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Abstract - The field of quantum computing is rapidly 

expanding. As manufacturers and researchers grapple with the 

limitations of classical silicon central processing units (CPUs), 

quantum computing sheds these limitations and promises a 

boom in computational power and efficiency. The quantum age 

will require many skilled engineers, mathematicians, physicists, 

developers, and technicians with an understanding of quantum 

principles and theory. There is currently a shortage of 

professionals with a deep knowledge of computing and physics 

able to meet the demands of companies developing and 

researching quantum technology. This study provides a brief 

history of quantum computing, an in-depth review of recent 

literature and technologies, an overview of IBM’s QISKit for 

implementing quantum computing programs, and two 

successful programming examples.  These two programs along 

with the associated Jupyter notebook pages will provide 

additional intermediate samples for IBM Q Experience. 
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I.  INTRODUCTION 

In 1959, shortly after the arrival of the classical computer 

and the beginning of the digital era, theoretical physicist 

Richard Feynman gave a lecture series on electronic 

miniaturization titled “There’s Plenty of Room at the 

Bottom.”  Feynman proposed in these lectures that the 

exploitation of quantum effects could create more powerful 

computers. Quantum computers, machines that operate on 

qubits rather than traditional bits, are the manifestation of 

Feynman’s proposal [6].  

The discovery of quantum mechanics in the early 20th 

century laid the foundations for Feynman’s proposal. In 1905, 

Albert Einstein published a paper proposing the photon 

concept of light. In the paper, he described light as quantum 

particles that are “localized points in space, which move 

without dividing, and which can only be produced and 

absorbed as complete units [5].” This challenged the accepted 

model at the time, which viewed light only as a wave. 

Ultimately, Einstein’s revelation on the physical properties of 

light laid the groundwork for the development of quantum 

physics.  

Following Einstein’s quantum explanation of light, the 

field of quantum mechanics developed gradually with 

research by Werner Heisenberg, Niels Bohr, and Erwin 

Schrödinger [11]. Quantum mechanics states that the position 

of a particle cannot be predicted with precision as it can be in 

Newtonian mechanics. The only thing an observer could 

know about the position of a particle is the probability that it 

will be at a certain position at a given time [11]. By the 1980’s 

several researchers including Feynman, Yuri Manin, and Paul 

Benioff had begun researching computers that operate using 

this concept. 

The quantum bit or qubit is the basic unit of quantum 

information. Classical computers operate on bits using 

complex configurations of simple logic gates. A bit of 

information has two states, on or off, and is represented with 

a 0 or a 1. The qubit has a |0⟩ state, called zero-ket and a |1⟩ 
state called one-ket. When zero-ket is measured it produces a 

classical 0. When one-ket is measured it produces a classical 

1. The most notable difference between classical and quantum

bits is that the qubit can also be in a state that is a linear 

combination of both |0⟩ and |1⟩. This vector property of the 

qubit is called superposition. Superposition allows for many 

calculations to be performed simultaneously [9]. Another 

distinct property is that qubits can become entangled. 

Entanglement “is a property of many quantum superpositions 

and does not have a classical analog” [9]. Observation of two 

entangled qubits causes random behavior in the observed 

qubit, however, the observer can tell how the other would 

behave if observed in the same manner [9]. The correlation of 

random behavior between entangled qubits is responsible for 

the extra computing power of quantum machines. 

Quantum computers are useful for large scale problems 

that classical computers lack the computational power to 

solve in a reasonable amount of time. Superposition creates 

opportunities to implement more efficient factoring, 

searching, sorting, modeling, and simulation algorithms. 

According to C. G. Almudever et al. factoring a 2000 bit 

number using Shor’s algorithm on a quantum computer would 

take one day. Factoring the same number using a classical 

computer would take a data center the size of Germany one 

hundred years to complete [1]. 

Quantum computing promises breakthroughs in fields 

that deal with large datasets and require massive amounts of 

processing power such as genetics, molecular modeling, 

astrophysics, chemistry, data science, artificial intelligence, 

and cryptography.  This expanding field will need many 

trained professionals proficient in both physics and 
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computing. This study will document the student experience 

using the IBM Q Experience and QISKit to pursue training in 

programming for quantum computers. 

