Agile in an Hour Introduction

® Agile Software Development is a high
discipline and very iterative development
Joe Bergin & Fred Grossman method

Seidenberg School

Computer Science and Information Systems
Pace University

® |t avoids early commitment and early
infrastructure development to achieve:

® Low cost of change and

® Easy retargeting of a project

Why Projects Fail Failure

® Cubicles
® Trying to over-control the dimensions ® Lying
® Features ® Coercion
® Cost (... by Friday”, or “You can’t have that”)
® Schedule ® Late testing, too little testing
® Quality ® Working from inadequate documentation

® High cost of ch , inflexible desi
® In reality you can only control 3 of these Ll

® Parts OK, but don’t fit together

Agile Manifesto Agile Sweet Spot

® We Value:

® Individuals and interactions over Reasonable Size

processes and tools ® Uncertainty on Features...

® Working software over ® Change Likely

comprehensive documentation
Standard process likely to fail

® Customer collaboration over
contract negotiation

. If you can’t plan, then build on a tight feedback loo
® Responding to change over Y P & P

following a plan

Many Ways Agile Synonyms

XP Scrum

® |teration Sprint
® Scrum -- overall management process ® Customer Product Owner
® XP -- day to day practices * Coach crum Master

® Big Boss (sheltering mgr) Scrum Master
® Crystal -- scaling, flexibility ® Tracker Scrum Master
° ® Project Stories Product Backlog
® Boi] . doi . ® |teration Stories Sprint Backlog

eing agile, not just doing agile. ® Stand up meeting Daily Scrum Meeting

Planning Game Sprint Planning Meeting

Values in XP

® Courage

® Communication
® Simplicity

® Feedback

® Respect

Key Ideas

® Practices are synergistic & support each
other

® Communication Distance is expensive
® Schedules never slip (time-box)
® Balance between rights & responsibilities

® Set of practices is humane

What It Gives You

® Rights AND Responsibilities
® Humane work environment
® Skills that are valuable

® Pride of workmanship

What It Requires

® Discipline
® Commitment
® Honesty

® Courage

What is missing?

® Upfront requirements gathering and sign-
off -- hence no need to commit early

® Upfront design documents -- hence easy to
retarget

® Early costs amortized over life of project
-- hence lower cost of change

® Intimidation: schedule, cost, or value

Agile Roles

® Customer, Product Owner, Stakeholder

® Developer

® Tester -- all developers do this

® Coach -- responsible for process and guidance

® ScrumMaster (super coach plus downfield
blocker)

® Others (tracker, documentation, ...

RO'GSZ Customer/ Product Owner

Write short “story cards” describing features

Answer questions throughout to add specificity to the
stories (just in time requirements)

Write/specify acceptance tests to verify stories

Make all business decisions: function, priority, feature
value, acceptance

Obtains consensus/consent among stakeholders to
guide development

A Good Customer

Understands the domain well by working in that domain
and also by understanding how it works (not always the
same thing)

Can understand, with development’s help, how software
can provide business value in the domain

Is determined to deliver value regularly and is not afraid
to deliver too little rather than nothing

Can make decisions about what’s needed now and
what’s needed later

Is willing to accept ultimate responsibility for the
success or failure of the project. [Beck & Fowler]

Sample Acceptance

Sample Story Test

Triangles Story 3 2

Task 3.1 (Part of story 3)

‘Write a function named right that will take three inputs representing the sides of a triangle
and return whether that is a right triangle or not.

® The system will correctly classify triangles: N
right triangles, equilateral, etc. ;
4
These are created in Excel or HTML, but are
executable

After Execution Roles: Developer

Task 3.1 (Part of story 3)

® Estimate stories

‘Write a function named right that will take three inputs representing the sides of a uiangle
and return whether that is a right triangle or not.

® Break stories into tasks
yFixwres rightTriangle

c right()
5 true

b

o ® Build tasks -- with customer feedback
5 |9 false

5

m|
a
3
6
3
4 7 false

® Write unit tests (all tests always succeed)

Failed tests show up in red. ® Do continuous integration

20

Roles: Other

® Tracker (keep everyone aware of progress)
® Coach (conscience of the team)

® Big-Boss (management and shelter)

® Tester (write/run unit tests...)

