
Joe Bergin & Fred Grossman

Seidenberg School
Computer Science and Information Systems

Pace University

Agile in an Hour

Copyright 2005-2007, Joseph Bergin and Fred Grossman. All rights reserved.
2

• Agile Software Development is a high
discipline and very iterative development
method

• It avoids early commitment and early
infrastructure development to achieve:

• Low cost of change and

• Easy retargeting of a project

Introduction

Why Projects Fail

• Trying to over-control the dimensions

• Features

• Cost

• Schedule

• Quality

• In reality you can only control 3 of these

Failure
• Cubicles

• Lying

• Coercion
(“... by Friday”, or “You can’t have that”)

• Late testing, too little testing

• Working from inadequate documentation

• High cost of change, inflexible design

• Parts OK, but don’t fit together

Agile Manifesto
• We Value:

• Individuals and interactions over
processes and tools

• Working software over
comprehensive documentation

• Customer collaboration over
contract negotiation

• Responding to change over
following a plan

Agile Sweet Spot

• Reasonable Size

• Uncertainty on Features…

• Change Likely

• Standard process likely to fail

• If you can’t plan, then build on a tight feedback loop

Many Ways

• Scrum -- overall management process

• XP -- day to day practices

• Crystal -- scaling, flexibility

• …

•Being agile, not just doing agile.

 Agile Synonyms
 XP Scrum

• Iteration Sprint

• Customer Product Owner

• Coach Scrum Master

• Big Boss (sheltering mgr) Scrum Master

• Tracker Scrum Master

• Project Stories Product Backlog

• Iteration Stories Sprint Backlog

• Stand up meeting Daily Scrum Meeting

• Planning Game Sprint Planning Meeting

9

• Courage

• Communication

• Simplicity

• Feedback

• Respect

Values in XP

10

Key Ideas

• Practices are synergistic & support each
other

• Communication Distance is expensive

• Schedules never slip (time-box)

• Balance between rights & responsibilities

• Set of practices is humane

11

What It Gives You

• Rights AND Responsibilities

• Humane work environment

• Skills that are valuable

• Pride of workmanship

12

What It Requires

• Discipline

• Commitment

• Honesty

• Courage

13

• Upfront requirements gathering and sign-
off -- hence no need to commit early

• Upfront design documents -- hence easy to
retarget

• Early costs amortized over life of project
-- hence lower cost of change

• Intimidation: schedule, cost, or value

What is missing? Agile Roles

• Customer, Product Owner, Stakeholder

• Developer

• Tester -- all developers do this

• Coach -- responsible for process and guidance

• ScrumMaster (super coach plus downfield
blocker)

• Others (tracker, documentation, …

15

• Write short “story cards” describing features

• Answer questions throughout to add specificity to the
stories (just in time requirements)

• Write/specify acceptance tests to verify stories

• Make all business decisions: function, priority, feature
value, acceptance

• Obtains consensus/consent among stakeholders to
guide development

Roles: Customer/ Product Owner
A Good Customer

• Understands the domain well by working in that domain
and also by understanding how it works (not always the
same thing)

• Can understand, with development’s help, how software
can provide business value in the domain

• Is determined to deliver value regularly and is not afraid
to deliver too little rather than nothing

• Can make decisions about what’s needed now and
what’s needed later

• Is willing to accept ultimate responsibility for the
success or failure of the project. [Beck & Fowler]

17

Sample Story

• The system will correctly classify triangles:
right triangles, equilateral, etc.

Triangles Story 3

18

Sample Acceptance
Test

These are created in Excel or HTML, but are
executable

19

After Execution

Failed tests show up in red.

20

• Estimate stories

• Break stories into tasks

• Build tasks -- with customer feedback

• Write unit tests (all tests always succeed)

• Do continuous integration

Roles: Developer

21

• Tracker (keep everyone aware of progress)

• Coach (conscience of the team)

• Big-Boss (management and shelter)

• Tester (write/run unit tests...)

