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Abstract 

A keystroke biometric system for long-text input was developed and evaluated for 
identification and authentication applications.  The system consists of a Java applet to collect 
raw keystroke data over the Internet, a feature extractor, and pattern classifiers to make 
identification or authentication decisions.  Experiments on over 100 subjects investigated two 
input modes – copy and free-text input – and two keyboard types – desktop and laptop 
keyboards.  The system can accurately identify or authenticate individuals if sufficient 
enrollment samples are available and if the same type of keyboard is used to produce the 
enrollment and questioned input samples.  Identification and authentication performance 
decreased significantly when subjects used different input modes or different keyboard types for 
enrollment and testing.  Longitudinal experiments quantified performance degradation over 
intervals of several weeks and over an interval of two years.  Additional experiments 
investigated the system’s hierarchical model, parameter settings, assumptions, and sufficiency of 
enrollment samples and input-text length. 

 
Keywords: biometrics, pattern recognition, behavioral biometrics, keystroke biometric, user 
authentication, user identification 

Introduction 

This chapter concerns identification and authentication applications of the keystroke 
biometric for long-text input of about 650 keystrokes, which is a short paragraph of about eight 
lines.  An example identification application is a small company environment in which there has 
been a problem with the circulation of inappropriate (unprofessional, offensive, or obscene) e-
mail from easily accessible desktops in a work environment, and it is desirable to identify the 
perpetrator.  An authentication application is verifying the identity of students taking online 
quizzes or tests, which is an application becoming more important with the student population of 
online classes increasing and instructors becoming concerned about evaluation security and 
academic integrity.  Finally, with more businesses moving to e-commerce, the keystroke 
biometric in Internet applications can provide an effective balance between high security and 
customer ease-of-use (Yu & Cho, 2004). 

The keystroke biometric is one of the less-studied behavioral biometrics.  Keystroke 
biometric systems measure typing characteristics believed to be unique to an individual and 
difficult to duplicate (Bolle, Connell, Pankanti, Ratha, & Senior, 2004; Jin, Ke, Manuel, & 
Wilkerson, 2004).  Although most of the systems developed have been experimental in nature, 
there is a commercial product, BioPassword, currently used for hardening passwords (short 
input) in existing computer security schemes (Obiadat & Sadoun, 1999).   

The keystroke biometric is appealing for several reasons.  First, it is not intrusive and 
computer users type frequently for both work and pleasure.  Second, it is inexpensive since the 
only hardware required is a computer with keyboard.  Third, keystrokes continue to be entered 
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for potential subsequent checking after an authentication phase has verified a user’s identity (or 
possibly been fooled) since keystrokes exist as a mere consequence of users using computers 
(Gunetti & Picardi, 2005).  This continuing verification throughout a computer session is 
sometimes referred to as dynamic verification (Leggett & Williams, 2005; Leggett, Williams, 
Usnick, & Longnecker, 1991).   

Most of the previous work on the keystroke biometric has dealt with user authentication, and 
while some studies used long-text input (Bergadano, Gunetti, & Picardi, 2002; Gunetti & 
Picardi, 2005; Leggett & Williams, 2005), most used passwords or short name strings (Bolle et 
al., 2004; Brown & Rogers, 1993; Obaidat & Sadoun, 1999).  Fewer studies have dealt with user 
identification (Gunetti & Picardi, 2005; Peacock, Ke, & Wilkerson, 2004; Song, Venable, & 
Perrig, 1997).  Gunetti and Picardi (2005) focused on long free-text passages, similar to this 
research, and also attempted the detection of uncharacteristic patterns due to fatigue, distraction, 
stress, or other factors.  Song et al. (1997) touched on the idea of detecting a change in identity 
through continuous monitoring.   

Researchers tend to collect their own data and no known studies have compared techniques 
on a common database.  Nevertheless, the published literature is optimistic about the potential of 
keystroke dynamics to benefit computer system security and usability (Woodward, Orlans, & 
Higgins, 2002).  Gunetti and Picardi (2005) suggest that if short inputs do not provide sufficient 
timing information, and if long predefined texts entered repeatedly are unacceptable, we are left 
with only one possible solution, using users’ normal interactions with computers, free text, as we 
do in this research. 

Generally, a number of measurements or features are used to characterize a user’s typing 
pattern.  These measurements are typically derived from the raw data of key press times, key 
release times, and the identity of the keys pressed.  From key-press and key-release times a 
feature vector, often consisting of keystroke duration times and keystroke transition times, can 
be created (Woodward et al., 2002).  Such measurements can be collected from all users of a 
system, such as a computer network or web-based system, where keystroke entry is available, 
and a model that attempts to distinguish an individual user from others can be established.  For 
short input such as passwords, however, the lack of sufficient measurements presents a problem 
because keystrokes, unlike other biometric features, convey only a small amount of information.  
Moreover, this information tends to vary for different keyboards, different environmental 
conditions, and different entered texts (Gunetti & Picardi, 2005).   

The keystroke biometric system reported here is unique in several respects.  First, it collects 
raw keystroke data over the Internet, which is desirable for Internet security applications such as 
those described above.  Second, it focuses on long-text input where sufficient keystroke data are 
available to permit the use of powerful statistical feature measurements – and the number, 
variety, and strength of the measurements used in the system are much greater than those used 
by earlier systems reported in the literature.  Third, it focuses on applications using arbitrary text 
input because copy texts are unacceptable for most applications of interest.  However, because 
of the statistical nature of the features and the use of arbitrary text input, special statistical 
fallback procedures were incorporated into the system to handle the paucity of data from 
infrequently used keyboard keys.   

This chapter extends two previous studies on the identification application of a long-text 
keystroke biometric system.  The first previous study showed the feasibility of an earlier version 
of the identification system on a text copy task (Curtin et al., 2006).  The second showed the 
effectiveness of an improved system under ideal conditions of a fixed text and keyboard, and 
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under less favorable conditions of arbitrary texts and different keyboard types for enrollment and 
testing (Villani et al., 2006).  This chapter extends the earlier studies, essentially the second one, 
in several ways.  First, it presents the results of the second study in a clearer manner.  Second, it 
extends the system to include an authentication component and presents authentication results to 
complement the earlier identification results.  Third, it collects new data and performs 
longitudinal studies on data collected over intervals of several weeks and over an interval of two 
years to quantify performance degradation over time.  Finally, it conducts additional 
experiments to investigate the hierarchical model, the parameter settings, the normal distribution 
assumption for the primary feature measurements, and the sufficiency of the number of 
enrollment samples and input text length. 

