
 A4-1

Student User Experience with the IBM QISKit

Quantum Computing Interface

Stephan Barabasi, James Barrera, Prashant Bhalani, Preeti Dalvi, Ryan Kimiecik, Avery Leider, John

Mondrosch, Karl Peterson, Nimish Sawant, and Charles C. Tappert

Seidenberg School of CSIS, Pace University, Pleasantville, New York

Abstract - The field of quantum computing is rapidly

expanding. As manufacturers and researchers grapple with the

limitations of classical silicon central processing units (CPUs),

quantum computing sheds these limitations and promises a

boom in computational power and efficiency. The quantum age

will require many skilled engineers, mathematicians, physicists,

developers, and technicians with an understanding of quantum

principles and theory. There is currently a shortage of

professionals with a deep knowledge of computing and physics

able to meet the demands of companies developing and

researching quantum technology. This study provides a brief

history of quantum computing, an in-depth review of recent

literature and technologies, an overview of IBM’s QISKit for

implementing quantum computing programs, and two

successful programming examples. These two programs along

with the associated Jupyter notebook pages will provide

additional intermediate samples for IBM Q Experience.

Keywords - quantum computer, qubit, QISKit, tutorial,

student, IBM

I. INTRODUCTION

In 1959, shortly after the arrival of the classical computer

and the beginning of the digital era, theoretical physicist

Richard Feynman gave a lecture series on electronic

miniaturization titled “There’s Plenty of Room at the

Bottom.” Feynman proposed in these lectures that the

exploitation of quantum effects could create more powerful

computers. Quantum computers, machines that operate on

qubits rather than traditional bits, are the manifestation of

Feynman’s proposal [6].

The discovery of quantum mechanics in the early 20th

century laid the foundations for Feynman’s proposal. In 1905,

Albert Einstein published a paper proposing the photon

concept of light. In the paper, he described light as quantum

particles that are “localized points in space, which move

without dividing, and which can only be produced and

absorbed as complete units [5].” This challenged the accepted

model at the time, which viewed light only as a wave.

Ultimately, Einstein’s revelation on the physical properties of

light laid the groundwork for the development of quantum

physics.

Following Einstein’s quantum explanation of light, the

field of quantum mechanics developed gradually with

research by Werner Heisenberg, Niels Bohr, and Erwin

Schrödinger [11]. Quantum mechanics states that the position

of a particle cannot be predicted with precision as it can be in

Newtonian mechanics. The only thing an observer could

know about the position of a particle is the probability that it

will be at a certain position at a given time [11]. By the 1980’s

several researchers including Feynman, Yuri Manin, and Paul

Benioff had begun researching computers that operate using

this concept.

The quantum bit or qubit is the basic unit of quantum

information. Classical computers operate on bits using

complex configurations of simple logic gates. A bit of

information has two states, on or off, and is represented with

a 0 or a 1. The qubit has a |0⟩ state, called zero-ket and a |1⟩
state called one-ket. When zero-ket is measured it produces a

classical 0. When one-ket is measured it produces a classical

1. The most notable difference between classical and quantum

bits is that the qubit can also be in a state that is a linear

combination of both |0⟩ and |1⟩. This vector property of the

qubit is called superposition. Superposition allows for many

calculations to be performed simultaneously [9]. Another

distinct property is that qubits can become entangled.

Entanglement “is a property of many quantum superpositions

and does not have a classical analog” [9]. Observation of two

entangled qubits causes random behavior in the observed

qubit, however, the observer can tell how the other would

behave if observed in the same manner [9]. The correlation of

random behavior between entangled qubits is responsible for

the extra computing power of quantum machines.

Quantum computers are useful for large scale problems

that classical computers lack the computational power to

solve in a reasonable amount of time. Superposition creates

opportunities to implement more efficient factoring,

searching, sorting, modeling, and simulation algorithms.

