

Teaching from Different Perspectives
Submission to the Pedagogical Pattern Language Project

Jutta Eckstein
jeckstein@acm.org

Mary Lynn Manns
manns@unca.edu

Helen Sharp
H.C.Sharp@open.ac.uk

Marianna Sipos
sipos.marianna@nik.bmf.hu

Introduction
This pattern language in progress proposes some successful techniques to assist
with teaching and learning. For professional educators, these patterns may seem
obvious, even trivial, because they have used them so often. But for those newer
to teaching, they offer a way for experienced teachers to pass on their experiences.
But experienced teachers could also benefit from these patterns. Educators face
new challenges regularly, particularly in fast-moving subject areas, and the
experience captured in these patterns may help identify solutions for these new
challenges.

Patterns are not step-by-step recipes. Each of these offers a format and a process
for recording knowledge that can then be used by a variety of different teachers in
many different ways.

The Pedagogical Patterns Project
Most educators and trainers are not taught how to teach. Rather, they often find
themselves teaching by accident. Typically, a person with a skill that is in
demand, such as a particular programming language, will be asked to teach it.
People assume that if the person is good in this programming language, she will
be good at teaching it. But knowing the subject matter is very different from
knowing how to teach it.

Effectively communicating complex technologies is often a struggle for
information technology instructors. They may try various teaching strategies, but
this trial and error process can be time-consuming and fraught with error. Advice
is often sought from other “expert” instructors, but these individuals are not
always readily available. This creates the need to find other ways to facilitate the
sharing of teaching techniques between expert and novice teachers.

This is the goal of the Pedagogical Patterns Project (PPP, [PPP]). Pedagogy is a
term that refers to the “systematized learning or instruction concerning principles
and methods of teaching” [WNCD]. Patterns provide a method for capturing and
communicating knowledge such as pedagogy. As an example, imagine that you
are looking for an effective way to teach message passing to experienced
programmers in a weeklong industry course. A friend who is teaching a
semester-long object technology course to traditional age university students has

found an effective technique. He shares it with you without dictating the specific
implementation details. This allows you to use your own creativity to implement
the technique in a way that is most comfortable for you and most useful for your
industry students. This is the essence of patterns – to offer a format and a process
for sharing successful practices in a way that allows each practice to be used by a
variety of people in many different ways.

A collection of patterns could form a repository of techniques for teaching a
specific subject such as object technology (OT). Ideally, many of the patterns
would have an even broader scope than OT, but all of them would be useful in
many different training or learning environments because they are proven
teaching techniques.

But even this is not the end of the story. Related patterns can be combined in
either a pattern catalog [BMRSS] or in a system of patterns [MF]. A third
possibility is to relate several patterns within a common problem space, the result
of which is a language of patterns that provides a resource for solving complex
problems. The goal of the project described in this paper is to form pedagogical
pattern languages for teaching. This will provide instructors with the ability to
share their effective teaching techniques in a common format, to document
relationships between the techniques and to form powerful tools known as
pattern languages.

The pedagogical patterns project [PPP] is working on collecting many types of
patterns that can help teachers teach and students learn. Whereas the pattern
languages developed so far are all focusing on learning, this collection focuses
instead on teaching efficiently.

The Pattern Language
This pattern language under construction contains patterns from the Pedagogical
Patterns effort [PPP], which were revised and rewritten in Alexandrian form in
order to support the integration into a pattern language. The current patterns
focus on a classroom situation at a beginners to advanced level, but their usability
is not limited and may for example be applicable in distance education. Further
patterns will be submitted to future conferences of the PLoP series.

The patterns in this pattern language use a form similar to the one used by
Alexander in his book A Pattern Language [CA]. All patterns are written in the
you-form, thus directly talking to you, the teacher. In addition to the pattern
name, each pattern is divided into several sections. The sections are separated by
❊❊❊. The first section sets the context; the second describes the forces and the
key problem. The next section outlines the solution, the consequences, limitations
and disadvantages. The key problem and solution are in bold font and represent
the thumbnail of the pattern (also called the pattlet). The last section complements
the discussion of the solution, by providing further information, and examples in
italic font. References to patterns are in CAPITAL LETTERS, references to patterns
not published inside this pattern language are provided with a thumbnail at the
end of the paper.

In addition, each pattern is marked with one or two asterisks (*), as in Alexander’s
patterns. They show how fundamental we believe the pattern is.

According to Alexander: “In the patterns marked with two asterisks, we believe that we
have succeeded in stating a true invariant.” So, for patterns marked with "**", we
believe that using a version of the solution provided in order to solve the stated
problem is inevitable. One asterisk means that we think that we are on the right
track, but we believe it will be possible to improve the solution.

