
 [image:]

 Agile Software: Patterns of Practice

 Joseph Bergin, Ph.D.

 Pace University

 jbergin@pace.edu

 Published by Joseph Bergin, Software Tools, February 2012

 Copyright

 Copyright © 2006-2012 Joseph Bergin. All rights reserved.

 Cover: In the Columbia River Gorge, © 2006 by Joseph Bergin

 ISBN978-0-9851543-1-8

 cover design: barbara esmark

 Preface

 A Bridge to Agile Software Development Practice

 This collection of patterns complements and summarize the standard wisdom that can be gleaned from the Agile Development literature such as Kent Beck'sExtreme Programming Explainedor Ken Schwaber and Mike Beedle'sAgile Software Development with Scrum. It is directed primarily at those who are starting out with Scrum or Extreme Programming (XP) or another agile methodology and might miss some subtle ideas. Once a team gains experience these patterns will become obvious, but initially some of them are counter intuitive. While this study began in Extreme Programming practice, most of the advice applies to agile development in general and Scrum in particular.

 I consider XP to be a pattern language in which the practices are the basis of the patterns. They have the characteristics of a true Pattern Language in that they are synergistic and generative. The dozen or so practices detailed in Beck and elsewhere, such as "Do the simplest thing that could possibly work" and "Yesterday's Weather" form a subset of this language.

 While I have gathered information from various authors and practitioners as well as my own practice and consulting, I take responsibility for what is said here.

 This book presents more than one hundred patterns developed so far. Each of the patterns is described briefly in the Thumbnails section at the end.

 The Author

 Joseph (Joe) Bergin has been a professor for nearly 40 years, originally in Mathematics, but mostly in Computer Science. He was an early pattern writer and advocate as well as an early adopter of agile software development. He has consulted with large companies who wish to explore agile methods and wonder whether they would find a good fit. Among other things, he is a certified Scrum Master and Coach. He is also an avid practitioner of Tai Chi, a photographer, and a cook.

 Web Sites:

 http://csis.pace.edu/~bergin

 http://jbergin.com

 Printed Version of this book:

 http://www.cafepress.com/jbergin

 How To Use This Book

 This is intended as a reference for practitioners "in the trenches." Don't feel like you need to read it from beginning to end, as it isn't intended for that use. Use the Table of Contents to find things of interest to you at the point you are in your process. If you are really new to this, see the advice chapters and the Getting Started with Agile Development chapter. Use the names of the patterns highlighted there, as well as in the Agile Development Story to guide you.

 For an individual pattern, first judge whether the stated context matches your own. Then ask if the problem applies to you at that moment. If that is true, consider applying the solution. The forces should help you understand why the solution is the right one, and the commentary should help you understand what to expect next.

 Consult the References and the Additional Resources for more on the various aspects of agile development. There is both wisdom and the experience of practice there.

 Agile Software:Patterns of Practice

 Joseph Bergin

 What Are Patterns?

 Software and Organizational Patterns grew out of the work of Christopher Alexander and others in architecture[1]. Alexander wanted to return to ordinary people the ability to participate in the design of their own living spaces. Since modern urban dwellers had largely given that skill over to professionals, he found he needed to introduce a language of design that all could understand.

 Patterns capture expert advice in an easily transferable format. The present author claims no invention of what you will find here. These bits of advice come from many sources, including the personal practice of the author, but also from the agile literature and discussions with practitioners. See the references for the most important sources. Patterns use a structured format of presentation in which a problem is presented in its context. The forces that affect the expert's choice of solution are included, as well as the solution followed by some commentary. The advice needs to be general enough that it can be applied widely, but not so general as to be abstract. Patterns tell you what to DO when faced with a problem in a context.

 The pattern form used here is as follows

 Name

 Context paragraph: Who the pattern is addressed to and when in the cycle it can be applied.

 ???

 Problem paragraph: The key sentence is in italics. What problem does the pattern address.

 [image:]

 Forces paragraphs: What do you need to consider in order to apply this pattern? The forces are in bulleted lists.

 ! ! !