II. STUDY OVERVIEW

This study explores the educational material available 

online for students interested in programming for quantum 

computers focusing on the interface offered by IBM that 

allows users to run code on publically available quantum 

computers or quantum simulators.  

The study uses IBM Q Experience to create two simple 

quantum programs and documents the experience working 

with the development kits, programming languages, user 

interfaces, online documentation, and tutorial information. 

The study utilizes IBM’s QISKit, a Python based 

development kit, to create a simple random password 

generation program and a card game program that runs on 

IBM’s publicly available quantum computer in Yorktown, 

New York. 

The goal of this study is to produce an informational 

review of a student’s early experience with quantum 

computing focusing on improving the currently available 

material in order to attract more students to the growing field. 

Toward this goal, the study includes a supplemental “quantum 

tutorial” using Jupyter Notebook that incorporates the 

example programs and serves as a guide for students 

interested in quantum computing. 

III. LITERATURE REVIEW

In 1965, Gordon Moore, the co-founder of Fairchild 

Semiconductor and Intel proposed that transistors (the main 

component of central processors) would keep shrinking every 

year due to engineering advancements in the semiconductor 

industry. Specifically, Moore claimed that the industry would 

double the number of transistors in CPUs approximately 

every year. He would later revise this to every 2 years in 1975, 

while David House, an Intel executive at the time, noted that 

the computing power would also double every 18 months 

[10]. In the late 1950s, some chips contained 200 transistors; 

and by 2005, “Intel would produce chips with 1 billion 

transistors [10].” The semiconductor revolution gave rise to 

the internet, smartphones, and the Internet of Things.  

Consumer demand for more powerful devices has 

increased, and manufacturers have strived to push the limits 

of Moore’s law. However, simple physics dictates that 

transistors can only be so small. “No physical quantity can 

continue to change exponentially forever,” Moore said in 

2003 [10]. In March of 2016, the semiconductor industry 

would formally acknowledge the nearing end of Moore’s law 

[14]. This was due in part to the excess heat generated by 

densely packed silicon circuity in small devices, and that 

when transistors shrink to only 10 atoms across, “electron 

behavior will be governed by quantum uncertainties that will 

make transistors hopelessly unreliable [14].” Researchers 

hope that quantum computing will allow a new phase of 

exponential growth in computing speeds. IBM announced in 

a press release in May of 2016, “with Moore’s Law running 

out of steam, quantum computing will be among the 

technologies that could usher in a new era of innovation 

across industries [7].”  

In his influential paper, “The Physical Implementation of 

Quantum Computation” David DiVincenzo proposed five 

criteria that quantum computer implementation must meet. 

First, the system must utilize qubits for making computations. 

Second, the system must have the ability to initialize the 

qubits to a known state. Third, the computer must use a 

universal set of quantum gates. Fourth, the gates must operate 

faster than the information stored in the qubits can be lost due 

to interaction with the surrounding environment. And finally, 

measurement of information contained in qubits must be 

possible [3]. A machine that meets these criteria is classified 

as a quantum computer. 

The first quantum computer was built at Oxford 

University in 2004. The machine was a nuclear magnetic 

resonance (NMR) machine that was able to solve simple 

calculations twice as fast as a classical computer. NMR 

machines utilize magnetic field emissions created by 

electrons orbiting a nucleus and radio waves of varying 

frequencies to manipulate the electron fields causing the 

electrons to act as qubits [11]. 

In the last five years, large corporations such as Google 

and IBM, and startups such as Rigetti and Quantum circuits 

have had major success implementing superconductor 

quantum computers. Superconductor computers require 

temperatures of milli-Kelvin to operate. Qubits can store 

information through the charge of the particles. 

Superconductor machines use pulses of radio frequencies to 

control qubits in order to execute quantum operations [11]. 

Researchers are also working on other implementations 

of quantum computers. Linear optic machines have potential 

for future breakthroughs due to low infrastructure cost. 

Diamond machines use impurities in diamonds to capture 

single electrons and use them as qubits. Diamond machines 

have the advantage over superconductors in that they can 

operate at 4 Kelvin. The potential benefits of Diamond 

implementations are promising, however the diamond is not 

as well researched as other technologies. 