Quick Access Table

The following table lists on the left hand side (Objective) your objective, which
you might want to focus on in a feedback oriented teaching environment. And on
the right hand side (Pattern) the table suggests one or several patterns that will
help you to reach this objective.

Objective PATTERN

You want to prepare the students for the
world outside the course.

WIDER PERSPECTIVE, NOBODY IS PERFECT,
FIXER UPPER

You want to make use of the different
perspectives peers can provide.

TEAM TEACHING, INDUSTRY PARTNER

You want to include the different
perspectives your students can provide.

ROUND AND DEEP

You want to cover as many topics as
possible without losing the focus.

MULTIPLE PRONGED ATTACK, EARLY BIRD,
RESTRUCTURE, FIXER UPPER

In addition to knowledge, you want your
students to develop tools that they can use
later on.

TOOL BOX

The first pattern (WIDER PERSPECTIVE) is the root for all the following patterns. It is
a larger or more abstract pattern and sets the context for the different
perspectives. You will find more detailed patterns in the categories of widening
the perspectives by cooperating with other educators (TEAM TEACHING, INDUSTRY
PARTNER, NOBODY IS PERFECT), by teaching multiple things simulateaously
(MULTIPLE PRONGED ATTACK, RESTRUCTURE, EARLY BIRD), by using the students’
experiences (ROUND AND DEEP).

WIDER PERSPECTIVE **
This pattern is based on ETHOS, written by Klaus Quibeldey-Cirkel [QC] and revised by Mary
Lynn Manns.

You want to prepare students in technical-oriented area to be able to use their
knowledge for tackling real world problems.

❊❊❊
An academic concentration in a technical area, such as Engineering or Computer
Science, requires a large amount of technical knowledge. Therefore, coursework

often stresses the vital technical facts and applications in such areas as
programming languages, hardware and software design, and mathematics.

However, the workplace rarely places workers in a position in which they work
only with technical matters. Students soon realize that it takes much more than
technology to do their jobs. The most influential and complicated matters to
handle are often not encompassed in the technology itself but rather in the social
and economical implications of the technology.

Even though such realities as economic conditions, human behavior, and
organizational politics will affect how students in technical disciplines will be
able to do their jobs, they are rarely given an appreciation for these issues. This
can give students the impression that expertise in technical topics is all they
need to be successful in the workplace. In addition, it will not adequately
prepare students to take on a managerial role.

❊❊❊
Therefore, teach a technical topic from wider perspectives.

Give students an interdisciplinary understanding of the implications of the
technology, such as economical, ethical, social and organizational.

Some may argue that there isn’t time to do this in an already overloaded course or
curriculum. But the technical content can still be the emphasis of the topic. The
instructor can favor “breadth over depth” to simply equip students with an
appreciation for the other issues they will face when working with the technology.

But this brief overview can lead to underestimating the importance of these
issues. You can confront the learner with MISSION IMPOSSIBLE to “shock” him or
her into a deeper thinking about the subject and provoke further questioning,
exploration, and self- study.

Instructors that feel they don’t have the background and knowledge to include a
wider perspective in their course can get help from other instructors (TEAM
TEACHING) or from invited speakers (INDUSTRY PARTNER). When students ask
questions you cannot answer, be honest about what you don’t know and offer to
get the answer later (NOBODY IS PERFECT) or, if time permits, lead a discussion
among the students to explore the possible answers to the question (ROUND
ROBIN).

❊❊❊
Klaus Quibeldey-Cirkel suggests an “ETHOS” approach to remind engineers that a
solution to a technical problem commonly comprises economic (E), technical (T), human
(H), organizational (O), and social (S) aspects. These aspects should be integrated into
the general structure of a course.

A wide range of topics could also be structured with a SWOT approach. The instructor
would discuss the strengths (S), Weaknesses (W), Opportunities (O), and Threats (T) of
the technology.

TEAM TEACHING *
This pattern is based on Team Teaching, written by Jeanine Meyer [JM] and on Teacher Teams,
written by Astrid Fricke and Markus Voelter [VF] and revised by Jutta Eckstein.

You want to teach a subject FROM WIDER PERSPECTIVES by providing different
views on it, but you are aware that NOBODY IS PERFECT, which is also true for you.
Thismeans that you have difficulties providing manydifferent perspectives.

❊❊❊
Some topics are very broad and complex. These topics provide a real challenge
if you want to cover all their aspects. Furthermore time limitation might make it
harder for you to get knowledgable in the whole topic. Students, on the other
hand sometimes have difficulties to get a holistic understanding of the topic if
they are introduced to only one opinion on the subject matter.

