
C1.1

Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 5th, 2006

Developing a Java-Based Keystroke Biometric System for Long-Text Input

Giang Ngo, Justin Simone, Huguens St. Fort

Computer Science Department, Pace University
1 Martine Avenue, White Plains, NY 10606, USA

{gn90004n, js97978w, hs78586w}@pace.edu

Abstract

Java-based feature extraction and pattern
classification programs were developed for a Pace
University CSIS Doctorate of Professional Studies
student completing her thesis on long-text-input
keystroke biometrics. Although the general
functionality of these programs was developed for a
prior DPS researcher using the SAS programming
language, the current Java-based system was
developed for added functionality, increased usability,
and ease of learning. To optimize the results in ideal
and application-oriented conditions the programming
team worked with the researcher to increase the feature
set, optimize the pattern classifier, and provide options
for different fallback scenarios for small-samples. The
current feature extraction program has 239 features
and five parameters to optimize, and the pattern
classifier has two procedural modes with seven
parameters to enable/disable various feature sets.

1. Introduction

The goal of this paper is to explain the
methodology of developing and optimizing keystroke
biometric and pattern classification Java programs
building upon, as the baseline for correctness, the
results of an earlier SAS program that calculates
simplified results.
 These programs, in conjunction with a Java
applet for data capture, can be used by any researcher
attempting to identify keystroke patterns in long-text
passages. Potential users could include professors of
online courses who need to validate the work
submitted by students. A paper by Villani et al. [3]
explores the results when a subject trains on one style
of keyboard (e.g., desktop keyboard, laptop keyboard)
and/or one style of data entry (e.g., free text, copy task)
and is tested against the same and/or a different style of
keyboard and/or data entry style.

2. Keystroke Biometric System

The keystroke biometric system consists of three
components: the Java applet for collection of raw data; the
feature extractor; and the pattern classifier.

2.1 The Java Applet and Raw Data Collection

To begin the data collection process the user
accesses a Web site hosted by a server with the capability of
serving HTML and PHP files, and running a MySQL
database. The user is initially required to register with the
Web site and is entered in the MySQL database. To allow
users to leave and return to the Web site, four counters are
also initialized to track the entry number the user will begin
with upon returning to the Web site. The four experimental
categories are copy task on a desktop, copy task on a laptop,
free-text entry on a desktop and free-text entry on a laptop.

At the completion of registration or, upon returning
to the site, the user is redirected to the activity selection
PHP page. This page receives the user’s first name and last
name from the referring page and queries the database to
obtain the values of the counter fields.

Figure 1: Activity Selection page.

The user is required to select the style of keyboard being
used and whether he/she will be completing a free text or
copy text sample as indicated in the drop-down box (Figure
1). Clicking go redirects the user to the appropriate Java
applet based on his/her selections (Figure 2). There are six

C1.2

pieces of information sent to, and required by, the Java
applet: first name; last name; experiment style (e.g.,
free text, copy task); sequence number for the selected
experiment style (respective counter field value);
keyboard style; and awareness. Awareness refers to
whether the user knows he/she is working with a
keystroke biometric system. If the Java applet does not
receive these six values, or if the user does not have a
Java Runtime Environment (JRE) equal to or later than
version 1.4, the applet will not launch. Lastly, the user
must use Microsoft’s Internet Explorer in order for the
applet to function properly.

After analyzing previous raw data files, it was
identified that typos or inconsistencies in a participant’s
name causes problems in the feature extractor. By
requiring the user to register once and use the same first
and last name to access the system, the problem is
eliminated. The same principle is true for the activity
sequence number; should the user enter a number
already used, the user will overwrite his/her existing
raw data file. This is corrected through the use of
counters in the database managed through PHP scripts.

Figure 2: Java applet before any keystrokes have been

entered.

Depending on the sample being collected, the system
checks for a minimum number of keystrokes. In the
study by Villani et al. [3] the copy task entries must be
at least 635 keystrokes and free text samples at least
677 keystrokes, otherwise the user is prompted to
continue typing (Figure 3).

