
2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 1 of 40

Teaching Strategies for Reinforcing
Structural Recursion with Lists

Michael H. Goldwasser David Letscher

Saint Louis University



Active Learning

Overview

Active Learning

Structural Recursion

Beyond Graphics

Python’s List Class

Role Playing

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 2 of 40

I need somevolunteersfor today
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For an object-oriented CS1, structural recursion can
be more natural than functional recursion.

An object is composed of a basic shape and a
(recursive) instance of the same class.
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Pro: Graphics are fun and tangible.
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Pro: Graphics are fun and tangible.

Con: recursive patterns are generally limited
(“draw outer, draw rest”; “move outer, move rest”)
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Pro: Graphics are fun and tangible.

Con: recursive patterns are generally limited
(“draw outer, draw rest”; “move outer, move rest”)

Our goal is to provide a tangible presentation for a
non-graphical example of structural recursion
(namelypurely-recursive lists).
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Python supports alist class as a standard container.
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Python supports alist class as a standard container.

Disclaimer:the internal implementation is not truly
recursive; its an expandible array akin to Java’s
ArrayList or C++’svector.
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Python supports alist class as a standard container.

Disclaimer:the internal implementation is not truly
recursive; its an expandible array akin to Java’s
ArrayList or C++’svector.

Public Interface:Our students are very familiar
with use of this class and its menu of behaviors
(we use lists from the opening weeks of CS1).
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Python supports alist class as a standard container.

Disclaimer:the internal implementation is not truly
recursive; its an expandible array akin to Java’s
ArrayList or C++’svector.

Public Interface:Our students are very familiar
with use of this class and its menu of behaviors
(we use lists from the opening weeks of CS1).

This allows us todecoupletwo potentially
intertwined concepts:

1. the use of recursion
2. the abstraction of a container class
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We rely on the familiar public interface by
precisely emulatingPython’slist class, including
behaviors such as:

count(value) len ( )
index(value) contains (value)
append(value) getitem (index)
insert(index, value) setitem (index, value)
remove(value) repr ( )

This allows us to sidestep the design issue of
parameterizing the recursion.
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Classic activity for teaching object orientation.
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Classic activity for teaching object orientation.

Classic activity for teaching (functional) recursion.



Role Playing

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 8 of 40

Classic activity for teaching object orientation.

Classic activity for teaching (functional) recursion.

Limited history for the combination of these ideas.
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OurList Class: an instance will be represented
recursively using two attributes:

■ head: a reference to the first element (if any)

■ rest: a reference to a secondary list with all
remaining elements (if any)

Our base case is anempty list, represented with
both head and rest set to theNone reference.

An empty list is a natural concept for our students
because Python’s default list instance is empty.
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Each actor is given a slip of paper that represents
his/her state information.

head:
rest:

: OurList
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Each actor is given a slip of paper that represents
his/her state information.

head:
rest:

: OurList

Per
'E'Sharon

Example: here is the slip currently held by Sharon .
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Each actor is given a slip of paper that represents
his/her state information.

head:
rest:

: OurList

None
None

Matthew

Example: here is the slip currently held by
Matthew .
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We enforce strict “message passing” for all
communication.

Activation records are sent inside a tennis ball.

ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):



Message Passing

Overview

Role Playing

Role Playing

Ground Rules

State Information

Message Passing

Point of View

Sequence Diagram

Local View

Variants

Mutators

Implementation

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 11 of 40

We enforce strict “message passing” for all
communication.

Activation records are sent inside a tennis ball.

ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Errol

Michael

Let’s get started with a callErrol .count('E')
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head:
rest:

: OurList

Sharon

'F'Errol ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Errol

Michael
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Please return to:

Return Value (if any):

count'E'Errol
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Please return to:
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head:
rest:

: OurList

Per
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Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):
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head:
rest:

: OurList

Per

'E'Sharon ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Sharon

Errol

ACTIVATION RECORD

Sent to:
Method:
Parameters (if any):
Please return to:

Return Value (if any):

count'E'Per

Sharon
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head:
rest:
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Per
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Please return to:

Return Value (if any):
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head:
rest:
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Per
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head:
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This differs fromcount because the recursion does
not necessarily proceed to an empty list.
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In Python, the operator syntaxdata[2] is
implemented with a call todata. getitem (2).
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Note: the parameter value changes during the
recursion; the return value does not change.
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base case parameters return value
method empty head index same vary none same vary none

len ✓ ✓ ✓
contains ✓ ✓ ✓ ✓
getitem ✓ ✓ ✓ ✓
setitem ✓ ✓ ✓ ✓

repr ✓ ✓ ✓
count ✓ ✓ ✓
index ✓ ✓ ✓ ✓

append ✓ ✓ ✓
insert ✓ ✓ ✓ ✓

remove ✓ ✓ ✓ ✓
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Easiest: setitem

It is a one-for-one change of data,
without any structural change on the list.

(very similar pattern to getitem )
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Arbitrary insertions and deletions can be performed
(more on this in the conclusion...)
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class OurList:
def init (self):

self. head = None
self. rest = None

def isEmpty(self): # a private utility
return self. rest is None
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Has a base case and a simple recursion

def append(self, value):
if self. isEmpty( ):

self. head = value # we have one item
self. rest = OurList( ) # followed by empty list

else:
self. rest.append(value) # recurse
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Has a base case and a non-trivial recursion

def count(self, value):
if self. isEmpty( ):

return 0
else:

answer = self. rest.count(value)
if self. head == value: # additional match

answer += 1
return answer



The contains method

Overview

Role Playing

Variants

Mutators

Implementation

Getting Started

append
count

contains

Conclusions

2007 OOPSLA Educators’ Symposium Reinforcing Structural Recursion with Lists – 30 of 40

Has two distinct base cases

def contains (self, value):
if self. isEmpty( ):

return False
elif self. head == value:

return True
else:

return value in self. rest # implicit recursion
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■ Coherent transition to source code

■ We have really used functional recursion as
well as structural recursion.
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■ Ample opportunities for advanced lessons
(time permitting)

◆ Error handling

◆ Default parameter values

◆ More complex recursive patterns
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def getitem (self, i):
if self. isEmpty( ):

raise IndexError('index out of range')
elif i == 0:

return self. head
else:

return self. rest. getitem (i−1)
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def getitem (self, i):
if self. isEmpty( ):

raise IndexError('index out of range')
elif i == 0:

return self. head
else:

try:
return self. rest. getitem (i−1)

except IndexError:
raise IndexError('index out of range')
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def insert(self, index, value):
if self. isEmpty( ): # ”append” to end

self. head = value
self. rest = OurList( )

elif index > 0: # insert recursively
self. rest.insert(index−1, value)

else:
# reinsert our head as the front of the rest
self. rest.insert(0, self. head)
# and then store the new value here
self. head = value
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def insert(self, index, value):
if self. isEmpty( ): # ”append” to end

self. head = value
self. rest = OurList( )

elif index > 0: # insert recursively
self. rest.insert(index−1, value)

else: # new item goes here!
shift = OurList( )
shift. head = self. head
shift. rest = self. rest
self. head = value
self. rest = shift
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def remove(self, value):
if self. isEmpty( ):

raise ValueError('value not in list')
elif self. head == value:

self. head = self. rest. head # private
self. rest = self. rest. rest # private

else:
self. rest.remove(value)
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def pop(self, index=None):
if self. isEmpty( ):

raise IndexError('pop from empty list')
else:

if index is None:
index = len(self) − 1

if index == 0:
answer = self. head
self. head = self. rest. head
self. rest = self. rest. rest
return answer

else:
return self. rest.pop(index−1)
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Make use of other existing methods together with
one recursive call.

def reverse(self):
if not self. isEmpty( ):

self. rest.reverse( )
self. rest.append(self. head)
self.remove(self. head)
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head:
rest:

: OurList

Sharon

'F'Errol

sort( )
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