The Cathedral and the Bazaar

Eric Steven Raymond
Thyrsus Enterprises[http://www.tuxedo.or g/~esr/]

<esr @ hyr sus. conp

Thisis version3.0
Copyright © 2000Eric S.Raymond

Copyright

Permissionis grantedto copy, distribute and/ormodify this documentunderthe termsof the OpenPublication
Licenseyersion2.0.

$Date:2002/08/0209:02:14%
Revision History

Revision 1.57 11 Septembe2000 esr

New majorsection‘How Many EyeballsTameComplexity”.

Revision 1.52 28 August2000 esr
MATLAB is areinforcingparallelto Emacs.Corbato6& Vyssotslky gotit in 1965.
Revision1.51 24 August2000 esr

First DocBookversion.Minor updatedo Fall 20000n thetime-sensitie material.
Revision 1.49 5 May 2000 esr
Addedthe HBS noteon deadlinesandscheduling.

Revision1.51 31 August1999 esr
ThistheversionthatO’Reilly printedin thefirst edition of the book.

Revision 1.45 8 August1999 esr

Addedtheendnote®nthe SnafuPrinciple,(pre)historicakxamplesof bazaadevelopmentandoriginality

in thebazaar
Revision1.44 29 July 1999 esr

Addedthe“On Managemenandthe MaginotLine” section,someinsightsaboutthe usefulnes®f bazaars
for exploring designspaceandsubstantiallimprovedthe Epilog.

Revision 1.40 20Nov 1998 esr
Addeda correctionof Brooksbasedn the HalloweenDocuments.
Revision 1.39 28 July 1998 esr
| removedPaul Eggerts’graphon GPL vs. bazaain responséo cogentagumentgrom RMS on
Revision 1.31 Februaryl01998 esr
Added“Epilog: Netscap&EmbracesheBazaar!”

Revision 1.29 February9 1998 esr
Changedfree software” to “opensource”.

Revision 1.27 18 November1997 esr
Addedthe PerlConferencenecdote.

Revision 1.20 7 July 1997 esr
Addedthebibliography

Revision1.16 21 May 1997 esr

First official presentatiomt the Linux Kongress.

| anatomizea successfulopen-sourceproject, fetchmail, that was run as a deliberatetest of the surprising
theoriesaboutsoftware engineeringsuggestedby the history of Linux. | discussthesetheoriesin termsof two
fundamentallydifferentdevelopmentstyles,the “cathedral”model of mostof the commercialworld versusthe
“bazaar’modelof the Linux world. | shov thatthesemodelsderive from opposingassumptionaboutthe nature
of the software-deliggingtask. | thenmake a sustainecargumentfrom the Linux experiencefor the proposition
that“Givenenougteyeballs all bugsareshallon”, suggesproductiveanalogiewith otherself-correctingsystems
of selfishagentsandconcludewith someexplorationof theimplicationsof thisinsightfor thefuture of software.

Table of Contents

TheCathedraBndtheBazaar et 2
TheMail MuStGetThrough e 3
Thelmportancedf Having USErSo e e 6
ReleaseEarly, ReleaseOften 7
How Many EyeballsTameComPplexity e e 9
WhenIs aR0OSENOL A ROSE? e e e e e e e 11
Popclientbecomed-etchmail e 13
FetChmailGrONS UD ... e e e e e e 15
A Few More Lessondrom Fetchmail ... e 17
Necessaryreconditiongor theBazaarStyle ... i 18
The SocialContext of Open-SourcGoftWareoeii i e eeaieanns 19
OnManagemenandtheMaginotLine i 23
Epilog: Netscapd&EmbracedheBazaart e e 27
N O S i e e 29
331][ToT o 1= o] o)Y/ 33
ACKNOWIEAGEMENTS . . i i i e e e e e i 34

The Cathedral and the Bazaar

Linux is subversive. Who would have thoughteven five yearsago (1991) that a world-classoperatingsystem
could coalesceasif by magic out of part-time hackingby several thousanddevelopersscatteredall over the
planet,connectednly by thetenuousstrandsof the Internet?