According to C. G. Almudever et al. factoring a 2000 bit

number using Shor’s algorithm on a quantum computer would

take one day. Factoring the same number using a classical

computer would take a data center the size of Germany one

hundred years to complete [1].

Quantum computing promises breakthroughs in fields

that deal with large datasets and require massive amounts of

processing power such as genetics, molecular modeling,

astrophysics, chemistry, data science, artificial intelligence,

and cryptography. This expanding field will need many

trained professionals proficient in both physics and

Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 4th, 2018

 A4-2

computing. This study will document the student experience

using the IBM Q Experience and QISKit to pursue training in

programming for quantum computers.

II. STUDY OVERVIEW

This study explores the educational material available

online for students interested in programming for quantum

computers focusing on the interface offered by IBM that

allows users to run code on publically available quantum

computers or quantum simulators.

The study uses IBM Q Experience to create two simple

quantum programs and documents the experience working

with the development kits, programming languages, user

interfaces, online documentation, and tutorial information.

The study utilizes IBM’s QISKit, a Python based

development kit, to create a simple random password

generation program and a card game program that runs on

IBM’s publicly available quantum computer in Yorktown,

New York.

The goal of this study is to produce an informational

review of a student’s early experience with quantum

computing focusing on improving the currently available

material in order to attract more students to the growing field.

Toward this goal, the study includes a supplemental “quantum

tutorial” using Jupyter Notebook that incorporates the

example programs and serves as a guide for students

interested in quantum computing.

III. LITERATURE REVIEW

In 1965, Gordon Moore, the co-founder of Fairchild

Semiconductor and Intel proposed that transistors (the main

component of central processors) would keep shrinking every

year due to engineering advancements in the semiconductor

industry. Specifically, Moore claimed that the industry would

double the number of transistors in CPUs approximately

every year. He would later revise this to every 2 years in 1975,

while David House, an Intel executive at the time, noted that

the computing power would also double every 18 months

[10]. In the late 1950s, some chips contained 200 transistors;

and by 2005, “Intel would produce chips with 1 billion

transistors [10].” The semiconductor revolution gave rise to

the internet, smartphones, and the Internet of Things.

Consumer demand for more powerful devices has

increased, and manufacturers have strived to push the limits

of Moore’s law. However, simple physics dictates that

transistors can only be so small. “No physical quantity can

continue to change exponentially forever,” Moore said in

2003 [10]. In March of 2016, the semiconductor industry

would formally acknowledge the nearing end of Moore’s law

[14]. This was due in part to the excess heat generated by

densely packed silicon circuity in small devices, and that

when transistors shrink to only 10 atoms across, “electron

behavior will be governed by quantum uncertainties that will

make transistors hopelessly unreliable [14].” Researchers

hope that quantum computing will allow a new phase of

exponential growth in computing speeds. IBM announced in

a press release in May of 2016, “with Moore’s Law running

out of steam, quantum computing will be among the

technologies that could usher in a new era of innovation

across industries [7].”

In his influential paper, “The Physical Implementation of

Quantum Computation” David DiVincenzo proposed five

criteria that quantum computer implementation must meet.

First, the system must utilize qubits for making computations.

Second, the system must have the ability to initialize the

qubits to a known state. Third, the computer must use a

universal set of quantum gates. Fourth, the gates must operate

faster than the information stored in the qubits can be lost due

to interaction with the surrounding environment. And finally,

measurement of information contained in qubits must be

possible [3]. A machine that meets these criteria is classified

as a quantum computer.

The first quantum computer was built at Oxford

University in 2004. The machine was a nuclear magnetic

resonance (NMR) machine that was able to solve simple

calculations twice as fast as a classical computer. NMR

machines utilize magnetic field emissions created by

electrons orbiting a nucleus and radio waves of varying

frequencies to manipulate the electron fields causing the

electrons to act as qubits [11].

In the last five years, large corporations such as Google

and IBM, and startups such as Rigetti and Quantum circuits

have had major success implementing superconductor

quantum computers. Superconductor computers require

temperatures of milli-Kelvin to operate. Qubits can store

information through the charge of the particles.

