
TEACHING  PARAMETER  PASSING  BY  EXAMPLE
USING  THUNKS  I N  C  AND  C++

Joseph  Bergin
Pace  University

New  York,  NY  10038
(212)  346-1499

BERGINF  @  PACEVM.BITNET

Stuart  Greenfield
Marist  College

Poughkeepsie,  NY  12601
(914)  575-3000

INTRODUCTION

Most programming language survey textbooks
[2][3][4][5][6][7]discuss parameter passing at length.
Historically this has been an important topic of research and a
number of different parameter passing mechanisms have been
employed by various languages.  This paper discusses a
method by which students may simulate various mechanisms
using currently popular languages which do not support those
mechanisms directly.  Programming exercises can thus be
used to further the understanding of the issues involved in
parameter passing.  For example, Modula-2, some enhanced
versions of Pascal (e.g., Turbo Pascal and Think Pascal), and
ANSI C and C++ provide the capability to simulate the
"pass-by-value-result" and "pass-by-name" mechanisms.  An
earlier version of this paper [1] focused on simulating
different mechanisms using Modula-2 and Pascal.  Here we
present a generalization that unifies the mechanisms into a
single one.  Examples are implemented in C and include an
application of Jensen’s device [2][6][9].  Note that we shall be
employing the “C subset of C++” in the following, rather
than ANSI-C itself.

It is assumed that the reader is already familiar with
the pass-by-value and pass-by-reference mechanisms.  In order
to simulate the other mechanisms in C, we employ function
types and function parameters.

A study of available parameter passing mechanisms
generates insight into several subtleties of language design.
This is especially true of the effects of the interactions of
language features such as the relationship between block
structure and the problem of non-local names, and parameter
semantics and the problems of variable access and variable
aliasing.

In C, aliasing of a variable may occur through using
the same variable for two different formal parameters.
Aliasing may also occur if a global variable is passed as an
argument in a situation in which the routine called also
references that same global as a non-local name.  Aliasing
may occur even in the case of value parameters when the
types represent pointer variables.

Variable access is an important issue because the
state of the machine in which a variable is accessed may affect
the address and/or the value of the variable to which the access
refers.  For example, if we make an array subscript reference,

as in A[n], the expression may refer to any one of a collection
of variables: the cells of the array.  In C, when such an
expression or a pointer to it is passed as an actual parameter
the expression (which is an address in the case of a pointer) is
evaluated once, at subroutine invocation time and the result is
used throughout the body of the subroutine as the value of the
formal parameter.  This is the case even though that
subroutine may have access to n, and may change the value of
n.  This fixed access to a variable is not necessarily true for
the pass-by-value-result or pass-by-name mechanisms.

THE  PASS-BY-NAME  MECHANISM

Parameter passing using the pass-by-name
mechanism is a means by which the “in-out” passing mode
may be implemented.  If a formal parameter has been passed
using the pass-by-name mechanism, then each time it is
referenced, the address of its corresponding actual parameter is
recalculated and is used as the target for the reference.  The
simplest way to implement pass-by-name is by employing
macro expansion to replace the names representing the formal
parameters by the names representing the corresponding actual
parameters everywhere in the body of the called function.
Then execute the resulting code. Certainly such a
methodology may require recompilation of the body of the
function for each call, so that the addresses of non-local
names may be recalculated.

An alternative approach involves passing an actual
parameter access function to the called routine in place of the
actual parameter.  This access function provides a method for
repeated access to either the value of an actual parameter or to
its address.  Such an access function has been termed a
"thunk" (by Peter Z. Ingerman, an early implementor of
Algol)[8].  A thunk is a parameterless function that returns
the address of the particular actual parameter for which it is
written.  In Algol, a language employing pass-by-name,
thunks are produced automatically by the compiler.  For
simulation purposes we may create and pass these functions.

SIMULATING  PASS-BY-NAME  USING
THUNKS

If we are working in a programming language such
as C, then we can declare the template for a thunk through the
use of a function type declaration, such as

typedef float* (*floatThunk)(void);

which declares a floatThunk to be a pointer to a function that
takes no parameters and returns a pointer to a float, which
may be interpreted as the address of a float.



Now, in order to simulate the pass-by-name
mechanism, we create a thunk corresponding to the actual
parameter that is to be passed by name and pass the thunk
instead.  Within the body of the called function each access of
a parameter passed by name is replaced by a dereference of an
application of the corresponding thunk. The effect of this is
the recalculation of the address of the actual parameter each
time the formal parameter is accessed, rather than once at the
beginning of the function, as is done using pass-by-reference.