Figure 3: Warning if user clicks submit before meeting the

minimum number of keystrokes.

When the user correctly completes the task and clicks
submit, a PHP file is called, which writes the raw data
information to a text file (Figure 4) and (transparent to the
user) updates the user’s counter field by one in the database.
The user sees the Java applet in a nearly identical state as
that pictured in Figure 2, except the sequence number has
been incremented. The user can enter another sample or
click the back button to return to the activity selection page.

For ease of locating the raw data files, each
experimental style/keyboard combination is given its own
directory on the server. Before progressing to the feature
extraction process, the researcher must FTP the raw data
files to a directory on his/her local disk.

Figure 4: Aligned raw data file for “Hello World!” [1]

2.2 Feature Extraction

The software developers use Borland’s JBuilder as
the IDE of choice, although any Java IDE will work. The
feature extraction program reads all of the raw data text files
from a directory on the researcher’s local disk. One string
of data is created from file and stored in a vector. The
vector is read in ascending order from index zero to index
N, where N is the number of raw data files. A second 245 x
N vector containing the identifiable information (i.e., first
name, last name, etc.) and the 239 feature values is created
for each raw data file [3].
 Villani et al. [3] developed fallback trees for single
key features and transition features, which have been

C1.3

implemented in this feature extraction program.
Fallback is used to minimize “bad” data caused by a
less-than-optimal number of occurrences of a feature.
Fallback is implemented by assigning each node on the
tree a numeric pair consisting of that feature’s unique
numeric identifier as well as its parent’s unique
numeric identifier. This allows the programmer to
easily change the pairs and thereby changes the
structure of the tree.

The feature extraction parameters are listed in
Table 1. Parameters three and four, K1 and K2, are for
the researcher to optimize the results of the feature
extraction. K1 is the minimum number of occurrences
of a feature for it to be considered a valid measurement
and prevent fallback. K2 is an optimized constant used
when taking the weighted average as part of the
fallback formula. The fifth parameter (Table 1) is used
to enable or disable the fallback functionality. The
sixth parameter is optional and available to researchers
experimenting with different input text lengths.

Parameter
Order

Signifies Acceptable
Values

Explanation
of Values

1 Full path to
raw data
files

C:\RawData Any path is
accepted

2 Outlier
Removal

0, R,
positive
integer J

No outlier
removal,
recursive
outlier
removal, J
passes of
outlier
removal

3 K1 Any positive
integer

Minimum
number of
occurrences
of a feature

4 K2 Any positive
integer

Optimized
constant for
fallback’s
weighted
average
formula

5 Fallback 0, 1 Do not use
fallback,
Use fallback

6 Number of
raw data
keystrokes
to consider

Null for all
keystrokes,
any positive
integer.
(Program
will throw
exception if
value

Used to
optimize the
number raw
data of
keystrokes
required to
obtain a
specific

exceeds
number of
key strokes
in raw data
file.)

level of
accuracy.
Click counts
will always
be included.

Table 1: Summary of feature extraction parameters.

If the fallback mechanism is enabled and a feature
meets the fallback requirements, its value in the
feature vector is replaced with the fallback value.

The final process in the feature extractor is
to write the contents of the feature vector to a tilde
delimited file with N lines (Figure 5).

Figure 5: Example of a feature file showing three input-sample

feature vectors.

2.3 Pattern Classifier

The pattern classifier reads from the feature file
one line at a time and stores the entries in a matrix (a
sequence of feature vectors). The features are then
standardized to a value between zero and one. Using the
Nearest Neighbor method to compare Euclidean distances,
the classification process is either run using a leave-one-out
style or, if two feature files are provided, a train-on-one,
test-on-another method.
 In leave-one-out, the trial entry is logically
removed from the feature matrix. The Euclidean distance
between the current trial entry and the entries remaining in
the feature matrix are calculated and, the entry with the
smallest Euclidean distance is the nearest neighbor. If the
authors of the training and test entries are the same, a match
is declared.
 In train-on-one, test-on-another, the Euclidean
distance between one entry from the test file’s feature
matrix and all entries in the training file’s feature matrix are
compared. If the author of the training entry with the
smallest Euclidean distance is the same as the test author’s
entry, a match is declared.