Superconductor machines use pulses of radio frequencies to

control qubits in order to execute quantum operations [11].

Researchers are also working on other implementations

of quantum computers. Linear optic machines have potential

for future breakthroughs due to low infrastructure cost.

Diamond machines use impurities in diamonds to capture

single electrons and use them as qubits. Diamond machines

have the advantage over superconductors in that they can

operate at 4 Kelvin. The potential benefits of Diamond

implementations are promising, however the diamond is not

as well researched as other technologies.

The cutting edge of quantum computer implementations

is the anyon computer. Researchers theorize that “under some

circumstances certain material can behave as if they are

holding particles that do not actually exist, known as

quasiparticles [13].” These quasiparticles, or anyons, can be

used as qubits. The physical properties of anyons protect from

decoherence and give anyon machines an advantage over

other implementations. Anyon research is promising although

still in the theoretical phase.

There are many engineering challenges in quantum

computing. As mentioned above, decoherence describes a

process in which information stored in qubits is lost due to its

 A4-3

interaction with the environment. All implementations of

quantum computers discussed above suffer from

decoherence. Decoherence must be accounted for using

quantum error correction (QEC). QEC is necessary for

accurate calculations but drastically increases the necessary

number of qubits required for computations [1].

Quantum computers must also be capable of fault tolerant

(FT) computations. Fault tolerance means that small errors do

not lead to information loss or larger errors in calculations. C.

G. Almudever et al. suggest that a number of qubits in the

millions may be required to perform QEC and FT

computations successfully [1].

Another challenge is that quantum computers are

expensive, large, and difficult to maintain. For most

organizations, it is impractical to implement a machine with

even a small number of qubits. Cooling the quantum machine

accounts for much of the cost and difficulty of operation.

Similar to classical computers, quantum computers require

cooling, but at much lower temperatures. When a qubit

changes its state it generates heat, and because Qubits change

states often during program execution they can generate

massive amounts of heat. Cooling quantum superconducting

processors requires extremely low temperatures. For

example, at D-Wave Systems in British Columbia Canada,

the cryogenic system processor operates at 15 millikelvin,

“approximately 180 times colder than interstellar space.” In

other words, the quantum processor requires -460 degrees

Fahrenheit or -273 degrees Celsius to operate [4].

Due to massive operational costs and engineering

challenges, R. Van Meter and S. J. Devit have proposed two

new criteria to be added to DiVincenzo’s original quantum

criteria. First, that quantum systems be small, cheap, and

reliable enough to be practical and fast enough to make using

one worthwhile. Second, that “implementation limitations

make locally distributed computation imperative, which

requires system area networks that are fast, high-fidelity, and

scalable” [13]. These two criteria have led to research into

distributed quantum systems. If one organization is able to

maintain a 20 qubit machine, another organization a 15 qubit

machine, and a third organization a 12 qubit machine, the

ability to use all three machines simultaneously would allow

the quantum computation to access 47 qubits. Researchers are

currently working on connecting and scaling these machines.

The complexities of creating distributed quantum

systems show the necessity for attracting students and

professionals from multiple disciplines to the field.

Researchers skilled in multiple disciplines of physics are

needed to develop quantum chips. Electrical engineers and

computer architects must develop quantum instruction set

architectures and error correction schemes. Computer

scientists must develop quantum compilers and higher level

programming languages capable of running on quantum

hardware. Chemists and materials engineers must develop

hardware capable of maintaining the quantum states of qubits

and extremely low temperatures. Quantum computing sits at

the crossroads of these disciplines. Attracting skilled and

knowledgeable individuals to the field of quantum computing

is vital to its future success.