The cutting edge of quantum computer implementations 

is the anyon computer. Researchers theorize that “under some 

circumstances certain material can behave as if they are 

holding particles that do not actually exist, known as 

quasiparticles [13].” These quasiparticles, or anyons, can be 

used as qubits. The physical properties of anyons protect from 

decoherence and give anyon machines an advantage over 

other implementations. Anyon research is promising although 

still in the theoretical phase. 

There are many engineering challenges in quantum 

computing. As mentioned above, decoherence describes a 

process in which information stored in qubits is lost due to its 
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interaction with the environment. All implementations of 

quantum computers discussed above suffer from 

decoherence. Decoherence must be accounted for using 

quantum error correction (QEC). QEC is necessary for 

accurate calculations but drastically increases the necessary 

number of qubits required for computations [1]. 

Quantum computers must also be capable of fault tolerant 

(FT) computations. Fault tolerance means that small errors do 

not lead to information loss or larger errors in calculations. C. 

G. Almudever et al. suggest that a number of qubits in the 

millions may be required to perform QEC and FT 

computations successfully [1]. 

Another challenge is that quantum computers are 

expensive, large, and difficult to maintain. For most 

organizations, it is impractical to implement a machine with 

even a small number of qubits. Cooling the quantum machine 

accounts for much of the cost and difficulty of operation. 

Similar to classical computers, quantum computers require 

cooling, but at much lower temperatures. When a qubit 

changes its state it generates heat, and because Qubits change 

states often during program execution they can generate 

massive amounts of heat. Cooling quantum superconducting 

processors requires extremely low temperatures. For 

example, at D-Wave Systems in British Columbia Canada, 

the cryogenic system processor operates at 15 millikelvin, 

“approximately 180 times colder than interstellar space.” In 

other words, the quantum processor requires -460 degrees 

Fahrenheit or -273 degrees Celsius to operate [4].  

Due to massive operational costs and engineering 

challenges, R. Van Meter and S. J. Devit have proposed two 

new criteria to be added to DiVincenzo’s original quantum 

criteria. First, that quantum systems be small, cheap, and 

reliable enough to be practical and fast enough to make using 

one worthwhile. Second, that “implementation limitations 

make locally distributed computation imperative, which 

requires system area networks that are fast, high-fidelity, and 

scalable” [13]. These two criteria have led to research into 

distributed quantum systems. If one organization is able to 

maintain a 20 qubit machine, another organization a 15 qubit 

machine, and a third organization a 12 qubit machine, the 

ability to use all three machines simultaneously would allow 

the quantum computation to access 47 qubits. Researchers are 

currently working on connecting and scaling these machines. 

The complexities of creating distributed quantum 

systems show the necessity for attracting students and 

professionals from multiple disciplines to the field. 

Researchers skilled in multiple disciplines of physics are 

needed to develop quantum chips. Electrical engineers and 

computer architects must develop quantum instruction set 

architectures and error correction schemes. Computer 

scientists must develop quantum compilers and higher level 

programming languages capable of running on quantum 

hardware. Chemists and materials engineers must develop 

hardware capable of maintaining the quantum states of qubits 

and extremely low temperatures. Quantum computing sits at 

the crossroads of these disciplines. Attracting skilled and 

knowledgeable individuals to the field of quantum computing 

is vital to its future success. 

IV. METHODOLOGY

This study utilizes IBM’s QISKit, a Python based 

software development kit to implement two quantum 

computing examples. The QISKit requires Python 3.5 or later 

and runs on Windows, OSX, and Linux. Users who register 

with IBM can gain access to the Q Experience API which 

allows users to run code on a publically accessible quantum 

computer in Yorktown, NY. Currently, IBM allows access to 

three quantum chips. IBMQX2 and IBMQX4 are both 5 qubit 

chips. IBMQX5 is a 16 qubit chip [8]. The QISKit also allows 

users to run quantum simulations on a local machine. 

The basic structure of a quantum program is organized 

into three steps: build, compile, and run. In the build step, the 

user creates a quantum circuit composed of quantum registers. 

The user can then add quantum gates to manipulate the 

registers. Gate are essential to quantum programs. They 

perform operations directly on qubits. In the compile step, the 

user selects a backend, either their local machine or a 

publically available IBM quantum chip, on which to execute 

their quantum code. In the final step, the user runs the code 

and receives a result. The user can select various options that 

can affect execution in the step. 