The remainder of the chapter is organized as follows.  The next section describes the 
keystroke biometric system, having components for data capture, feature extraction, and 
classification.  Subsequent sections describes the experimental design and data collection; the 
experimental results on identification, on authentication, on the longitudinal studies, and on the 
system model and parameters; and finally the conclusions and suggestions for future work. 

Keystroke Biometric System 

The keystroke biometric system consists of four components: raw keystroke data capture, 
feature extraction, classification for identification, and classification for authentication. 

Raw Keystroke Data Capture 

A Java applet collects keystroke data over the Internet (Figure 1).  The user is required to 
type in his/her name, but no data is captured on this entry.  The submission number is 
automatically incremented after each sample submission, so the subject can immediately start 
typing the next sample.  If the user is interrupted during data entry, the “Clear” button blanks all 
fields, except name and submission number, allowing the user to redo the current entry.  

 

 
Figure 1. Java applet for data collection, 

reprinted with permission from Villani et al. (2006). 
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Upon pressing submit, a raw-data text file is generated, which is delimited by the ‘~’ 
character.  Figure 2 shows the aligned version of the “Hello World!” raw data file.  The raw data 
file contains the following information for each entry: 1) entry sequence number, 2) key’s 
character, 3) key’s code text equivalent, 4) key’s location (1 = standard, only one key location; 2 
= left side of keyboard; 3 = right side of keyboard), 5) time the key was pressed (milliseconds), 
6) time the key was released (milliseconds).  The number of left-mouse-click, right-mouse-click, 
and double left-mouse-click events during the session (these are events in contrast to key 
presses) are listed at the end of the file. 

 

 
Figure 2. Aligned raw data file for “Hello World!”, 
reprinted with permission from Villani et al. (2006). 

Feature Extraction 

The system extracts a feature vector from the information in a raw data file.  The features are 
statistical in nature and designed to characterize an individual’s keystroke dynamics over writing 
samples of 200 or more characters.  Most of the features are averages and standard deviations of 
key press duration times and of transition times between keystroke pairs, such as digraphs 
(Obaidat & Sadoun, 1999; Peacock et al., 2004).  Figure 3 shows the transition between 
keystrokes measured in two ways: from the release of the first key to the press of the second, t1, 
and from the press of the first to the press of the second, t2.  While the second measure, t2, is 
always positive because this sequence determines the keyboard output, the first measure, t1, can 
be negative.  We refer to these two measures of transition time as type-1 and type-2 transition 
features. 
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Figure 3. A two-key sequence (th) shows the two transition measures: t1 = press time of second key – release time 
of first, and t2 = press time of second key – press time of first.  A keystroke is depicted as a bucket with the down 
arrow marking the press and the up arrow the release time.  Part a) non-overlapping keystroke events (t1 positive), 

and b) overlapping keystroke events where the first key is released after the second is pressed (t1 negative). 
Reprinted with permission from Villani et al. (2006). 

 
While key press duration and transition times are typically used as features in keystroke 

biometric studies, our use of the statistical measures of means and standard deviations of the key 
presses and transitions is uncommon and only practical for long text input.  As additional 
features, we use percentages of key presses of many of the special keys.  Some of these 
percentage features are designed to capture the user’s preferences for using certain keys or key 
groups – for example, some users do not capitalize or use much punctuation.  Other percentage 
features are designed to capture the user’s pattern of editing text since there are many ways to 
locate (using keys – Home, End, Arrow keys – or mouse clicks), delete (Backspace or Delete 
keys, or Edit-Delete), insert (Insert, shortcut keys, or Edit-Paste), and move (shortcut keys or 
Edit-Cut/Edit-Paste) words and characters.  

This study used 239 feature measurements (a complete list is presented in the Appendix).  
These features make use of the letter and digraph frequencies in English text (Gains, 1956), and 
the definitions of left-hand-letter keys as those normally struck by fingers of a typist’s left hand 
(q, w, e, r, t, a, s, d, f, g, z, x, c, v, b) and right-hand-letter keys as those struck by fingers of the 
right hand (y, u, i, o, p, h, j, k, l, n, m).  The features characterize a typist’s key-press duration 
times, transition times in going from one key to the next, the percentages of usage of the non-
letter keys and mouse clicks, and the typing speed.  The granularity of the duration and 
transition features is shown in the hierarchy trees of Figures 4 and 5.  For each of these trees, the 
granularity increases from gross features at the top of the tree to fine features at the bottom.  The 
least frequent letter in the duration tree is “g” with a frequency of 1.6%, and the least frequent 
letter pair in the transition tree is “or” with a frequency of 1.1% (Gains, 1956).  The six least 
frequent letters are grouped under “other” and the infrequent digraphs are also grouped.  The 
239 features are grouped as follows: 
 

• 78 duration features (39 means and 39 standard deviations) of individual letter and non-letter 
keys, and of groups of  letter and non-letter keys (Figure 4) 
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• 70 type-1 transition features (35 means and 35 standard deviations) of the transitions 
between letters or groups of letters, between letters and non-letters or groups thereof, 
between non-letters and letters or groups thereof, and between non-letters and non-letters or 
groups thereof (Figure 5) 

• 70 type-2 transition features (35 means and 35 standard deviations) identical to the type-1 
transition features except for the method of measurement (Figure 5) 

• 19 percentage features that measure the percentage of use of the non-letter keys and mouse 
clicks 

• 2 keystroke input rates: the unadjusted input rate (total time to enter the text / total number of 
keystrokes and mouse events) and the adjusted input rate (total time to enter the text minus 
pauses greater than ½ second / total number of keystrokes and mouse events) 
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Figure 4. Hierarchy tree for the 39 duration categories (each oval),  
reprinted with permission from Villani et al. (2006). 
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Figure 5. Hierarchy tree for the 35 transition categories (each oval) for type 1 and type 2 transitions, 
reprinted with permission from Villani et al. (2006). 

