
2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 1 of 40

Teaching Strategies for Reinforcing
Structural Recursion with Lists

Michael H. Goldwasser David Letscher

Saint Louis University

Active Learning

Overview

Active Learning

Structural Recursion

Beyond Graphics

Python’s List Class

Role Playing

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 2 of 40

I need somevolunteersfor today

Structural Recursion

Overview

Active Learning

Structural Recursion

Beyond Graphics

Python’s List Class

Role Playing

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 3 of 40

For an object-oriented CS1, structural recursion can
be more natural than functional recursion.

An object is composed of a basic shape and a
(recursive) instance of the same class.

Beyond Graphics

Overview

Active Learning

Structural Recursion

Beyond Graphics

Python’s List Class

Role Playing

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 4 of 40

Pro: Graphics are fun and tangible.

Beyond Graphics

Overview

Active Learning

Structural Recursion

Beyond Graphics

Python’s List Class

Role Playing

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 4 of 40

Pro: Graphics are fun and tangible.

Con: recursive patterns are generally limited
(“draw outer, draw rest”; “move outer, move rest”)

Beyond Graphics

Overview

Active Learning

Structural Recursion

Beyond Graphics

Python’s List Class

Role Playing

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 4 of 40

Pro: Graphics are fun and tangible.

Con: recursive patterns are generally limited
(“draw outer, draw rest”; “move outer, move rest”)

Our goal is to provide a tangible presentation for a
non-graphical example of structural recursion
(namelypurely-recursive lists).

Python’s List Class

Overview

Active Learning

Structural Recursion

Beyond Graphics

Python’s List Class

Role Playing

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 5 of 40

Python supports alist class as a standard container.

Python’s List Class

Overview

Active Learning

Structural Recursion

Beyond Graphics

Python’s List Class

Role Playing

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 5 of 40

Python supports alist class as a standard container.

Disclaimer:the internal implementation is not truly
recursive; its an expandible array akin to Java’s
ArrayList or C++’svector.

Python’s List Class

Overview

Active Learning

Structural Recursion

Beyond Graphics

Python’s List Class

Role Playing

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 5 of 40

Python supports alist class as a standard container.

Disclaimer:the internal implementation is not truly
recursive; its an expandible array akin to Java’s
ArrayList or C++’svector.

Public Interface:Our students are very familiar
with use of this class and its menu of behaviors
(we use lists from the opening weeks of CS1).

Python’s List Class

Overview

Active Learning

Structural Recursion

Beyond Graphics

Python’s List Class

Role Playing

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 5 of 40

Python supports alist class as a standard container.

Disclaimer:the internal implementation is not truly
recursive; its an expandible array akin to Java’s
ArrayList or C++’svector.

Public Interface:Our students are very familiar
with use of this class and its menu of behaviors
(we use lists from the opening weeks of CS1).

This allows us todecoupletwo potentially
intertwined concepts:

1. the use of recursion
2. the abstraction of a container class

Emulating Python’s List Class

Overview

Active Learning

Structural Recursion

Beyond Graphics

Python’s List Class

Role Playing

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 6 of 40

We rely on the familiar public interface by
precisely emulatingPython’slist class, including
behaviors such as:

count(value) len ()
index(value) contains (value)
append(value) getitem (index)
insert(index, value) setitem (index, value)
remove(value) repr ()

This allows us to sidestep the design issue of
parameterizing the recursion.

Role Playing

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 7 of 40

Role Playing

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 8 of 40

Classic activity for teaching object orientation.

Role Playing

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 8 of 40

Classic activity for teaching object orientation.

Classic activity for teaching (functional) recursion.

Role Playing

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 8 of 40

Classic activity for teaching object orientation.

Classic activity for teaching (functional) recursion.

Limited history for the combination of these ideas.

Ground Rules for Students

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 9 of 40

OurList Class: an instance will be represented
recursively using two attributes:

■ head: a reference to the first element (if any)

■ rest: a reference to a secondary list with all
remaining elements (if any)

Our base case is anempty list, represented with
both head and rest set to theNone reference.

An empty list is a natural concept for our students
because Python’s default list instance is empty.

State Information

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 10 of 40

Each actor is given a slip of paper that represents
his/her state information.

head:
rest:

: OurList

State Information

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 10 of 40

Each actor is given a slip of paper that represents
his/her state information.

head:
rest:

: OurList

Per
'E'Sharon

Example: here is the slip currently held by Sharon .

State Information

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 10 of 40

Each actor is given a slip of paper that represents
his/her state information.

head:
rest:

: OurList

None
None

Matthew

Example: here is the slip currently held by
Matthew .