All quantum programs operate on qubits using gates. A 

single qubit is represented visually using a Bloch Sphere. 

Figure 1 is an illustration of a Bloch Sphere. The Bloch 

Sphere has a radius of 1 and a vector from its center to its 

surface. The state of the qubit is represented by the point 

where the vector meets the surface of the sphere. The point at 

the top of the sphere represents |0⟩ and the point at the bottom 

of the sphere represents |1⟩. Gates manipulate the position of 

the qubit on the surface of the sphere to perform calculations 

[9]. 

Figure 1 - Bloch Sphere representation of a qubit with X, Y, and 

Z axis labeled. |0⟩ at the top of the sphere. |1⟩ at the bottom of the 

sphere. The position of the qubit on the surface of the sphere is 

represented by the solid orange vector. Angle θ represents a state 
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of superposition when the value of the qubit is between |0⟩ and 

|1⟩. Angle ϕ represents rotation around the Z axis or phase of the 

qubit [9]. 

The quantum gate is the primary tool a developer can use 

to interact with qubits. Therefore, in order to write a quantum 

program, a developer must have a thorough understanding of 

how to use quantum gates. The following sections will 

explain in detail the two quantum computing program 

examples produced by this study including how they make 

use of quantum gates. 

V.  PROGRAM I - QUANTUM WAR 

The first programming example is the quantum version 

of the children’s card game “War.” This program 

demonstrates a practical application for the quantum principle 

of superposition. It shows how a small number of qubits can 

do the work of many classical bits by using a real-world 

example to increase understandability. It also illustrates how 

to create and measure two quantum circuits. 

To play the game, a deck of playing cards is divided 

evenly among two players. Each player simultaneously 

reveals a card, the player with the card of the highest order 

wins the battle. The winning player claims the losing player’s 

card. The first player to run out of cards loses. After drawing, 

the cards are removed from the deck. Traditionally, the rules 

of War state that the losing player’s cards are added to the 

winning player’s deck. This study has opted to forego this 

portion of the rules to keep the example simple for those first 

learning about quantum programming. This study has also 

opted to omit the three card W-A-R draw at the start of each 

round for simplicity. 

A traditional deck of cards contains fifty-two unique 

cards. In order for a classical computer to represent one card 

of the fifty-two options, six bits are required. In comparison, 

a classical computer requires three hundred and twelve bits 

(six bits per card) to represent all fifty-two options 

simultaneously. The principle which allows the quantum 

computer to represent all fifty-two options with only these six 

qubits is superposition. Superposition, illustrated in Figure 2, 

is when the value of a qubit is a linear combination of both |0⟩ 
and |1⟩. This means that the qubit represents all possible 

values simultaneously. Thus, six qubits, all in a state of 

superposition, represent all fifty-two possibilities when 

drawing from a deck of playing cards. 

This study slightly modifies the rules of War to illustrate 

more fully the quantum principles at play. Each player plays 

with a full deck of fifty-two cards. Each deck is represented 

by six qubits, twelve qubits in total. 

The program begins with two classes that are used to 

keep track of the cards in each player’s deck. The Card class 

holds information about each playing card including, the suit, 

name, and value of the card. The Deck class contains logic for 

creating a deck of cards containing 52 cards with values 2-10, 

Jack, Queen, King and Ace with suits Clubs, Diamonds, 

Hearts, and Spades. It also contains the logic for drawing a 

card and removing it from the deck. 

Following the class definitions, the user chooses to run 

the program on a local quantum simulator or IBM’s 

IBMQX5, a 16 qubit chip. The simulator runs faster than 

making a connection to the IBMQX5 and is guaranteed to 

produce a result. Due to high volume of usage, a request to 

use the IBMQX5 can sometimes timeout. 

Next, the program creates two quantum circuits to 

represent each deck. Each circuit contains six qubits. All six 

qubits have an H gate applied to them to induce a state of 

superposition represented in Figure 2. This will allow all six 

qubits to potentially represent any of the 52 cards in the deck. 

The program now contains two quantum circuits, each of 

which represents a deck of 52 playing cards. 

