
Design Issues in CS Education

Richard Rasala

College of Computer Science

Northeastern University, Boston MA 02115, USA

rasala@ccs.neu.edu

http://www.ccs.neu.edu/home/rasala/

The Importance of Design
It is generally accepted that at the heart of computer
science education there are certain fundamentals:

• mathematics and theoretical foundations
• the design and analysis of algorithms
• a knowledge of data structures
• a familiarity with important software systems

To this list of educational fundamentals in computer
science, we wish to add a fifth item:

• design issues and skills
Under the broad heading of design issues and skills,
we include: the design of functions and classes; the
design of large systems with many software
components; issues of the concrete versus the
abstract; encapsulation and communication; software
interfaces and protocols; and user interface design.
We believe that these ideas are of vital importance to
computer science and to its applications in the real
world. Unfortunately, we also believe that these
ideas are not sufficiently represented in the current
computer science curriculum and that CS educators
must increase both the extent and quality of their
coverage of design issues.
In this article, we will discuss some issues in teaching
design and will focus on areas where problems exist.

The Role of Exploration in Design
Exploration is fundamental to any creative process.
Since our understanding of design is less advanced
than our understanding of algorithms, there is need
for creative effort even in the most basic aspects of

design. There is therefore strong justification for
allowing students to work at times in a “play mode”
in which they explore a problem and simply seek to
find a “solution that works”. This mode may be
essential when students are learning a new language
or software library.
The problem with this mode of learning is that often
students produce code that is very poor from a
design perspective. For many students, solving the
problem is enough however ugly the code or the
design. These students simply stop work and move
on to the next assignment.
We believe that students must be taught how to
examine code from a design perspective and how to
build clean components that work together well.
The first step in learning to design is to take code
that has been written in an exploratory mode and
craft it into a well organized set of functions and
classes. Our assignments should require students to
do this final step and insist that a solution that works
is not necessarily an adequate solution.
Faculty must take the lead in setting design
standards by the examples they present in class and
the code they provide for assignments. It is not
enough to use “throwaway code” to illustrate a
language feature. The code you hand out to your
students illustrates not only the specific point you
are teaching but also your attitude towards design.
Be sure to model quality design.
Book authors have an even greater responsibility
than individual faculty. Unfortunately, textbooks
are often filled with poor quality code that may
illustrate language features while sending terrible
design messages. Authors must look at each block
of code presented and ask: “Does this code stand as
an example of quality design?”. If the answer is
“No” then the code should be improved because
long after the students have learned the specific issue
at stake they will come back and look at the code as
a design example.

Design Fundamentals
The use of abstraction and information hiding has
been a central theme in software design since the
early 70’s when Parnas [5] first articulated the
issues. The recent work of Gamma, Helm, Johnson,
and Vlissides on design patterns [2] continues to
emphasize the importance of abstraction in building
systems with design flexibility.
Unfortunately, with all this emphasis on abstraction
and information hiding, there has been a tendency
to lose sight of the fact that at the base of the
software hierarchy there must be a collection of
quality concrete data types or classes on which to
build. By shining a single spotlight on abstraction,
we have lost the pedagogical opportunity to clarify
the more subtle issues including the role of concrete
data types and the need for varying degrees and
kinds of abstraction.
In many elementary textbooks, authors immediately
begin discussion of abstract data types (ADTs) with
no firm foundation of concrete data types (notice
that there is not even an abbreviation for CDTs). No
genuine distinction is made between the abstract and
the concrete. As a result, many concrete details
creep into the interfaces and the implementations of
so-called ADTs.
Since understanding the relationship of the concrete
to the abstract is so important for the pedagogy of
teaching design, we will attempt to clarify some of
the key issues.

The Purposes of Encapsulation
Encapsulation puts things into capsules. The most
important reason for doing encapsulation is to make
a program more comprehensible. By naming data
sets or sequences of actions, we can refer to these
entities conceptually rather than by reciting their
explicit representation. In addition to this basic
organizational role, encapsulation also serves the
following purposes:

• completeness: collect all actions that need to
be done on a data set

• safety: encode safety checks that would tend
to be forgotten if left to inline code

• security: maintain security mechanisms that
control authorized access

• uniformity: present a standard interface so
that objects may be used interchangeably in
a larger program

• parsimony: present a limited interface so that
the larger program cannot make detailed
assumptions about an object.

Note that these purposes may be applicable to both
concrete and abstract data types. There is no reason
to view encapsulation as a mechanism useful only
for abstract data types. How encapsulation is used
depends on the goals of a particular component.

The Role of Concrete Data Types or Classes
Concrete classes should emphasize completeness and
safety rather than uniformity and parsimony. A
concrete class should make clear what structures it is
working on and what algorithms it offers. The
design should be comprehensive rather than
minimal. The goal should be to build a powerful
tool which can support many different abstract
purposes.
It is in concrete classes that fundamental algorithmic
work must be done. The role of a concrete class is
to manage memory, provide access mechanisms, and
support algorithmic work. A concrete class is a tool
and a tool must be visible to be useful. What is
hidden in a concrete class are the safety mechanisms
that permit the tool to be used without danger.