 Therefore, solution paragraph: Key (usually first) sentence is in italics. What to do to solve the problem in this context.

 Commentary and consequences paragraphs.

 For several of the most important patterns, such as Onsite Customer, we also show a diagram with some of the important connections to other patterns here. There is also a larger example of connections in the Clusters of Patterns of Agile Development chapter at the end.

 These are written in the "you" form as if the author is speaking to the person named in the pattern's context sentence. "You" could be a customer, a developer, or a manager, depending on the pattern.

 In any pattern and in any discussion, the first use (at least) of the name of a pattern will appear in bold face. See Onsite Customer just above.

 Thumbnail descriptions of all the patterns appear at the end of the book.

 Pattern languages do more than individual patterns. They are sets of patterns that are both synergistically related and generative of what they describe. No individual pattern can completely resolve all of its forces. Therefore, other patterns, at a smaller "scale" help to resolve the remaining forces.

 What is Agility?

 Agility can mean many things, of course. If you think beyond software development it can mean never getting stuck. It means working forward using quick feedback loops based on recent results. It means always delivering value. Agility in software development grew out of a meeting of a group of people (The Hillside Group) whose lasting contribution is the Agile Manifesto.

 http://agilemanifesto.org

 We are uncovering better ways of developing

 software by doing it and helping others do it.

 Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

 That is, while there is value in the items on

 the right, we value the items on the left more.

 One of the simple, but key, ideas of agile software development practice is to take good practices, combine them, and then push them to the limit. If iterations are good, then do a lot of short iterations. If stakeholder-developer conversations are good, then crank that up to the maximum. For this to make sense, of course, the practices need to be the ones that really move us forward, and they need to be synergistically reinforcing.

 Since patterns represent actions, this set of patterns is based on the various common practices of agile software development. There is a high degree of interaction between the patterns as there is between the practices. This implies great synergy in agile practice. A deep consequence of this is that you must choose the practices carefully since they support one another. If you decide not to do some practice you will not only lose the benefits of that practice, but also the support it gives to the others that you do perform. This requires compensation from additional practices if the balance of tension is to be maintained. Otherwise everything can fall apart. For example, Pair Programming is an important pattern and an important agile practice. If you do it you get many benefits. But if you don't, you also lose the lower defect rate and the sharing of knowledge about your project among team members provided by pairing. You then need to compensate for this with some other practice, such as code walk-throughs.

 Some Key Ideas Explained

 A few terms are used here in a technical sense that also have more general usage. This brief introduction will set the stage for their frequent appearance throughout the book.

 Customer (ProductOwner)In XP, Customer is a role and the term differs from common usage. He or she is that person entrusted by the organization to make all decisions about features of an application. It is a difficult role, sitting between the stakeholders and the developers. The intention is to give both parties a single point for resolving issues, so as to prevent chaos in the development process. In Scrum, the role is similar and is called the Product Owner.

 Story: A short and simple description of a feature of an application. Stories are written on index cards (by the Customer) and indicate that a specification will later be gathered. Stories are estimated (by developers) in "points" to indicate the relative development difficulty. The set of stories for a project is called the Product Backlog.

 Velocity: How many story estimation "points" a team is able to build successfully in one iteration.

 Iteration/Sprint: A strictly time-boxed segment of a project. Usually one week to one month, but constant over any given project. The stories to be built in a sprint are the Sprint Backlog.

 Release: An end-to-end subset of the functionality of a project that is robust enough to put into real usage. It is the product of one or more iterations.

 Unit Test. A developer defined executable test for the feature under development. All unit tests are always passing, and are written before the feature is developed.

 Acceptance Test. A Customer defined executable test that, when passing, assures that the application matches requirements.

 Done. A feature is done when it will not need to be addressed further in the project. As a minimum it means coded, tested, documented, integrated into the application, optimized as necessary, and accepted by the Customer. When it is done, it can be deployed.

 Refactor. The practice of improving the structure of code without changing its behavior. Practiced frequently to ease incorporation of new features into a product.