Figure 2 - Bloch Sphere representing H gate rotation around the 

X + Z axis. The qubit, represented by the orange arrow, begins 

with a state of |0⟩. After the H gate performs the rotation, the 

qubit is in a state of superposition. The value of the qubit is a 

linear combination of both |0⟩ and |1⟩ [9]. 

Next, the battle between players begins. Player One's 

quantum circuit is measured. This represents drawing a card 

from the top of the deck. Then, player Two's quantum circuit 

is measured. The measurement returns the probability of 

drawing any one of the fifty-two cards from the top of the 

deck. The card drawn is determined by the measurement 

taken of the state of the qubits.  

The six qubits representing each deck are measured 1024 

times. One measurement is referred to as a “shot”. In a single 

shot, the probability that a qubit is equal to |0⟩ or |1⟩ is 

measured and recorded. After all 1024 shots, a dictionary is 

returned that contains the number of times all sixty-four 

combinations of the six qubits were measured. The value 

between 000000 and 110011 that is measured with the highest 

frequency corresponds to the card that the player drew. The 

drawn card is then removed from the deck and cannot be 

drawn again. Finally, python logic compares the two cards 

and determines a winner for the battle. 

The program then presents the players with the cards that 

they drew and the likelihood that the qubits represented that 

card at the time of measurement. The likelihood is calculated 

by dividing the number of times the value was measured by 
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the total number of shots and represented as a percentage in 

the output. Sample output is presented in Figure 3.   

Figure 3 - Sample output of the Quantum War program. Player 

1 drew the 3 of Clubs. This draw was measured in 2.73% of 

shots.  Player 2 drew the 6 of Spades which was measured in 

2.34% of the shots. 

The program is successfully able to simulate a truly 

random event. In classical computing, random functions are 

usually pseudorandom. The functions must be seeded with the 

date and time or other information to produce a result that 

seems random but is not actually random. In contrast, the 

behavior of the qubits is truly unpredictable. Thus, when 

measuring qubits to represent a real world activity, such as 

drawing a card from a shuffled deck, the result is truly 

random. The card game simulation employs qubits in a 

practical situation that requires truly random results. 

VI. PROGRAM II - RANDOM PASSWORD

GENERATOR 

The second programming example is the quantum 

version of a random password generator. This program 

demonstrates how to use superposition to generate ASCII 

characters. It also shows how a small number of qubits can do 

the work of many classical bits and uses a practical example 

to increase user engagement. It also shows how to use a single 

measurement to get multiple results and illustrates how to 

account for noise when measuring a quantum circuit.  

This program uses a quantum circuit to create a truly 

random password using English ASCII characters. The 

program uses an 8 qubit quantum circuit to generate a variable 

length random password. A single ASCII character, 

represented on a classical computer, uses 8 bits. In the 

classical implementation, 8 bits represents a single character, 

and only that character. In order for the classical machine to 

represent a different character, the value of one or more bits 

must be changed or more bits must be used. The quantum 

implementation can utilize superposition to create multiple 

characters using only 8 qubits by measuring each qubit 

multiple times. Thus, the quantum circuit represents all ASCII 

characters simultaneously when in a state of superposition. 

The quantum computer has two advantages over the 

classical computer when it comes to password generation. 

The first advantage is that because quantum computers use 

qubits with superposition, they can generate longer passwords 

in less time than a classical computer. The second advantage 

is that the quantum computer is capable of generating a truly 

random password while the classical computer is not. While 

the classical computer utilizes pseudorandom functions to 

produce results that seem random, only qubits can produce 

truly random results. As with the Quantum War program, the 

motion of quantum particles is unpredictable. Thus, using 

qubits can produce a password that is truly random and thus 

stronger than a random password generated on a classical 

computer. 

The program begins by creating an 8 qubit quantum 

circuit. Next, the program uses gates to set the qubits to the 

proper states for execution. All English ASCII characters 

begin with the leading bits 01. The following six bits are 

variable and can be set to either 0 or 1 depending on the 

character being represented. Thus, to represent an ASCII 

character with qubits, the leading two qubits, qubits 7 and 6, 

must be set to 0 and 1 respectively. These values must not 

change during the execution of the program or non-English 

characters will appear in the results. The program achieves 

this by leaving qubit 7 in its initialized state of 0 and using an 

X gate to set qubit 6 to 1. Next, qubits 0 through 5 are put into 

a state of superposition using H gates.  