❊❊❊
Therefore, team up with fellow educators and teach the course together. Your
peer might know some aspects of the subject you don’t know and vice versa.
Working in teams is generally more effective than working alone, because the
partners motivate each other and according the idiom that one plus one is more
than three, the team produces much more and better output than each member
alone.

It is often helpful if your partner belongs to another domain than you do. This
will emphasize different interdisciplinary views on the same subject. For example
if you are an academic teacher, your partner might work in industry. Thus your
peer doesn’t necessarily have to be a teacher. Another possibility is that you are
teaching the material from a technical perspective, whereas your partner teaches
it from an economic perspective.

It is easier to focus on these different perspectives if you are co-present while
teaching, i.e. both teachers are in the classroom at the same time. On the other
hand you can also focus on the different perspectives, if the teacher team does not
teach at the same time, but the teachers are in the classroom at different times. In
all cases, it is important that the teachers and the students understand the distinct
roles and yet also understand that it is still one course, with the teachers
conferring with each other regularly.

❊❊❊
The students seem to take over more responsibility for the learning when they see
teachers learning from each other. Students also observe teachers (adults)
grappling with issues and being truly involved in the subject matter. If there are
problems with students, it is wonderful to have someone to talk with about the
problems.

TEAM TEACHING when applied as co-teaching is much more vivid than teaching
alone. The vividness is enabled, for example, by different voices and different
body languages. Your partner will also help make sure that you do not lose
yourself in details, but instead reinforce that the students get a holistic
understanding of the topic. However, if you prefer to co-teach in presence you

might encounter some financial or temporal constraints. However, the teaching
partners can decide to team teach one of each of their courses and thus
copensating the financial constraints; however the temporal constraints remain (or
might even be doubled).

Although you might imagine that team teaching will cut your workload in half, in
reality,harmonizing the course topic and the regular consultations require a lot of
time. Moreover it will get harder the less the co-teachers act as a team.

At Pace University, Jeanine Meyer and Dr. Martha Driver did team-teach a course on
English literature with a side-focus on mulitmedia. Jeanine focused on the technical
aspects whereas Martha took care for the contents (Beowulf to Lear: Text, Image and
Hypertext: http://csis.pace.edu/grendel).

Jeanine Meyer and Dr. Sandra Flank did team-teach a summer intensive one-week course:
Introduction to Multimedia for the Classroom. Jeanine was taking over the technologist
role and worked with Dr. Karen Berger on Strategic Web Marketing.

INDUSTRY PARTNER *
You want to teach a topic from WIDER PERSPECTIVES but NOBODY IS PERFECT.

❊❊❊

Even the most experienced teacher can’t know everything. In addition, teachers
that spend most of their time in the classroom aren’t well versed on what is
happening in industry. Yet, they want their students to have an appreciation
for how the topic they are studying is relevant and useful in the work place.

At the same time, individuals who spend most of their time in industry aren’t
aware of how and what the students, their future employees, are being taught.

❊❊❊
Therefore, partner with one or more industry people. Include them in some
classroom activity.

You can ask them to do a presentation, or join an in-class exercise, or provide
feedback on student projects. Take the time to inquire about what they are most
comfortable with and offer opportunities that match their interests and skills.

Inviting industry partners into your classroom means you must be willing to
accept that the class will have some unknowns. For example, if you ask someone
to do a presentation, you may find that this person does not have good
presentation skills. Brief your students that even though the industry person is
not a professional presenter, he still has valuable information to contribute.

ROUND AND DEEP **
This pattern was written and revised by Helen Sharp.

You want the whole class to benefit from the experiences of individual students in
your class.

❊❊❊
An experienced student is likely to gain a deep understanding of a complex
concept by relating it to his or her own experience. But the same experience which
results in a deep understanding may also limit it because a rounded
understanding of a complex concept can only be achieved by considering
different perspectives.

To gain a deep understanding of a complex concept, the student needs to
consider it from many different perspectives, but your own experience is
necessarily limited and a classroom exercise (in a University or Industrial
setting) is necessarily too simple to cover adequately the deep issues
surrounding the concept.

Experienced students will relate a new concept to their own real-world
experiences, and will form a deep understanding of it, but if their experience
does not validate the concept, then its significance may be lost, and if their
experience does validate the concept then although understanding may appear
deep, it may also be narrow.

❊❊❊
Therefore exploit the variety of the students' own experiences to deepen their
own understanding of the concept and to provide alternative perspectives for
other students.