 
The computation of a keystroke-duration mean (μ) or standard deviation (σ) requires special 

handling when there are few samples.  For this we use a fallback procedure which is similar to 
the “backoff” procedures used in natural language processing (Jurafsky & Martin, 2000).  To 
compute μ for few samples – that is, when the number of samples is less than kfallback-threshold (an 
experimentally-optimized constant) – we take the weighted average of μ  of the key in question 
and μ of the appropriate fallback as follows: 
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where μ’(i) is the revised mean, n(i) is the number of occurrences of key i, μ(i) is the mean of 
the n(i) samples of key i, μ(fallback) is the mean of the fallback, and kfallback-weight is the weight 
(an experimentally-optimized constant) applied to the fallback statistic.  The appropriate 
fallback is determined by the next highest node in the hierarchy tree.  For example, the “m” 
falls back to “least frequent consonants”, which falls back to “all letters”, which falls back to 
“all keys”.  Because we are dealing with long-text input, fallback is necessary for only 
infrequently used keys; thus, it is based primarily on frequency of use and fallback of more than 
one level is rare.  The σ (i) are similarly computed, as are the means and standard deviations of 
the transitions.  Thus, we ensure the computability (no zero divides) and obtain reasonable 
values for all feature measurements. 

Two preprocessing steps are performed on the feature measurements, outlier removal and 
feature standardization.  Outlier removal consists of removing any duration or transition time 
that is far (more than koutlier-σ standard deviations) from the subject’s μ (i) or μ (i, j), respectively.  
After outlier removal, averages and standard deviations are recalculated.  The system can 
perform outlier removal a fixed number of times, recursively, or not at all, and this parameter, 
koutlier-pass, is experimentally optimized.  Outlier removal is particularly important for these 
features because a keyboard user could pause for a phone call, for a sip of coffee, or for 
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numerous other reasons, and the resulting outliers (usually overly long transition times) could 
skew the feature measurements.  Using a hill-climbing method, the four parameters – kfallback-

threshold, kfallback-weight, koutlier-σ , and koutlier-pass – were optimized on different data from an earlier 
study (Curtin et al., 2006).  

After performing outlier removal and recalculation, we standardize the measurements by 
converting raw measurement x to x’ by the formula,  

 

minmax

min'
xx

xxx
−

−
=                      (2) 

 

where min and max are the minimum and maximum of the measurement over all samples from 
all subjects (Dunn & Everitt , 2004).  This provides measurement values in the range 0-1 to give 
each measurement roughly equal weight. 

Classification for Identification 

For identification, a Nearest Neighbor classifier, using Euclidean distance, compares the 
feature vector of the test sample in question against those of the samples in the training 
(enrollment) set.  The author of the training sample having the smallest Euclidean distance to the 
test sample is identified as the author of the test sample. 

Classification for Authentication 

For authentication, a vector-difference dichotomy model transforms a multi-class 
(polychotomy) problem into a two-class (dichotomy) problem (Figure 6) (Choi, Yoon, Cha, & 
Tappert , 2004; Yoon, Choi, Cha, Lee, & Tappert, 2005).   
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Figure 6. Authentication transformation from (a) Feature space to (b) Feature distance space, 
reprinted with permission from Yoon et al. (2005). 

 
To explain the dichotomy transformation process, take an example of three people {P1,P2,P3} 
where each person supplies three biometric samples.  Figure 6 (a) plots the biometric sample 
data for these three people in the feature space, exemplifying the polychotomy model.  This 
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feature space is transformed into a distance vector space by calculating vector distances between 
pairs of samples of the same person (intra-person distances, denoted by x⊕) and distances 
between pairs of samples of different people (inter-person distances, denoted by x∅).  Let dij 
represent the feature vector of the ith person’s jth biometric sample, then x⊕ and x∅ are calculated 
as follows : 
 

               x⊕ = |dij – dik| where i=1 to n, and j,k=1 to m, j≠k            (3) 
x∅= |dij – dkl| where i,k=1 to n, i≠k and j,l=1 to m 

 

where n is the number of people and m is the number of samples per person.  Figure 6 (b) shows 
the transformed feature distance space for the example problem.  

Yoon et al. (2005) derive the numbers of the inter- and intra-person distances.  If n people 
provide m biometric samples each, the numbers of intra-person and inter-person distance 
samples, respectively, are: 
 

( )
2

1n nmm ×−×
=⊕   and  ( )

2
1n −×

××=∅
nnmm                (4) 

 

In the feature distance space we then use the Nearest Neighbor classifier, using Euclidean 
distance, to compare a feature vector distance against those in the training (enrollment) set.  The 
training sample having the smallest Euclidean distance to the test sample is identified, and the 
test sample assigned as being intra-class (same person) or inter-class (different people) 
according the truth of that training sample. 

Experimental Design and Data Collection 

In this study, we vary two independent variables – keyboard type and input mode – to 
determine their effect on both identification and authentication performance.  The keyboard 
types were desktop and laptop PC keyboards.  The input modes were a copy task and free 
(arbitrary) text input.  By varying these independent variables, we determined the distinctiveness 
of keystroke patterns when training and testing on long-text input under ideal conditions (same 
input mode and keyboard type for enrollment and testing) and under non-ideal conditions 
(different input mode, different type of keyboard, or both, for enrollment and testing).  

All the desktop keyboards were manufactured by Dell and the data obtained primarily in 
classroom environments; over 90% of the smaller laptop keyboards (mostly individually owned) 
were also by Dell, and the others were a mix of IBM, Compaq, Apple, HP, and Toshiba 
keyboards.   

We used two input modes: a copy-task in which subjects copied a predefined text of 652 
keystrokes (515 characters with no spaces, 643 with spaces, and 652 including 9 shift-key 
presses for uppercase), and free-text input in which subjects typed arbitrary emails of at least 
650 keystrokes.  The subjects were instructed to correct errors, further increasing the number of 
keystrokes.  

Figure 7 summarizes the experimental design and shows the subject pool.  The two 
independent variables – the two keyboard types and the two input modes – yield four data 
quadrants.  Data were collected in each quadrant: desktop copy, laptop copy, desktop free text, 
and laptop free text.  There are four optimal (ideal) conditions – enrollment and testing on data 
within each of the four quadrants.   