IV. METHODOLOGY

This study utilizes IBM’s QISKit, a Python based

software development kit to implement two quantum

computing examples. The QISKit requires Python 3.5 or later

and runs on Windows, OSX, and Linux. Users who register

with IBM can gain access to the Q Experience API which

allows users to run code on a publically accessible quantum

computer in Yorktown, NY. Currently, IBM allows access to

three quantum chips. IBMQX2 and IBMQX4 are both 5 qubit

chips. IBMQX5 is a 16 qubit chip [8]. The QISKit also allows

users to run quantum simulations on a local machine.

The basic structure of a quantum program is organized

into three steps: build, compile, and run. In the build step, the

user creates a quantum circuit composed of quantum registers.

The user can then add quantum gates to manipulate the

registers. Gate are essential to quantum programs. They

perform operations directly on qubits. In the compile step, the

user selects a backend, either their local machine or a

publically available IBM quantum chip, on which to execute

their quantum code. In the final step, the user runs the code

and receives a result. The user can select various options that

can affect execution in the step.

All quantum programs operate on qubits using gates. A

single qubit is represented visually using a Bloch Sphere.

Figure 1 is an illustration of a Bloch Sphere. The Bloch

Sphere has a radius of 1 and a vector from its center to its

surface. The state of the qubit is represented by the point

where the vector meets the surface of the sphere. The point at

the top of the sphere represents |0⟩ and the point at the bottom

of the sphere represents |1⟩. Gates manipulate the position of

the qubit on the surface of the sphere to perform calculations

[9].

Figure 1 - Bloch Sphere representation of a qubit with X, Y, and

Z axis labeled. |0⟩ at the top of the sphere. |1⟩ at the bottom of the

sphere. The position of the qubit on the surface of the sphere is

represented by the solid orange vector. Angle θ represents a state

 A4-4

of superposition when the value of the qubit is between |0⟩ and

|1⟩. Angle ϕ represents rotation around the Z axis or phase of the

qubit [9].

The quantum gate is the primary tool a developer can use

to interact with qubits. Therefore, in order to write a quantum

program, a developer must have a thorough understanding of

how to use quantum gates. The following sections will

explain in detail the two quantum computing program

examples produced by this study including how they make

use of quantum gates.

V. PROGRAM I - QUANTUM WAR

The first programming example is the quantum version

of the children’s card game “War.” This program

demonstrates a practical application for the quantum principle

of superposition. It shows how a small number of qubits can

do the work of many classical bits by using a real-world

example to increase understandability. It also illustrates how

to create and measure two quantum circuits.

To play the game, a deck of playing cards is divided

evenly among two players. Each player simultaneously

reveals a card, the player with the card of the highest order

wins the battle. The winning player claims the losing player’s

card. The first player to run out of cards loses. After drawing,

the cards are removed from the deck. Traditionally, the rules

of War state that the losing player’s cards are added to the

winning player’s deck. This study has opted to forego this

portion of the rules to keep the example simple for those first

learning about quantum programming. This study has also

opted to omit the three card W-A-R draw at the start of each

round for simplicity.

A traditional deck of cards contains fifty-two unique

cards. In order for a classical computer to represent one card

of the fifty-two options, six bits are required. In comparison,

a classical computer requires three hundred and twelve bits

(six bits per card) to represent all fifty-two options

simultaneously. The principle which allows the quantum

computer to represent all fifty-two options with only these six

qubits is superposition. Superposition, illustrated in Figure 2,

is when the value of a qubit is a linear combination of both |0⟩
and |1⟩. This means that the qubit represents all possible

values simultaneously. Thus, six qubits, all in a state of

superposition, represent all fifty-two possibilities when

drawing from a deck of playing cards.

This study slightly modifies the rules of War to illustrate

more fully the quantum principles at play. Each player plays

with a full deck of fifty-two cards. Each deck is represented

by six qubits, twelve qubits in total.

The program begins with two classes that are used to

keep track of the cards in each player’s deck. The Card class

holds information about each playing card including, the suit,

name, and value of the card. The Deck class contains logic for

creating a deck of cards containing 52 cards with values 2-10,

Jack, Queen, King and Ace with suits Clubs, Diamonds,

Hearts, and Spades. It also contains the logic for drawing a

card and removing it from the deck.

