
Promiscuous Pairing and Beginner’s Mind:
Embrace Inexperience

Arlo Belshee
Architect

Silver Platter Software
Pasadena, CA 91103

(503) 265-1263
a_xp@arlim.org

Abstract

Many traditional software practices stress the
importance of programming in Flow. XP directly
challenges the assertion that Flow is critical and
proclaims Pair Flow.

Both Flow states are fragile. They are easily disrupted
by outside distraction or task rotation. Both take a long
time to enter. Furthermore, it takes days for a given pair
to be comfortable enough with each other to be able to
achieve Pair Flow at all.

My team at Silver Platter discovered that there is a third
option to achieve high-efficiency programming. Our team
spent the majority of its time in Beginner’s Mind.
Whereas Flow depends on stability, Beginner’s Mind
depends on instability, yet provides similar efficiency
gains to a constant state of Flow.

This paper discusses one approach to achieve a constant
state of Beginner’s Mind. It shows how to use those most-
central of agile programming practices — pairing and
task allocation — to constantly reinforce this mind state.

1 Introduction

1.1 The Project and Environment

Ours was a reasonably typical enterprise distributed
networking project. It consisted of around 1,000 C++
classes in 60 different program executables. Each
customer deployment supported 10,000 to 500,000
clients. The system involved around a dozen different
types of servers — accounting, system watchdog, state
maintenance, and so forth. Security and reliability were

the paramount concerns. Performance was second, and
features were a distant third.

The company was a startup, so we were tight on both
cash and time. The company was typically operating with
between -30 and 180 Days ‘Till Broke. Our contracts all
had lead times of 3-5 years. This meant that sales had to
start at the same time as engineering. Thus, engineering
had to produce many sales demos and to frequently alter
the product to more closely fit the needs of a particular
customer.

Due to these influences, we chose a software process
with rapid feedback and change. We ran the shortest
iterations we could (1 week) to get the most data possible.
We tracked our metrics closely, and we ran several
experiments each iteration. We used the metrics to decide
what worked and to what degree. We then adopted those
things that worked and started the next set of experiments.

Chief among these experiments were variations on
• How to handle task ownership,
• How to assign tasks to people, and
• Which style of Pair Programming to use.

1.2 Flow and Pair Flow

The Flow mind state [1], [2] is one of intense focus. The
entire problem and solution spaces are loaded into the
developer’s head. Programmers work orders of magnitude
better when in Flow.

Pair Flow is similar to Flow. The solution and problem
spaces are shared between the minds of the participants.
Again Pair Flow works significantly better than pair
programming without flow.

Unfortunately, it takes a long time to get into either Flow
state. Both can be easily interrupted. Changing tasks or
swapping pairs forces a restart. Pair Flow is more resilient

to interruptions such as the phone, but it still gets
interrupted frequently throughout a typical day.

It often takes days for a given pair to be comfortable
enough with each other to be able to achieve Pair Flow at
all. This means that pairings tend to be long. The longer
the mean time between pair swaps, the less effectively
pair net distributes information through the team.

1.3 Beginner’s Mind

“In the beginner's mind there are many possibilities,
but in the expert's there are few.” [3]
It is the open mind, the attitude that includes both

doubt and possibility, the ability to see things always
as fresh and new. It is needed in all aspects of life.
Beginner's mind is the practice of Zen mind.

Perhaps first described by Zen Buddhists in its relation
to No Mind, Beginner’s Mind is a state of few limits.

Beginner’s Mind is distinct from, but interrelated with,
No Mind. Beginner’s Mind happens when the thinker is
unsure of his boundaries. The thinker opens himself up
and thoroughly tests his environment. No Mind is a
meditative state in which the practitioner leaves behind all
the dreck in his life, allowing himself to just be.

Modern psychology distinguishes between the two
because Beginner’s Mind can also be experienced outside
of No Mind meditation. In fact, most people automatically
assume it when they are placed in a situation outside but
near the limits of their comfort zone. If a person is
otherwise comfortable with his environment but doesn’t
understand one thing, then he will usually try stuff until
he figures that one part out. This state of trying to
reconcile one’s past experiences with an environment that
doesn’t quite fit is Beginner’s Mind.

