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Abstract 
 

Java-based feature extraction and pattern 
classification programs were developed for a Pace 
University CSIS Doctorate of Professional Studies 
student completing her thesis on long-text-input 
keystroke biometrics.  Although the general 
functionality of these programs was developed for a 
prior DPS researcher using the SAS programming 
language, the current Java-based system was 
developed for added functionality, increased usability, 
and ease of learning.  To optimize the results in ideal 
and application-oriented conditions the programming 
team worked with the researcher to increase the feature 
set, optimize the pattern classifier, and provide options 
for different fallback scenarios for small-samples.  The 
current feature extraction program has 239 features 
and five parameters to optimize, and the pattern 
classifier has two procedural modes with seven 
parameters to enable/disable various feature sets.   
 
1. Introduction 
 

The goal of this paper is to explain the 
methodology of developing and optimizing keystroke 
biometric and pattern classification Java programs 
building upon, as the baseline for correctness, the 
results of an earlier SAS program that calculates 
simplified results.   
 These programs, in conjunction with a Java 
applet for data capture, can be used by any researcher 
attempting to identify keystroke patterns in long-text 
passages.  Potential users could include professors of 
online courses who need to validate the work  
submitted by students.  A paper by Villani et al. [3] 
explores the results when a subject trains on one style 
of keyboard (e.g., desktop keyboard, laptop keyboard) 
and/or one style of data entry (e.g., free text, copy task) 
and is tested against the same and/or a different style of 
keyboard and/or data entry style. 
 
 

2. Keystroke Biometric System 
 

The keystroke biometric system consists of three 
components:  the Java applet for collection of raw data; the 
feature extractor; and the pattern classifier. 
 
2.1 The Java Applet and Raw Data Collection 
 

To begin the data collection process the user 
accesses a Web site hosted by a server with the capability of 
serving HTML and PHP files, and running a MySQL 
database.  The user is initially required to register with the 
Web site and is entered in the MySQL database.  To allow 
users to leave and return to the Web site, four counters are 
also initialized to track the entry number the user will begin 
with upon returning to the Web site.  The four experimental 
categories are copy task on a desktop, copy task on a laptop, 
free-text entry on a desktop and free-text entry on a laptop. 

At the completion of registration or, upon returning 
to the site, the user is redirected to the activity selection 
PHP page.  This page receives the user’s first name and last 
name from the referring page and queries the database to 
obtain the values of the counter fields.   

 

 
Figure 1:  Activity Selection page. 

 
The user is required to select the style of keyboard being 
used and whether he/she will be completing a free text or 
copy text sample as indicated in the drop-down box (Figure 
1).  Clicking go redirects the user to the appropriate Java 
applet based on his/her selections (Figure 2).  There are six 
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pieces of information sent to, and required by, the Java 
applet:  first name; last name; experiment style (e.g., 
free text, copy task); sequence number for the selected 
experiment style (respective counter field value); 
keyboard style; and awareness.  Awareness refers to 
whether the user knows he/she is working with a 
keystroke biometric system.  If the Java applet does not 
receive these six values, or if the user does not have a 
Java Runtime Environment (JRE) equal to or later than 
version 1.4, the applet will not launch.  Lastly, the user 
must use Microsoft’s Internet Explorer in order for the 
applet to function properly. 

After analyzing previous raw data files, it was 
identified that typos or inconsistencies in a participant’s 
name causes problems in the feature extractor.  By 
requiring the user to register once and use the same first 
and last name to access the system, the problem is 
eliminated.  The same principle is true for the activity 
sequence number; should the user enter a number 
already used, the user will overwrite his/her existing 
raw data file.  This is corrected through the use of 
counters in the database managed through PHP scripts. 
 

 
Figure 2:  Java applet before any keystrokes have been 

entered. 
 

Depending on the sample being collected, the system 
checks for a minimum number of keystrokes.  In the 
study by Villani et al. [3] the copy task entries must be 
at least 635 keystrokes and free text samples at least 
677 keystrokes, otherwise the user is prompted to 
continue typing (Figure 3). 
 
 

 
Figure 3:  Warning if user clicks submit before meeting the 

minimum number of keystrokes. 
 