For both leave-one-out and train-on-one, test-on-
another, a tilde delimited text file is created. This file can
be imported into a spreadsheet program such as Microsoft®
Excel and a confusion matrix is automatically generated
(Table 2). This matrix only displays the number of times
and percentage of the time the classification program was
not confused (the diagonal).

C1.4

Table 2: Accuracy confusion matrix for 30-subject

experiment: subjects identified by initials, first column =
number of samples per subject, diagonal entries = percent
correct, and off-diagonal entries = percent confused [2].

The researcher has the capability to enable or

disable the usage of seven feature areas (Table 3): the
duration (single key) averages; duration standard
deviations; transition type-1 averages; transition type-1
standard deviations; transition type-2 averages;
transition type-2 standard deviations; and percentage
features [3].

In addition to classifying using Nearest
Neighbor, parameter nine also allows a researcher to
use the K-Nearest Neighbor classification method.

Table 3: Parameters for pattern classification program.

Parameter
Order

Signifies Values Explana-
tion of
Values

8 Experiment
style

A, B Leave-
one-out,
train/test

9 Classifica-
tion style

1, an
integer
greater
than 1

Nearest
Neighbor
or K-
Nearest
Neighbor
where
integer
indicates
majority

10 Match
within X
attempts

1, an
integer
greater
than 1, not
to exceed
total
number of
raw data
files

1 = match
on first
test only
2 = match
on test
values 1
or 2 –
output file
indicates
“no
match!!”
for failure
to match
within N
smallest
Euclid-
ean
distances
or “@ #”
where # is
the index
of the
smallest
Euclid-
ean
distance
<= N.

11 Test feature
file (this
determines
the number
of results)

Path to
file

Usually
Biofea-
ture++\
xyz.fea-
tures

12 (only if
experiment
style = B)

Training
feature file

Path to
file

Usually
Biofea-
ture++\
xyz.fea-
tures

Parameter
Order

Signifies Values Explana-
tion of
Values

1 Duration
average

Y, N Use, do
not use

2 Duration
standard
deviation

Y, N Use, do
not use

3 Transition
type 1
average

Y, N Use, do
not use

4 Transition
type 1
standard
deviation

Y, N Use, do
not use

5 Transition
type 2
average

Y, N Use, do
not use

6 Transition
type 2
standard
deviation

Y, N Use, do
not use

7 Percentage
features
(e.g., input
rate, left
mouse
clicks)

Y, N Use, do
not use

C1.5

3. Implementation Iteration

 The accuracy of the system has been
scrutinized throughout the development cycle. The
initial milestone was matching the calculations
generated by the SAS program.

3.1 Fifty-Eight Features

 The SAS program used by Bartolacci et al. [1]
was established as the standard of correctness. The
Java programmers needed to replicate these results
before making any of the changes required by the
current researcher. Once the feature extractor was
implemented, manual testing was begun.
 Previous research resulted in a file with the
feature values of all raw data files that had been passed
through the SAS-based classification program. The
Java programmers took one raw data file and manually
calculated all of the feature values and feature values
after single-pass outlier removal using Microsoft®
Excel. These numbers were compared to the results of
the 58-feature Java program and the program refined
until all values matched. While it was identified that
the previous researchers used a single-pass outlier
removal, the Java programmers developed a method to
recursively remove outliers as well.

3.2 Manual Classification

With confidence in the feature values, the
results of the feature extractor were manually classified.
The goal was to achieve accuracy of at least 97% when
run, using data obtained from the experiment conducted
by Curtin et al. [2]. The Java programmers could not
achieve this level of accuracy using the program in its
current state.

3.3 One Hundred and Twenty-Nine Features

The feature set was increased to 129 features
and the process repeated.