Beginner’s Mind is the key behind the phenomenon of
Beginner’s Luck: a person doing something for the first
time often does it much better than he does after he’s
practiced for a while. Because he tries more approaches,
and tries them rapidly, a person in Beginner’s Mind is
more likely to succeed at a task than one who thinks he
understands how it works.

My team at Silver Platter discovered that Beginner’s
Mind is a very efficient way to solve programming
problems. However, Beginner’s Mind is generally a
transitory state. As soon as a person has figured out the
bounds of his current situation, he tends to drop to a
lower-energy cognitive state.

Whereas Flow depends on stability, Beginner’s Mind
depends on instability. We found that Beginner’s Mind
can be maintained as a stable state by simply changing
things around frequently enough — by surfing the edge of
chaos.

1.4 Competencies Versus Skills

One of the key insights of Behavioral Interviewing [4],
[5], [6] is that there is a difference between competencies
and skills. The difference is simple. People can learn
skills in a matter of months. People can’t learn
competencies in less than several years. There aren’t
many things that fall between — qualifications are almost
always skills or competencies.

When organizing our team, this means that we needed to
treat the two categories differently. Skills were
transmitted extremely quickly around the team because
we spent most of our time in Beginner’s Mind. We
therefore assumed that any skill could be supplied by any
member of our team.

Competencies, however, are unique to an individual.
Many of them are even mutually contradictory. For
example, it is difficult to find someone who is both
Creative and good at Following a Process.

Behavioral Interviewing supplies us with around 30 such
competencies. Every task requires more than one. Most
tasks require three or four and could take advantage of a
half-dozen or more. It is often impossible to find such a
set in any two people, much less in any two people on the
same team.

This understanding leads to the realization that
Beginner’s Mind can’t provide everything needed to
increase pair efficiency. Distinguishing between
competencies and skills caused us to experiment with task
ownership and assignment processes. We found processes
that let us apply Beginner’s Mind to provide the skills, but
still apply each competency when it was needed.

1.5 Promiscuity and Pair Net

Pair net is an effective means of knowledge transfer.
While two people are paired, they share knowledge.
When the pair splits for a pair swap, the knowledge then
spreads to all four participants. In this way, knowledge
will slowly but automatically spread around the group.

This knowledge transfer is automatic, and includes
anything which comes up while a pair is working. The
resulting network, pair net, tends to filter information for
that which is used by the most people. The most useful
information spreads the fastest.

In general, the most useful information gets passed in
every pairing, and nearly all information is passed in a
matter of a few pairings. Most of this information is
passed in the first hour of a pairing.

As such, the primary limit on the rate of transmission is
the number of different people that each person pairs with
each day. It pays to be promiscuous.

2 Practices

2.1 Introduction

We discovered our practices by running experiments and
analyzing the data. We came up with several options for
each category. We then tried each one for an iteration or
two and analyzed our metrics. Our primary metrics were
velocity1 and red card rate2.

Only later did we explain why the chosen practices
outperformed their competitors. Looking at the winning
practices, and feeling the way the team operated, the ties
to Beginner’s Mind, competencies, and so forth are
obvious. After we had discovered this trend, we used it to
predict likely successful future practices. However, our
adoption process was deductive, not inductive.

2.2 Give Tasks to the Least Qualified Person

There are three general strategies for deciding who
works on which tasks: assign them to the most-qualified
person, assign them irrespective of skill, or assign them to
the least-qualified person. We tried all three approaches.

Interestingly, these data showed an overall increase in
velocity when tasks were consistently assigned to the least
qualified person. The difference was especially marked
over long periods. Choosing the least-qualified strategy
really pays off after the team has used it for several
iterations, but outperforms the others even in the first
iteration. The data on red card rate corresponded with
those on velocity: the least-qualified teams produced the
code that had the fewest surprises.

We didn’t run these experiments while we were hiring.
Therefore, we don’t have data correlating task selection
approach and ramp-up time. However, we assume that the
least-qualified selection strategy also helps with new-hire
ramp-up time as it leads to the fastest propagation of
skills.