Certainlynot I. By the time Linux swam onto my radarscreenin early 1993, 1 had alreadybeeninvolved in

Unix andopen-sourceevelopmentfor tenyears.l wasoneof thefirst GNU contributorsin the mid-1980s.1 had
released gooddealof open-sourcsoftwareontothenet,developingor co-developingseveralprogramgnethack,
Emacss VC andGUD modesxlife, andothers)thatarestill in wide usetoday | thoughtl knew how it wasdone.

Linux overturnedmuch of what| thoughtl knew. | hadbeenpreachingthe Unix gospelof small tools, rapid
prototypingandevolutionaryprogrammingfor years.But | alsobelievedtherewasa certaincritical complexity
above which a more centralized,a priori approachwasrequired. | believed that the mostimportantsoftware
(operatingsystemsandreally large tools lik e the Emacsprogrammingeditor) neededo be built like cathedrals,

carefully craftedby individual wizardsor smallbandsof magesworkingin splendidisolation,with no betato be
releasedeforeits time.

Linus Torvaldss style of development—releasearly andoften, delegateeverythingyou can,be opento the point
of promiscuity—cameas a surprise. No quiet, reverentcathedral-bilding here—ratherthe Linux community
seemedo resemblea greatbabblingbazaarof differing agendasndapproachesgaptly symbolizedby the Linux
archive sites, who'd take submissiondrom anyoneanyoneout of which a coherentand stablesystemcould
seeminglyemegeonly by a successiowf miracles.

The factthat this bazaarstyle seemedo work, andwork well, cameasa distinct shock. As | learnedmy way
around,l worked hardnot just at individual projects,but alsoat trying to understandvhy the Linux world not
only didn't fly apartin confusionbut seemedo go from strengthto strengthat a speedbarely imaginableto
cathedral-hilders.

By mid-19961 thoughtl was beginning to understand.Chancehandedme a perfectway to testmy theory in
the form of anopen-sourcgrojectthat! could conscioushtry to runin the bazaaistyle. Sol did—andit wasa
significantsuccess.

This is the story of that project. I' Il useit to proposesomeaphorismsabouteffective open-sourcelevelopment.
Not all of thesearethings| first learnedin the Linux world, but we'll seehow the Linux world givesthem
particularpoint. If I'm correct,they’ll help you understandxactly whatit is that makesthe Linux community
sucha fountainof goodsoftware—andperhapsthey will helpyou becomemoreproductve yourself.

The Mail Must Get Through

Since 1993 1'd beenrunning the technicalside of a small free-accessnternetserviceprovider called Chester
County InterLink (CCIL) in West Chester Pennsyhania. | co-foundedCCIL andwrote our unique multiuser
bulletin-boardsoftware—youcan checkit out by telnettingto locke.ccil.og [telnet://locke.ccil.og]. Today it
supportsalmostthreethousandiserson thirty lines. Thejob allowed me 24-houra-dayaccesdo the netthrough
CCIL's 56K line—in fact, thejob practicallydemandedt!

| hadgottenquite usedto instantinternetemail. | found having to periodicallytelnetover to locke to checkmy
mail anngying. What| wantedwasfor my mail to be deliveredon snark(my homesystem)so that| would be
notifiedwhenit arrivedandcouldhandleit usingall my local tools.