3.4 Two Hundred and Thirty-Nine Features

With accuracy still not where it should be, the

researcher increased the number of features to its
current state of 239 features. These features
incorporated keystroke data from across the keyboard
as well as the two different transition styles. Lastly, the
mouse clicks and “special key” (e.g., home, insert)
presses were calculated in a ratio to the whole rather
than as single values.

3.5 An Improved System

 Using 239 features, recursive outlier removal and
the fallback method, the accuracy of the system was
increased from roughly 94% to 99.6% when run on data
collected by Curtin et al. [2].

4. Development Method

While Extreme Programming’s (XP) pair
programming was not used, elements of XP were prevalent
in the development process. The programmers held weekly
meetings with the client where an updated system was
always delivered, critiqued and a new deliverable set for the
following week. This meeting was more of a weekly scrum.

5. Object-Oriented Approach

The object-oriented approach to programming was
used in both the feature extraction and pattern classification
programs.

5.1 An Object-Oriented Feature Extractor

Using classes, a key feature class was developed
for each feature value. This class encapsulates information
with regard to frequency, average, and standard deviation.

The purpose of the Feature Extractor is to iterate
over the raw data collection and generate a new collection
consisting mainly of averages and standard deviations (the
239 features). The iteration and generation processes are
accomplished through the use of two primary classes,
FeatureExtractor and Keyfeature, and a number of
secondary derived classes. The FeatureExtractor extracts
the features from the raw data file and maintains a
collection of KeyFeature objects that are written to the
feature file used by the pattern classification program. The
KeyFeature is the parent class, which maintains the feature
values. It provides methods for accessing and modifying
private data members (frequency, average and the standard
deviation). It also maintains a collection of its keystrokes
and implements the outlier removal and the fallback
methods. Depending on the parameter set, outlier removal
and/or fallback is done on the data collection. The
secondary classes are the individual features. They are
represented as a tree [3] for fallback purposes. Each feature
has a parent. Among the derived classes are EKeyFeature
corresponding to the ‘E’ key, and the transition feature class
ALFeature corresponding to the transition from A to L
(Figure 6).

Given the base-derived (inheritance) class
relationship, new features can easily be added.

C1.6

Figure 6: FeatureExtractor Architectural View

5.2 Object-Oriented Pattern Classification

For reusability, flexibility, and adaptability to
changing requirements, the classification system is built
on five classes. KeystrokeProcessor is the main class
which takes the output from the feature extractor and
processes the data according to the parameters specified
by the user and calls upon its subordinate classes,
Standardize, Classifier, PrintMatrix, and AscendVector.
The purpose of the Standardize class is to standardize
the data it receives using the formula x’ = x – min /
max – min so that the data are within a range from 0 to
1. The PrintMatrix class is responsible for generating
the layout of a confusion matrix in text file. The
Classifier class determines the nearest match using
Euclidean distance between the test data set and each of
the training data sets. Lastly, the AscendVector class
arranges the results of the Euclidean Distance
calculations in ascending order to accommodate easy
matching of nearest value or nearest K value. Due to
their lack of interdependence and clear distinction, the
classes can easily be migrated to other systems,
additional services added, and/or adapted to
accommodate changes in system requirements without
major modification.

6. Conclusion
 This system has been successfully used
producing several accepted conference papers.

References

[1] Bartolacci, M. Curtin, M. Katzenberg, N. Nwana, S.
Cha, and C.C. Tappert, "Applying Keystroke Biometrics for
User Verification and Identification," Proc. MCSCE,
MLMTA, Las Vegas, NV, June 2005.
[2] M. Curtin, C. Tappert, M. Villani, G. Ngo, J. Simone, H.
St. Fort and S. Cha, “Keystroke Biometric Recognition on
Long Text Input: A Feasibility Study,” Proc.- IWSCCS,
IMECS, Hong Kong, China; June 2006.

[3] M. Villani, C. Tappert, G. Ngo, J. Simone, H. St. Fort and S.
Cha, “Keystroke Biometric Recognition Under Ideal and
Application-Oriented Conditions,” Proc.- IBC, IBS, Montreal,
Canada; July 2006.

FeatureExtractor KeyFeature

EFeature AFeature ALFeature . . .