When all eight qubits are set to the correct values, the 

program measures the quantum circuit. This determines the 

characters that are used to generate the password. By 

measuring the qubits, the program can determine the 

probability that they represent a particular character at the 

time of measurement. The eight qubits representing a single 

character are measured in 1024 shots. Each shot is a single 

measurement that represents a single character. After all 1024 

shots occur, QISKit returns a dictionary that contains the 

frequency that each character was measured. Figure 4 shows 

the dictionary representation of the measurement results. 

Figure 4 - An excerpt from the dictionary representing the 

frequency that each character was measured during each of the 

1024 shots. On the left, is the binary representation of the 

character and on the right the number of shots which the 8 

qubits represented that character. The first character in the 

dictionary ‘01101110’ is the character ‘n’ and it was measured 

in 13 of the 1024 shots. 

Because Quantum measurements can be noisy, the 

program must also account for noise in the measurement. 

Noise is unintended environmental interference that may 
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distort the results of a measurement. To account for this, the 

program eliminates all results that were measured in less than 

2% of shots. The 2% noise threshold is recommended in 

several QISKit examples. The program assumes that any 

character which appears in greater than 2% of shots is a 

legitimate qubit value and not noise. In Figure 4, the results 

of 1024 shots are displayed. The character ‘01101110’, the 

character ‘n’, was measured in 13 shots. To determine if the 

character ‘n’ was actually measured or is the result of noise, 

the program divides 13 by 1024 which equals 0.0127. Since 

the character ‘n’ only appeared in 1.2% of shots, it is 

indistinguishable from noise and thus is not included in the 

password. This noise threshold check is performed for each 

measured character. All characters that the program measures 

in more than 2% of shots are added to the password.  

Because the program accounts for noise, the final length 

of the password is variable. Generally the password is 

between six to eight characters but may be longer or shorter. 

This is due to the random nature of qubits and the fact that 

noise can distort measurements. Sometimes the measurement 

frequency of a few characters rises above the noise threshold. 

Other times, ten or more characters may be measured over 2% 

of the time. Figure 5 shows three sample passwords generated 

by the quantum program. Each column represents a single 

password. On the left, is the character and on the right the 

percentage of shots that it was measured in. Running the 

program multiple times will predictably produce varied 

results. 

Figure 5 - Three output examples of the Quantum Random 

Password Generator. Each character of the password is 

displayed vertically with the probability that the character was 

measured displayed across from it. The passwords are variable 

length depending on how many characters were measured more 

than 2% of the time to account for noise. 

This program can create randomized passwords that 

meet acceptable password guidelines. The passwords are truly 

random, use upper and lowercase English characters and most 

commonly used special characters. Similar to the last 

program, it illustrates the concepts of superposition and uses 

qubits to represent multiple outcomes simultaneously. In 

addition to having real world application, the combination 

program can also help students understand intermediate 

quantum concepts like noise, H gates and X gates.  

VII. RESULTS

This study successfully developed two working quantum 

programming examples that return valid output. Both 

programs illustrate the quantum concepts of superposition and 

how to utilize gates to perform operations on qubits. The 

programs also demonstrate the efficiency of performing 

calculations using qubits rather than using classical bits. 

The first program, Quantum War, shows how qubits can 

simulate a tangible activity such as drawing from a deck of 

cards. The program runs on the local simulator as well as the 

16 qubit IBMQX5 machine available over the internet. The 

program is more economical in its representation of cards than 

a classical machine and each card drawn is truly randomized. 

Figure 3 represents a single output example showing a single 

battle in which each player has drawn a card from a 

randomized quantum deck. 

The second program, Quantum Random Password 

Generator, successfully produces truly random passwords. It 

uses all English ASCII characters, both uppercase and 

lowercase, and commonly used special characters. In 98% of 

attempts the program generates a password of 7 to 14 

characters in length, which will satisfy most password 

requirements. The program runs on the local simulator as well 

as the IBMQX5 quantum machine. Figure 5 represents three 

output examples from the Quantum Random Password 

Generator. 

