }.

Set Decl

Set

Basi cSet
TokenDecl
TokenExpr
TokenTer m
TokenFact or

Synbol

Pr agmaDecl
Conment Decl
Wi t eSpaceDecl

Synbol ['='" TokenExpr '.'].

TokenTerm {'|"' TokenTernt}.

TokenFactor {TokenFactor} ["CONTEXT" ' ('
Synbol

"(' TokenExpr ")’

"[' TokenExpr '1'

"{' TokenExpr '}'.

ident | string | char.

TokenDecl [SenAction].

"I GNORE" (Set | "CASE").

ident '='" Set.
BasicSet {('+'|'-') BasicSet}.
string | ident | char [".." char] | "ANY".

TokenExpr ')'].

"COMMENTS" "FROM' TokenExpr "TO' TokenExpr ["NESTED'].

Par ser Speci fi cati on = "PRODUCTI ONS" {Production}.
ident [Attributes] [SemAction] '='" Expression '

Pr oducti on
Expr essi on
Term

Fact or

Attributes
SemActi on
Resol ver

Term {'|' Ternt.

[[Resol ver] Factor {Factor}].
["WEAK"] Synbol [Attributes]
"(" Expression ')’

"[' Expression ']’
"{' Expression '}
" ANY"

" SYNC'

SemAct i on.

"< {ANY} ">
Y({ANY)
TR {AN)

B. Sources of the Sample Compiler

B.1 Taste. ATG

QWP LER Taste
const int // types

undef =0, integer = 1, boolean = 2;

const int // object kinds

var =0, proc = 1;

publ i ¢ Syniol Tabl e t ab;

publ i c GodeGenerat or gen;

CHARACTERS
letter ="A.."Z +'a.."
digit ="0.."9.
TAENS
ident =letter {letter | digit}.
nunber = digit {digit}.
COMENTS FRIM "/ *" TO"*/" NESTED
COMENTS FRIM"//" TO'\r" "\n'

IGNRE "\r' +'\n" +'"\t'
PRODUCTI ONS

AddQp<out p op>

Expr<out int type>
= S nixpr<out type>
[Rel Qp<out op>
S niExpr <out typel>

Factor<out int type>

(ldent<out nane>

| nuniber

|
Fact or <out type>

| "true"
| “fal se"

| dent <out string nane>
= ident

.int typel; O op; .)

. if (type !'=typel) Sentr("inconpatible types");

gen. Emit(op); type = bool ean; .)

.int n; Qo obj; string nane; .)
. type = undef; .)
. obj =tab. Hnd(nane); type = obj.type;

if (obj.kind = var) {
if (obj.level = 0) gen. Emt(Qp. LOADG obj.adr);
el se gen. BEmit ((p. LOAD, obj . adr);

} else Sentrr("variabl e expected'); .)

. n = Qnvert. Tolnt32(t.val);

gen. Emit ((p. GONST, n); type = integer; .)

. if (type '=integer) {

Sentr("integer type expected'); type = integer;

}
gen. Emt (. NG ; .)

. gen. Enit (Qp. GONST, 1); type = bool ean; .)
. gen. BEmit(Qp. GONST, 0); type = bool ean; .)

Mul Qp<out (p op>

e (. op =ML)
I)'/' (.op=Q.0OV .)
/*_: __ */
Pr ocDecl (. string nane; Qoj obj; int adr; .)
="voi d"

| dent <out nane>

{() (. gen.Emt(Qp. ENTER 0); adr = gen.pc - 2; .)
{ VarDecl | Sat }
"} (. gen.Emt(p. LEAVE); gen. Emt (Qp. RET);
gen. Pat ch(adr, tab.topScope. next Adr);
tab. d oseScope(); .).
/* __ */
Rel p<out p op>
=(" . (. op=Q.BY .)
| '< (. op=0Q.LS .)
I)'>' (. op=Q.GCR .)
/* __ */
S nExpr<out int type> (. int typel; G op; .)
= Ternxout type>
{ AddQp<out op>
Ter nxout typel> (. if (type I=integer || typel !=integer)
Sentrr("integer type expected");
gen. Emt(op); .)
}.
o e o e e e e */
Sat (. int type; string nane; Cbj obj;
int adr, adr2, loopstart; .)
= ldent <out nane> (. ob =tab.And(name); .)
('= (. if (obj.kind !'=var) Senfgr("cannot assign to procedure"); .)
Expr<out type>"';' (. if (type != obj.type) Sentrr("inconpatible types");
if (obj.level = 0) gen. Emt((p. STAG obj.adr);
el se gen. Emt(Qp. STQ obj.adr); .)
[G R (. if (obj.kind !'=proc) Sentgr("object is not a procedure");
gen. Emt((p. CALL, obj.adr); .)
)
| "if"
"(" Expr<out type>"')' (. if (type != boolean) Sentr("bool ean type expected");
gen. Emt(p. KIMP, 0); adr = gen.pc - 2; .)
Sat
["el se" (. gen.BEmt(.JMP, 0); adr2 = gen.pc - 2;
gen. Patch(adr, gen.pc);
adr = adr2; .)
S at
] (. gen.Patch(adr, gen.pc); .)
| "while" (. loopstart = gen.pc; .)
"(" Expr<out type>"')' (. if (type != bool ean) Senirr("bool ean type expected");
gen. Emt(p. KIMP, 0); adr = gen.pc - 2; .)
S at (. gen. BEmt(Cp.JMP, loopstart); gen.Patch(adr, gen.pc); .)
| "read"
I dent <out name> ' ;' (. obj =tab.H nd(nane);