When the user correctly completes the task and clicks 
submit, a PHP file is called, which writes the raw data 
information to a text file (Figure 4) and (transparent to the 
user) updates the user’s counter field by one in the database.  
The user sees the Java applet in a nearly identical state as 
that pictured in Figure 2, except the sequence number has 
been incremented.  The user can enter another sample or 
click the back button to return to the activity selection page.   

For ease of locating the raw data files, each 
experimental style/keyboard combination is given its own 
directory on the server.  Before progressing to the feature 
extraction process, the researcher must FTP the raw data 
files to a directory on his/her local disk. 
 

 
Figure 4:  Aligned raw data file for “Hello World!” [1] 

 
2.2 Feature Extraction 
 

The software developers use Borland’s JBuilder as 
the IDE of choice, although any Java IDE will work.  The 
feature extraction program reads all of the raw data text files 
from a directory on the researcher’s local disk.  One string 
of data is created from file and stored in a vector.  The 
vector is read in ascending order from index zero to index 
N, where N is the number of raw data files.  A second 245 x 
N vector containing the identifiable information (i.e., first 
name, last name, etc.) and the 239 feature values is created 
for each raw data file [3]. 
 Villani et al. [3] developed fallback trees for single 
key features and transition features, which have been 
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implemented in this feature extraction program.  
Fallback is used to minimize “bad” data caused by a 
less-than-optimal number of occurrences of a feature.  
Fallback is implemented by assigning each node on the 
tree a numeric pair consisting of that feature’s unique 
numeric identifier as well as its parent’s unique 
numeric identifier.  This allows the programmer to 
easily change the pairs and thereby changes the 
structure of the tree. 

The feature extraction parameters are listed in 
Table 1.  Parameters three and four, K1 and K2, are for 
the researcher to optimize the results of the feature 
extraction.  K1 is the minimum number of occurrences 
of a feature for it to be considered a valid measurement 
and prevent fallback.  K2 is an optimized constant used 
when taking the weighted average as part of the 
fallback formula.  The fifth parameter (Table 1) is used 
to enable or disable the fallback functionality.  The 
sixth parameter is optional and available to researchers 
experimenting with different input text lengths. 
 
Parameter 
Order 

Signifies Acceptable 
Values 

Explanation 
of Values 

1 Full path to 
raw data 
files 

C:\RawData Any path is 
accepted 

2 Outlier 
Removal 

0, R, 
positive 
integer J 

No outlier 
removal, 
recursive 
outlier 
removal, J 
passes of 
outlier 
removal 

3 K1 Any positive 
integer 

Minimum 
number of 
occurrences 
of a feature 

4 K2 Any positive 
integer 

Optimized 
constant for 
fallback’s 
weighted 
average 
formula 

5 Fallback 0, 1 Do not use 
fallback, 
Use fallback 

6 Number of 
raw data 
keystrokes 
to consider 

Null for all 
keystrokes, 
any positive 
integer.  
(Program 
will throw 
exception if 
value 

Used to 
optimize the 
number raw 
data of 
keystrokes 
required to 
obtain a 
specific 

exceeds 
number of 
key strokes 
in raw data 
file.) 

level of 
accuracy.  
Click counts 
will always 
be included. 

Table 1:  Summary of feature extraction parameters. 
 

If the fallback mechanism is enabled and a feature 
meets the fallback requirements, its value in the 
feature vector is replaced with the fallback value.   

The final process in the feature extractor is 
to write the contents of the feature vector to a tilde 
delimited file with N lines (Figure 5). 
 

 
Figure 5:  Example of a feature file showing three input-sample 

feature vectors. 
 

2.3 Pattern Classifier 
 

The pattern classifier reads from the feature file 
one line at a time and stores the entries in a matrix (a 
sequence of feature vectors).  The features are then 
standardized to a value between zero and one.  Using the 
Nearest Neighbor method to compare Euclidean distances, 
the classification process is either run using a leave-one-out 
style or, if two feature files are provided, a train-on-one, 
test-on-another method. 
 In leave-one-out, the trial entry is logically 
removed from the feature matrix.  The Euclidean distance 
between the current trial entry and the entries remaining in 
the feature matrix are calculated and, the entry with the 
smallest Euclidean distance is the nearest neighbor.  If the 
authors of the training and test entries are the same, a match 
is declared. 
 In train-on-one, test-on-another, the Euclidean 
distance between one entry from the test file’s feature 
matrix and all entries in the training file’s feature matrix are 
compared.  If the author of the training entry with the 
smallest Euclidean distance is the same as the test author’s 
entry, a match is declared. 