This study utilized various IBM Q Experience tutorials 

and the QISKit software development kit to create a 

development environment using Python 3.5, Conda, and 

Jupyter Notebook. The IBM tutorials were student friendly, 

however the difficulty increased significantly after 

introduction to the basics. The IBM QISKit tutorials require 

more intermediate level examples that illustrate simple 

operations using quantum gates with less abstract 

functionality. This study offers two such practical examples, 

Quantum War and Quantum Random Password Generator, to 

the growing body of literature. This study also produced 

Jupyter Notebook pages that accompany each program and 

document how the program operates. Jupyter Notebook is an 

integrated development environment (IDE) that allows 

developers to create a document that contains runnable code 

and formatted narrative text tutorials. The notebook pages that 

accompany each program were written to match the style and 

substance of existing IBM QISKit tutorials.  

The notebooks will serve two purposes. First, they 

organize the code into understandable blocks and explain how 

each block functions. This approach is preferable to in-line 

comments because they are clearer, more visually appealing, 

easier to understand, and can contain explanations of concepts 

not normally found in in-line comments. Figure 6 shows an 

example notebook page. 
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Figure 6 - An excerpt from a Jupyter Notebook page. This 

excerpt is from the Quantum War program and shows how to 

create and initialize a quantum circuit. At the top of the figure 

is the narrative explanation and below a neatly separated block 

of code that can be run from within Jupyter Notebook. 

Overall, this study found that Jupyter Notebook pages are 

better for the student learning experience than parsing in-line 

comments or reading documentation and code in separate 

documents. The second purpose of the notebooks is to serve 

as a tutorial for students interested in quantum computing who 

have read and understood basic quantum programming 

examples, but are not ready for more advanced material. This 

study found that more intermediate material of this nature was 

needed. As mentioned in the last paragraph, there is a large 

gap between introductory material and advanced material. 

This study provides two working intermediate programming 

examples that can help students bridge the gap from basic 

quantum programming to understanding advanced examples. 

Overall, the student quantum experience was a positive 

one. IBM’s tutorials and visual aids to familiarize users with 

both the programming environment and underlying physical 

principles are well-crafted and understandable. IBM has 

clearly documented the functionality of the QISKit on the Q 

Experience website. IBM’s choice to write the QISKit in 

Python is advantageous because Python’s easily readable 

syntax clearly demonstrates quantum concepts such as 

initializing a quantum circuit, applying gates to qubits, and 

printing the results in a classical format. The only negative of 

note is that it can be difficult to find clear explanations that 

bridge the gap between intermediate and advanced quantum 

topics such as QRAC (Quantum Random Access Code) and 

Phase Gates. This study has contributed two intermediate 

quantum programming examples for students interested in 

advancing their quantum programming knowledge. 

VIII. CONCLUSIONS

The two examples presented in this paper are available to 

the researchers at IBM for use in the QISKit tutorial materials. 

These concrete and familiar examples - a card game and 

random password generator - have the potential to enrich a 

student’s introduction to quantum programming and can 

assist in filling the gaps between beginner and advanced 

learning materials. 

The future for quantum computing is bright. However, 

there are still hurdles that must be cleared. High cost, poor 

error correction, limited access to existing quantum machines 

for learning and experimentation, and untrained personnel 

still stymie development and adoption. While there is a wealth 

of introductory material available on the web from various 

publications, news outlets, and educational institutions that 

covers the background information of quantum computing 

and quantum mechanics, little content exists outside of IBM 

QISKit that clearly explains programming for quantum 

computers. For instance, currently there are none or few 

tutorials for quantum programming found on popular 

programming learning sites like Udemy, Udacity, Coursera, 

and Youtube.  As companies such as IBM, Google, and 

Microsoft scale up their quantum computing research, there 

will certainly be a need for more quantum programmers.  

As argued by R. Van Meter and S. J. Devitt, affordability 

and scalability of quantum implementations will increase 

their usefulness in a broad range of fields, including 

biophysics and security [13]. As the usefulness of quantum 

computers increases, their availability will increase. As their 

availability increases, the need for trained quantum 

programmers will also increase. This study offers simple, 

high-yield student-to-student teaching examples for 

introductory courses in quantum computing. Helping students 

develop literacy in programming for quantum computers will 

depend on educators who can create clear, applicable, and 

engaging teaching materials that will attract motivated 

programmers to the field and help usher in the next revolution 

in computing.  
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