• Consultant (extra knowledge as needed)

Concept: Pigs v Chickens

Roles: Other

22

• For best effort and full communication, NOT
for deliverables on a given date

• Customer/Product Owner may terminate
project at any time

• Short release cycles (4-6 weeks) ensure
constant delivery of customer value

• Schedule never slips, though features may be
dropped from an iteration (1-2 weeks)

Contract

23

• Build the high value features first --
controlled by customer

• Make expensive decisions as late as
possible

• When the cost and value curves cross -
quit!

Controlling Cost

24

• Customer steers like a bicycle

• If something is not “right” then write a new story
and prioritize it like any other (no guilt, no blame)

• Developers build only the stories in the current
iteration and always do the simplest thing that
could possibly work

• Stories are fine-grained to enable short iterations

Staying Happy

25

Practices

• XP has a dozen or so key (daily) practices.
The most important overall are

• Onsite Customer

• Whole Team

26

• The most important practices for the
customer are:

• Onsite customer - available customer

• Planning Game

• Customer Written Acceptance Tests

Practices-- Customer

27

• Customer is needed on site because

• Developers should not make business decisions
but

• no upfront requirements

• no upfront design documents

• A story is a contract to talk in the future

• actual requirement is captured just-in-time

Onsite Customer

28

Whole Team
• In addition to the customer, the “whole team” includes

all personnel with key skills needed to develop the
system

• Software developers

• Designers - architects - analysts

• Information architects

• Others as appropriate - testers, documentation
specialists …

• BUT it favors generalists over specialists

• AND it is SELF-ORGANIZING

Key Ideas

• Everyone has responsibility for the project

• Not just for their little piece

• Just in Time - Just Enough

• Lack of anticipation and scaffolding

• Strict time-boxing of iterations

30

Whole Team

• The customers write stories and prioritize
them

• The other members task out the stories
and estimate them

• Members with appropriate skills estimate
and perform tasks

• Tasks support the stories

31

• This is a periodic task (every 1-2 weeks) in
which the customer chooses the high value
features (stories) for the next release or
iteration

• Based on cost estimates from the developers

• Estimates are not a contract, so re-steering is
required throughout the iteration.

Planning Game 1

32

Planning Game 2

• Customer writes stories

• Developers estimate stories

• Customer prioritizes stories

• Developers give the “velocity”

• Customer chooses stories up to velocity

33

Planning Game 3

• Developers/Customer discuss stories

• Developers divide stories up into tasks

• Individual developer with appropriate skills
chooses a task and estimates it

• If sum of task times > velocity then back to
planning, otherwise build, test, & integrate

34

Build Phase

• Tracker keeps track of everyone’s progress

• If all tasks/stories can’t be completed on time
some are dropped. Customer chooses which

• At end of each task, all tests pass. Customer
verifies - accepts or rejects

• If the customer still isn’t happy, write a new
story - no time wasted on assigning blame

35

Build Phase (cont.)

• If developers finish early, go back to customer for
more work. Customer chooses

• Developers give a new “mini velocity”

• Next iteration velocity is adjusted based on what
we complete this iteration

Concept: Done = built, thoroughly tested,
integrated, documented, accepted

36

Practices--Developer
• Standup Meeting

• Sustainable Pace - energized work

• Test Driven Development

• No code without a failing test

• Small Releases - 2 or 3 iterations

• Collective Code Ownership

• Coding Standard

37

Practices--Developer

• Pair Programming

• Constant Refactoring

• Continuous Integration

• Simple Design

• Metaphor

• Retrospectives

38

New Practices

• The above practices may not all be appropriate
as stated for an integrated team

• Practices are built on principles to give benefits

• Need to discover and implement appropriate
practices for THIS team on THIS project to
achieve desired goals (so, hold Retrospectives)

Distributed Agile
• Minimize Communication Distance

• Provide situational awareness

• Acceptance Tests

• Overlapping sub-teams

• Everyone takes responsibility

• No one succeeds unless the team does

• Everyone succeeds if the team does

• “not my job” is not an option

40

Areas of Change (?)

• Collective Ownership (vs skills)

• Development Standard (each area)

• Test Driven Development (automated)

• Pair (mob?) Practices