There are six non-optimal experimental groups corresponding to the six arrows in Figure 7 – 
training on data at one end of the arrow and testing on data at the other end (and since either end 
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of an arrow can be the starting point, there are a total of 12 non-optimal experimental 
conditions).  Groups 1 and 2 compare the two input modes on the desktop and laptop keyboards, 
respectively.  Groups 3 and 4 compare the two keyboard types on the copy-task and free-text 
inputs, respectively.  Finally, groups 5 and 6 compare the two possible ways of having different 
keyboard types and different input modes for enrollment and testing.  Note that although there 
are six experimental groups (arrows), there are three major experimental groupings – training 
and testing on different input modes (the two vertical arrows), different keyboard types (the two 
horizontal arrows), and both different input modes and different keyboard types (the two 
diagonal arrows).   
 

 
Figure 7. Experimental design showing the subject pool, 

adapted with permission from Villani (2006). 
 

For data collection, the subjects were asked to complete a minimum of two of the four 
quadrants as indicated by the two horizontal and two vertical arrows in Figure 7.  A subject 
completes a quadrant by typing a minimum of 5 samples of that category.  Data samples were 
obtained from students in introductory computer classes (accounting for the majority of the data 
samples); from students in classes at the masters and doctoral levels; and from friends, family, 
work colleagues, and fellow academics.  

Although all subjects were invited to participate in all four quadrants of the experiment, due 
to time or equipment limitations some opted for two (minimum) while others participated in 
three or four quadrants of the experiment.  A total of 118 subjects supplied five entries in at least 
two quadrants of the experiment (incomplete sample sets were discarded), and 36 completed all 
four quadrants of the experiment (Figure 7, Table 1).   

 

Age Female Male Total 
Under 20 15 19 34 

20-29 12 23 35 
30-39 5 10 15 
40-49 7 11 18 
50+ 11 5 16 
All 50 68 118 

Table 1: Summary of subject demographics, adapted with permission from Villani (2006). 
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Data on the 118 subjects were collected in 2006.  To collect reasonable amounts of data 
quickly the timing of the input samples was not controlled, and about half of the subjects input 
all their keystroke data samples in one sitting, while the others input their samples over several 
days or weeks.  Similar data were collected in 2008 for the longitudinal studies, and the 
recording times of these data were accurately controlled. 

For the copy and free-text tasks on a desktop keyboard (group 1), the subjects typed a copy 
of the predefined passage five times and then typed five arbitrary emails on a desktop keyboard.  
For the copy and free-text tasks on a laptop keyboard (group 2), the typing was similar but on a 
laptop keyboard.  These two experimental groupings were most suited for subjects having access 
to only one keyboard.  Groups 3 and 4 required the subjects to type in the same mode but on 
different keyboards.  Finally, groups 5 and 6 required the subjects to type in different input 
modes and on different keyboard types.   

Experimental Results 

Experimental results are presented here for biometric identification, biometric authentication, 
longitudinal studies on both identification and authentication, and an investigation of the system 
hierarchical model and parameter settings. 

Identification Experimental Results 

The identification results of the study are summarized in Tables 2 and 3, and corresponding 
Figures 8 and 9, respectively.  Table 2 and Figure 8 present the results under the optimal 
conditions of training (enrollment) and testing on data obtained using the same keyboard type 
and the same input mode.  Since training and testing were under the same conditions, the leave-
one-out procedure was used in order to test on data different from that used for training.  As 
anticipated, performance (accuracy) is high under these optimal conditions – greater than 98% 
when the population of users is relatively small (36-subject experiment), and decreasing for 
larger numbers of subjects.  This performance decrease as the number of subjects increases is 
highlighted in the average of the four cases at the bottom of Table 2, which indicates that 
doubling the number of subjects increases the error rate by about a factor of four (from 0.7% to 
2.6%).  The graphs of the four optimal-condition cases in Figure 8 also show the large effect of 
population increase on performance.   

 
Conditions 36-Subject Full-Subject 

Train and Test Subjects Accuracy Subjects Accuracy 

DeskCopy 36 99.4% 93 99.1% 
LapCopy 36 100.0% 47 99.2% 
DeskFree 36 98.3% 93 93.3% 
LapFree 36 99.5% 47 97.9% 
Average 36 99.3% 70 97.4% 

Table 2. Identification performance under optimal conditions. 
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Figure 8.  Identification performance under optimal conditions, graphs of results from Table 2. 

 
Under optimal conditions in the 36-subject experiment, accuracy varied somewhat from 

quadrant to quadrant.  For example, accuracy was a little higher on the copy task compared to 
free-text input – 99.4% compared to 98.3% on desktop keyboards, and 100.0% compared to 
99.5% on laptop keyboards.  These differences, however, were not statistically significant – for 
example, the first difference yielded a null hypothesis p = 0.3 (Chi-square was used for all tests 
of statistical significance).  Higher copy task accuracy is understandable since the copy samples 
were of the same text whereas the free-text samples were of different texts.  Also, other variables 
being equal, accuracy was a little higher on the laptop keyboards compared to the desktop 
keyboards – 100.0% compared to 99.4% for the copy task, and 99.5% compared to 98.3% for 
free-text input.  These differences were also not statistically significant.  The reason for higher 
laptop accuracy is likely the greater variety of laptop keyboards used in the experiments and the 
subject’s greater familiarity with the laptops since they were usually owned by the subjects. 

Table 3 and Figure 9 present the results under the non-optimal conditions of training and 
testing under different conditions – different input modes, different keyboard types, or both 
different input modes and different keyboard types.  The graphs of Figure 9, which average the 
two cases in each of the six groups of Table 3, clearly show the degradation in performance as 
the conditions for training and testing go from different input modes (groups 1 and 2), to 
different keyboard types (groups 3 and 4), and finally to both different input modes and different 
keyboard types (groups 5 and 6).  They also show the decrease in performance as the population 
increases.   