Following the class definitions, the user chooses to run

the program on a local quantum simulator or IBM’s

IBMQX5, a 16 qubit chip. The simulator runs faster than

making a connection to the IBMQX5 and is guaranteed to

produce a result. Due to high volume of usage, a request to

use the IBMQX5 can sometimes timeout.

Next, the program creates two quantum circuits to

represent each deck. Each circuit contains six qubits. All six

qubits have an H gate applied to them to induce a state of

superposition represented in Figure 2. This will allow all six

qubits to potentially represent any of the 52 cards in the deck.

The program now contains two quantum circuits, each of

which represents a deck of 52 playing cards.

Figure 2 - Bloch Sphere representing H gate rotation around the

X + Z axis. The qubit, represented by the orange arrow, begins

with a state of |0⟩. After the H gate performs the rotation, the

qubit is in a state of superposition. The value of the qubit is a

linear combination of both |0⟩ and |1⟩ [9].

Next, the battle between players begins. Player One's

quantum circuit is measured. This represents drawing a card

from the top of the deck. Then, player Two's quantum circuit

is measured. The measurement returns the probability of

drawing any one of the fifty-two cards from the top of the

deck. The card drawn is determined by the measurement

taken of the state of the qubits.

The six qubits representing each deck are measured 1024

times. One measurement is referred to as a “shot”. In a single

shot, the probability that a qubit is equal to |0⟩ or |1⟩ is

measured and recorded. After all 1024 shots, a dictionary is

returned that contains the number of times all sixty-four

combinations of the six qubits were measured. The value

between 000000 and 110011 that is measured with the highest

frequency corresponds to the card that the player drew. The

drawn card is then removed from the deck and cannot be

drawn again. Finally, python logic compares the two cards

and determines a winner for the battle.

The program then presents the players with the cards that

they drew and the likelihood that the qubits represented that

card at the time of measurement. The likelihood is calculated

by dividing the number of times the value was measured by

 A4-5

the total number of shots and represented as a percentage in

the output. Sample output is presented in Figure 3.

Figure 3 - Sample output of the Quantum War program. Player

1 drew the 3 of Clubs. This draw was measured in 2.73% of

shots. Player 2 drew the 6 of Spades which was measured in

2.34% of the shots.

The program is successfully able to simulate a truly

random event. In classical computing, random functions are

usually pseudorandom. The functions must be seeded with the

date and time or other information to produce a result that

seems random but is not actually random. In contrast, the

behavior of the qubits is truly unpredictable. Thus, when

measuring qubits to represent a real world activity, such as

drawing a card from a shuffled deck, the result is truly

random. The card game simulation employs qubits in a

practical situation that requires truly random results.

VI. PROGRAM II - RANDOM PASSWORD

GENERATOR

The second programming example is the quantum

version of a random password generator. This program

demonstrates how to use superposition to generate ASCII

characters. It also shows how a small number of qubits can do

the work of many classical bits and uses a practical example

to increase user engagement. It also shows how to use a single

measurement to get multiple results and illustrates how to

account for noise when measuring a quantum circuit.

This program uses a quantum circuit to create a truly

random password using English ASCII characters. The

program uses an 8 qubit quantum circuit to generate a variable

length random password. A single ASCII character,

represented on a classical computer, uses 8 bits. In the

classical implementation, 8 bits represents a single character,

and only that character. In order for the classical machine to

represent a different character, the value of one or more bits

must be changed or more bits must be used. The quantum

implementation can utilize superposition to create multiple

characters using only 8 qubits by measuring each qubit

multiple times. Thus, the quantum circuit represents all ASCII

characters simultaneously when in a state of superposition.

The quantum computer has two advantages over the

classical computer when it comes to password generation.