TheInternets native mail forwardingprotocol, SMTP (SimpleMail TransferProtocol),wouldn’t suit, becausét

works bestwhenmachinesareconnectedull-time, while my personaimachineisn’t alwayson the Internet,and
doesnt have a staticlP addressWhat| neededvasa programthatwould reachout over my intermittentdialup
connectiorandpull acrossmy mail to bedeliveredlocally. | knew suchthingsexisted,andthatmostof themused
asimpleapplicationprotocolcalledPOP(PostOffice Protocol). POPis now widely supportecoy mostcommon
mail clients,but atthetime, it wasnt built in to themail readed wasusing.

| neededch POP3client. Sol wentoutonthelnternetandfoundone. Actually, | foundthreeor four. | usedoneof
themfor awhile, but it wasmissingwhatseemedn obviousfeature theability to hackthe addressesn fetched
mail soreplieswould work properly

The problemwasthis: supposesomeonanamedjoe’ on locke sentme mail. If | fetchedthe mail to snarkand
thentried to reply to it, my mailer would cheerfullytry to shipit to a noneistent‘joe’ on snark. Hand-editing
reply addresset tackon<@ci | . or g> quickly gotto bea seriouspain.

This wasclearly somethingthe computeroughtto be doing for me. But noneof the existing POPclientsknew
how! And this bringsusto thefirst lesson:

1. Every good work
of software starts
by scratching a
developers personal
itch.

Perhapghis shouldhave beenobvious (it’ s long beenproverbialthat “Necessityis the motherof invention™) but
too often software developersspendtheir daysgrinding away for pay at programsthey neitherneednor love.
But not in the Linux world—which may explain why the averagequality of software originatedin the Linux
communityis sohigh.

So, did | immediatelylaunchinto a furious whirl of codingup a brand-ng&v POP3client to competewith the
existing ones?Not onyourlife! | lookedcarefullyatthe POPutilities | hadin hand,askingmyself“Which oneis
closesto whatl want?” Because:

2. Goodprogrammers
know what to write.
Greatonesknow what
to rewrite (andreuse).

While | don't claim to be a greatprogrammer | try to imitate one. An importanttrait of the greatonesis
constructve laziness. They know that you getan A not for effort but for results,andthatit’'s almostalways
easielto startfrom agoodpartial solutionthanfrom nothingatall.

Linus Torvalds [http://www.tuxedo.og/~esr/ags/linus],for example, didn’t actually try to write Linux from
scratch. Instead,he startedby reusingcode andideasfrom Minix, a tiny Unix-like operatingsystemfor PC
clones.Eventuallyall the Minix codewentaway or wascompletelyrewritten—hut while it wasthere, it provided
scafolding for theinfantthatwould eventuallybecomelinux.

In the samespirit, | went looking for an existing POP utility that was reasonablywell coded,to useas a
developmenbase.

The source-sharingradition of the Unix world hasalways beenfriendly to codereuse(this is why the GNU

projectchoseUnix asabaseOS,in spiteof seriousresenationsaboutthe OSitself). The Linux world hastaken

this tradition nearlyto its technologicalimit; it hasterabytesof opensourcesgyenerallyavailable. So spending
time looking for someelses almost-good-enougis morelik ely to give you goodresultsin the Linux world than
arywhereelse.

And it did for me. With thosel’ d found earlier my secondsearchmadeup a total of nine candidates—fetchpop,
PopTart, get-mail,gwpop, pimp, pop-perl,popc, popmailandupop. Theonel first settledon was‘fetchpop’ by

Seung-HongDh. | put my headeitrewrite featurein it, and madevariousotherimprovementswhich the author
acceptednto his 1.9release.

A few weekslater, though,| stumbledacrossthe codefor popclientby Carl Harris,andfound | hada problem.
Thoughfetchpophadsomegoodoriginal ideasin it (suchasits background-daemomode),it couldonly handle
POP3andwasratheramateurishlycoded(Seung-Hongvasat thattime a bright but inexperiencegorogrammeyr
and both traits shaved). Carl’'s codewas better quite professionaland solid, but his programlacked several
importantandrathertricky-to-implementetchpopfeaturegincludingthosel’ d codedmyself).

Stay or switch? If | switched,I'd be throwing away the coding I'd alreadydonein exchangefor a better
developmenbase.