Under non-optimal conditions in the 36-subject experiment, accuracy decreased from about 
99% under optimal conditions to about 90% when the subjects used the same keyboard type but 
different input modes (the four cases in groups 1 and 2).  For example the accuracy decrease in 
going from the optimal-condition DeskCopy/DeskCopy (99.4%) to the non-optimal- condition 
DeskCopy/DeskFree (89.3%) was statistically significant (p < 0.0001).  Accuracy dropped even 
more significantly (from about 99% to about 60%) when the subjects used the same copy or 
free-text input mode but different keyboard types for enrollment and testing (groups 3 and 4).  
Finally, accuracy decreased most significantly, from about 99% to about 53%, when the subjects 
used different input modes and different keyboard types (groups 5 and 6).  These results suggest 
that an individual’s keystroke patterns differ for the different input modes and the different 
keyboard types, and differ more for different keyboard types than for different input modes.  
Figure 9 graphically shows the performance on the three major conditions of training and testing 
on different input modes (groups 1 and 2), different keyboard types (groups 3 and 4), and both 



13 

different input modes and different keyboard types (groups 5 and 6), as well as the performance 
decrease as the number of subjects increase.  
 

Conditions 36-Subject Full-Subject 
Group 

Train Test Subjects Accuracy Subjects Accuracy 

DeskCopy DeskFree 36 89.3% 93 73.7% 1 
DeskFree DeskCopy 36 91.7% 93 81.1% 
LapCopy LapFree 36 86.2% 47 80.2% 2 
LapFree LapCopy 36 91.0% 47 87.7% 

DeskCopy LapCopy 36 60.8% 52 54.6% 3 
LapCopy DeskCopy 36 60.6% 52 51.9% 
DeskFree LapFree 36 59.0% 40 59.1% 4 
LapFree DeskFree 36 61.0% 40 62.4% 

DeskCopy LapFree 36 51.6% 41 51.4% 5 
LapFree DeskCopy 36 58.0% 41 51.4% 

DeskFree LapCopy 36 52.1% 40 44.2% 6 
LapCopy DeskFree 36 50.3% 40 51.4% 

Table 3. Identification performance under non-optimal conditions. 
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Figure 9.  Identification performance under non-optimal conditions, 

 graphs of averaged group results from Table 3. 

Authentication Experimental Results 

The authentication results are presented in Tables 4, 5, and 6.  Tables 4 and 5 present the 
results under optimal conditions (same conditions for training and testing) on the 36-subject 
data, using 18 subjects for training and the remaining 18 for testing.  The experiments in Table 4 
used all the inter-class samples and those in Table 5 used a reduced set of inter-class samples.  
For the first test in Table 4, for example, the training and testing sets each consisted of 90 
samples (18 subjects contributing 5 samples each), with all samples obtained under the 
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DeskCopy conditions.  The intra- and inter-class sizes were 180 and 3825, respectively, and the 
tests in this case were run on all the dichotomy data without reducing the sample size of the inter 
class data (in the third test the smaller intra-inter class size is due to a few missing samples).  
 

Intra-Inter Class SizesConditions 
Train Test 

FRR FAR Performance 

DeskCopy 180-3825 180-3825 11.1% 6.0% 93.8% 
LapCopy 180-3825 180-3825 7.8% 4.4% 95.5% 
DeskFree 171-3570 176-3740 28.4% 1.4% 97.4% 
LapFree 180-3825 180-3825 15.6% 3.7% 95.7% 

Average 15.7% 3.9% 95.6% 
Table 4. Authentication performance under optimal conditions, 

 train 18 and test 18 different subjects using all inter-class samples. 
 

Table 5 repeated the optimal-conditions experiments of Table 4 but used a reduced set of 
randomly selected 500 inter-class data samples.  With fewer enrollment samples system 
performances decreased from roughly 95% to 90%, a doubling of the error rate, but FRR and 
FAR were closer in value because the numbers of intra and inter-class samples were more 
balanced.  
 

Intra-Inter Class SizesConditions 
Train Test 

FRR FAR Performance 

DeskCopy 180-500 180-500 10.0% 13.4% 87.5% 
LapCopy 180-500 180-500 1.7% 10.2% 92.1% 
DeskFree 171-500 176-500 18.8% 5.0% 91.4% 
LapFree 180-500 180-500 9.4% 10.8% 89.6% 

Average 10.0% 9.9% 90.2% 
Table 5. Authentication performance under optimal conditions, 

 train 18 and test 18 different subjects using 500 random inter-class samples. 
 

Table 6 presents the results under non-optimal conditions (training on one condition and 
testing on another) on the 36-subject data.  The tests were performed on a reduced set of 500 
randomized inter-class samples because the full number of inter-class samples was over 15,000.  
Interestingly, the authentication results under non-optimal conditions only decreased from an 
average of 90.2% to 87.4% (Tables 5 and 6, respectively, on 500 inter-class samples), a small 
decrease compared to the corresponding decrease in the identification experiments, but partially 
explained by the larger number of intra-class samples under the non-optimal conditions.  
Furthermore, and somewhat surprisingly, the three different primary conditions showed 
essentially the same average performance – same keyboard type/different input modes (groups 1 
and 2) an average performance of 87.0%, same input mode/different keyboard types (groups 3 
and 4) 87.5%, and different input modes/different keyboard types (groups 5 and 6) 87.7%.  Thus, 
although average performance dropped from 90.2% under optimal conditions to 87.4% under 
non-optimal conditions, the performance does not change significantly as we go from different 
input modes, to different keyboard types, and to different input modes and different keyboard 
types.  We attribute these strong non-optimal results to the robustness of the authentication 
system. 
 



15 

Conditions Intra-Inter 
Class Sizes  

Train Test Train Test 
FRR FAR Performance 

DeskCop
y DeskFree 360-500 347-500 8.1% 17.8% 86.2% 1 

DeskFree DeskCopy 347-500 360-500 3.3% 13.0% 91.0% 
LapCopy LapFree 360-500 360-500 3.6% 40.4% 75.0% 2 
LapFree LapCopy 360-500 360-500 5.8% 3.4% 95.6% 
DeskCop

y LapCopy 360-500 360-500 5.3% 6.8% 93.8% 3 
LapCopy DeskCopy 360-500 360-500 4.7% 18.0% 87.6% 
DeskFree LapFree 347-500 360-500 3.1% 38.8% 76.2% 4 
LapFree DeskFree 360-500 347-500 8.9% 6.8% 92.3% 
DeskCop

y LapFree 360-500 360-500 5.8% 22.2% 84.7% 5 
LapFree DeskCopy 360-500 360-500 5.3% 8.8% 92.7% 

DeskFree LapCopy 347-500 360-500 1.7% 14.4% 90.9% 6 
LapCopy DeskFree 360-500 347-500 3.2% 27.6% 82.4% 

Average 4.9% 18.2 87.4 
Table 6. Authentication performance under non-optimal conditions, 

 36 subjects, using 500 random inter-class samples. 
 