2.3 Task Naturals, not Domain Experts

Giving tasks to the least qualified person plays strongly
into Beginner’s Mind. However, the selection needs to be
wary of the distinction between competencies and skills.
The optimal worker for a task is the one that is the least
skillful in that task, but who has any necessary

1 We estimated each task in arbitrary effort units (CU). Our velocity was
the number of CU completed per pair-week. This took into account
changing headcount, and vacations. We applied an experimentally
determined “ramp up factor” when we were adjusting to a new hire.
2 Any code-related task which was not on the board at the end of the
planning game was put on a red card. These included bugs, any
refactoring that took more than 15 minutes, unanticipated dependencies,
and the like. Our red card rate was red CU for the week / total CU for
the week, expressed as a percentage.

competencies. A worker who lacks a required competency
will not perform the task well, regardless of skill level —
and will not enter Beginner’s Mind.

Selecting implementers who are least-qualified
decreases the ability of a team to develop domain experts.
This is actually a good thing. Instead of domain experts,
the team tends to develop task naturals.

The difference between a domain expert and a task
natural is exactly the difference between a skill and a
competency. A domain expert is the person on a team
who is best at a skill. A task natural is someone whose
competencies and interests align with a particular type of
work — such as data modeling, bug hunting, or testing.

Skills and experience within a particular domain are easy
to measure. Because of this, they tend to become the
primary metrics that people use to determine who is
“most qualified” to do a task at hand. By selecting against
skills, we distributed experience around the team. Soon,
everyone had the skills to work in any problem domain
involved in our project.

However, once skills are roughly equivalent, it quickly
becomes visible who has what competencies. Talents tend
to crosscut domains — when working on a typical system
you might want a natural domain modeler, a tester, and a
task simplifier, for example.

The need for different talents becomes especially visible
on bugs. These often require a large number of talents
applied in a particular order. Each talent helps get around
one problem, but a different talent is needed for the next
problem. Even if there is another problem in the future
that will need the same talent as the one just solved, the
team can’t work on it. The next problem can’t be seen
until the current problem is resolved.

Our most heinous bug required many talents to fix.
It resulted from the compiler implicitly choosing two
different calling conventions on the two sides of a
DLL boundary. As a result, both the function and the
code calling it tried to pop the function arguments off
the stack. The system would repeatably crash in some
totally unrelated code.
The system called the death function, which

returned. The system appeared fine, but the stack and
frame pointers were computed. The calling method
then called something else with its bad frame pointer.
This propagated through the call stack until
something eventually dereferenced a pointer held on
the stack. That variable’s offset was actually located
in compiler-generated frame storage for a register
whose value was NULL, resulting in a crash.
To solve this bug, we needed our best data analyst.

We needed our compiler guru. We needed our expert
tester. And we needed our most creative guy — he
was the only one who could come up with more

things to try. So we swapped frequently, rotating as
soon as the task changed.
In 18 months of C++ development, this bug was our

hardest challenge. It represented the longest time that
we failed to make forward progress.
We put one pair on it. It took us 6 hours.

2.4 Team Owned, Pull-based Task Assignment

Who is responsible for completing which tasks?
Different XP teams have different answers. Again, we
tried several approaches and used metrics to discover
which worked best for our team.

We attempted individually owned tasks and team owned
tasks. For each grouping, we attempted push-based and
pull-based assignment. For individually owned tasks, we
tried both just-in-time and per-iteration assignment
periods. This results in a total of 6 combinations.

An individually owned task is one that a single
individual is responsible for completing. He will pair with
others to work on it, but he will never rotate off it and is
personally accountable for its completion. In contrast,
team-owned tasks are the responsibility of the team as a
whole. Anyone can work on them at any time.

In push-based assignment one person delegates tasks to
others. This may be a manager, a Senior Engineer, an
architect, or some similar person. In pull-based
assignment, people grab tasks that they want to work on
off of a shared space, such as a cork board. They tell the
team why they should do the task, and then take it.