The Role of Abstract Data Types or Classes
Abstract classes should emphasize uniformity and
parsimony by encapsulating information that needs
to be hidden and by providing information that
needs to be communicated. The decision about
what needs to be hidden or communicated must be
made in the context of the particular software that is
being designed. Hiding hedges a designer’s bets
about what implementation details are likely to
change. As [2] points out, it is impossible to have
infinite design flexibility and allow for all possible
changes. Therefore, abstract classes need to be tuned
to a particular programming situation and the design
areas most likely to undergo change.
This insight has important pedagogical implications.
For one thing, it explains why if you examine a
dozen textbooks on data structures you will find a
dozen variants of an abstract list class. Each author
has envisioned the use of the list class within the
context of the software in the book and chosen a set
of abstractions to communicate and a collection of
details to hide. Since each book has a different
teaching philosophy, it is no wonder that these list
abstractions turn out to be different.
As teachers, we should not attempt to present the list
class but should rather discuss the variety of ways in
which a list might be abstracted to meet specific
design flexibility goals.
More generally, abstract classes are not the basic unit
of reusable software. What is resuable are concrete
classes that are complete and relatively open to
access and extension. Pedagogically, this means that

we must give careful consideration to the design of
concrete classes as well as to the building of abstract
layers on top of such classes.
The implications of the need to tune abstract classes
to the design flexibility goals of a particular piece of
software is that abstract classes had better be easy to
build. To accomplish this, the member functions in
an abstract class must have simple implemenations.
Ideally, each member function in an abstract class
should be implemented by at most three lines of
code that refers to some underlying concrete object:
setup, make-concrete-call, cleanup.

Degrees of Abstraction and Practical Issues
Of course, in a practical world (both in industry and
in the classroom), we do not always do what is ideal.
There is a great temptation to design an abstract
interface and then code substantial algorithmic
details into the implementation. However, to the
degree that an abstract class does concrete
algorithmic work, it ceases to be abstract . If an
abstract class does concrete algorithmic work then it
will not be easy to change these implementation
details and the benefits of abstraction will be lost. At
the same time, the algorithmic work will be hidden
by an interface which fails to deliver its full potential
to the caller. Hence, when the algorithm is needed
again in a different context, the class wrapper may
have to be redesigned anyway.
Let’s name this phenomenon. We will call a class
quasi-abstract if it has an abstract interface but has
an implementation which directly codes substantial
algorithmic details.
Many examples used in texts for abstract classes are
really more precisely quasi-abstract classes. This
means that the data representation is hidden
properly but that the algorithmic work has been
done inline rather than being similarly encapsulated.
To some degree, such a class is a design compromise
and should be recognized as such in a teaching
setting. Recognition of this compromise is crucial to
dealing with it from a design perspective.
The reason as educators that we tend to drift into
quasi-abstract classes is twofold. On one hand, we
do not have a robust enough set of concrete classes
to build upon. On the other hand, to create a truly
abstract class, we may need to add another level of
abstraction and the pain of additional names and
class definitions is too much to bear.
Certainly, in the context of busy courses, there is
sometimes not enough time to do everything in the
best possible way. Nevertheless, we should try to set
design standards and, when we need to compromise,
we should be explicit about what we are doing and
why. Teaching is about being aware.

Toolkits and Environments
If we wish to teach design then we must work in an
environment that is rich in tools. As Eric Roberts
states [10]:

Students need exposure to modern software
development practices. It is no longer
acceptable to teach programming by having
students write small, self-contained programs
from scratch. Even though we cannot predict
exactly what toolkits and programming
environments students will use when they
graduate, it is essential that they learn to
work with some modern programming
environment that forces them to add small
amounts of special-purpose code on top of a
large existing infrastructure. Moreover, this
experience should come early in the
curriculum so that students can apply these
techniques in summer internships and their
more advanced courses.

In addition to reflecting current practice, there are
important pedagogical reasons for students to work
within a framework of existing code, tools, and class
structures.
The most important reason for asking students to
extend or modify existing code is to permit them to
see and explore a large base of well designed code.
If we provide a partial solution to an assignment, we
have the opportunity to model the kind of software
design principles we preach. If we provide a set of
tools to be used in a number of assignments, we have
a chance to show what we mean by quality reusable
software. The code we deliver to students is our
stake in the ground about what quality design means
in practice.
As students progress in the curriculum, they must be
exposed to large scale commercial development
environments. Although source code is usually not
available in such environments, students can still
learn by studying the pros and cons of the class
libraries provided in the environment. A large scale
class library may be used as a set of examples
against which the design methodologies in textbooks
can be examined. Students can learn about the
strengths and weaknesses of both the libraries and
the methodologies.
It must be recognized that it will not be easy to have
faculty everywhere use framework code, toolkits,
and advanced environments. Few faculty have the
support structure necessary to build large quantities
of code. Those of us who have designed and built
such pedagogical code must make every effort to
distribute this work to faculty at other institutions.
However, due to portability issues, this distribution

task is not easy. Therefore, it will take time for good
code and lab depositories to be put into place.
The main obstacle to the faculty use of large scale
commercial development environments is the time it
takes to grasp the class libraries. With documents
that are several inches thick, it must be considered a
non-trivial task for faculty to learn an environment
well enough to use it in teaching. Hopefully, CS
units will begin to allow time for their faculty to
pursue this learning process.