. obj = tab. Newj (narme, proc, undef); obj.adr = gen.pc;

if (nane = "Miin") gen.progart = gen.pc;
tab. QpenScope();)

if (obj.type I=integer) Senkrr("integer type expected');
gen. Emit (p. READ) ;

if (obj.level = 0) gen. Emt(Qp. STAG obj.adr);

el se gen. Emit (. STQ obj.adr); .)

35

36

| ”Wite"
Expr<out type>"';' (. if (type !'=integer) Sentrr("integer type expected');
gen. Emt(.VRTH); .)

| "{' { Sat | VarDecl } '} .

o e e e e e e e */
Taste (. string nane; .)
= "program (. gen.lnit(); tab.Init(); .)

| dent <out nane> (. tab. QuenScope();)

{
{ VarDecl | Proclecl }

} (. tab.d oseScope();
if (gen.progtart = -1) Senir("nain functi on never defined");
I e e e x]
Ternxout int type> (. int typel, O op; .)

= Factor<out type>
{ Ml Qp<out op>
Fact or <out typel> (. if (type '=integer || typel !=integer)
Senr("integer type expected');
gen. Emt(op); .)

}.
o e o e e e e e */
Type<out int type>
= (. type = undef; .)
("int" (. type =integer; .)
| "bool " (. type = boolean; .)
).
/* __ */
Var Decl (. string nane; int type; .)
= Type<out type>
| dent <out nane> (. tab. NewQpj (nane, var, type); .)
{"'," ldent<out nane> (. tab. New(pj (nane, var, type); .)
P

B\D Tast e.

37

B.2 SymTab.cs (symbol table)

usi ng System

nanespace Taste {

public class (oj { // object decribing a decl ared nane

}

public string nang; /1 nane of the object

public int type; /1 type of the object (undef for procs)
public G next; /] to next object in sane scope

public int kind; /] var, proc, scope

public int adr; // address in nenory or start of proc
public int |evel; /1 nesting | evel; O=gl obal, 1= ocal

public (b |ocals; /1 scopes: to locally declared objects
public int nextAdr; /1 scopes: next free address in this scope

public class Synbol Tabl e {

const int // types
undef =0, integer =1, bool ean = 2;

const int // object kinds
var =0, proc =1, scope = 2,

public int curLevel; // nesting |level of current scope
public (bj undef(oj; // object node for erroneous syniol s
public (bj topScope; // topnost procedure scope

Par ser par ser;

/1 open a new scope and nake it the current scope (topScope)
publ i ¢ voi d QpenScope () {

j scop = new (yj ();

scop. hane = ""; scop. ki nd = scope;
scop.local s = null; scop.nextAdr = O;
scop. next = topScope; topScope = scop;
cur Level ++

}

/1 close the current scope
publ i c voi d A oseScope () {
t opScope = topScope. next; curlLevel--;

/] create a new object node in the current scope
public (bj Newldj (string nange, int kind, int type) {
j p, last, obj = new Qyj ();
obj . nane = nane; obj.kind = kind; obj.type = type;
obj .l evel = curlLevel;
p = topScope.locals; last = null;
vwhile (p!=null) {
if (p.name = nane) parser.Sentrr("nane decl ared twce");
last = p; p = p.next;

if (last = null) topScope.locals = obj; else last.next = obj;
if (kind = var) obj.adr = topScope. next Adr++,
return obj;

/] search the nane in all open scopes and return its object node
public Gbj Fnd (string nane) {
(bj obj, scope;
scope = topScope;
vhile (scope !'=null) { // for all scopes
obj = scope. | ocal s;
vwhile (obj '=null) { // for al objects in this scope
if (obj.nanme =— nane) return obj;
obj = obj.next;

scope = scope. next ;

parser. Sentxr(nane + " is undecl ared");
return undef Qo ;

}

publ i ¢ Syntol Tabl e (Parser parser) {
this. parser = parser;

topScope = nul | ;

curlLevel = -1,

undef j = new yj ();

undef oj . nane = "undef"; undefQpj.type = undef; undef@j.kind = var;

undef (oj . adr = 0; undef oj.1evel = 0; undef (j.next = null;
}

} /1 end Synbol Tabl e

} // end nanespace

B.3 CodeGen.cs (code generator)

using System
using System!Q

nanespace Taste {

public enum @ { // opcodes

ADD 8B ML, OV, BEYJ LSS GR NG

LOAD LOADG STQ STA5 AONST,

CALL, RET, ENTER LEAE, JW, FIMP, READ VR TE
}

public class GodeGnerator {
string[] opcode =

"LEAVE', "JW ", "RIMP ", "READ ", "WR TE'};
public int progtart; // address of first instruction of nain program
public int pc; /1 program count er

byte[] code = new byt e[3000] ;