Longitudinal Study Results 

 In order to study the accuracy of identification and authentication over time, we performed 
studies at two-week intervals and at a two-year interval.  The two-week interval study used 13 
subjects who had not participated in the earlier experiments, and the two-year interval study 
brought back 8 of the participants of the earlier 36-subject study for additional data samples.  All 
the longitudinal experimental results were obtained under non-optimal conditions – different 
keyboard type, different input mode, or both, for training (enrollment) and testing.  

The identification and authentication results of the two-week-interval study are presented in 
the Tables 7 and 8, respectively.  Baseline results were obtained by training and testing on data 
from the same week – week 0 (W0-W0), week 2 (W2-W2), and week 4 (W4-W4), and these 
three sets of results were combined to obtain overall “Same-Week” performance.  For the two-
week interval, results were obtained by training on week 0 and testing on week 2 (W0-W2) and 
by training on week 2 and testing on week 4 (W2-W4), and these two sets of results were 
combined for the overall “Two-Week Interval” performance.  For the “Four-Week Interval”, 
results were obtained by training on week 0 and testing on week 4 (W0-W4).  Five samples were 
collected from each subject in each quadrant, for a total of 65 samples per file (with the 
exception of the week-4 laptop copy file, which was missing one sample for a total of 64 
samples).  Percentages shown are the percent of the samples correctly identified.  The 
identification results (Table 7) shows the degree of performance degradation over time, 
summarized by the average performance (bottom line of table).   

 
Conditions  

Train Test 
Same 

Week 
Two Week 
Interval 

Four Week 
Interval 
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DeskCopy DeskFree 94.3 77.7 78.5 1 
DeskFree DeskCopy 97.5 87.7 90.8 
LapCopy LapFree 94.3 93.1 90.8 2 
LapFree LapCopy 91.7 89.1 89.1 

DeskCopy LapCopy 90.2 89.2 87.5 3 
LapCopy DeskCopy 96.9 97.7 87.7 
DeskFree LapFree 85.7 79.2 76.9 4 
LapFree DeskFree 96.4 91.6 87.7 

DeskCopy LapFree 81.7 74.2 70.7 5 
LapFree DeskCopy 89.7 80.0 83.1 

DeskFree LapCopy 74.7 77.5 75.0 6 
LapCopy DeskFree 85.1 86.2 81.5 

Average Performance 89.9 85.3 83.3 
Table 7.  Identification performance on 13 subjects over two-week intervals. 

 
 The authentication results (Table 8) showed less performance degradation than the 
identification results over the two- and four-week intervals.   
 

Conditions Same Week Two-Week Interval Four-Week Interval  
Train Test FAR/FRR Perf. FAR/FRR Perf. FAR/FRR Perf. 

DeskCopy DeskFree 2.8/4.1 96.1 3.0/4.3 95.9 3.8/4.4 95.7 1 
DeskFree DeskCopy 3.9/7.6 92.9 3.1/10.8 90.1 3.1/16.1 85.4 
LapCopy LapFree 9.6/8.0 83.0 6.9/24.1 77.9 5.4/34.9 68.5 2 
LapFree LapCopy 4.1/9.3 91.3 3.1/9.4 91.3 2.3/10.5 90.4 

DeskCopy LapCopy 2.1/3.3 96.8 2.3/4.2 96.1 6.9/1.8 97.6 3 
LapCopy DeskCopy 6.7/25.1 77.0 5.8/33.4 69.8 4.6/35.6 68.0 
DeskFree LapFree 5.6/7.0 93.2 2.3/7.8 92.9 10.0/9.6 90.4 4 
LapFree DeskFree 7.2/6.8 93.2 1.9/10.2 90.8 1.5/21.2 81.1 

DeskCopy LapFree 4.4/6.6 93.7 5.0/7.9 92.5 2.3/7.1 93.5 5 
Lap Free DeskCopy 3.3/4.2 87.0 3.5/15.6 85.8 2.3/26.4 76.4 
DeskFree LapCopy 3.3/9.3 91.4 3.1/7.0 93.5 7.7/2.9 96.5 6 
LapCopy DeskFree 6.5/9.7 81.8 5.8/30.1 72.7 7.1/21.6 80.0 

Average Performance 89.8  87.4  85.3 
Table 8.  Authentication performance on 13 subjects over two-week intervals. 

 
 For the two-year interval study, we contacted each of the subjects who participated in the 
earlier 36-subject study in 2006 (Y0), and asked them to enter new complete data sets (5 samples 
in each of the four quadrants).  New data sets were obtained from 8 of these individuals in 2008 
(Y2), approximately two years after obtaining their earlier data.  Since each of the 8 subjects 
submitted five samples in each of four quadrants, there were a total of 40 samples in each 
quadrant.   
 Both the Y0 and Y2 data from these 8 subjects were run through the system.  The results of 
training and testing on data recorded in the same year, Y0-Y0 and Y2-Y2, were averaged.  Table 
9 shows the percent of the samples (80 samples in the “Same Year”, half in Y0 and half in Y2; 
and 40 in the “Two-Year Interval”) accurately identified.  The resulting substantial degradation 
in performance indicates that one’s keystroke patterns change significantly over a two-year 
interval. 
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Conditions Grou

p Train Test 
Same 
Year 

Two-Year 
Interval 

DeskCopy DeskFree 97.5 57.5 1 
DeskFree DeskCopy 92.5 75.0 
LapCopy LapFree 98.8 60.0 2 
LapFree LapCopy 100.0 57.5 

DeskCopy LapCopy 87.5 67.5 3 
LapCopy DeskCopy 76.3 65.0 
DeskFree LapFree 80.0 80.0 4 
LapFree DeskFree 76.3 80.0 

DeskCopy LapFree 80.0 65.0 5 
LapFree DeskCopy 72.5 52.5 

DeskFree LapCopy 76.3 57.5 6 
LapCopy DeskFree 75.0 82.5 

Average Performance 84.4 66.7 
Table 9.  Identification performance on 8 subjects over a two-year interval. 