A practicalmotive to switchwasthe presencef multiple-protocolsupport.POP3is the mostcommonlyusedof
thepost-ofice sener protocols but not the only one. Fetchpopandthe othercompetitiondidn’t do POP2 RPOR
or APOR and| was alreadyhaving vaguethoughtsof perhapsaddingIMAP [http://www.imap.og] (Internet
MessageiccessProtocol the mostrecentlydesignedandmostpowerful post-ofice protocol)justfor fun.

But | hada moretheoreticakeasorto think switchingmightbe asgoodanideaaswell, something learnedong
beforeLinux.

3. “Plan to throw
one away; you will,
anyhow.” (Fred

Brooks, The Mythical
Man-Month Chapter
11)

Or, to putit anothemwvay, you oftendon't really understandhe problemuntil afterthefirst time you implementa
solution. The secondime, maybeyou know enoughto doiit right. Soif youwantto getit right, bereadyto start
over at leastatleastonce[JB].

Well (I told myself)the changedo fetchpophadbeenmy first try. Sol switched.

After | sentmy first setof popclientpatcheso Carl Harris on 25 June1996,1 found out that he had basically
lost interestin popclientsometime before. The codewasa bit dusty with minor bugshangingout. | hadmary
changeso malke, andwe quickly agreedhatthelogical thing for meto do wastake overthe program.

Without my actuallynoticing, the projecthadescalatedNo longerwas| just contemplatingninor patchego an
existing POPclient. | took on maintainingan entireone,andtherewereideasbubblingin my headthat| knew
would probablyleadto majorchanges.

In a softwareculturethatencouragesode-sharingthis is a naturalway for a projectto evolve. | wasactingout
this principle:

4. If you havetheright
attitude, interesting
problems will find
you.

But Carl Harris’s attitudewasevenmoreimportant.He understoodhat

5. When you lose
interestin a program,
your last duty to it
is to handit off to a
competensuccessor

Without ever having to discussit, Carl andl knew we hada commongoal of having the bestsolutionout there.
Theonly questiorfor eitherof uswaswhetherl couldestablisithatl wasa safepair of hands.Oncel did that,he
actedwith graceanddispatch.l hopel will doaswell whenit comesmy turn.

The Importance of Having Users

And sol inheritedpopclient. Justasimportantly | inheritedpopclients userbase.Usersarewonderfulthingsto
have,andnotjustbecaus¢hey demonstrat¢éhatyou're servinganeed thatyou'vedonesomethingight. Properly
cultivated,they canbecomeco-derelopers.

Anotherstrengthof the Unix tradition,onethatLinux pushego a hapyy extreme,is thatalot of usersarehaclers
too. Becausesourcecodeis available,they canbe effectiveefectivehaclers. This canbe tremendouslysefulfor
shorteningdehuggingtime. Givena bit of encouragemeny,our userswill diagnoseproblemssuggesfixes,and
helpimprove the codefar morequickly thanyou couldunaided.

6. Treating your
usersas co-developers
is your least-hassle
route to rapid code
improvement and
effective delhugging.

Thepower of this effectis easyto underestimaten fact, prettywell all of usin theopen-sourcevorld drastically
underestimatediow well it would scaleup with numberof usersand againstsystemcompleity, until Linus
Torvaldsshovedusdifferently.

In fact,| think Linus’s cleverestandmostconsequentiahackwasnot the constructiorof the Linux kernelitself,
but ratherhis inventionof the Linux developmentmodel. When| expressedhis opinionin his presencence,
he smiledand quietly repeatedsomethinghe hasoften said: “I'm basicallya very lazy personwho likesto get
creditfor thingsotherpeopleactuallydo” Lazylike afox. Or, asRobertHeinleinfamouslywrote of oneof his
characterstoo lazyto fail.

In retrospectone precedentor the methodsandsucces®f Linux canbe seenin the developmentof the GNU
Emacd.isp library andLisp codearchives.In contrasto thecathedral-hilding styleof theEmacsC coreandmost
otherGNU tools, the evolution of the Lisp codepool wasfluid andvery userdriven. Ideasandprototypemodes
were often rewritten threeor four timesbeforereachinga stablefinal form. And loosely-coupledollaborations
enabledy thenternet,a la Linux, werefrequent.