Design and the Software Project Course
In most institutions, students take a junior/senior
project course in which they learn about software
design and development in a team setting. Ideally,
this course should provide a situation in which the
design principles learned in earlier courses are put
into practice and new design principles applicable to
large scale projects are taught.
Unfortunately, it is often the case that the project
course is a negative design experience. The course
is often treated as a rite-of-passage in which students
are expected to work ridiculously long hours in
order to finish a project on time.
Under these circumstances, there is no incentive for
students to ponder a design, explore alternatives, and
backtrack to make improvements. Just as in the
freshman courses, solving the problem is enough
however ugly the code or the design. Of course,
students know that there is some penalty for poor
design but they also know that the biggest penalty is
for not having a running program that roughly
meets the specs.
We believe that the project course must cease to be a
rite-of-passage and instead must become a serious
investigation of design issues. Using an incremental
approach to building software, students should be
encouraged to add class structures and then build
working partial solutions every 2-3 days if possible.
If students “fall behind” in terms of meeting the
most ambitious project goals, they should be
permitted to “make up the grade” by explaining in
writing what design pathways they explored and why
their design is of higher quality because of this
exploration. The grades will then depend not only
on how much the students did but also on what they
learned along the way.
Design is ultimately a human process and, beyond a
reasonable level, stress is counter-productive for the
creative work that design requires. If we believe that
it is possible to have both rapid development and
well designed software [3], then we must use the
project course to teach students how this can be
accomplished. We must be models of best practice

and we must not encourage the mistakes so often
committed in industry. We need to make the project
course a calm, humane, creative, and rational design
experience. Our students will then be able to bring
to their future work both good methodologies and
good attitudes.

Conclusions
In this article, we argue that design is important
throughout the computer science curriculum. We
believe that faculty must look at everything they
teach and ask: “What are the design implications of
this material?” and “What must I do and what must
my students do to address these implications?”. A
strong commitment to teaching design is necessary
if we want students to develop an integrated view of
the computer science domain.
There are a number of problems in teaching design
that we have discussed:

• insufficient focus on design
• design experiences of poor quality
• lack of clarity about fundamental issues.

To begin to address these problems, we wish to make
some pedagogical recommendations:

• Consider the design implications of every
topic

• Insist that students polish the design aspects
of their programs before handing in their
work.

• Make the sample software you use a model
of design excellence.

• Find good illustrations for both concrete and
abstract classes.

• Explore design methodologies in practice by
conducting software design experiments.

• Use libraries, toolkits, and frameworks to
teach students how to integrate into a larger
software design environment.

• Make the software project course a quality
design experience not just a rite-of-passage.

Acknowledgements
I wish to acknowledge my collaborators Viera
Proulx and Harriet Fell who work with me on the
development of curriculum materials and my dean
Larry Finkelstein who genuinely cares about the
results of this work. I wish to thank my colleagues
at Northeastern and my friends at other institutions
for many stimulating conversations on design issues.
Finally, I wish to thank the NSF for partial support
under grant DUE-9650552.

Bibliography
[1] Timothy Budd, Data Structures in C++ Using

The Standard Template Library, , Addison-
Wesley, Reading, MA, 1998.

[2] Erich Gamma, Richard Helm, Ralph Johnson,
& John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-
Wesley, Reading, MA, 1995.

[3] Steve McConnell, Rapid Development: Taming
Wild Software Schedules, Microsoft Press,
Redmond, WA, 1996.

[4] David R. Musser & Atul Saini, STL Tutorial
and Reference Guide: C++ Programming With
the Standard Template Library, , Addison-
Wesley, Reading, MA, 1996.

[5] D. L. Parnas, On the Criteria to Be Used in
Decomposing Systems into Modules, Comm
ACM, 5(12), 1972, 1053-1058.

[6] Viera K. Proulx, Richard Rasala,& Harriet Fell,
Foundations of Computer Science: What are
they and how do we teach them?, SIGCSE
Bulletin, 28(Barcelona Conference), 1996, 42-
48.

[7] Viera K. Proulx & Richard Rasala, On The
Future of Computer Science Education, ACM
Computing Surveys, 28(4es), December 1996,
on-line at www.acm.org.

 [8] Richard Rasala, A Model Tree Iterator Class
for Binary Search Trees, SIGCSE Bulletin,
29(1), 1997, 72-76.

 [9] Richard Rasala, Function Objects, Function
Templates, and Passage By Behavior in C++,
SIGCSE Bulletin, 29(1), 1997, 35-38.

[10] Eric Roberts, Directions in Computer Science
Education, ACM Computing Surveys, 28(4es),
December 1996, on-line at www.acm.org.