 Scrum:A set of practices focusing on the overall running of a project. It focuses more on management than engineering and more on month-to-month rather than day-to-day activities. The key practices, as represented by patterns here, along with some of the pattern relationships, can be seen in the following diagram. Scrum is also the name given to the short daily meeting of the team within a Scrum project.

 [image:]

 Pigs and Chickens

 Scrum has the notion of Pigs and Chickens [20]. The pigs are committed to the success of the project and careers will be affected by success or failure. Chickens are involved in the project, perhaps as users of the final project, or even funders, but their involvement is more remote. Only the pigs drive the project forward, and so only the pigs have a say in the process of the Self Managing Team. The chickens may only observe.

 Extreme Programming (XP): A set of practices focusing on the day-to-day activities of a team. It is often used within Scrum, though the two are independent.The key practices, as represented by the patterns, along with some of the relationships can, be seen in the following diagram.

 [image:]

 A Few Abbreviations

 XP is Extreme Programming

 ASD is Agile Software Development

 DTSTTCPW is Do the simplest thing that could possibly work, a pattern here

 YAGNI is You ain't gonna need it, a pattern here

 An Agile Development Story (a.k.a. Fairy Tale)

 A hypothetical and highly stylized story is presented showing how most of the patterns in this book interact in a project to bring success to a team. It is intended to be both informative and entertaining.

 Fundamental Patterns of Agility

 There are a large number of practices and considerations that make agility possible and projects successful.

 This section presents a large number of patterns that apply to most agile projects, though some of them depend on small, co-located teams. We show only one pattern in this preview.

 All of the patterns are mentioned in the Thumbnails.

 Sheltering Manager

 You are a manager who is responsible for an agile project. The organization of which you are part may have little experience so far with this methodology.

 ???

 Many things can disrupt any project, but when trying a new methodology one of the most difficult things for the team is when the rest of the organization is not on board. When unnecessary disruptive influences impinge on the team they won't be able to concentrate on the task at hand.

 [image:]

 • Any new methodology is revolutionary in an organization. It will have supporters, skeptics, and detractors.

 • Before you can judge the worth of a new methodology you need to give it a fair trial.

 • To shelter a team requires either institutional power and prestige or great bravery.

 • If the first agile project goes off the rails, the manager may be at risk.

 • The team needs a safe environment in which to learn to change its practices.

 ! ! !

 Therefore, the manager's chief task is to shelter the team from disruptive influences of the rest of the organization. Provide them with sufficient resources and keep the wolves at bay.

 The Sheltering Manager can be the immediate supervisor or someone more remote. If the team comes from diverse parts of the organization it may need to be a high level supervisor or an especially cooperative team of lower level supervisors. Your job as the Sheltering Manager is to take the heat, but provide the light. In Scrum [20], those not committed to the project are kept away from the team and not permitted to influence it.

 • You may become the focus of some sniping by detractors. You need to be prepared for this. Try not to let it reach the team, however.

 • The team will largely manage itself, however. This will be a good thing if it works. Keep your eyes open for running off the rails, of course, but letSelf-Organizing Teamhappen. Make sure they know they have the responsibility to do this and provide them the resources to make it possible.

 • If you are not, yourself, knowledgeable about ASD include yourself when you Train Everyone. You need to know what to expect.

 •Once your organization gains experience, however, you still need to remove obstacles from the path of the team.

 See Patron Role in [5]. This pattern details an additional task for the Patron.

 This pattern is connected to many others. The following diagram details some of the connections:

 [image:]

 Agility in Large Systems

 It is easiest to run an agile project in a small team. However, that isn't always possible. What can you do to maintain agility and scale to large projects?

 This section of the book covers large projects with large teams. It shows only a few patters that supplement the fundamental ones, and are, in turn supplemented by the patterns for dispersed development in the next section.

 All of the patterns are mentioned in the Thumbnails.

 Agility in Dispersed Development Teams

 For what ever reason, it may not be possible to co-locate your team(s). While co-location of small teams is the agile sweet spot, it is possible to add additional practices to compensate for the ones that don't work here.

 Distributed development will be taken to mean that there are several co-located teams at different locations. Thus each team works together. In contrast, dispersed development implies that a single team has members at distinct locations. They might only be as far away as different floor in the same building, or they might be on separate continents.