The data below clearly indicate that more flexible work
assignments got more work done. The most efficient
method was team owned tasks with pull-based
assignment. Again, this gave marked improvements in
both our velocity and our error rate. The difference was
especially marked among the larger tasks — tasks that
took over ½ a pair-day were completed much more
quickly and predictably when they were team owned.

0%

20%

40%

60%

80%

100%

IAW ICW IAF ICF TA TC
Figure 1. Task ownership and velocity

 The letter codes for the categories are (T)eam owned vs
(I)ndividually owned, then (A)ssigned vs (C)hosen, and
finally (W)eekly vs (F)lexible duration of accountability.
For each category, a mean velocity was measured across a
couple of iterations. Velocity has been normalized to a
percentage of the highest mean and the columns arranged
in ascending order.

The worst two columns are those with weekly task
assignments. All team-based assignment methods beat all
individual accountability approaches. The error in these
numbers is about 10%, which means that the 70%
difference between the worst and the best methods is
quite meaningful. The 5% to 10% difference between pull
assignment and team leads is not.

2.5 Team Owned Tasks

The more flexible the work assignments, the more a
team can take advantage of its natural talents. Many tasks
are best solved by the combinations of 4, 5, or even more
talents. It is very rare to find a set of people from whom
you can pull any pair necessary for any problem.
However, it is quite possible to pull five people who
combine to give the five necessary talents.

Team based responsibility allows you to do exactly that.
Because no one individual is tasked with finishing the
problem, each person can be switched in to a given task
only and exactly when required. This means that each
person spends more time applying their specialty to your
tasks at hand and more work gets done.

Furthermore, people who natively think in the most
appropriate way to solve a problem tend to develop better
solutions. This results in a measurable difference in bug
rate. Finally, programming is more fun when each person
spends more time applying his talent.

Pull-based task assignment was advantageous for the
same reason. Although we all had a very good idea what
the talents of our team members were, each person still
knew himself best. By using pull-based assignment, each
person could argue where his talents applied to the
problem. We could also take into account day-to-day
effects, such as sleep deprivation or romantic problems.

Our team also believed strongly in the concept of the
working manager — our nominal manager spent about
60% of his time writing code. Management tasks were
just more things that the team had to do. Because of this
approach, we ended up without a domain expert in
management, but with several naturals at the various parts
of the job.

We had three people who were the team’s ultimate
spokesmen. Our planning and experimentation were done
by anyone on the team, but there was a natural who
stepped up to help when it was needed. Similarly, we had

naturals in the behavioral competencies of Energizing,
Leadership, and Team Building. All of these were
different people.

2.6 Pair Churn

It is generally assumed in the XP community that pairs
are assigned on a per-iteration basis. I have spoken with
members of teams that experimented with per-week or
per-two-day assignments. There aren’t many of them. We
decided to experiment with pair duration.

From our informal straw poll, it appeared that few teams
had tried short pairings. We had a gut feeling that these
might be worth trying. So we tried pair durations of 1
hour, 90 minutes, 2 hours, ½ day, 1 day, and 3 days.

These smaller times were shorter than our task length at
the time at which we performed the experiment.
Therefore we needed some way to decide when to swap.
We instituted the dreaded egg timer. When the timer went
off, any pair who had not changed since the last time the
timer went off had to change.

Additional pair swaps sometimes happened between
scheduled times. These additional swaps were
encouraged, but not very common. Most pairs would fall
into their task and forget to swap until the buzzer went off
— even if they completed a subtask or ran into a need for
someone else’s talent.

We tried two methods of performing a pair swap. In the
first, one member of the initial pair stayed with a task
until its completion. In the second, whoever had been
with a task longer switched away to a new task with every
swap. In the second approach, an individual would swap
on to a task and work as a beginner, stay during the next
swap acting as a teacher for the next new person, then
swap away.