We offer the following steps to simulate the pass-
by-name mechanism in C (Similar steps may be written for
other languages that support function types or function
parameters.):

step 1. Declare a thunk type for each distinct type that is to
be passed by name using the syntax:
typedef  <aType> *   (* <aName> )(void);

step 2. Code a thunk for each actual name parameter such that
it returns the address of that actual parameter.  This thunk
is created within the name scope of the actual parameter.
If the actual parameter is a local then the address of this
local will need to be stored in a global temporary or,
alternatively, passed to the thunk.

step 3. Construct the called function heading such that the
formal  name parameters are the corresponding thunks.
Use parameter names that are “fresh names”, not
otherwise used in the context of the function.

step 4. In the body of the called function any reference to a
name parameter is replaced by a dereference of a call of
the corresponding thunk.

As an example, suppose we wish to simulate the
following “function” and call, where the pair of parameters are
passed by name:

void p( PASSBYNAME int x,
PASSBYNAME float y){

whatever...  x  ....  y  ...whatever
}; // the function itself

p(n,m); // the call

Developing our four steps, the simulation is:

/* step 1 */
typedef  int* (*intThunk)(void);
typedef float* (* floatThunk)(void);

/* step 2 */
int* nThunk(void){ return &n; };
float* mThunk(void){ return &m;  };

/* step 3 */
void p(  intThunk  xT,

floatThunk  yT){
/* step 4 */

whatever... *(xT())  ....
*(yT())  ...whatever

};

The call is then p(nThunk, mThunk);

AN  EXAMPLE  USING  THE  PASS-BY-NAME
SIMULATION

Pass by name has more than historical interest.
While it is complicated and difficult to use without error, it is
a very powerful device.  Using it, it is possible to write very
general code to manipulate data structures, including
recursively defined structures.  Jensen’s device (due to Jorn
Jensen) applies a process to an array, permitting great
flexibility, including specification of the operation to be
performed and even of the structure of the array.  In particular
the same process may be made to operate on an array of
scalars or on an array of vectors.  Consider the following
code, in which we pass the index to the array by reference and
an element of the array by name using vSubiThunk.

int i;
int v[5] = {19,4,3,2,6};

// step 1
typedef int* (*intThunk)(void);

// step 2
int* vSubiThunk(void){ return &(v[i]); };

// step 3
int sum(int & i,int L,int U, intThunk A){

int s=0;
i = L; // initialize the index
while (i <= U) {

// step 4
   s += *A();// add next element
   i++; // update the index
};

  return s;
};

void main(void){
  int z = sum(i,0,4,vSubiThunk);
};

The above call will produce the sum of the scalars in
array v.  (Note that here we call and dereference the thunk on
only the right side of an assignment.  It is also allowable to
call and dereference it on the left side.)  Now however,
suppose that we wish to sum the elements of a two
dimensional array.  The same sum function will work if we
replace the call with one using a more sophisticated thunk:

int i;
int  v[5][3] = {19,4,3,2,6,4,7,21,8,3,1,9,6,15,2};

typedef int* (*intThunk)(void);

int* vSubijThunk(void){
return &(v[i][j]);

};



int sum(int & i,int L,int U, intThunk A){
int s=0;
i = L; // initialize the index
while (i <= U) {
   s += *A();//add next element
   i++; // update the index
   };
return s;

};

int glob;  // a global temporary
int * arrayThunk(void){

glob = sum((j,0,2,vSubijThunk);
// Note the “two-level” thunk.  We call a thunk
// from another.

return &glob;
};

void main(void){
  int z = sum(i,0,4,arrayThunk);
};

 THE  PASS-BY-VALUE-RESULT  MECHANISM

Parameter passing using the pass-by-value-result
mechanism (also known by the name copy-in-copy-out) is
also a means by which the "in-out" passing mode may be
implemented.  However, unlike pass-by-name and pass-by-
reference, the called function does not have direct access to the
actual parameters.

Stating merely that a set of parameters are to be
passed by value-result leaves us with a few ambiguities.
Although the order in which actual parameters are "copied-in"
to the called function does not have an affect on the returned
results, the "copy-out" order of those parameters, in general,
does.  Thus the copy back order should be specified -- left-to-
right or right-to-left.  Furthermore, the address of the actual
parameters may be calculated at copy-in time only or may be
calculated twice, at copy-in time and copy-out time.
Therefore, we cite four different versions of the pass-by-value-
result mechanism, namely,

•  address calculated once, copy back left-to-right
•  address calculated once, copy back right-to-left
•  address calculated twice, copy back left-to-right
•  address calculated twice, copy back right-to-left

The above versions will be referred to asvr1LR ,
vr1RL , vr2LR , andvr2RL , respectively, throughout the
remainder of this paper.

If addresses are calculated once, copies of the actuals
are made and assigned to locally allocated variables (the
formal pass-by-value-result parameters) of the called function
at the time of invocation.  The function then executes using
those local variables.  At the time of return, the values of the
locals are "copied back" in the appropriate order to the actual
parameters whose addresses had been determined at
subprogram entry time.  If addresses are calculated twice, a
recalculation of the actual addresses occurs at return time.  In
this latter case, changing some variable within the

subprogram may affect where the final values are copied back
to.