 Large systems generally depend on at least distributed development and the teams may be dispersed as well. But even a small team may be dispersed.

 These patterns do not discuss traditional offshore development where the management and stakeholders are on one continent and the developers on another. I have little faith in it and believe better solutions exist.

 This section has several patterns for situations in which the team may not be able to sit together, or in which there are several, interacting teams.

 All of the patterns are mentioned in the Thumbnails.

 Some Speculation

 Here are some "patterns" that we aren't quite so sure about. They may work for you. They may work in special situations. They are presented here not necessarily as expert advice, but to encourage you to think beyond what you normally consider. They arose from discussions with people, including Kent Back, who think deeply about these things.

 Two ideas are presented in this section.

 All of the patterns are mentioned in the Thumbnails.

 Clusters of Patterns of Agile Practice

 In any pattern language there are clusters of patterns that work together and reinforce one another. In particular, no single pattern is likely to completely resolve all of its forces. Therefore, other, smaller scale, patterns are applied to help resolve the remaining forces.

 Clusters may help explain the synergy between the practices. Here is one that contains many of the patterns in this collection and is centered on a key pattern.

 [image:]

 Estimate Whole Task Cluster

 This cluster is discussed and a few others are shown. Many of the individual patterns also show diagrams of the related practices.

 Advice For Managers

 Many of the patterns here speak directly to those tasked with managing an agile team or an agile organization. The most important of these are Sheltering Manager andSelf-Organizing Team. Once you have a working team, you shouldn't need to do much other than remove obstacles from their path.

 More advice is given to the manager, related to the patterns given in this book.

 Advice For Customers

 The role of Onsite Customeror Product Owner is well known to be the hardest job in an agile project. You will get a lot of questions and quick and accurate answers are essential to the progress of the developers. It will impact your productivity off the project so be prepared for it. Ideally, you will have few other duties than working within this team. However, it is still a lot of work for just one person. The work of Martin et. al. [16] is especially helpful. They develop the idea of a Customer Support Team (seeCustomer-Tester Pair).

 More advice is given to the Onsite Customer related to the patterns in this book.

 Advice For Developers

 Most of the patterns here are intended to keep you on track. But the big success factor in agility is discipline. Of course, no methodology works if you don't actually execute it. Agility isn't an excuse for hacking or being negligent. Development is hard work.

 More advice is given to developers, related to the patterns in this book.

 Getting Started With Agile Development

 Here I will assume that you are an experienced organization in developing software, but you currently use more traditional processes. You have heard about agile development and wonder if it is right for you.

 My own consulting practice deals mostly with people in just this situation. My first advice, even before I start you charge you, is this: If your current process works for you, use it. If you have high confidence that your current process will succeed on whatever project you are contemplating, you don't need to talk to me, or anyone like me.

 However, if you believe, or have evidence, that your own process is failing or likely to fail, agile development likely has something valuable for you, especially on a critical project.

 More advice is given about how to get started using the agile practices as presented in this book.

 How Agility Wins

 Agile software development has a lot to offer to organizations building important software whether as a product or to support something else.

 This section is a discussion of the advantages of agile development over traditional planned (often called "waterfall") development.

 Additional Resources

 Cautionary Stories

 Brooks, The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition (2nd Edition),Addison-Wesley, 1995