Pairing strategy had the tremendous long-term effect on
our productivity. Therefore we gathered extensive data on
approaches to pair swapping. Rapid, alternating swaps
achieved peak velocity.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8
Figure 2. Swap rate and velocity

The above chart shows how mean velocity varied with
pair swapping technique. The velocities have been
normalized to a percentage of the highest mean velocity.
The x-axis shows the number of hours between pair
swaps. The dotted line shows pair swapping where the
expert stayed; the solid line shows alternating pair swaps

At short pair intervals it is better to develop an expert,
because that is the only way to transfer knowledge from
one pair to the next. For intervals longer than an hour,
alternating pair swaps work better. It apparently took our
team approximately an hour to transfer sufficient
knowledge to develop a new domain expert.

The graph is compressed to show only pair swaps up to
1 day. This makes it easy to see the shape of the curve
near the 90-minute optimal point. However, we did note
that longer pair times had slightly higher mean velocities.
Our data suggested that 4 and 8 hours were bad, but
longer times rose to just above 50% of our peak. Both
curves appeared to flatten out at times over 1 day, at
which point there was no measurable difference between
them.

We took these measurements when we were a team of 6.
We took a similar set of data points when we had grown
to 11. The curve had the same shape, but it had shifted
right by ½ hour. The crossover point was at 90 minutes,
and the peak at 2 hours. We hypothesize that this was
because each person had been away from any given part
of the code for longer, so it took a little longer for us to
get up to speed.

The curve did not, however, stretch out. It just shifted
right. This indicates that neither total team size nor
unfamiliarity with a given portion of the code base had
any effect on a person’s velocity once he had gotten up to
speed.

The final nail in the coffin of long pairings,
however, came when our weakest coder went on a
three-day vacation. At the time there were only three
people on the team. With one person on vacation, we
could no longer swap. Because it would only last for
a couple of days, we assumed the effects would be
minor.
Not thinking much of it, we attempted to maintain

the same intensity and velocity that we had the week
before the vacation. Since 100% of our code was
pair-written and we had only had one pair before, we
didn’t think we would notice that much difference.
Besides, we still had the pair that performed best
together.
We were wrong.
By the end of the first day we were exhausted. On

the second day, we made it a couple of hours before
we needed to call a rest. Even after the break, we
couldn’t maintain the velocity that had been so easy

before. We spent half of the third day neither paired
nor programming.
By the time our missing teammate came back on

Thursday, we were both begging for a pair swap. We
then went right back into 90 minute swaps. We had
fully recovered by noon on Thursday, and finished
the week out at our previous velocity.

2.7 Continuous Beginner’s Mind and Creativity

When people are in Beginner’s Mind they learn faster
and achieve more. Similarly, people tend to be more
creative when they only partially understand a situation.
Because they don’t know all of the limits yet, they don’t
have as much difficulty seeing past them.

Pair churn ensured that every pair had a member in
Beginner’s Mind at all times.

In addition to gathering the metrics, we also asked
people how they’d felt under various approaches.
One of the most commonly stated responses was that
the swaps were too frequent. It took people about 90
minutes to get fully up to speed on a new problem,
and then they’d get swapped away. Most people felt
like they were constantly drinking from the fire hose,
unable to catch up.
We talked about this in a couple of weekly

retrospectives. We discussed Beginner’s Mind. After
a couple of weeks, everyone saw how much more
they were learning than they had in any other
situation in their lives. The fire hose became a thrill
ride. It became a challenge.

We found that with pair swaps below 90 minutes, some
information was lost with each pair swap, requiring the
new pair to frequently ask questions of the person who
had just left the task. With longer pairings no information
was lost, but after 90 minutes the pair’s velocity dropped
notably.

On a related subject, teaching is a great way to learn.
This is especially true if the teacher is relatively new to
the subject.

Alternating 90 minute swaps caused each pair to contain
one person in Beginner’s Mind and another who was
teaching the subject he’d just learned. This strategy
proved to be a phenomenally effective combination. It
strongly outperformed the situations where we developed
an expert by leaving a person on the task for a longer
duration.

Pair churn also maximizes the effect of pair net.
Information flows better. Everyone masters tools faster.
Everyone learns how the data are organized in each
system faster. Everyone learns new coding techniques
faster.