For both leave-one-out and train-on-one, test-on-
another, a tilde delimited text file is created.  This file can 
be imported into a spreadsheet program such as Microsoft® 
Excel and a confusion matrix is automatically generated 
(Table 2).  This matrix only displays the number of times 
and percentage of the time the classification program was 
not confused (the diagonal). 
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Table 2: Accuracy confusion matrix for 30-subject 

experiment:  subjects identified by initials, first column = 
number of samples per subject, diagonal entries = percent 
correct, and off-diagonal entries = percent confused [2]. 

 
The researcher has the capability to enable or 

disable the usage of seven feature areas (Table 3):  the 
duration (single key) averages; duration standard 
deviations; transition type-1 averages; transition type-1 
standard deviations; transition type-2 averages; 
transition type-2 standard deviations; and percentage 
features [3]. 

In addition to classifying using Nearest 
Neighbor, parameter nine also allows a researcher to 
use the K-Nearest Neighbor classification method. 

 

Table 3:  Parameters for pattern classification program. 
 
 

Parameter 
Order 

Signifies Values Explana-
tion of 
Values 

8 Experiment 
style 

A, B Leave-
one-out, 
train/test 

9 Classifica-
tion style 

1, an 
integer 
greater 
than 1 

Nearest 
Neighbor 
or K-
Nearest 
Neighbor 
where 
integer 
indicates 
majority 

10 Match 
within X 
attempts 

1, an 
integer 
greater 
than 1, not 
to exceed 
total 
number of 
raw data 
files 

1 = match 
on first 
test only 
2 = match 
on test  
values 1 
or 2 – 
output file 
indicates 
“no 
match!!” 
for failure 
to match 
within N 
smallest 
Euclid-
ean 
distances 
or “@ #” 
where # is 
the index 
of the 
smallest 
Euclid-
ean 
distance 
<= N. 

11 Test feature 
file (this 
determines 
the number 
of results) 

Path to 
file 

Usually 
Biofea-
ture++\ 
xyz.fea-
tures 

12 (only if 
experiment 
style = B) 

Training 
feature file 

Path to 
file 

Usually 
Biofea-
ture++\ 
xyz.fea-
tures 

Parameter 
Order 

Signifies Values Explana-
tion of 
Values 

1 Duration 
average 

Y, N Use, do 
not use 

2 Duration 
standard 
deviation 

Y, N Use, do 
not use 

3 Transition 
type 1 
average 

Y, N Use, do 
not use 

4 Transition 
type 1 
standard 
deviation 

Y, N Use, do 
not use 

5 Transition 
type 2 
average 

Y, N Use, do 
not use 

6 Transition 
type 2 
standard 
deviation 

Y, N Use, do 
not use 

7 Percentage 
features 
(e.g., input 
rate, left 
mouse 
clicks) 

Y, N Use, do 
not use 
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3.  Implementation Iteration 
 
 The accuracy of the system has been 
scrutinized throughout the development cycle.  The 
initial milestone was matching the calculations 
generated by the SAS program.  
 
3.1 Fifty-Eight Features 
 
 The SAS program used by Bartolacci et al. [1] 
was established as the standard of correctness.  The 
Java programmers needed to replicate these results 
before making any of the changes required by the 
current researcher.  Once the feature extractor was 
implemented, manual testing was begun.   
 Previous research resulted in a file with the 
feature values of all raw data files that had been passed 
through the SAS-based classification program.  The 
Java programmers took one raw data file and manually 
calculated all of the feature values and feature values 
after single-pass outlier removal using Microsoft® 
Excel.  These numbers were compared to the results of 
the 58-feature Java program and the program refined 
until all values matched.  While it was identified that 
the previous researchers used a single-pass outlier 
removal, the Java programmers developed a method to 
recursively remove outliers as well. 
  