Particular forms of this mechanism have been used
in some implementations of FORTRAN[2][3] and are
employed automatically by some versions of Ada[2][4] to
implement the "in-out" passing mode in at least some cases,
depending on the structure of the actuals being passed.  One
advantage of this scheme is that it is possible to implement it
in such a way that actual parameters need not be limited to
variables but may be expressions.  In this latter case the
"copy-back" to the actual would be omitted by the compiler.
FORTRAN implementations employing the pass-by-value-
result mechanism are able to simulate both "in-out" mode and
strictly "in" mode passing with but one mechanism in this
manner[2].  This leads to a bit more flexibility for the
programmer in those cases in which a particular parameter
need not be returned to the calling environment.

SIMULATING  PASS-BY-VALUE-RESULT
USING  THUNKS

In our earlier paper [1] there appear a number of ad-
hoc methods for simulating the different versions of this
mechanism.  Here we unify the technique with that for pass-
by-name, by employing thunks.  However, if the address is to
be computed only once we shall need to remember the address
of the parameters from the beginning of the invoked function
until its end.  We shall find it instructive to have an
additional address type, which in C is just:

typedef int* address;

We also use thunks as formal (physical) parameters,
creating new names which do not clash with other names in
the context of the called function.  Then we use local
variables as "pseudo-parameters" (logical parameters).  The
physical parameters are used to set the logical parameters (and
in the case ofvr1LR  andvr1RL , their addresses) on
function entry and copied back in the appropriate order upon
exit.  Forvr2LR  andvr2RL,  the address of each simulated
value-result actual parameter is recalculated just prior to the
return, in the appropriate copy-back order.

We offer the following steps to simulate the pass-
by-value-result mechanism in C.

For vr1LR  andvr1RL : Perform steps 1, 2, and 3 of pass-
by-name and then:
step 4. Declare a local “logical parameter” for each such

passed parameter and an address corresponding to each
logical parameter.

step 5. Prior to the subprogram code, "copy" the parameter
values "in" to, the corresponding locally declared
addresses and logical parameters.

step 6. Let the subprogram code operate on the logical
parameters. The body of the function is unchanged.

step 7. After completion of the function code, "copy" the
locals "back"  to the previously computed addresses, left-
to-right or right-to-left, as appropriate.



For vr2LR  andvr2RL :
Replace step 4, 5, and 7 in the above by:
step 4. Declare a local “logical parameter” for each such

passed parameter.
step 5. Prior to the subprogram code, "copy" the parameter

values "in" to, the corresponding logical parameters by
dereferencing a call to its thunk.

step 7. After completion of the function code, "copy" the
locals "back"  to the destinations by again dereferencing a
call to the thunk.  Do this left-to-right or right-to-left, as
appropriate.

As an example, suppose we wish to simulate the
following where the parameters are passed by value-result:

void p(VALRES int x, VALRES int y){
...whatever ... x ... y ...whatever
};

The simulation forvr1LR  (or vr1RL ) is:
/* step 1 */

typedef int*  address;
typedef address (*intThunk)(void);

/* step 2 */
address aT(void){ return &a; };
address bT(void){ return &b; };
/* step 3 */

void p(intThunk xP,  intThunk yP){
/* step 4 */

int x,y; // logical parameters
address xA, yA; // the addresses

/* step 5 */
xA = xP();  yA = yP();  // get  addresses
x = *xA; y = *yA;   // get values

/* step 6 */
same ...whatever ... x ... y ...whatever

/* step 7 */
*xA = x; *yA = y;
//  or *yA = y; *xA = x;  copy back
};

And the simulation forvr2LR  (or vr2RL ) is:
/* step 1 */

typedef int*  address;
typedef address (*intThunk)(void);

/* step 2 */
address aT(void){ return &a; };
address bT(void){ return &b; };
/* step 3 */

void p(intThunk xP, intThunk yP){
/* step 4 */

int x,y;  // logical parameters
/* step 5 */

x = *xP();  y = *yP();  // copy in
/* step 6 */

same ...whatever ... x ... y ...whatever
/* step 7 */

*xP() = x; *yP() = y;
// or  *yP() = y;  *xP() = x;   copy back

};

To simulate the call p(a,b) we use p(aT,bT) instead.