The first advantage is that because quantum computers use

qubits with superposition, they can generate longer passwords

in less time than a classical computer. The second advantage

is that the quantum computer is capable of generating a truly

random password while the classical computer is not. While

the classical computer utilizes pseudorandom functions to

produce results that seem random, only qubits can produce

truly random results. As with the Quantum War program, the

motion of quantum particles is unpredictable. Thus, using

qubits can produce a password that is truly random and thus

stronger than a random password generated on a classical

computer.

The program begins by creating an 8 qubit quantum

circuit. Next, the program uses gates to set the qubits to the

proper states for execution. All English ASCII characters

begin with the leading bits 01. The following six bits are

variable and can be set to either 0 or 1 depending on the

character being represented. Thus, to represent an ASCII

character with qubits, the leading two qubits, qubits 7 and 6,

must be set to 0 and 1 respectively. These values must not

change during the execution of the program or non-English

characters will appear in the results. The program achieves

this by leaving qubit 7 in its initialized state of 0 and using an

X gate to set qubit 6 to 1. Next, qubits 0 through 5 are put into

a state of superposition using H gates.

When all eight qubits are set to the correct values, the

program measures the quantum circuit. This determines the

characters that are used to generate the password. By

measuring the qubits, the program can determine the

probability that they represent a particular character at the

time of measurement. The eight qubits representing a single

character are measured in 1024 shots. Each shot is a single

measurement that represents a single character. After all 1024

shots occur, QISKit returns a dictionary that contains the

frequency that each character was measured. Figure 4 shows

the dictionary representation of the measurement results.

Figure 4 - An excerpt from the dictionary representing the

frequency that each character was measured during each of the

1024 shots. On the left, is the binary representation of the

character and on the right the number of shots which the 8

qubits represented that character. The first character in the

dictionary ‘01101110’ is the character ‘n’ and it was measured

in 13 of the 1024 shots.

Because Quantum measurements can be noisy, the

program must also account for noise in the measurement.

Noise is unintended environmental interference that may

 A4-6

distort the results of a measurement. To account for this, the

program eliminates all results that were measured in less than

2% of shots. The 2% noise threshold is recommended in

several QISKit examples. The program assumes that any

character which appears in greater than 2% of shots is a

legitimate qubit value and not noise. In Figure 4, the results

of 1024 shots are displayed. The character ‘01101110’, the

character ‘n’, was measured in 13 shots. To determine if the

character ‘n’ was actually measured or is the result of noise,

the program divides 13 by 1024 which equals 0.0127. Since

the character ‘n’ only appeared in 1.2% of shots, it is

indistinguishable from noise and thus is not included in the

password. This noise threshold check is performed for each

measured character. All characters that the program measures

in more than 2% of shots are added to the password.

Because the program accounts for noise, the final length

of the password is variable. Generally the password is

between six to eight characters but may be longer or shorter.

This is due to the random nature of qubits and the fact that

noise can distort measurements. Sometimes the measurement

frequency of a few characters rises above the noise threshold.

Other times, ten or more characters may be measured over 2%

of the time. Figure 5 shows three sample passwords generated

by the quantum program. Each column represents a single

password. On the left, is the character and on the right the

percentage of shots that it was measured in. Running the

program multiple times will predictably produce varied

results.

Figure 5 - Three output examples of the Quantum Random

Password Generator. Each character of the password is

displayed vertically with the probability that the character was

measured displayed across from it. The passwords are variable

length depending on how many characters were measured more

than 2% of the time to account for noise.

This program can create randomized passwords that

meet acceptable password guidelines. The passwords are truly

random, use upper and lowercase English characters and most

commonly used special characters. Similar to the last

program, it illustrates the concepts of superposition and uses

qubits to represent multiple outcomes simultaneously. In

addition to having real world application, the combination

program can also help students understand intermediate

quantum concepts like noise, H gates and X gates.

VII. RESULTS

This study successfully developed two working quantum

programming examples that return valid output. Both

programs illustrate the quantum concepts of superposition and

how to utilize gates to perform operations on qubits. The

programs also demonstrate the efficiency of performing

calculations using qubits rather than using classical bits.