3.2 Manual Classification 
 

With confidence in the feature values, the 
results of the feature extractor were manually classified.  
The goal was to achieve accuracy of at least 97% when 
run, using data obtained from the experiment conducted 
by Curtin et al. [2].  The Java programmers could not 
achieve this level of accuracy using the program in its 
current state. 
 
3.3 One Hundred and Twenty-Nine Features 
 

The feature set was increased to 129 features 
and the process repeated.   
 
3.4 Two Hundred and Thirty-Nine Features 

 
With accuracy still not where it should be, the 

researcher increased the number of features to its 
current state of 239 features.  These features 
incorporated keystroke data from across the keyboard 
as well as the two different transition styles.  Lastly, the 
mouse clicks and “special key” (e.g., home, insert) 
presses were calculated in a ratio to the whole rather 
than as single values. 
 

3.5 An Improved System 
 
 Using 239 features, recursive outlier removal and 
the fallback method, the accuracy of the system was 
increased from roughly 94% to 99.6% when run on data 
collected by Curtin et al. [2]. 
 
4.  Development Method 
 

While Extreme Programming’s (XP) pair 
programming was not used, elements of XP were prevalent 
in the development process.  The programmers held weekly 
meetings with the client where an updated system was 
always delivered, critiqued and a new deliverable set for the 
following week.  This meeting was more of a weekly scrum. 
 
5.  Object-Oriented Approach 
 

The object-oriented approach to programming was 
used in both the feature extraction and pattern classification 
programs. 
 
5.1 An Object-Oriented Feature Extractor 
 

Using classes, a key feature class was developed 
for each feature value.  This class encapsulates information 
with regard to frequency, average, and standard deviation.   

The purpose of the Feature Extractor is to iterate 
over the raw data collection and generate a new collection 
consisting mainly of averages and standard deviations (the 
239 features).  The iteration and generation processes are 
accomplished through the use of two primary classes, 
FeatureExtractor and Keyfeature, and a number of 
secondary derived classes.  The FeatureExtractor extracts 
the features from the raw data file and maintains a 
collection of KeyFeature objects that are written to the 
feature file used by the pattern classification program.  The 
KeyFeature is the parent class, which maintains the feature 
values.  It provides methods for accessing and modifying 
private data members (frequency, average and the standard 
deviation).  It also maintains a collection of its keystrokes 
and implements the outlier removal and the fallback 
methods.  Depending on the parameter set, outlier removal 
and/or fallback is done on the data collection.  The 
secondary classes are the individual features.  They are 
represented as a tree [3] for fallback purposes.  Each feature 
has a parent.  Among the derived classes are EKeyFeature 
corresponding to the ‘E’ key, and the transition feature class 
ALFeature corresponding to the transition from A to L 
(Figure 6).   

Given the base-derived (inheritance) class 
relationship, new features can easily be added. 
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Figure 6:  FeatureExtractor Architectural View 

 
 
5.2 Object-Oriented Pattern Classification 
 

For reusability, flexibility, and adaptability to 
changing requirements, the classification system is built 
on five classes.  KeystrokeProcessor is the main class 
which takes the output from the feature extractor and 
processes the data according to the parameters specified 
by the user and calls upon its subordinate classes, 
Standardize, Classifier, PrintMatrix, and AscendVector.  
The purpose of the Standardize class is to standardize 
the data it receives using the formula x’ = x – min / 
max – min so that the data are within a range from 0 to 
1.  The PrintMatrix class is responsible for generating 
the layout of a confusion matrix in text file.  The 
Classifier class determines the nearest match using 
Euclidean distance between the test data set and each of 
the training data sets.  Lastly, the AscendVector class 
arranges the results of the Euclidean Distance 
calculations in ascending order to accommodate easy 
matching of nearest value or nearest K value.  Due to 
their lack of interdependence and clear distinction, the 
classes can easily be migrated to other systems, 
additional services added, and/or adapted to 
accommodate changes in system requirements without 
major modification. 
 
6. Conclusion  
 This system has been successfully used 
producing several accepted conference papers. 
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