Resources for Teaching Design to Novices

Lee & Tepfenhart, UML and C++, Prentice Hall, 1997. This is a recent book that begins with design. It is not a CS1/2 book, but it has ideas for educators. It shows simple uses of UML diagramming techniques.

Wilkinson, Using CRC Cards: An Informal Approach to Object-Oriented Development, SIGS Books, 1995

Riel, Object-Oriented Design Heuristics, Addison-Wesley, 1996

Bergin, Teaching Object-Oriented Analysis and Design to Beginners, http://csis.pace.edu/~bergin/papers/OOAD.html This is a brief discussion of UML, Use-Case modeling, and CRC cards. There is also a brief discussion of a nice design exercise (Coffee Machine – Alistair Cockburn) that can be very effective with novices. I have more a more complete description of this multi-part exercise that I can make available to educators. Use-Case is a means of documenting the external behavior of a system from the standpoint of its users. A use case is essentially a script of an interaction between a single user and the system for one transaction. The external behavior is then a set of use cases that are used to drive the design and also to verify it later. CRC (Class-Responsibility-Collaborator) cards are a way of discovering and documenting classes and their responsibilities in an OO system.

Bergin, Several short papers on patterns for beginners, http://csis.pace.edu/~bergin/patterns/ This includes both a pedagogical pattern on how to teach patterns and some ideas about how to present design issues to novices using patterns and pattern languages. There is a bit more about UML and CRC cards here also—see “Simple Patterns”. Patterns are an attempt to capture best practice in a given problem context. A pattern is a solution to a problem in a context. Patterns are only written and refined when the problem recurs. Problems can capture design, coding, and even organizational structures.

Mary Lynn Manns, et al. The pedagogical patterns project captures teaching techniques that can be used to complement OO courses. http://www.cs.unca.edu/~manns/oopsla.html

Eugene Wallingford, et. al. Elementary Patterns and their Role in Instruction. The home page of the recent ChiliPLoP hot topic. This has pointers to several useful sources. http://www.cs.uni.edu/~wallingf/research/patterns/chiliplop

Rick Mercer, Some Design ideas, including exercises. There are also links to papers by several authors interested in design for beginners. Look especially at the papers on design in the first year. http://www.bk.psu.edu/faculty/mercer/design/ . Next is a set of materials discussing the design of a jukebox. It is used in first year courses.

http://www.bk.psu.edu/faculty/mercer/design/98SIGCSE.html

Owen Astrachan, Materials for CPS 108 (The second or third(usually) course in CS, coming after data structures). There are a number of useful things here, including pointers to an on-line UML tutorial. You might want to look at his readings, code examples, and some other things from this course page: http://www.cs.duke.edu/~ola/courses/cps108.html/ .

And What is Design? Really?

There are two sides to design: program design and systems design. I think students need to be taught to design programs first and they need to be taught to design small programs first. Systems design can wait until the Software Engineering course, but not program design. All of the above is mostly about program design, though some techniques like UML scale well to the systems life-cycle level. Below are a few thought about systems design, especially in an OO context.

People in the OOP community have given up, I think, on any sort of waterfall model of software development in favor of an iterative (spiral) approach. Some have claimed that the waterfall method has never worked on any large project, and there is certainly a lot of evidence of large failed systems from the Federal government. One possible exception to this may be the development of Boeing’s most recent commercial aircraft. I don’t know many the details of its development other than that it was OO Designed and that the designers attribute its success in being designed and built economically on the OO design methodology used. It isn’t obvious to me at least, how this one could have been spiral, but it was large and it was successful.

The iterative method either develops a prototype into a product, or else starts with a well designed, small, core of functionality and then develops it into a bigger program/system over time. One approach is to deliver a product that is only 80% complete to a core of users who will use it and provide feedback to the developers on the completion.

To illustrate this idea, here is a pair of messages sent to the Patterns listserv.

The thread is titled “Worse is Better”. The references to the Scrum development method in the second message are well worth a look. This thread has been going on for a while. First is a message from Ralph Johnson of U. Illinois, responding to an earlier message:

>From: Dirk Riehle <Dirk.Riehle@ubs.com>

>Is the "Worse is better" approach to software development [1]

>a pattern or an anti-pattern?