The key is to give students the opportunity to relate the concept to their own
experience and to allow time for students to share that understanding with others
in the class. The first part results in a deepening of the student's own
understanding. It can be achieved through a group or individual activity that
exercises the concept from a number of perspectives. Choosing suitable activities
to encourage students to relate explicitly and deeply their experiences to the
concept being taught is not easy. However a small group discussion around an
example application can be enough to elicit different views. The second part of the
pattern (allowing time to share understanding) results in a rounding of other
students' views of the concept. This can be achieved in a group setting, where
students can hear others' perspectives, exchange ideas, concerns, lessons learned
and so on.

Widening the discussion to include the whole class, or at least a larger group in
the class can be achieved by presentations followed by discussion. Asking
students to present findings to you and to fellow students compels them to clarify
their own thought. This in itself can deepen the student's own understanding,
while the presentations and discussions deepens the collective understanding of
the class by sharing other students' experiences, misconceptions and
breakthroughs.

How well this pattern works depends on how many and how varied are the
experiences in your class and how prepared the students are to expose their
understanding of the concept. Some perspectives may conflict, but good learning
experience will emerge from their resolution and compromise. You will also learn
quite a lot and broaden your understanding!

❊❊❊
This pattern gives you a chance to exercise a concept or set of concepts within a
collaborative environment and it encourages students to reflect on what they have learned.
However the exercise must be chosen carefully to fit within limitations (time and space) of
the classroom situation, and it must be deep enough to engage your students and not to
simply re-state the key concepts given in lectures. To make the most of students'
experiences, you need to keep a relatively low profile and allow students to learn from each
other.

A variant on this is to let members of a team who finish early to split off and join other
teams to learn from their debates. This increases the level of cross-fertilization, and is also
an alternative strategy when the student group is too big to allow each team to present
their findings.

Helen Sharp has used this pattern to teach postgraduate software engineering
professionals object modelling, where some very interesting discussions have emerged
between telecommunications and business systems developers because they have quite
different technical concerns in each of their domains. A similar pattern was proposed by
Martin Barrett from East Tennessee State University.

NOBODY IS PERFECT **
This pattern was originally contributed by Astrid Fricke and Markus Voelter [VF] and revised by
Jutta Eckstein.

You are teaching a topic and your students are asking questions, which are
beyond your acquired knowledge.

❊❊❊
Students expect the one and only right solution to a problem from the
instructor. However, on the one hand there is often no single answer, but many
equally correct answers. And on the other hand you might not know what the
best answer is. You cannot know everything. If you paper over the cracks, the
students will stop relying on you in areas you are knowledgeable.

❊❊❊
Therefore, admit your limitations with grace. Do not try to be perfect. In
particular, if you cannot answer a question, admit it.

Be honest to the students, by telling them that you do not know the answer.
Avoid searching through your material in front of the students. Unless you really
know where to find the answer, it is unlikely you will find the correct answer in
this short time frame.

 Don’t create the impression that the question is overly difficult just because you
don’t know the answer. This will hinder the students trying to speculate about the
solution. Suggest that you will look up the solution, or explicitely ask the
students whether one of them knows the answer to the question. You can also
suggest to either work on the solution jointly with the students or start exploring
with the students to find the answer.

❊❊❊
It is much harder to implement this pattern in countries where the culture does
not allow people to admit that they need help or where the students are regarded
as impolite if they admit that they do not know the answer.

Use REFLECTION to foster the trust in the students’ own competency.

MULTI PRONGED ATTACK *
This pattern was originally contributed by Joseph Bergin [JB2] and revised by Jutta Eckstein.

Despite the fact that your curriculum is packed with topics, you want to include
additional material.

❊❊❊
You are feeling overwhelmed by the amount of material you need to cover in a
course. However, you feel the need to continually include new material, although
you wonder what you can omit in order to have the time for teaching the new
material. There never seems to be enough time to teach all that we want to.
Sometimes eliminating stuff to make room for new topics is the best choice,
because some topics are becoming obsolete by the introduction of new ones.
But often you will find that there are no topics to leave out and that the new
ones are just coming on top of them.

❊❊❊
Therefore, choose your examples and exercises so that they cover more than one
idea or topic at the same time.

As Kristen Nygaard used to say, one must start with sufficiently complex examples
instead of sufficiently simple examples in order to teach the students the world view.

Students have to see some examples, which cover multiple aspects and they have
to work on some according exercises. These exercises should focus on the current
topic, but allow to learn additional topics along the way. These aspects can be
covered in a way that the students don’t really realize that they are learning
another topic additionally. The exercises can be either single faceted or multi
faceted. The former seldom stretch the students imagination or skill. Teach a topic
in such a way that it reinforces several ideas at the same time.