® Consultant (extra knowledge as needed)

Concept: Pigs v Chickens

21

Contract

® For best effort and full communication, NOT
for deliverables on a given date

® Customer/Product Owner may terminate
project at any time

® Short release cycles (4-6 weeks) ensure
constant delivery of customer value

® Schedule never slips, though features may be
dropped from an iteration (1-2 weeks)

22

Controlling Cost

® Build the high value features first --
controlled by customer

® Make expensive decisions as late as
possible

® When the cost and value curves cross -
quit!

23

Staying Happy

® Customer steers like a bicycle

® If something is not “right” then write a new story
and prioritize it like any other (no guilt, no blame)

® Developers build only the stories in the current
iteration and always do the simplest thing that
could possibly work

® Stories are fine-grained to enable short iterations

24

Practices

® XP has a dozen or so key (daily) practices.
The most important overall are

® Onsite Customer

® Whole Team

25

Practices-- Customer

® The most important practices for the
customer are:

® Onsite customer - available customer
® Planning Game

® Customer Written Acceptance Tests

26

Onsite Customer

® Customer is needed on site because

® Developers should not make business decisions
but

® no upfront requirements
® no upfront design documents
® A story is a contract to talk in the future

® actual requirement is captured just-in-time

27

Whole Team

® |n addition to the customer, the “whole team” includes
all personnel with key skills needed to develop the
system

® Software developers
® Designers - architects - analysts
® Information architects

® Others as appropriate - testers, documentation
specialists ...

® BUT it favors generalists over specialists

® AND it is SELF-ORGANIZING

28

Key Ideas Whole Team

® The customers write stories and prioritize

Y TRIT .
Everyone has responsibility for the project them

.
Not just for their little piece ® The other members task out the stories

® Just in Time - Just Enough and estimate them

® Members with appropriate skills estimate

o
Lack of anticipation and scaffolding and perform tasks

® Strict time-boxing of iterations ® Tasks support the stories

30

Planning Game | Planning Game 2
® This is a periodic task (every I-2 weeks) in ® Customer writes stories
which the customer chooses the high value
features (stories) for the next release or ® Developers estimate stories
iteration

® Customer prioritizes stories

® Based on cost estimates from the developers D |) he “velocity”
evelopers give the “velocity

® Estimates are not a contract, so re-steering is

required throughout the iteration. ® Customer chooses stories up to velocity

31 32

Planning Game 3

® Developers/Customer discuss stories
® Developers divide stories up into tasks

® Individual developer with appropriate skills
chooses a task and estimates it

® If sum of task times > velocity then back to
planning, otherwise build, test, & integrate

33

Build Phase

® Tracker keeps track of everyone’s progress

® If all tasks/stories can’t be completed on time
some are dropped. Customer chooses which

® At end of each task, all tests pass. Customer
verifies - accepts or rejects

® If the customer still isn’t happy, write a new
story - no time wasted on assigning blame

34

Build Phase (cont.)

® If developers finish early, go back to customer for
more work. Customer chooses

® Developers give a new “mini velocity”

® Next iteration velocity is adjusted based on what
we complete this iteration

Concept: Done = built, thoroughly tested,
integrated, documented, accepted

35

Practices--Developer

® Standup Meeting
® Sustainable Pace - energized work
® Test Driven Development

® No code without a failing test
® Small Releases - 2 or 3 iterations
® Collective Code Ownership

® Coding Standard

36

Practices--Developer

® Pair Programming

® Constant Refactoring
® Continuous Integration
® Simple Design

® Metaphor

® Retrospectives

37

New Practices

® The above practices may not all be appropriate
as stated for an integrated team

® Practices are built on principles to give benefits

® Need to discover and implement appropriate
practices for THIS team on THIS project to
achieve desired goals (so, hold Retrospectives)

38

Distributed Agile

® Minimize Communication Distance
® Provide situational awareness

® Acceptance Tests

® Overlapping sub-teams

® Everyone takes responsibility
® No one succeeds unless the team does
® Everyone succeeds if the team does

® “not my job” is not an option

Areas of Change (?)

® Collective Ownership (vs skills)
® Development Standard (each area)
® Test Driven Development (automated)

® Pair (mob?) Practices

40