 
 Authentication results (Table 10) are better, with an average accuracy of 92% with a two-
year interval between the training and test sets.  Although this performance is better than that 
obtained over two- and four-week intervals, this is likely due to the smaller number of subjects 
in the two-year study.    
 

Conditions Same Year Two-Year Interval  
Train Test FAR/FRR Performance FAR/FRR Performance 

DeskCopy DeskFree 8.75 / 7.50 92.4 10.00/12.00 88.2 1 
DeskFree DeskCopy 5.13 / 10.61 89.9 2.63 / 9.37 91.3 
LapCopy LapFree 0.00 / 2.86 97.4 0.00 / 3.71 96.7 2 
LapFree LapCopy 1.25 / 3.29 96.9 0.00 / 7.28 93.5 

DeskCopy LapCopy 5.00 / 8.29 92.1 5.00 / 9.71 90.8 3 
LapCopy DeskCopy 1.25 / 4.14 96.2 0.00 / 8.42 92.4 
DeskFree LapFree 0.64 / 8.33 92.4 3.94 / 5.82 94.4 4 
LapFree DeskFree 1.56 / 2.21 97.7 2.50 / 3.42 96.7 

DeskCopy LapFree 5.63 / 10.29 90.2 6.25 / 12.85 87.8 5 
Lap Free DeskCopy 3.13 / 8.86 91.7 2.50 / 9.00 91.7 
DeskFree LapCopy 0.00 / 10.40 90.6 1.31 / 13.49 87.7 6 
LapCopy DeskFree 5.00 / 5.00 95.0 1.25 / 6.57 94.0 

Average Performance 93.5  92.1 
Table 10.  Authentication performance on 8 subjects over a two-year interval. 

 

System Hierarchical Model and Parameter Experiments 

The hierarchical model was investigated and alternative models were evaluated.  The system 
parameters were analyzed by measuring accuracy as a function of the outlier removal parameters 
(the number of outlier passes and the outlier distance), accuracy as a function of the number of 
enrollment samples, and accuracy as a function of input text length.  The parameter experiments 
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were performed on the identification system using the full-subject optimal DeskFree condition, 
or both the DeskFree and DeskCopy conditions – the conditions having the largest number of 93 
subjects.  Finally, the normal distribution assumption of the statistical features was verified.   

 
Hierarchical fallback model.  We investigated the fallback aspect of the hierarchical model 

by comparing the hierarchical fallback as described above to simply falling back to the top nodes 
of the hierarchy trees as was done in an earlier study (Curtin et al., 2006).  For the desktop-free 
condition the hierarchical fallback procedure increased accuracy from 91.0% to 93.3% (a 26% 
decrease in error rate).  For the desktop-copy condition, identification accuracy increased from 
98.1% to 99.1% (a 53% decrease in error rate).  Using the hierarchical model for fallback is 
therefore highly beneficial.   

An analysis of the fallback model showed that fallback never occurred more than one level 
up from the leaf nodes and that most of the one-level-up nodes were essentially never used 
(vowel, frequent consonant, all letters, non-letters) because their leaf nodes were sufficiently 
frequent to not require fallback.  Thus, the original fallback model was essentially a frequency of 
use model with the infrequent letters falling back to a group average of the infrequent letters. 

 Two new fallback models were investigated (Ritzmann, in preparation).  The first, a touch-
type model, was based on the fingers used to strike keys by touch typists (Figures 10 and 11), 
thinking that this model should be superior to the one described above that is frequency oriented 
but not particularly relevant to typing.  The second was a statistical model that groups keys 
displaying similar key-strike statistics.  The results of the touch-type model were similar to those 
obtained above but not significantly different.  The statistical model was significantly poorer 
than the other two. 

 
Figure 10. Touch-type hierarchy tree for durations, adopted with permission from Ritzmann (in preparation). 
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Figure 11. Touch-type hierarchy tree for transitions, adopted with permission from Ritzmann (in preparation). 
 

Outlier parameters.  We verified the method of performing outlier removal recursively – that 
is, continuing to remove outliers until a complete pass through the data resulted in no further 
outliers being removed (Figure 12).  We then measured accuracy as a function of the outlier 
removal distance (in terms of the number of σ  from the μ), finding that the 2σ  distance used in 
the experiments was close to the optimal value of 1.75σ (Figure 13).  Note that the parameter 
settings used in this study were established on different data from an earlier study (Curtin et al., 
2006). 

 
Figure 12.  Identification accuracy versus outlier removal passes, 

adapted with permission from Villani (2006). 
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Figure 13. Identification accuracy versus outlier removal distance σ, 

adapted with permission from Villani (2006). 
 
Number of enrollment samples.  In order to check the sufficiency of the number of 

enrollment samples, we obtained accuracy as the number of enrollment samples varied from one 
to four (Figure 14). Because each subject supplied five data samples per quadrant, the leave-one-
out procedure left a maximum of four enrollment samples to match against. The results indicate 
that two enrollment samples per user might suffice for this application. 

 

 
 

Figure 14.  Identification accuracy versus enrollment samples, 
adapted with permission from Villani (2006). 

 

Max at 1.75 σ 
Set at 2.0 σ 
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Input text length.  We obtained accuracy as a function of input text length (Figure 15). We 
found that our choice of 650 keystrokes was in the region where the curve levels off, but that 
reasonable accuracy can be obtained on shorter text lengths of about 300 keystrokes.  The 
accuracy curve of the copy task is considerably smoother than that of the free text input, perhaps 
because all copy samples were of the same text but the free text samples were all of different 
texts.  
 

 
Figure 15.  Identification accuracy versus input text length, 

adapted with permission from Villani (2006). 
 

Probability distributions of statistical features.  We verified the normal distribution assumption for the 
duration and transition times. Figure 16, for example, shows the distributions of the key-press durations 
for the letter u for each entry mode.   
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Figure 16.  Distributions of “u” duration times for each entry mode 
adapted with permission from Ritzmann (in preparation). 

Conclusions and Future Work 

The results indicate that the keystroke biometric can be useful for identification and 
authentication applications if sufficient enrollment samples are available and if the same type of 
keyboard is used to produce both the enrollment and the questioned samples.  The keystroke 
biometric was significantly weaker for the identification application (but not the authentication 
application) when enrollment and testing use different input modes (copy or free-text), different 
keyboard types (desktop or laptop), or both different input modes and different keyboard types.  
Additional findings include the degree of performance degradation as the number of subjects 
increases and as the time interval between enrollment and testing increases. 