 Dispersed and Distributed Development

 Eckstein, Agile Software Development with Distributed Teams, Dorset House, 2010

 Large Systems

 Eckstein, Agile Software Development in the Large, Dorset House, 2004

 Larman, Vodde, Scaling Lean & Agile Development, Addison-Wesley, 2009

 Pairing

 Williams, Kessler, Pair Programming Illuminated, Addison-Wesley, 2003

 Planning

 Beck, Fowler, Planning Extreme Programming, Addison-Wesley, 2001

 Refactoring

 Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999

 Retrospectives

 Derby, Larsen, Agile Retrospectives, Pragmatic Bookshelf, 2006

 Stories

 Cohn, User Stories Applied, Addison-Wesley, 2004

 Testing

 Crispin, House, Testing Extreme Programming, Addison-Wesley, 2003

 Meszaros, xUnit Test Patterns, Addison-Wesley, 2007

 Rainsberger, JUnit Recipes, Manning, 2005

 Training

 Bergin, Extreme Construction Training Exercise,

 http://www.youtube.com/watch?v=_xEp7x4vDqk

 Acknowledgements

 Linda Rising was the most able shepherdess of several of these patterns for EuroPLoP 2006. As always her advice is helpful, drawing as it does on her deep knowledge of both patterns and topic. I thank her profusely. In 2005, James Noble shepherded several others and gave great encouragement for this project. Several other patterns were workshopped in various PLoPs. The participants have all been very helpful and we thank them. They include, but are not limited to the following people:Neil Harrison, Frank Buschmann, Andy Longshaw, Andreas Rüping, Kevlin Henney, Markus Völter, and Didi Schütz.

 Fred Grossman is my colleague and fellow agile trainer and coach. Together we have learned a lot. Ken Schwaber and Jim Coplien got me started with Scrum. Kent Beck and Ron Jeffries disabused me of many early misconceptions about XP. I thank them all.

 Thumbnails

 This section includes short descriptions of all the patterns we have identified to date. Slight variations on these names are used in the text to elicit the ideas. Some of the alternate names (given in parentheses here) are used interchangeably.

 Acceptance Tests. Create a suite of Executable Tests that will be sufficient for the customer to accept the work. They are under control of the customer.

 All Manager Scrum. (distributed project) Site managers have a frequent coordination meeting.

 Ambassador. [5] (distributed project) A representative of a needed skill group visits the remote team.

 Architecture Sprint. (large project) In a sufficiently large/complex project, it may be necessary to have an initial iteration that sets a starting overall architecture for the system. This architecture may need to evolve over time so simplicity here is a virtue as elsewhere.

 Ask For More. When you know you will have extra time within an iteration, ask the customer for more work.

 Be Human (Humane Workplace). Provide a Humane Workplace to maximize productivity.

 Be Together. (distributed project) Adjust time schedules to overlap in time as much as possible.

 Best Effort. The contract is not for features delivered on a given date. You want Best Effort and Full Communication.

 Beyond Extreme.(distributed project, primarily) Push all practices to their most disciplined point.

 Bonding. (distributed project) Provide funds for social Bonding within the team.

 Bug Generates Test. When a bug appears in code, write a set of tests that will only pass when it is corrected.

 Cards and Whiteboards. Things change too frequently to depend on elaborate documentation mechanisms.

 Coding Standard. Everyone shares the same coding look and feel.

 Collective Ownership. The team as a whole owns all of the created artifacts, especially the code.

 Collective Responsibility. The team shares responsibility and rewards for all tasks.

 Common Development Environment. [10] All developers use a common platform and agreed tools.

 Constant Refactoring. The structure of the code is continuously improved to take account of all stories built to date.

 Continuous Integration. Every task is integrated at completion and all unit tests are made to pass.

 Cultural Awareness. [10] (distributed project) Develop resources to overcome cultural differences.

 Customer Checks-Off Tasks. Only the customer knows when something is done.

 Customer Obtains Consensus. The customer role is responsible for obtaining consensus among the stakeholders.

 Customer-Tester Pair. (distributedproject) The customer works at one location with an acceptance tester.

 Daily Deployment. (tentative) Deploy new features daily.

 Daily Scrum. See Stand Up Meeting.

 Deliver Customer Value. Building things may be fun or not, but don't lose track of the real reason we are doing this.

 Documentation Is Just Another Task. Every story requires some kind of documentation. If it must be extensive, include it in estimates.

 DTSTTCPW. Do the Simplest Thing that Could Possibly Work. Build the code to implement the story and nothing more. Pay for generality only when you know you need it.

 Easy Does It (Don't Push Too Hard). As a customer, Don't Push Too Hard. It frustrates everyone. If you push too hard and "win," you lose if the iteration doesn’t complete successfully.

 Effective Coach. A novice team depends fundamentally on a coach (ScrumMaster) to keep you to the discipline and help you see opportunities and problems.