Message Passing

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 11 of 40

We enforce strict “message passing” for all
communication.

Activation records are sent inside a tennis ball.

ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

Message Passing

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 11 of 40

We enforce strict “message passing” for all
communication.

Activation records are sent inside a tennis ball.

ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Errol

Michael

Let’s get started with a callErrol .count('E')

Errol ’s Point of View

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 12 of 40

head:
rest:

: OurList

Sharon

'F'Errol ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Errol

Michael

Errol ’s Point of View

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 12 of 40

head:
rest:

: OurList

Sharon

'F'Errol ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Errol

Michael

ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Sharon

Errol

Sharon ’s Point of View

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 13 of 40

head:
rest:

: OurList

Per

'E'Sharon ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Sharon

Errol

Sharon ’s Point of View

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 13 of 40

head:
rest:

: OurList

Per

'E'Sharon ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Sharon

Errol

ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Per

Sharon

Sharon ’s Point of View

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 13 of 40

head:
rest:

: OurList

Per

'E'Sharon ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Sharon

Errol

ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'

1

Per

Sharon

Sharon ’s Point of View

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 13 of 40

head:
rest:

: OurList

Per

'E'Sharon ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'
2

Sharon

Errol

ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'

1

Per

Sharon

Errol ’s Point of View

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 14 of 40

head:
rest:

: OurList

Sharon

'F'Errol ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Errol

Michael

ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'

2

Sharon

Errol

Errol ’s Point of View

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 14 of 40

head:
rest:

: OurList

Sharon

'F'Errol ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'
2

Errol

Michael

ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'

2

Sharon

Errol

Sequence Diagram

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 15 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

Sequence Diagram

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 15 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

count('E')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

Sequence Diagram

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 15 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

count('E')
count('E')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

Sequence Diagram

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 15 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

count('E')
count('E')

count('E')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

Sequence Diagram

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 15 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

count('E')
count('E')

count('E')
count('E')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

Sequence Diagram

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 15 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

count('E')
count('E')

count('E')
count('E')

count('E')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

Sequence Diagram

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 15 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

count('E')
count('E')

count('E')
count('E')

count('E')

0

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

Sequence Diagram

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 15 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

count('E')
count('E')

count('E')
count('E')

count('E')

1
0

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

Sequence Diagram

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 15 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

count('E')
count('E')

count('E')
count('E')

count('E')

1
1

0

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

Sequence Diagram

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 15 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

count('E')
count('E')

count('E')
count('E')

count('E')

2
1

1
0

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

Sequence Diagram

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 15 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

count('E')
count('E')

count('E')
count('E')

count('E')

2
2

1
1

0

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

Local View

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 16 of 40

rest:

: OurList

Per

'E'Sharon

count('E')
count('E')

2
1

head:

Variants

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 17 of 40

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 18 of 40

head:
rest:

: OurList

Sharon

'F'Errol

index('T')

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 18 of 40

head:
rest:

: OurList

Sharon

'F'Errol

index('T')
index('T')

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 18 of 40

head:
rest:

: OurList

Sharon

'F'Errol

index('T')

1

index('T')

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 18 of 40

head:
rest:

: OurList

Sharon

'F'Errol

index('T')

1

index('T')

2

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 19 of 40

rest:

: OurList

Dale

'T'Per

index('T')

head:

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 19 of 40

rest:

: OurList

Dale

'T'Per

index('T')

0

head:

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 20 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

index('T')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 20 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

index('T')
index('T')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 20 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

index('T')
index('T')

index('T')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 20 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

index('T')

0

index('T')
index('T')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 20 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

index('T')

0

index('T')

1

index('T')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 20 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

index('T')

0

index('T')

1
2

index('T')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The index method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 20 of 40

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Sharon

'F'Errol

index('T')

0

index('T')

1
2

index('T')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

This differs fromcount because the recursion does
not necessarily proceed to an empty list.