Future work might involve experiments using the system in an actual Internet security 
situation, like verifying the identity of online test takers.  More sophisticated classification 
techniques such as Support Vector Machines (SVM) might be explored.  Also, although it is 
likely difficult to mimic another person’s keystroke pattern, imposter performance might be 
investigated.   
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Appendix: Summary of the 239 features. 
Feature Measure Feature Measured Feature Measure  Feature Measured 

1-2 µ & σ dur all keystrokes 131-32 µ & σ tran1 letter/non-letter
3-4 µ & σ dur all alphabet letters 133-34 µ & σ tran1 letter/space 
5-6 µ & σ dur vowels 135-36 µ & σ tran1 letter/punct 
7-8 µ & σ dur vowels a 137-38 µ & σ tran1 non-letter/letter
9-10 µ & σ dur vowels e 139-40 µ & σ tran1 shift/letter 

11-12 µ & σ dur vowels i 141-42 µ & σ tran1 space/letter 
13-14 µ & σ dur vowels o 143-44 µ & σ tran1 non-letter/non-letter
15-16 µ & σ dur vowels u 145-46 µ & σ tran1 space/shift 
17-18 µ & σ dur freq cons 147-48 µ & σ tran1 punct/space 
19-20 µ & σ dur freq cons t 149-50 µ & σ tran2 any-key/any-key
21-22 µ & σ dur freq cons n 151-52 µ & σ tran2 letter/letter 
23-24 µ & σ dur freq cons s 153-54 µ & σ tran2 top cons pairs 
25-26 µ & σ dur freq cons r 155-56 µ & σ tran2 top cons pairs th
27-28 µ & σ dur freq cons h 157-58 µ & σ tran2 top cons pairs st
29-30 µ & σ dur next freq cons 159-60 µ & σ tran2 top cons pairs nd
31-32 µ & σ dur next freq cons l 161-62 µ & σ tran2 vowel/cons 
33-34 µ & σ dur next freq cons d 163-64 µ & σ tran2 vowel/cons an 
35-36 µ & σ dur next freq cons c 165-66 µ & σ tran2 vowel/cons in 
37-38 µ & σ dur next freq cons p 167-68 µ & σ tran2 vowel/cons er 
39-40 µ & σ dur next freq cons f 169-70 µ & σ tran2 vowel/cons es 
41-42 µ & σ dur least freq cons 171-72 µ & σ tran2 vowel/cons on 
43-44 µ & σ dur least freq cons m 173-74 µ & σ tran2 vowel/cons at 
45-46 µ & σ dur least freq cons w 175-76 µ & σ tran2 vowel/cons en 
47-48 µ & σ dur least freq cons y 177-78 µ & σ tran2 vowel/cons or 
49-50 µ & σ dur least freq cons b 179-80 µ & σ tran2 cons/vowel 
51-52 µ & σ dur least freq cons g 181-82 µ & σ tran2 cons/vowel he 
53-54 µ & σ dur least freq cons other 183-84 µ & σ tran2 cons/vowel re 
55-56 µ & σ dur all left hand letters 185-86 µ & σ tran2 cons/vowel ti 
57-58 µ & σ dur all right hand letters 187-88 µ & σ tran2 vowel/vowel 
59-60 µ & σ dur non-letters 189-90 µ & σ tran2 vowel/vowel ea
61-62 µ & σ dur space 191-92 µ & σ tran2 double letters  
63-64 µ & σ dur shift 193-94 µ & σ tran2 left/left 
65-66 µ & σ dur punctuation 195-96 µ & σ tran2 left/right 
67-68 µ & σ dur punctuation period . 197-98 µ & σ tran2 right/left 
69-70 µ & σ dur punctuation comma , 199-200 µ & σ tran right/right 
71-72 µ & σ dur punctuation apost ‘ 201-02 µ & σ tran2 letter/non-letter
73-74 µ & σ dur punctuation other 203-04 µ & σ tran2 letter/space 
75-76 µ & σ dur numbers 205-06 µ & σ tran2 letter/punct 
77-78 µ & σ dur other 2070-8 µ & σ tran2 non-letter/letter
79-80 µ & σ tran1 any-key/any-key 209-10 µ & σ tran2 shift/letter 
81-82 µ & σ tran1 letter/letter 211-12 µ & σ tran2 space/letter 
83-84 µ & σ tran1 top cons pairs 213-14 µ & σ tran2 non-letter/non-letter
85-86 µ & σ tran1 top cons pairs th 215-16 µ & σ tran2 space/shift 
87-88 µ & σ tran1 top cons pairs st 217-18 µ & σ tran2 punct/space 
89-90 µ & σ tran1 top cons pairs nd 219 % shift 
91-92 µ & σ tran1 vowel/cons 220 % caps lock 
93-94 µ & σ tran1 vowel/cons an 221 % space 
95-96 µ & σ tran1 vowel/cons in 222 % backspace 
97-98 µ & σ tran1 vowel/cons er 223 % delete 
99-100 µ & σ tran1 vowel/cons es 224 % insert 
101-02 µ & σ tran1 vowel/cons on 225 % home 
103-04 µ & σ tran1 vowel/cons at 226 % end 
105-06 µ & σ tran1 vowel/cons en 227 % enter 
107-08 µ & σ tran1 vowel/cons or 228 % ctl 
109-10 µ & σ tran1 cons/vowel 229 % four arrow keys combined
111-12 µ & σ tran1 cons/vowel he 230 % sentence ending punct .?!
113-14 µ & σ tran1 cons/vowel re 231 % other punct  
115-16 µ & σ tran1 cons/vowel ti 232 % left shift 
117-18 µ & σ tran1 vowel/vowel 233 % right shift 
119-20 µ & σ tran1 vowel/vowel ea 234 % left mouse click 
121-22 µ & σ tran1 double letters 235 % right mouse click 
123-24 µ & σ tran1 left/left 236 % double left mouse click
125-26 µ & σ tran1 left/right 237 % left shift to right shift
127-28 µ & σ tran1 right/left 238 rate input rate with pauses
129-30 µ & σ tran1 right/right 239 rate input rate w/o pauses
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