Often you can add new material to a course simply by changing the examples you
use in class. When used well, this gives the students very rich environments in
which to learn. It can also engender a questioning attitude in the students.

❊❊❊
For example, when teaching novices how to program in an object-oriented way you still
need to teach them if statements and loops. You can either do this in isolation with
abstract examples, or you can do so in such a way that the broader goals of object
orientation are also reinforced. Do this by choosing examples and exercises that illustrate
while statements, for example, but in the context of doing something useful in a class.
Even better, you can choose the example in such a way that it also teaches students
something about the breadth of computer science as well. For example, a finite automaton

has a control loop. It can be built as a class, and it shows some of the underpinning theory
of CS.

Karel++ [BSRP] uses a gentle introduction to the art of object-oriented programming by
requiring that the students build a new class and new methods to do anything, reinforcing
object-orientation at every step, even while teaching if statements.

This pattern can also be combined with TEAM TEACHING, as Jeanine Meyer and Dr.
Martha Driver did at Pace University in a course on English literature with a side-focus
on mulit-media. While Martha focused on English literature, emphasized Jeanine the
multimedia aspect.

FIXER UPPER **
This pattern was originally contributed by Joseph Bergin [JB4] and revised by Jutta Eckstein.

You want to challenge your students with sufficiently complex examples by not
overwhelming them.

❊❊❊
We often need to introduce students to a new field requiring mastery of several
topics. However, students often fail to see how the topics fit together when
introducing them sequentially. Too often students work on only "toy" problems
because they may not have the experience or skill to build large artifacts from
scratch and there is only just so much time. But all realistic problems are large
and the day in which small problems were interesting is about past.

On another front, students also have difficulty when unexpected errors arise in
their own work. They also often fail to have a grasp of the means of locating and
correcting errors.

❊❊❊
Therefore, give your students a fairly large artifact that is generally sound but
with carefully introduced flaws. Ask the students to repair and discuss the
flaws.

The artifact proposes to be the solution to a problem, but while generally correct,
the instructor has purposely introduced flaws into it. Most of the flaws should be
simple and obvious to most readers. There should be one or two deeper flaws.

Ask the students to find and correct the flaws. Ask them to discuss the nature of
the flaws found and the reasons for their changes. Finally, ask them to discuss the
overall structure of the artifact and draw inferences from it.

Fixing a larger artifact than can be created by students is generally within their
grasp. It gives them a better sense of scale of interesting problems and permits
them to integrate a number of issues into the solution of a single problem.

❊❊❊

This pattern allows students to actively work with larger artifacts, which can even
be LARGER THAN LIFE, than they can develop completely themselves. They benefit

since finding flaws in their own work is a valuable skill. It is important that the
overall structure of the artifact be sound.

The best way to develop such an artifact is to start with an excellent solution to a
problem and then doctor it by introducing flaws. There must be different kinds of
flaws, but probably not structural flaws if you are dealing with novices. This latter
rule can be broken if the artifact is introduced later in the course rather than at the
beginning, at a point at which structure is the main issue. When used as an EARLY
BIRD instance, however, concentrate on flaws of detail, rather than structure.

Most such exercises cause the students to generate questions that can be a fruitful
source for classroom discussion. If the instructor is careful to introduce certain
flaws, the student can be led in a desired direction to further explorations.

Joseph Bergin has used this pattern when teaching beginning programming. He uses a
program illustrating a number of syntactical constructs that have not yet been introduced
in class. (It has been used as the first assignment.) The program can be large enough that
its structure is not obvious, with e.g. two or three classes with several short methods.
Sometimes one part of the program is more complex. The errors can be mostly syntactical
and lexical, so that the compiler can find them. By introducing one or two semantic
errors, the program does not perform as expected.

Jutta Eckstein has used this pattern for teaching advanced design. She presents design
results from a former course and asks the students to improve it by discussing it and
correcting the errors. Here the flaws are not carefully introduced by the instructor, but
accidentially by the former students.

Linda Rising has used this pattern with very large artifacts –large enough that they can't
be understood by a single person at the level of the students and therefore require GROUPS
WORK.

The pattern must be carefully used if student honesty is an issue. It is easy for one
student to point to the locations of errors in C++ programs, for example. One way
to address this is to use large artifacts that require teamwork. Another is to ask
questions concerning the structure as well as the errors. Finally, the students can
be asked to examine the artifact before they are given the full set of questions that
will be asked about it.

Some students are frustrated by such large artifacts. The instructor must be
prepared to provide support and encouragement that the real world really is like
that and that it is ok to initially (a) be frustrated and (b) lack knowledge.