 End To End. The first release is an End To End version of the product.

 Energized Work. Sustainable Pace. Management sets work conditions so that everyone can work at their optimum over extended periods. E.g. Forty Hour Workweek.

 Estimate Whole Task. Estimates must include everything necessary for a story.

 Executable Tests. Tests are run so frequently they must be executable.

 Face Time. (distributedproject) Schedule time for significant parts of the team to work periodically on one site, especially the customer and developers.

 Feature Focused Teams. (distributed project primarily) Create teams around the features, not according to skill types.

 Flexible Velocity. Use velocity to allow for needed work that is not in the stories. But learn to get it into the stories.

 Full Communication. The developers keep the customer apprised always of opportunities, costs, difficulties, etc. The customer keeps the developers in the loop on the business needs and thinking that may affect future directions.

 Graceful Retreat. When you have overcommitted to an iteration, the customer chooses the work to complete.

 Grow Out. (distributedproject) The team begins co-located for an iteration or two.

 Grow Up. Start with a small team and grow it to the required size by adding a few developers at iteration points. The other practices enable this: Promiscuous Programming…

 Guiding Metaphor (Topos). Develop a Guiding Metaphor or story for the project that guides people as to the general direction.

 Half a Loaf. If the team is new and there is resistance to the practices, try the ones you think will give you the most benefit and then review in a Retrospective. Consider adding more practices as you go.

 High Discipline. No methodology will succeed if you don't actually do its practices faithfully. On the other hand, make sure they are the right practices or deal with the issue in a Retrospective.

 High Value First. Customer selects highest value features at every point.

 Humane Workplace. See Be Human.

 Implementer Re-estimates Task. Tasks are best estimated by the person who will do the work.

 Individual Stakeholder Budgets. When customer representatives can't come to a common understanding of priorities, they may need individual budgets of team resources.

 Informative Workspace. The team room (Our Space) employs Information Radiators so that progress and impediments are visible to any visitor. Whiteboards, note boards, etc., need to have enough graphically displayed information that anyone can immediately see the progress of the current iteration as well as any bottlenecks.

 Infrastructure. Before the project begins make sure the basic build, test, integrate, deploy infrastructure is in place.

 Initial Velocity. The Initial Velocity, measured in story points, is a small fraction of what you estimate it is possible to do in the first iteration. Thereafter, it is just Yesterday's Weather.

 Interfaces Are Just Another Story. (large project) If teams must coordinate over interfaces, write a high priority story to define the interface.

 Just Do It. When faced with choices that are all feasible, just pick one and do it.

 Just Start. Rather than talking and talking about how to do the project, Just Start it.

 Kickoff. [5] (distributedproject) Begin the project with a face to face meeting lasting some days.

 Local Manager. (distributedproject) Everyone has a manager local to their own site.

 Multiple Communication Modes. (distributed project, primarily) Provide many modes of communication and high bandwidth if the team can't share much Face Time.

 My Story. Know the state of progress of the story you are working on.

 Nano-Project. (large project, usually) A tiny project can quickly show the benefits of agile development to a reluctant stakeholder.

 Negotiated Scope Contract. Scope is the dependent variable in an agile project, so plan for this when you write your development contracts.

 Offer Alternatives. Developers offer alternatives to Customers when they recognizethem. Conversely, customers offer alternatives on desired features to developers to get feedback on likely costs and consequences.

 Once And Only Once. [2] Refactor code so that everything is said only once. But pay for generality only when you must.

 One Project. Everyone works on only one project at a time.

 Onsite Customer (Product Owner). The customer works in the team's room along with the rest of the Whole Team. Communication distance is very expensive.

 Our Space. The Whole Team works together in an open workspace to optimize communication.

 Pair Programming. No code is committed to the code base unless it is written by a pair.

 Pay Per Use. (tentative). Write a contract with the customer that will pay you per use of the system. Take on the risk of failure and share in the success.

 Personal Velocity. Each developer knows how much work she can do in an iteration. The Project Diary helps her keep records of past work. Individual estimates are too variable to be a management tool.