AN  EXAMPLE  USING  THE  PASS  BY-VALUE-
RESULT  SIMULATION

Although, for the bulk of applications, the use of
any of the four versions of the pass-by-value-result
mechanism (as well as the pass-by-reference and pass-by-name
mechanisms) leaves the computing machine in identical
states, we can easily find those that do not.  As one such
application we offer the program shown below,  which
performs its indicated task illustratingvr1LR  andvr2RL
modes of “in-out” for the simple “function”:

void trial (INOUT int i, INOUT int j, INOUT int k){
j = 1;
k = i + j;

};

The state in which the memory is left at the return
from each call is given in Table 1.  Note that onlyvr1LR
leaves the memory in the same state as the pass-by-reference
mechanism and the results of employing the four different
versions of pass-by-value-result are distinct as the reader may
easily verify.  The code for two of the four cases is shown
below.

int i=2;  // input values for the function calls
int v[2] = {1,2,3}; // reset for each call

typedef int* (*intThunk)(void);
typedef int* address;

int* vSubiThunk(void){ return &(v[i]); };

int* iThunk(void){ return &i; };

void vr1LR ( intThunk ip,
intThunk jp,
intThunk kp){

int  i,j,k;
address ia,ja,ka;
ia = ip(); ja = jp(); ka = kp();
i = *ia; j = *ja; k = *ka;
j = 1;
k = i + j;
*ia = i; *ja = j; *ka = k;

}

void vr2RL ( intThunk ip,
intThunk jp,
intThunk kp){

int  i,j,k;
i = *ip(); j = *jp(); k = *kp();
j = 1;
k = i + j;
*kp() = k; *jp() = j; *ip() = i;

}



The main routine, in outline form, is:

void main(void){
. . .
i = 2;  v[0] = 1; v[1] = 2; v[2] = 3;
vr1LR(vSubiThunk,iThunk,vSubiThunk);
cout <<“vr1LR     “<<n<<v[0]<<v[1]<<v[2]<<“\n”;
. . .
i = 2;  v[0] = 1; v[1] = 2; v[2] = 3;
vr2LR(vSubiThunk,iThunk,vSubiThunk);
cout <<“vr2LR“<<n<<v[0]<<v[1]<<v[2]<<“\n”;
. . .
};

mechanism n v[0] v[1] v[2]
--------------------------

value 2 1 2 3
reference 1 1 2 4
vr1LR 1 1 2 4
vr1RL 1 1 2 3
vr2LR 1 1 4 3
vr2RL 1 1 3 4
name 1 1 3 3
--------------------Table 1.---------------

SIMULATING  PASS-BY-VALUE  AND  PASS-
BY-REFERENCE

In closing, we note that thunks may also be used to
simulate value parameters by employing this technique
without the copy back phase, and also reference parameters by
employing only the addresses used in vr1LR and dereferencing
them for each use of the logical parameters. The output of
these function calls with the same inputs as before, is shown
as part of table 1.

void value ( intThunk ip,
intThunk jp,
intThunk kp){

int  i,j,k;
i = *ip(); j = *jp(); k = *kp();
j = 1;
k = i + j;

};

void reference ( intThunk ip,
intThunk jp,
intThunk kp){

address i,j,k;
i = ip(); j = jp(); k = kp();
*j = 1;
*k = *i + *j;

};

For completeness, we also show the code for the pass-by-
name simulation for this example.  Its output is included in
table 1 as well.

void name {intThunk ip,
intThunk jp,
intThunk kp){

*ip() = 1;
*kp() = *ip() + * jp();
};

An exercise that gets students thinking hard about
these mechanisms, is to construct a single function body that
behaves differently for each of the seven mechanisms
discussed here, and to simulate the seven mechanisms,
proving their solution.  The function body shown here has
six different results.  The seventh can be achieved by
generating an alias within the function by setting a global
variable that happens to also be passed as an argument.  This
can make reference parameters behave differently from value-
result parameters.  Sethi [4] has a similar exercise, though
without the variations on value-result parameters.

REFERENCES

[1] Bergin, J. & Greenfield, S,  “Programming Experience
with Early Parameter Passing Mechanisms using
Modula-2 and Pascal,”  Proceedings of the Seventh
Annual Eastern Small College Computing Conference,
Nov. 1991.  May be obtained from Pace University as
Technical Report # 46, November 1991.

[2] MacLennan, B., "Principles of Programming Languages",
2nd Ed., Holt, Rinehart and Winston, 1987

[3] Sebesta, R., "Concepts of Programming Languages",
Benjamin/Cummings, 1989

[4] Sethi, R., "Programming Languages: Concepts and
Constructs", Addison- Wesley, 1989

[5] Ghezzi, C. & M. Jazayeri, "Programming Language
Concepts", 2nd Ed., Wiley, 1987

[6] Ledgard, H. & M. Marcotty, "The Programming
Language Landscape", 2nd Ed., SRA, 1986

[7] Pratt, T., "Programming Languages: Design and
Implementation", 2nd Ed.,  Prentice-Hall, 1984

[8] Ingerman, P., "Thunks", Communications of the ACM,
Vol.4 No.1, 1961

[9] Wexelblat, R. (editor), "History of Programming
Languages", Academic Press, 1981