Note that in the United States, a "fixer upper" is a house for sale that is in poor
condition. They are sold to people, mostly young, with more energy and
enthusiasm than money. The concept is that you need to repair it (perhaps
extensively) after purchase.

EARLY BIRD **
This pattern was originally contributed by Joseph Bergin [JB1] and revised by Jutta Eckstein.

You want to ensure that your students remember (at least) the most important
ideas.

❊❊❊
Students have sometimes difficulties to distinguish between the important and
the unimportant ideas. However, students often remember best what they learn
first.

❊❊❊
Therefore, organize the course so that the most important topics are taught first.
Teach the most important material, the "big ideas," first (and often, using a
SPIRAL approach). When this seems impossible, teach the most important material
as early as possible.

Important (big) ideas can be introduced early, even if they can't get complete
treatment immediately.

You have to mine the course for its most important ideas. These ideas become the
fundamental organizational principle of the course. The ideas, and especially their
relationships are introduced at the beginning of the course and are returned to
repeatedly throughout the course. This way the most important things in the
course receive more focus from the instructor and the students. Students can be
made more aware of what is paramount.

❊❊❊
Often only simple aspects of an important idea can be introduced early. If there
are many important ideas, it can be LARGER THAN LIFE. Sometimes it is enough to
give important terms and general ideas. Some "big" ideas are thought of as
advanced. It is difficult to introduce some of these early. Sometimes a really big,
but difficult, concept can be introduced incompletely. Then as other material that
relates to it is covered, the relationship to the big idea is carefully explored.

You have to be able to analyze deeply what are the consequences of developing
material in a particular order. It is often helpful to have a forum in which ideas
can be discussed and refined. It is also often necessary to develop your own
materials, which requires time and effort.

Joseph Bergin provides several examples what he defines as most important, e.g.: Teaching
objects first (or at least early); Teaching design first; Teaching concurrency first in
operating systems; Teaching user requirements first in Database; Teach recursion before
loops. Of course, these are Joseph Bergin’s definitions of what is most important. You may
disagree, but then it is your course, so discover and implement your own "firsts."

The book Karel the Robot [RP] was designed with this pattern in mind as a way of
teaching procedural programming (procedures first). Its successor, Karel++ [BSRP],
attempts to do the same with Objects (classes first).

It may be a mistake to try to use this pattern with material that has clear
prerequisite ideas to the important ideas. This would be especially true if the
relationship between the prerequisite idea and the big idea is especially subtle or
if the prerequisites are especially difficult to master.

RESTRUCTURE *
This pattern is based on Big Picture on a Small Scale, written by Kerstin Voigt [KV] and revised
by Marianna Sipos.

You want to teach state-of-the-art technologies and concepts that have become
essential, and you want the existing material to take account of the new
developments.

❊❊❊
Often you are facing the challenge that new ideas come and go into practice in
very short timescales. As some concepts become important, others become less
important. By the time a new idea becomes established as a base concept, other
new ideas have come along.

Some years ago, when you considered teaching them, they had been taken to
the end of the course, because in order to understand them, it was often
necessary to learn some prerequisite knowledge. New technologies help you to
apply and understand these new ideas while performing familiar tasks. New
developer tools also support the development of this understanding through
practice. This is useful because complicated ideas at first appear to be simple.
At some point, these new ideas become base ideas and you have to modify your
teaching of them, and introduce them early on in the course. However, you also
know that teaching these new base ideas early on is essential, because
considering existing state-of-the-art technologies and concepts will influence
the students general thinking about the subject matter.

❊❊❊
Therefore, you should rearrange your syllabus, by starting the course with the
new base concepts.

You have to recognize that the new base concept is the new “big idea” and teach it
as an EARLY BIRD. In order to take the prerequisite knowledge into account, you
need to teach the new idea briefly at the beginning and come back to the subject
matter as often as possible using an SPIRAL approach.

Rearranging the first part of the course has an impact on the succeeding topics. So
you need to rearrange the whole course in order to respect the new ideas.

❊❊❊
RESTRUCTURE has been applied several times: when structured programming came up, or
when object-oriented programming became fundamental [KV], and nowadays when
distributed systems are rising to become everyday technology. If you do not restructure
your material you will not have enough time to teach and to delve into the more important
subjects.

You might want to introduce the new base concept on an abstract level followed
by concrete practical examples, as suggested by ABSTRACTION GRAVITY. Or you
might consider teaching the new ideas incrementally following EXPERIENCING IN
THE TINY, SMALL AND LARGE.

TOOL BOX *
This pattern was originally contributed by Joseph Bergin [JB3] and revised by Jutta Eckstein.

