
CS 241 Data Structures and Algorithms I
Fall, 2007 Dr. Joseph Bergin

Text: Data Abstraction and Problem Solving with Java
 Walls and Mirrors, 2nd edition
 Frank M. Carrano, Janet J. Prichard
 Addison Wesley, 2005
OPTIONAL:

Java Generics and Collections
Maurice Naftalin, Philip Wadler
O'Reilly, 2006

Dr. Bergin's Information:
jbergin@pace.edu
http://csis.pace.edu/~bergin
AOL IM: jb605pace

Dr. Bergin's Office Hours:
Office hours: Tuesdays 12:45- 1:15 and 3:30 pm – 5 pm, Thursdays 12:45- 1:15 and 3:30 pm - 5:45
pm, by appointment & online by AOL IM

Course Objectives and Outcomes
 Objective 1 . Students will learn to design software using abstract data and control
structures. These structures will include lists, stacks, queues, trees, and hash tables.

 Outcomes : Students will demonstrate ability to:
 a. Write and debug Java code for each of the above data types.
 b. Use the above data structures in a programming application.
 c. Extend the above data structures using inheritance to produce
 specialized structures.
 d. Students will be able to give different design solutions to problems.

 Objective 2. Students will learn to use recursion in program construction.

Outcomes: Students will demonstrate ability to:
 a. Diagram backtracking on recursive tree.
 b. Implement recursive algorithms for tree traversal.

 Objective 3. Students will learn to implement abstract data types in alternate ways.

Outcomes: Students will demonstrate ability to:
 a. Implement stacks and queues as both arrays and linked lists.
 b. Implement stacks and queues using classes from the Java Collections
 class
 c. Implement hash tables using different methods of probing.

 Objective 4. Students will learn to quantitatively evaluate alternative implementations
 and explain the trade-offs involved.

Outcomes: Students will demonstrate ability to:
 a. Evaluate the time complexity of fragments of code (e.g. sequential for
 loops, nested for loops)
 b. Use Big-O notation to evaluate different implementations of stacks and queues

 c. Use Big-O notation to evaluate different searching algorithms (linear,
 binary search on a sorted array, binary search tree, hashing –linear
 probing)
 d. Discuss time/space trade-offs using Big-O notation.

Objective 5. Students will work on a group project.

 Outcomes
 a. Students will appreciate at least four phases of software engineering: specification,
design, coding and testing.

 b. Students will learn the benefits and the hindrances of working in a group.

 c. Students will learn the difficulties of working on a larger programming project and
learn the joy of getting a more complex program to run.

 d. Students will realize the amount of testing that should be performed on a
programming project.

Course Outline
 I Principles of Programming and Software Engineering - Chapter 2
 Object Oriented Design
 Inheritance revisited - Chapter 9
 Linear and Binary Search
 Algorithm Efficiency, Big oh notation - Chapter 10

 II Recursion: The Mirrors Chapter 3
 Recursion and efficiency

III Data Abstraction: The Walls Chapter 4
 Abstract data types including generic collections
 Java interfaces and exceptions
 Java Collections Framework (will be studied throughout the course)

IV Review of linked lists - Chapter 5
 Adding two polynomials
 Circular and doubly linked lists

V * The ADT Stack - Chapter 7
 Array and linked list implementation
 Solving problems using stacks

VI *The ADT Queue - Chapter 8
 Array and linked list implementation
 Simulation

VII *Recursion – Chapter 6
 Using and removing recursion
 Backtracking
 Divide and conquer algorithms
 Learning when to use recursion
 Studying the classic examples Eight queens, Knight’s tour, permutations

VIII *Binary Trees –Chapter 11
 Binary Search Tree and traversals
 Binary Tree and traversals (Binary expressions and polish notation)
 if time permits, balanced search trees

IX Test Driven Development

Evaluation (This is negotiable)
The primary determinant of your grade will be based on frequent assignments. There will also be a
final exam on the required end-of-semester date. The exam is valued at approximately twice an
individual assignment. Your grade is the simple average of all work required, including the exam.

Letter grades are assigned in the following way:

A, 90-100
B 80-90
C 70-80
D 60-70
F 0-60

Any assignment that receives a grade that the student doesn't like, may be redone. It will be regraded
and the new grade substituted. This policy may need to be limited later in the semester and will end
two weeks prior to the end.

Attendance will be taken at every class. If you must be absent, it is your responsibility to get
the notes and homework assignment from another student before the next class.

It is likely that at least one of the programs assigned will be completed as a group project in
order that you may study something of software engineering. There are advantages and
disadvantages to a group project; you will learn them quickly.

Office hours 163 Williams St. 2nd floor. 212 346 1499 (DO NOT leave a phone message,
use email instead). Contact me by email rather than by phone message.
 Tuesday PM Thursday PM (as above)
 I am not on campus other days.
 You are welcome to visit me whenever my office light is on; that will probably be
Thursday afternoons
 email jbergin@pace.edu
 AOL IM sessions are possible (jb605pace is my handle there when I'm available)

Course WIKI: http://csis.pace.edu:8097. Do not provide any web-visible link to this site,
though you may bookmark it.

Your work must be turned in in hard copy at the beginning of the class at which it is due. By
turning it in you certify that it is your own work except as noted by you on the work itself.
Programming assignments (Java code) must be correctly formatted according to the course
style guide.
See: http://csis.pace.edu/~bergin/patterns/codingpatterns.html