// data for Interpret

int[] globals = newint[100];
int[] stack = newint[100];

int top // top of stack

int bp, // base pointer

[----- code generation nethods -----

public void Put(int x) { code[pc+] = (byte)x; }

public void Emt (Q op) { Put((int)op); }

public void Emt (o op, int val) { BEmt(op); Put(val >>8); Put(val); }

public void Patch (int adr, int val) {
code[adr] = (byte)(val >>8); code[adr+1] = (byte)val;

publ i ¢ voi d Decode() {
int naxPc = pc; pc = 1;
vhile (pc < maxke) {
Q code = (Qp) Next () ;
Qonsol e. Wite("{0,3}: {1} ", pc-1, opcode[(int)code]);
sw t ch(code) {
case p. LOAD case p. LOADG case p. GONST: case p. STQ case p. STAG
case (p. CALL: case (p. ENTER case (p. JMP. case p. FIMP.
Gonsol e. Wi telLi ne(Next2()); break;
case . AAD case (p. 9B case (p. ML: case p. O V: case p. NEG
case p. BEQU case p. LSS case p. GIR case p. RET: case (p. LEAVE
case . READ case p. VR TE
Qonsol e. Wi teline(); break;

[----- interpreter nethods -----
int Next () {
return code[pc+ ;
}
int Next2 () {
int x, v;
X = (sbyte)code[pc+H]; y = code[pc+];
return (x << 8) +vy;

}

39

40

int Int (bool b) {
if (b) retun 1, elsereturn O;

}
void Push (int val) {
stack[top+] =val;

int Pop() {
return stack[--top];
}
int Radint(FleSreams) {
int ch, sign, n=0;
do {ch = s. ReadByte();} while (!(ch>="'0 & ch<="9 || ch ="-"));
if (ch="-") {sign=-1, ch =s.ReadByte();} else sign = 1;
vwhile (ch>="'0 & ch<="'9) {
n=10* n+(ch- '0);
ch = s. ReadByt e() ;
Eeturn n* sign;

}

public void Interpret (string data) {
int va;
try {

FleSreams = new HleSreanfdata, H|eMde. Qen);

Gonsol e. Wi teLine();

pc = progSart; stack[0] =0; top=1; bp =0;

for (55) {

swtch ((@)Next()) {

case (p. QONST: Push(Next2()); break;
case . LOAD Push(stack[bp+N\ext2()]); break;
case . LOADG Push(gl obal s[Next2()]); break;
case (p.STQ stack[bpt\ext2()] = Pop(); break;
case (p. STAZ gl obal s[Next2()] = Pop(); break;
case (p. AOD Push(Pop() +Pop()); break;
case .9 B Push(-Pop()+Pop()); break;
case @.OV. val = Pop(); Push(Pop()/val); break;
case (p. ML: Push(Pop() *Pop()); break;
case . NEG Push(-Pop()); break;
case . BEQY Push(Int(Pop()=Pop())); break;
case . LSS Push(I nt (Pop()>Pop())); break;
case @.GR PRush(Int(Pop()<Pop())); break;
case .M. pc = Next2(); break;
case (p. IMP. val = Next2(); if (Pop()==0) pc = val; break;
case . FEAD val = Readint(s); Push(val); break;
case .VRTE onsol e. Wi teLine(Pop()); break;
case p. CALL: Push(pc+2); pc = Next2(); break;
case . RET: pc = Pop(); if (pc = 0) return; break;
case p. ENTER Push(bp); bp =top; top =top + Next2(); break;
case (p. LEAVE top = bp; bp = Pop(); break;

defaul t: t hrow new Exception("illegal opcode");
}
}
} catch (1 Cexception) {
Gonsol e. Wi teline("--- Bror accessing file {0}", data);
System Envi ronnent . Exi t (0) ;
}
}

public GodeGenerator () { pc = 1; progSart =-1; }

} /1 end GodeGen
} // end nanespace

B.4 Taste.cs (main program)
using System

nanespace Taste {
class Taste {

public static void Min (string[] arg) {
if (arg.Length > 0) {
Scanner scanner = new Scanner (arg[0]);
Par ser parser = new Parser(scanner);
par ser.tab = new Synbol Tabl e(par ser);
par ser. gen = new GodeGenerator();
parser. Parse();
if (parser.errors.count = 0) {
par ser . gen. Decode() ;
parser.gen.Interpret("Taste. IN');
}
} else{
Gonsol e. Witeline("-- No source file specified");

}

} // end nanespace

41