You want to enable your students to profit from a personal toolkit.

❊❊❊
The typical intent of a course is that students benefit later from the knowledge
gained earlier in the course. But knowledge is not the only result of the
learning effort. GROUPS WORK or REAL WORLD EXPERIENCE may also result in
tools. However, these tools are hardly treated as helpers to foster successive
learning.

❊❊❊
Therefore, develop not only knowledge, but also concrete tools, which students
can use in later courses. Ask your students to build things in early courses that
will actually be used later in the same course and in later courses as well.

Student exercises have multiple parts. One part of each exercise is to build a
general tool that might be useful in other projects and to take some effort in its
proper formulation for reuse. The design for reuse must be explicit and must be
discussed by the students and commented on by the instructor. GROUPS WORK can
help to combine individual designs of the tools, discuss the relative merits of each
and then build a common implementation that improves each of the individual
designs.

This way students become apprentices in the same sense that young people once
served as apprentices in medieval guilds. There they spent their early years
building tools they would need if they were to achieve master status in the guild.

Students gain skill in the early courses building reusable components. To the
extent that they fail, the lessons are reinforced in the later courses when they need
to rebuild parts of the tool kit for use in the projects of those course.

❊❊❊
Both students and the instructor should spend time to evaluate the tools for
correctness and also for the potential of reusability. Instructors in later courses
must be aware that students have these personal tool kits and should use
exercises and projects that exploit the tool kits and permit their extension. Thus
coordination with later courses is an important element of this pattern.

You need to give thought to the design of the early courses as to what tools are
broadly useful, but especially which tools will necessarily be useful in later
courses. Thus you need to build a plan and must be able to provide
implementations of those tools that the students will need, but which they will
not build themselves.

Kernighan & Plauger's Software Tools books [KP] were a good use of this pattern. This
book should probably be read by anyone who wants to implement this pattern. It shows
how a high degree of reusability can be achieved with extremely simple tools.

Instructors can provide some tools (e.g. data structures and algorithms) in the form of
class hierarchies or other libraries. Students complement this collection. For example, the

instructor can give a singly linked list and have students build a doubly linked list. Both
would be included in the toolkit.

The students can build their personal toolkit incrementally using a SPIRAL approach.

Thumbnails
The following patterns are not part of this language, but they are referred to by
one or more patterns above.

ABSTRACTION GRAVITY [EMWM]

Concepts that must be understood at two levels of abstraction require time
for a SPIRAL approach to learning. However this can be time consuming.

Therefore, introduce a concept at its highest level of abstraction and use
reflection on the concept to link the higher-level abstraction to the lower
one.

EXPERIENCING IN THE TINY, SMALL AND LARGE [EMWM]

A complex concept is difficult to understand unless you have experienced it
by example. However concepts are often so complex that experiencing the
whole in one step doesn't help either.

Therefore, introduce the concept in three stages, tiny, small and large,
which allow you to monitor the students' progress on a topic-by-topic – tiny
– basis, to test if the student can combine the topics and apply them in a
larger – small – setting and to solve a real-world – large – problem using all
parts of the concept, thus seeing the big picture respectively.

GROUPS WORK [EBS]

You are only one resource for the students. Given the number and difficulty
of student questions and concerns you are actually a rather small resource.
Your students need frequent feedback on what they do and how they do it.

Therefore emphasize group work in your courses. Use both large and small
groups. Use both long lived (weeks) and short lived (minutes) groups.
Groups can come together for a few minutes in a class to consider a
question posed by the teacher. They can work for an hour or two together
in or outside the classroom or lab. They can work in teams for days and
weeks on larger projects.

LARGER THAN LIFE [EBS]

When faced with a new concept, students often focus on low level details,
ignoring its higher-level aspects. Students are able to read, understand, and
modify artifacts larger and more complex than they can themselves build.

They also need to see problems of a realistic complexity so that they don’t
get the idea that all problems are small and simple.

Therefore, give students an example problem or artifact that is too large for
them to be able to focus on the details in the time available. Structure the
assignment so that they can work effectively with large-scale conceptual or
structural knowledge of most of the artifact.

MISSION IMPOSSIBLE [EMWM]

Often new learners arrive at an abstraction not via generalization from a
deeper understanding but from a simplification of something they do not
yet understand. Such simplistic truths are dangerous, because they lead
learners to construct simplistic solutions that do not really solve problems.
Worse, the learners‘ lack of experience prevents them from recognizing the
shortcomings in their thinking.

Therefore, present the learner with a problem that seems straightforward to
solve but whose complete solution requires a much deeper understanding
than the basic concepts afford.