 Planning Game (Sprint Planning Meeting). Once each iteration (every two weeks, say) the team spends time planning the iteration, including what stories will be immediately built. See the literature as this is a highly disciplined planning exercise.

 Presence Indicator. (distributed project) Provide a way for everyone else's presence to be obvious to you when they are available.

 Product Owner. See Onsite Customer.

 Project Diary. Each developer keeps a bound book for the project. It is private to the individual and contains things like estimates vs. actuals on stories built, who you paired with, ideas for the next Retrospective, etc.

 Promiscuous Programming. Spread the knowledge of the project amongst the team members.

 Question Implies Acceptance Test. When the customer answers a question from the developers, she captures the answer in an acceptance test.

 Rapid Response Teams. (distributed project) Provide a matrix of skilled people to assist teams.

 Re-estimate Periodically. Things change and estimates become obsolete.

 Relative Estimates. Estimate quickly into a small number of estimation "bins." Don't spend time to be more precise than necessary in estimation.

 Remote Pair [5] (distributedproject) Find the tools to pair remotely and do it consistently.

 Retrospective. Periodically hold a retrospective [14] of the team's practices.

 Sacred Schedule. Time never slips in agile development. Features are the dependent variable.

 Scrum of Scrums. (large project) ScrumMasters hold a periodic (daily) coordination meeting.

 ScrumMaster. The ScrumMaster is responsible for process and forremoving obstacles.

 Self-Organizing Team. The team is responsible for its own internal process, practices, and management.

 Sheltering Manager. A new team will depend on some shelter from those in the organization who don't readily accept change.

 Shorten the Path. Shorten the communication distance between team members in any way possible.

 Shrinking Teams. If team velocity is increasing it may be possible to shrink the team and maintain sufficient velocity. Those freed can initiate other projects.

 Simple Design. Design only for the current stories. Simple logic, minimal generality, pass the tests.

 Single Point Organization. [10] (distributedproject) Everyone has a single reporting manager, and if that manager is at another site, a local manager to provide support.

 Small Releases (Incremental Development). Software is released on short cycles, say monthly.

 Social Tracker. The tracker must know how everyone is doing.

 Spike. Do quick prototypes to learn how to build or estimate something.

 Sprint. Iterations should be very short. A week to a month. Iterations deliver business value as determined by the Onsite Customer. They are strictly time-boxed.

 Stand Up Meeting(Daily Scrum).Fifteen minutes every day, to keep everyone on the same page.

 Stories(Project Backlog). All work is captured on story cards that form the basis of estimation, scheduling, and projection.

 Sustainable Pace (40 hour week). Pace the team for the long haul, not a sprint. You want everyone working in top form all the time.

 Team Continuity. Management commits to keeping the team together throughout the project. Team members make a similar commitment.

 Team Owns Individual Velocities. Individual velocities are not a management tool.

 Ten Minute Build. Do enough optimization (just enough) so that the system will build in ten minutes.

 Test Card. If the customer cannot write Executable Tests herself, then she creates Test Cards in answer to each question. The card specifies an acceptance test that will then be written by the implementer of the story.

 Test First. [2] No code without a failing test.

 Think Small. (large project) Begin with the small, essential, project inside the larger one you think you need. Then grow from there if necessary. This assumes you start with a small team and grow it if and when necessary. See Grow Up.

 Train Everyone. Initial training includes everyone, including customers and management.

 Virtual Workspace. (distributed project) Provide a cyberspace home for the team with effective communication tools.

 Whole Team. The team includes everyone with an essential skill. In particular, it includes the customer as a full team member.

 YAGNI. You Ain't Gonna Need it. Don't anticipate what might not occur. Don’t scaffold speculatively.

 Yesterday's Weather. The velocity of the next iteration is exactly the work successfully completed in the previous one. Of course this assumes that the time and personnel are fixed.