Indeed,my own most successfukingle hack previous to fetchmail was probably EmacsVC (versioncontrol)
mode, a Linux-like collaborationby email with three other people,only one of whom (Richard Stallman,the
authorof Emacsandfounderof the FreeSoftware Foundationhttp://www.fsf.org]) | have metto thisday. It was
afront-endfor SCCS RCSandlaterCVS from within Emacghatoffered“one-touch”versioncontroloperations.
It evolved from atiny, crudesccs.eimodesomebodyelsehadwritten. And the developmentof VC succeeded
becauseynlike Emacstself, EmacslLisp codecould go throughrelease/test/impkae generationsery quickly.

The Emacsstoryis not unique. Therehave beenothersoftwareproductswith a two-level architectureanda two-

tier usercommunitythatcombineda cathedral-modeoreanda bazaarmodetoolbox. Onesuchis MATLAB, a

commercialdata-analysisindvisualizationtool. Usersof MATLAB andotherproductswith a similar structure
invariablyreportthatthe action,the ferment,theinnovationmostly takesplacein the openpartof the tool where
alargeandvariedcommunitycantinker with it.

Release Early, Release Often

Early andfrequentreleasesrea critical partof the Linux developmentmodel. Most developers(includingme)
usedto believe this wasbadpolicy for largerthantrivial projectsbecausearly versionsarealmostby definition
buggyversionsandyou don’t wantto wearoutthe patienceof your users.

This belief reinforcedthe generalcommitmentto a cathedral-hilding style of development. If the overriding
objective wasfor usersto seeasfew bugsaspossible,why thenyou’d only releasea versionevery six months
(or lessoften),andwork like a dog on deluggingbetweerreleasesThe EmacsC corewasdevelopedthis way.

ThelLisp library, in effect, wasnot—becauséherewereactive Lisp archivesoutsidethe FSFs control,whereyou

couldgoto find new anddevelopmentodeversionsndependentlypf Emacss releasecycle [QR].

The mostimportantof these the Ohio StateEmacsLisp archive, anticipatedthe spirit andmary of the features
of today’s big Linux archives. But few of usreally thoughtvery hardaboutwhatwe weredoing, or aboutwhat
thevery existenceof thatarchive suggeste@dboutproblemsn the FSFs cathedral-bilding developmenimodel. |
madeoneseriousattemptaround1992to getalot of the Ohio codeformally memgedinto the official EmacsLisp
library. | raninto political troubleandwaslargely unsuccessful.

But by ayearlater, asLinux becamewidely visible, it wasclearthatsomethingdifferentandmuchhealthierwas
going on there. Linus’s opendevelopmentpolicy wasthe very oppositeof cathedral-hilding. Linux’s Internet
archiveswereburgeoningmultiple distributionswerebeingfloated. And all of this wasdrivenby anunheard-of
frequeng of coresystenreleases.

Linus wastreatinghis usersasco-developerdan the mosteffective possibleway:

7. Releaseesarly Re-
leaseoften. And listen
to your customers.

Linus’s innovation wasnt so much in doing quick-turnaroundreleasesincorporatinglots of user feedback
(somethinglik e this had beenUnix-world tradition for a long time), but in scalingit up to a level of intensity
that matchedthe compleity of what he wasdeveloping. In thoseearly times (around1991)it wasnt unknovn

for him to releasea new kernelmorethanoncea day!day! Becauséhe cultivatedhis baseof co-developersand
leveragedhe Internetfor collaborationharderthanarnyoneelse,this worked.

But howhowdid it work? And wasit something couldduplicate,or did it rely on someuniquegeniusof Linus
Torvalds?

| didn't think so. Granted,Linus is a damnfine hacler. How mary of us could engineeran entire production-
quality operatingsystemkernelfrom scratch?But Linux didn’t represenainy avesomeconceptualeapforward.