The getitem method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 21 of 40

In Python, the operator syntaxdata[2] is
implemented with a call todata. getitem (2).

head:
rest:

: OurList

Sharon

'F'Errol

getitem (2)

The getitem method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 21 of 40

In Python, the operator syntaxdata[2] is
implemented with a call todata. getitem (2).

head:
rest:

: OurList

Sharon

'F'Errol

getitem (1)
getitem (2)

The getitem method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 21 of 40

In Python, the operator syntaxdata[2] is
implemented with a call todata. getitem (2).

head:
rest:

: OurList

Sharon

'F'Errol

getitem (1)

'T'
getitem (2)

The getitem method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 21 of 40

In Python, the operator syntaxdata[2] is
implemented with a call todata. getitem (2).

head:
rest:

: OurList

Sharon

'F'Errol

getitem (1)

'T'
getitem (2)

'T'

The getitem method

Overview

Role Playing

Variants

The index method
The getitem
method

Recursive Patterns

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 21 of 40

In Python, the operator syntaxdata[2] is
implemented with a call todata. getitem (2).

head:
rest:

: OurList

Sharon

'F'Errol

getitem (1)

'T'
getitem (2)

'T'
Note: the parameter value changes during the
recursion; the return value does not change.

Recursive Patterns

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 22 of 40

base case parameters return value
method empty head index same vary none same vary none

len ✓ ✓ ✓
contains ✓ ✓ ✓ ✓
getitem ✓ ✓ ✓ ✓
setitem ✓ ✓ ✓ ✓

repr ✓ ✓ ✓
count ✓ ✓ ✓
index ✓ ✓ ✓ ✓

append ✓ ✓ ✓
insert ✓ ✓ ✓ ✓

remove ✓ ✓ ✓ ✓

Mutators

Overview

Role Playing

Variants

Mutators

Mutators

Theappend method

insert, remove, pop

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 23 of 40

Easiest: setitem

It is a one-for-one change of data,
without any structural change on the list.

(very similar pattern to getitem)

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

Sharon

'F'Errol

append('S')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')
append('S')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')
append('S')

append('S')

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')
append('S')

append('S')

'S'head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

: OurList

None
None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')
append('S')

append('S')

'S'
OurList()

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Judy

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')
append('S')

append('S')
OurList()

'S'

Judy

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

: OurList

None

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Judy

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')
append('S')

append('S')
OurList()

Judy

'S'

Judy

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

: OurList

None

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Judy

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')
append('S')

append('S')
OurList()

Judy

'S'

Judy

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

: OurList

None

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Judy

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')
append('S')

append('S')
OurList()

Judy

'S'

Judy

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

: OurList

None

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Judy

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')
append('S')

append('S')
OurList()

Judy

'S'

Judy

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

: OurList

None

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Judy

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')
append('S')

append('S')
OurList()

Judy

'S'

Judy

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

: OurList

None

The append method

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 24 of 40

None

Matthew

head:
rest:

: OurList

Dale

'T'Per

head:
rest:

: OurList

Matthew

'E'Dale

head:
rest:

: OurList

None
None

Judy

head:
rest:

: OurList

Sharon

'F'Errol

append('S')
append('S')

append('S')
append('S')

append('S')
OurList()

Judy

'S'

Judy

head:
rest:

: OurList

Per

'E'Sharon

head:
rest:

: OurList

None

Instructor can highlight the system’s memory management.

insert, remove, pop

Overview

Role Playing

Variants

Mutators

Mutators

Theappend method

insert, remove, pop

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 25 of 40

Arbitrary insertions and deletions can be performed
(more on this in the conclusion...)

Implementation

Overview

Role Playing

Variants

Mutators

Implementation

Getting Started

append
count

contains

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 26 of 40

Getting Started

Overview

Role Playing

Variants

Mutators

Implementation

Getting Started

append
count

contains

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 27 of 40

class OurList:
def init (self):

self. head = None
self. rest = None

def isEmpty(self): # a private utility
return self. rest is None

The append method

Overview

Role Playing

Variants

Mutators

Implementation

Getting Started

append
count

contains

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 28 of 40

Has a base case and a simple recursion

def append(self, value):
if self. isEmpty():

self. head = value # we have one item
self. rest = OurList() # followed by empty list

else:
self. rest.append(value) # recurse

The count method

Overview

Role Playing

Variants

Mutators

Implementation

Getting Started

append
count

contains

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 29 of 40

Has a base case and a non-trivial recursion

def count(self, value):
if self. isEmpty():

return 0
else:

answer = self. rest.count(value)
if self. head == value: # additional match

answer += 1
return answer

The contains method

Overview

Role Playing

Variants

Mutators

Implementation

Getting Started

append
count

contains

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 30 of 40

Has two distinct base cases

def contains (self, value):
if self. isEmpty():

return False
elif self. head == value:

return True
else:

return value in self. rest # implicit recursion

Conclusions

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 31 of 40

■ Lots of fun

■ Strategic challenges

■ Varying recursive patterns

■ Instills a local perspective

■ Coherent transition to source code

■ We have really used functional recursion as
well as structural recursion.