 References

 [1] Alexander, Ishikawa, Silverstein, A Pattern Language, Oxford, 1977

 [2] Beck, Andres, Extreme Programming Explained: 2ed, Addison-Wesley, 2004

 [3] Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1996

 [4] Belshee, Promiscuous Pairing and Beginner’s Mind: Embrace Inexperience, http://www.agile2005.org/XR4.pdf

 [5] Braithwaite, Joyce, XP Expanded: Distributed Extreme Programming, XP 2005 Proceedings, LNCS 3556, 2005

 [6] Cockburn, Agile Software Development, Addison Wesley, 2001

 [7] Cohn, Agile Estimating and Planning (Robert C. Martin Series) Prentice Hall, 2005

 [8] Coplien, Harrison, Patterns for Agile Software Development, Prentice Hall, 2004

 [9] Humphries, Introduction to the Personal Software Process, Addison-Wesley, 1997

 [10] Hvatum, Simien, Cretoiu, Heliot, Patterns and Advice for Managing Distributed Product Development Teams, EuroPLoP 2005, UVK Universitatsverlag Konstanz GmbH, 2006

 [11] Jackson Principles of Program Design. Academic Press, London and New York, 1975

 [12] Jeffries, Anderson, Hendrickson, Extreme Programming Installed, Addison-Wesley, 2001

 [13] Kerievsky, Refactoring to Patterns, Addison-Wesley, 2005

 [14] Kerth, Project Retrospectives: A Handbook for Team Reviews, Dorset House, 2001

 [15] Manns, Rising, Fearless Change, Addison-Wesley, 2004

 [16] Martin, Noble, Biddle, "Programmers Are From Mars", Customers Are From Venus. PLoP 2006 proceedings.

 [17 Mugridge, Cunningham, Fit for Developing Software : Framework for Integrated Tests, Prentice Hall, 2005

 [18] Rueping, Agile Documentation : A Pattern Guide to Producing Lightweight Documents for Software Projects, Wiley, 2003

 [19] Schümmer and Schümmer, "Support for Distributed Teams in Extreme Programming", in Extreme Programming Examined, Succi and Marchesi (eds), Addison-Wesley, 2001

 [20] Schwaber, Beedle, Agile Software Development with Scrum, Prentice Hall, 2002

 [21] Surowiecki, The Wisdom of Crowds, Anchor, 2005

 [22] Yip, It's Not Just Standing Up: Patterns for daily Stand Up Meetings, PLoP 2006 Conference. Portland, OR, 2006

OEBPS/Images/BridgeCoverv3epubPreview.png
Joseph Bergin

OEBPS/Images/Forces.png

OEBPS/Images/XPPracticesSmall.png
Continuous Soliecive
Integration Shared Code

T T 7T

Coding Standards

Guiding Metaphor [«—| Pair Programming [« Test First

— S
v A4
Constant
Planning Game Refactoring |«»>| Executable Tests
S w S— —
v l v
. Our Space Simple Design
Onsite Customer Sit Together Incremental Design
e St ‘— ——
Y v
‘Small Releases .
" Energized Work
Incremental [«—| Retrospective |« >
Deployment Sustainable Pace

OEBPS/Images/EstimateWholeTaskSmall.png
Documentation is
Yesterday's Weatner [| DotSmenaion’s sk For More Retrospective
Sacred Schedule Onsite Customer
Flexible Velocity
-
v
Lo
Project Diary (Record Negotiated Scope
- [«——| Estimate Whole Task L RS
+—! Implementer Re-
I estimates Tasks.
Spike i 1 L —
f oTSTTCPW YAGNI
Re-Estimate
ki Planning Game

OEBPS/Images/ShelteringManager.png
Infrastructure
(testing, integration)

—

1)

Whole Team Sheltering Manager ScrumMaster
b_ b_
Energized Work
Sustainable Pace
!
Best Effort Train Everyone Our Space

Sit Together

OEBPS/Images/ScrumPractices.png
Collective
Whole Team |« gecponsibility
Sacred Schedule Onsite Customer Self-Organizing
Sprint Product Owner Team
— _I—
v
Planning Game/ || _ Stories Our Space
Sprint Planning Project Backlog Sit Together
A
Small Releases Standup Meeting
Incremental ScrumMaster [“haily Serum
Deployment
—
A
Retrospective
Sprint Review