The first program, Quantum War, shows how qubits can

simulate a tangible activity such as drawing from a deck of

cards. The program runs on the local simulator as well as the

16 qubit IBMQX5 machine available over the internet. The

program is more economical in its representation of cards than

a classical machine and each card drawn is truly randomized.

Figure 3 represents a single output example showing a single

battle in which each player has drawn a card from a

randomized quantum deck.

The second program, Quantum Random Password

Generator, successfully produces truly random passwords. It

uses all English ASCII characters, both uppercase and

lowercase, and commonly used special characters. In 98% of

attempts the program generates a password of 7 to 14

characters in length, which will satisfy most password

requirements. The program runs on the local simulator as well

as the IBMQX5 quantum machine. Figure 5 represents three

output examples from the Quantum Random Password

Generator.

This study utilized various IBM Q Experience tutorials

and the QISKit software development kit to create a

development environment using Python 3.5, Conda, and

Jupyter Notebook. The IBM tutorials were student friendly,

however the difficulty increased significantly after

introduction to the basics. The IBM QISKit tutorials require

more intermediate level examples that illustrate simple

operations using quantum gates with less abstract

functionality. This study offers two such practical examples,

Quantum War and Quantum Random Password Generator, to

the growing body of literature. This study also produced

Jupyter Notebook pages that accompany each program and

document how the program operates. Jupyter Notebook is an

integrated development environment (IDE) that allows

developers to create a document that contains runnable code

and formatted narrative text tutorials. The notebook pages that

accompany each program were written to match the style and

substance of existing IBM QISKit tutorials.

The notebooks will serve two purposes. First, they

organize the code into understandable blocks and explain how

each block functions. This approach is preferable to in-line

comments because they are clearer, more visually appealing,

easier to understand, and can contain explanations of concepts

not normally found in in-line comments. Figure 6 shows an

example notebook page.

 A4-7

Figure 6 - An excerpt from a Jupyter Notebook page. This

excerpt is from the Quantum War program and shows how to

create and initialize a quantum circuit. At the top of the figure

is the narrative explanation and below a neatly separated block

of code that can be run from within Jupyter Notebook.

Overall, this study found that Jupyter Notebook pages are

better for the student learning experience than parsing in-line

comments or reading documentation and code in separate

documents. The second purpose of the notebooks is to serve

as a tutorial for students interested in quantum computing who

have read and understood basic quantum programming

examples, but are not ready for more advanced material. This

study found that more intermediate material of this nature was

needed. As mentioned in the last paragraph, there is a large

gap between introductory material and advanced material.

This study provides two working intermediate programming

examples that can help students bridge the gap from basic

quantum programming to understanding advanced examples.

Overall, the student quantum experience was a positive

one. IBM’s tutorials and visual aids to familiarize users with

both the programming environment and underlying physical

principles are well-crafted and understandable. IBM has

clearly documented the functionality of the QISKit on the Q

Experience website. IBM’s choice to write the QISKit in

Python is advantageous because Python’s easily readable

syntax clearly demonstrates quantum concepts such as

initializing a quantum circuit, applying gates to qubits, and

printing the results in a classical format. The only negative of

note is that it can be difficult to find clear explanations that

bridge the gap between intermediate and advanced quantum

topics such as QRAC (Quantum Random Access Code) and

Phase Gates. This study has contributed two intermediate

quantum programming examples for students interested in

advancing their quantum programming knowledge.

VIII. CONCLUSIONS

The two examples presented in this paper are available to

the researchers at IBM for use in the QISKit tutorial materials.

These concrete and familiar examples - a card game and

random password generator - have the potential to enrich a

student’s introduction to quantum programming and can

assist in filling the gaps between beginner and advanced

learning materials.