One telling example of rapid pair net happened
accidentally to the Silver Platter team. Around 10 am
I was driving. While doing a bit of copy and paste, I
accidentally hit Ctrl + Shift + V instead of Ctrl + V.
In Visual Studio, Ctrl + Shift + V operates a paste

stack. It remembers everything that you have copied
in the past. Pasting inserts the top of the stack.
Pressing the keys again before doing anything else
replaces the just-pasted stuff with the next item in the
history. You can continue to pres the key
combination to go back further in your history. This
makes it easy to copy from a couple of sources at
once and paste them all together.
My partner and I noticed this and spent a few

minutes figuring out what the weird behavior was.
We then went on with our work. Over the rest of the
day, we swapped as normal. Once in a while, the
paste stack would be useful, so I’d teach it to my
partner.
Around 4 that afternoon I was again driving. My

navigator saw me doing some copy and paste and
took the keyboard to show me a neat trick — the
paste stack. I was surprised that he’d seen it, so I
stood up and asked the bullpen how many of them
knew about the paste stack.
All 11 people had learned about it that day.

3 Results

3.1 New Hires

One unanticipated side effect of this team environment
was its effect on new hires. Over the course of one year
we quadrupled the team size. Such drastic growth under
extreme project and business pressure has been the death
of several start-ups over the years, yet we didn’t find it to
be that big a deal.

Our most difficult new-hire ramp up occurred after
we had fully adopted our process. The new employee
had never before programmed in C++, nor had he
ever heard of functional programming or performed
OOP. We performed heavy template
metaprogramming throughout our code base and had
a system of around 600 classes at the time.
Furthermore, the new hire had a lot of enthusiasm,

but wasn’t very technically adept. He wasn’t good at
analysis and didn’t really understand data. We hired
him because he had a good knowledge of our
customer’s domain and a strong mathematical
background.
The first week after we hired him, our velocity

dropped, as expected. The second week, our velocity
was back to where it had been before the hire. By the

end of the third week we had improved our overall
velocity, and the new guy could do any task on the
board. He could sit down with any of the rest of us on
a part of the system he hadn’t seen before, figure out
how it worked and contribute. He’d pretty much
figured out both functional and OO programming and
could read a template metaprogram — commonly
considered to be one of the most difficult aspects of
C++.
In the fourth week, he was pairing with our next

new hire during that hire’s first week. He was
confident and skilled enough to take any task off the
board — even in a part of the code base which he’d
never seen — and teach the new guy how it worked.
Furthermore, the rest of the team had sufficient
confidence in him to have no qualms about him
taking on this challenge. No one even bothered to
monitor his pairings with the new guy.

3.2 Pair Promiscuously!

Promiscuity, it turns out, is a good way to spread a lot of
information through a group quickly. Rapid partner
swapping ensures that a good idea, once envisioned, is
soon practiced by every pair. Replacing individual
accountability with team accountability empowers each
person to do those tasks at which he excels — and allow
someone else to take over for his weaknesses.

Each of our practices provided the team with more
flexibility and better communications. More creative
ideas were formed, and each idea was automatically
disseminated to the entire team by the end of the day.
Each person was expected to continuously learn what was
happening and contribute in a very short amount of time.
Working on this team often felt like drinking from a fire
hose, but it was empowering.

The data show that we were more productive the more
promiscuous we were — as long as we remained with
each partner long enough to exchange knowledge. What
they don’t show is that we also had a lot more fun. It took
the team a little time to adjust to the more rapid pace, but
working with that team was a career high point for every
person involved.

4 References

[1] Mihaly Csikszentmihalyi. Flow — the Psychology of
Optimal Experience. Perennial, 1991.

[2] Wikipedia. http://en.wikipedia.org/wiki/Flow_(psychology)
[3] Suzuki, Shunryu. Zen Mind, Beginner's Mind. Weatherhill.
[4] Training is available from Management Team Consultants,

Inc. 415.459.4800.
[5] Lynda Ford. Fifty Behavior Based Interview Questions.

http://www.fordgroup.com/january_2001_article.html
[6] Lynda Ford. Are You Looking to Find Better Candidates to

Hire? Try Behavior Based Interviewing!
http://www.fordgroup.com/article1.html