REAL WORLD EXPERIENCE [EBS]

A lot of concepts are too abstract for students to conceive their value. And
even worse students often doubt the viability of these concepts. Assigned
problems or lab projects help to make those abstract concepts more
concrete. However restricting students to lab environments deprive them of
exercising the issues in their rightful habitation – namely the work place.

Therefore involve the students in real world situations, by inviting them to
accomplish a project in a real world environment.

Involving a domain interest allows the students to experience the real
project life, from the time pressure of a deadline to the pride of
demonstrating the result.

REFLECTION [BEMW]

Sometimes, learners believe that the trainer has to deliver all the
knowledge, but the students would learn much more if they would explore
problems by themselves. Furthermore, students often anticipate that an
instructor will solve each and every problem for them, but the knowledge
of the instructor is also limited. You want the students to uncover
solutions for complex problems by drawing on their own experience rather
than just letting them accept what they have learned by listening.

Therefore, provide an environment that allows discovering and not one
which is limited to answering questions. It is the students’ debt of delivery
or of inquiry. Train students so that they are searching for solutions by
exploring the problem.

ROUND ROBIN [EMWM]

One of the most difficult aspects of teamwork is getting everyone in the
room to work on equal footing. However, you want to get everyone's
participation and input and you especially want to encourage the quieter
members to take a more active role.

Therefore, use a round robin technique to solicit suggestions. Go around
the room or table. As each member of the team contributes an idea, write it
down on the board. The goal of the round robin is to allow the group to
move ahead at an even tempo but to give people enough time to think.

SPIRAL [BEMW]

You want to enable students to solve meaningful problems as early in the
course as possible. Students learn best when they are doing things, and
meaningful problems motivate them to work harder.

Therefore, organize the course to introduce topics to students without
covering them completely at first viewing so that a number of topics can be
introduced early and then used. The instructor can then return to each topic
in turn, perhaps repeatedly, giving more of the information needed to
master them.

Acknowledgement
We thank all those who have contributed to the Pedagogical Patterns project,
especially the authors of the patterns we have revised and incorporated into this
paper. We also thank our EuroPLoP 2003 shepherd, Joseph Bergin, for helping us
to improve the paper.

References

BEMW Joseph Bergin, Jutta Eckstein, Mary Lynn Manns, Eugene
Wallingford. Patterns for Gaining Different Perspectives,
Proceedings of PLoP 2001.

BSRP Bergin, Stehlik, Roberts, and Pattis. Karel++, Wiley, 1997

BMRSS Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
Stal, M. (1996). Pattern-Oriented Software Architecture: A
System of Patterns. Chichester, England: John Wiley & Sons.

CA Christopher Alexander et.al., A Pattern Language: Towns –
Buildings – Construction. Oxford University Press 1977

EBS Jutta Eckstein, Joseph Bergin, Helen Sharp. Patterns for Active
Learning. Proceedings of PloP 2002.

EMWM Jutta Eckstein, Mary Lynn Manns, Eugene Wallingford,
Klaus Marquardt. Patterns for Experiential Learning,
Proceedings of EuroPLoP 2001.

JB1 Joseph Bergin, Early Bird,
http://sol.info.unlp.edu.ar/ppp/pp34.htm

JB2 Joseph Bergin, Multiple Pronged Attack,
http://sol.info.unlp.edu.ar/ppp/pp57.htm

JB3 Joseph Bergin, Tool Box,
http://sol.info.unlp.edu.ar/ppp/pp36.htm

JB4 Joseph Bergin, Fixer Upper,
http://sol.info.unlp.edu.ar/ppp/pp31.htm

JM Jeanine Meyer, Team Teaching,
http://sol.info.unlp.edu.ar/ppp/pp40.htm

KP Brian Kernighan, P.J. Plauger, Software Tools in Pascal,
Addison Wesley, 1981

KV Kerstin Voigt, Big Picture on a small Scale,
http://sol.info.unlp.edu.ar/ppp/pp46.htm

MF Fowler, Martin (1997). Analysis Patterns. Reusable Object
Models. Reading, MA: Addison-Wesley Longman, Inc.

PPP Pedagogical Patterns Project Home:
www.pedagogicalpatterns.org

QC Klaus Quibeldey-Cirkel, ETHOS,
http://sol.info.unlp.edu.ar/ppp/pp27.htm

RP Richard Pattis, Karel the Robot, Wiley, 1981

VF Markus Voelter, Astrid Fricke, SEMINARS,
http://www.voelter.de/seminars

WNCD Webster’s New Collegiate Dictionary. G & C Merriam Co,
1959