The future for quantum computing is bright. However,

there are still hurdles that must be cleared. High cost, poor

error correction, limited access to existing quantum machines

for learning and experimentation, and untrained personnel

still stymie development and adoption. While there is a wealth

of introductory material available on the web from various

publications, news outlets, and educational institutions that

covers the background information of quantum computing

and quantum mechanics, little content exists outside of IBM

QISKit that clearly explains programming for quantum

computers. For instance, currently there are none or few

tutorials for quantum programming found on popular

programming learning sites like Udemy, Udacity, Coursera,

and Youtube. As companies such as IBM, Google, and

Microsoft scale up their quantum computing research, there

will certainly be a need for more quantum programmers.

As argued by R. Van Meter and S. J. Devitt, affordability

and scalability of quantum implementations will increase

their usefulness in a broad range of fields, including

biophysics and security [13]. As the usefulness of quantum

computers increases, their availability will increase. As their

availability increases, the need for trained quantum

programmers will also increase. This study offers simple,

high-yield student-to-student teaching examples for

introductory courses in quantum computing. Helping students

develop literacy in programming for quantum computers will

depend on educators who can create clear, applicable, and

engaging teaching materials that will attract motivated

programmers to the field and help usher in the next revolution

in computing.

IX. REFERENCES

[1] C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S.

Varsamopoulos, C. Eichler, A. Wallraff, L. Geck, A. Kruth, J. Knoch, H.

Bluhm, and K. Bertels, “The engineering challenges in quantum computing,”

Design, Automation & Test in Europe Conference & Exhibition (DATE),

2017. IEEE, pp. 836–845, 2017.

[2] A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum

dynamics and logic gates,” Phys. Rev. Lett., vol. 74, no. 20, pp. 4083–4086,

1995.

[3] D. P. DiVincenzo and IBM, “The Physical Implementation of Quantum

Computation,” Fortschritte der Phys., vol. 48, no. 9–11, pp. 771–783, 2000.

[4] D-Wave Systems inc. “The D-Wave 2X™ Quantum Computer

Technology Overview” 2015 (online)

https://www.dwavesys.com/sites/default/files/D-

Wave%202X%20Tech%20Collateral_0915F.pdf

 A4-8

[5] A. Einstein, “Einstein's Proposal of the Photon Concept - a Translation of

the Annalen der Physik Paper of 1905,” American Journal of Physics, 1965,

Vol. 33, Number 5, pp. 367-374.

[6] R. P. Feynman, “There’s plenty of room at the bottom: An invitation to

enter a new field of physics,” Eng. Sci., vol. 23, pp. 22–35, 1960.

[7] “IBM Makes Quantum Computing Available on IBM Cloud to Accelerate

Innovation”, 2016, (online) https://www-

03.ibm.com/press/us/en/pressrelease/49661.wss

[8] IBM, “QISKit Github Project” (online) https://github.com/QISKit

[9] IBM Q Experience Documentation

https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=beginners-

guide&page=002-Introduction~2F001-Introduction

[10] M. Kanellos “Moore’s Law to roll on for another decade” 2003

https://www.cnet.com/news/moores-law-to-roll-on-for-another-decade/

[11] K. Kumar, N. A. Sharma, R. Prasad, A. Deo, M. T. Khorshed, M. Prasad,

A. Dutt, and A. B. M. S. Ali, “A survey on quantum computing with main

focus on the methods of implementation and commercialization gaps,” 2015

2nd Asia-Pacific World Congress on Computer Science and Engineering,

APWC on CSE 2015. IEEE, 2016.

[12] K. Y. Tan, M. Partanen, R. E. Lake, J. Govenius, S. Masuda, and M.

Möttönen, “Quantum-circuit refrigerator,” Nat. Commun., vol. 8, p. 15189,

2017.

[13] R. Van Meter and S. J. Devitt, "The Path to Scalable Distributed

Quantum Computing," in Computer, vol. 49, no. 9, pp. 31-42, 2016.

[14] M. M. Waldrop, “More Than Moore,” Nature, vol. 530, no. 7589, pp.

144–147, 2016.