Conclusions

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 31 of 40

■ Lots of fun

■ Strategic challenges

■ Varying recursive patterns

■ Instills a local perspective

■ Coherent transition to source code

■ We have really used functional recursion as
well as structural recursion.

Conclusions

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 31 of 40

■ Lots of fun

■ Strategic challenges

■ Varying recursive patterns

■ Instills a local perspective

■ Coherent transition to source code

■ We have really used functional recursion as
well as structural recursion.

Conclusions

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 31 of 40

■ Lots of fun

■ Strategic challenges

■ Varying recursive patterns

■ Instills a local perspective

■ Coherent transition to source code

■ We have really used functional recursion as
well as structural recursion.

Conclusions

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 31 of 40

■ Lots of fun

■ Strategic challenges

■ Varying recursive patterns

■ Instills a local perspective

■ Coherent transition to source code

■ We have really used functional recursion as
well as structural recursion.

Conclusions

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 31 of 40

■ Lots of fun

■ Strategic challenges

■ Varying recursive patterns

■ Instills a local perspective

■ Coherent transition to source code

■ We have really used functional recursion as
well as structural recursion.

Conclusions

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 31 of 40

■ Lots of fun

■ Strategic challenges

■ Varying recursive patterns

■ Instills a local perspective

■ Coherent transition to source code

■ We have really used functional recursion as
well as structural recursion.

Advanced Lessons

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 32 of 40

■ Ample opportunities for advanced lessons
(time permitting)

◆ Error handling

◆ Default parameter values

◆ More complex recursive patterns

Error handling

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 33 of 40

def getitem (self, i):
if self. isEmpty():

raise IndexError('index out of range')
elif i == 0:

return self. head
else:

return self. rest. getitem (i−1)

Error handling

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 34 of 40

def getitem (self, i):
if self. isEmpty():

raise IndexError('index out of range')
elif i == 0:

return self. head
else:

try:
return self. rest. getitem (i−1)

except IndexError:
raise IndexError('index out of range')

insert and remove

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 35 of 40

def insert(self, index, value):
if self. isEmpty(): # ”append” to end

self. head = value
self. rest = OurList()

elif index > 0: # insert recursively
self. rest.insert(index−1, value)

else:
reinsert our head as the front of the rest
self. rest.insert(0, self. head)
and then store the new value here
self. head = value

The insert method (alternative)

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 36 of 40

def insert(self, index, value):
if self. isEmpty(): # ”append” to end

self. head = value
self. rest = OurList()

elif index > 0: # insert recursively
self. rest.insert(index−1, value)

else: # new item goes here!
shift = OurList()
shift. head = self. head
shift. rest = self. rest
self. head = value
self. rest = shift

The remove method

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 37 of 40

def remove(self, value):
if self. isEmpty():

raise ValueError('value not in list')
elif self. head == value:

self. head = self. rest. head # private
self. rest = self. rest. rest # private

else:
self. rest.remove(value)

Default parameters

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 38 of 40

def pop(self, index=None):
if self. isEmpty():

raise IndexError('pop from empty list')
else:

if index is None:
index = len(self) − 1

if index == 0:
answer = self. head
self. head = self. rest. head
self. rest = self. rest. rest
return answer

else:
return self. rest.pop(index−1)

reverse

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 39 of 40

Make use of other existing methods together with
one recursive call.

def reverse(self):
if not self. isEmpty():

self. rest.reverse()
self. rest.append(self. head)
self.remove(self. head)

sort

Overview

Role Playing

Variants

Mutators

Implementation

Conclusions

Conclusions

Advanced Lessons

Error handling

insert andremove

Default parameters

reverse
sort

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 40 of 40

head:
rest:

: OurList

Sharon

'F'Errol

sort()

	Overview
	Active Learning
	Structural Recursion
	Beyond Graphics
	Python's List Class
	Emulating Python's List Class

	Role Playing
	Role Playing
	Ground Rules for Students
	State Information
	Message Passing
	Errol 's Point of View
	Sharon 's Point of View
	Errol 's Point of View
	Sequence Diagram
	Local View

	Variants
	The !index! method
	The !index! method
	The !index! method
	The !getitem! method
	Recursive Patterns

	Mutators
	Mutators
	The !append! method
	!insert!, !remove!, !pop!

	Implementation
	Getting Started
	The !append! method
	The !count! method
	The !contains! method

	Conclusions
	Conclusions
	Advanced Lessons
	Error handling
	Error handling
	!insert! and !remove!
	The !insert! method (alternative)
	The !remove! method
	Default parameters
	!reverse!
	!sort!