"Worse is better" is a pattern, because it tells you how to develop software that people use. It is a pretty non-obvious pattern, because it goes against what a lot of people teach. It does not really say "develop a lot of junk and throw it into the market", rather, it says that it is better to ship early with an 80% solution than to ship late with a 100% solution. Thus, it argues for iterative development, and fits in with Alexander's philosophy. When you tie this with continual improvement and redesign, you can get both a decent design AND lots of users. Witness Linus, or Microsoft XX version 7.0. (I think he means Linux—JB)

Like most patterns, it works in particular contexts. "Worse is better" is suited for a market-driven economy, not the command economy that is typical inside large corporations or the government. Even there, it is almost certainly better to develop iteratively, to grow your software from a small core that works, and to refactor your system as it grows, as taught by Extreme Programming (http://c2.com/cgi/wiki?ExtremeProgramming). However, Worse is Better says to release your software early so that you will get feedback and market share, while when you have a small set of users my experience is that you sometimes don't want to risk offending them by releasing too early. Worse is Better lets you find early adaptors to be your users, while it scares off people who are not early adaptors. If those people are funding your project, you are in trouble.

-Ralph

-------------- Next a response from Michael A. Beedle ---------------

Ralph Johnson wrote:

> "Worse is better" is a pattern, because it tells you how

> to develop software that people use. It is a pretty

> non-obvious pattern, because it goes against what a lot

> of people teach. It does not really say "develop a lot

> of junk and throw it into the market", rather, it says

> that it is better to ship early with an 80% solution than

> to ship late with a 100% solution. Thus, it argues for

> iterative development, and fits in with Alexander's

> philosophy.

"Worse is better"

I suppose another way to say this is:

"The perfect is the enemy of the good."

That is certainly the foremost basic assumption of the SCRUM development method - to deliver as much quality software as possible within a given time-box called a "Sprint". (Each project has typically 3-5, ~1 month Sprints.)

SCRUM is not only "iterative and incremental" development - it is adaptive development... There is no predefined process, you make the process as you go, self-organizing its resources to deliver software! The SCRUM method is the ultimate expression of DeveloperControlsProcess (of course don't forget to apply FromFollowsFunction to the developer role). Some other roles and relationships are needed (for example ArchitectControlsProduct), but they are given by other org patterns i.e. Coplien, Gabriel, Cockburn, Harrison, Cunningham, Berczuk, Rising, Olsen, Johnson, Opdyke, Whitenack, Kerth, Kaul, Devos, Roberts, Foote, Yoder, Weir, Delano, Kaul, etc. sorry if I left some names out.)

Each Sprint takes a pre-allocated number of work items called a Backlog. As a rule, no more items are externally added into the Backlog within a Sprint. But internal items resulting from the original pre-allocated Backlog can be added to it. The goal of a Sprint is to complete as much quality software as possible within the Sprint, but you don't expect to complete everything assigned to a Sprint.

The end result is that there are non-perfect NamedStableBases delivered every Sprint. (yes, "worse is better" ...)

During a Sprint, SCRUM meetings are held each day in order to check on:

1) what items were completed that day

2) what issues or Blocks have been found that need to be resolved. (the

ScrumMaster resolves the Blocks.)

3) what new assignments make sense for the team to complete in the next 24 hrs.

SCRUM meetings allow the development team to "socialize the team members knowledge", and have a deep cultural transcendence. (SCRUMs are a patterned 15 min. meetings.)

In turn, this "knowledge socialization" leads to a self-organized team structure, where the process is invented in an adaptable way on a daily basis.

At the end of each Sprint, there is a Demo:

1) to show the customer what's going on, (EngageCustomer)

2) to give the developer's a sense of accomplishment (CompensateSuccess)

3) to integrate and test a reasonable portion of the software being developed. (EngageQA)

After gathering and reprioritizing the leftover and new tasks, a new Backlog is formed and a new Sprint is started.

We have been using SCRUM techniques and Coplien org patterns, together since late 1995:

http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns?CoplienOrganizationPatterns

Their strong synergies lead to a very adaptive, yet well structured software development organization, because their application creates a "strong culture" that has well defined roles and relationships, meaningful rituals, and imo, provides the development team with a nearly complete "org pattern language". (which represents a "deep" self-reinforcing structure beneath the native language of the developers.)

More on SCRUM at:

http://www.controlchaos.com

http://www.tiac.net/users/jsuth/scrum

- Mike

(You can also see SCRUM as a pattern here: http://www.jeffsutherland.org/scrum/scrum_pattern.html other patterns on SCRUM will be presented at PLOP98 as Organizational Patterns i.e. ScrumMaster, Backlog, Sprints, DemoAfterSprint, etc.)

Note: I can provide details on how to subscribe to this listserv to anyone who is interested.