Linusis not (or at least,not yet) aninnovative geniusof designin the way that, say RichardStallmanor James
Gosling(of NeWSandJava) are. Rather Linus seemdo me to be a geniusof engineeringandimplementation,
with a sixth sensefor avoiding bugs and developmentdead-endsand a true knack for finding the minimum-

effort pathfrom point A to point B. Indeed,the whole designof Linux breatheghis quality andmirrors Linus’s

essentiallyconserative andsimplifying designapproach.

So,if rapidreleasesndleveragingthe Internetmediumto the hilt werenotaccidentdut integral partsof Linus’s
engineering-geniumsightinto the minimum-efort path,whatwashe maximizing?Whatwashe crankingout of
themachinery?

Put that way, the questionanswersitself. Linus was keeping his hacler/usersconstantly stimulated and
rewarded—stimulatedby the prospeciof having an ego-satisfyingpieceof the action, rewardedby the sight of
constan{evendailydaily) improvementin their work.

Linus wasdirectly aiming to maximizethe numberof person-hourshrown at detugginganddevelopmentgeven
at the possiblecostof instability in the codeanduserbaseburnoutif arny seriousbug provedintractable.Linus
wasbehaiing asthoughhebelievedsomethindik e this:

8. Given a large
enoughbeta-testeand
co-developer base,
almost every problem
will be characterized
quickly and the fix

obviousto someone.

Or, lessformally, “Givenenougheyeballs,all bugsareshallov.” | dubthis: “Linus’s Law”.

My original formulation was that every problem*“will be transparento somebody”. Linus demurredthat the
personwho understandandfixesthe problemis notnecessarilyr evenusuallythepersonwhofirst characterizes
it. “Somebodyfindsthe problem’ hesays,'and somebod\elseelsainderstandg. And |’ [l goonrecordassaying
thatfinding it is the biggerchallengé€. Thatcorrectionis important;we’ll seehow in the next section,whenwe
examinethe practiceof dehuggingin moredetail. But the key pointis thatboth partsof the procesgfinding and
fixing) tendto happerrapidly.

In Linus’sLaw, | think, liesthecoredifferenceunderlyingthecathedral-bilderandbazaastyles.In thecathedral-
builder view of programming bugsand developmentproblemsaretricky, insidious,deepphenomenalt takes
monthsof scrutiry by a dedicatedew to develop confidencethat you've winkled themall out. Thusthe long
releasdntervals,andtheinevitable disappointmenivhenlong-awvaitedreleasesrenot perfect.

In the bazaawiew, on the otherhand,you assumeahatbugsaregenerallyshallov phenomena—oquat least,that
they turn shallov pretty quickly whenexposedto a thousandeagerco-dereloperspoundingon every single new

release.Accordingly you releaseoftenin orderto getmorecorrectionsandasa beneficialside effect you have
lessto loseif anoccasionabotchgetsoutthedoor.

And that'sit. That's enough.If “Linus’s Law” is false,thenary systemascomple asthe Linux kernel,being
hacled over by asmary handsasthe that kernelwas, shouldat somepoint have collapsedunderthe weight of
unforseerbadinteractionsandundiscaoered‘deep” bugs. If it's true,on the otherhand,it is sufficientto explain
Linux’srelative lack of bugginessandits continuousuptimesspanningnonthsor evenyears.

Maybeit shouldnt have beensucha surprise atthat. Sociologistsyearsagodiscoveredthatthe averagedpinion
of amassof equallyexpert(or equallyignorant)obserersis quitea bit morereliablea predictorthanthe opinion
of asinglerandomly-chosenneof theobseners. They calledthistheDelphieffect. It appearshatwhatLinushas
shawn is thatthis appliesevento deluggingan operatingsystem—thathe Delphi effect cantamedevelopment
compl«ity evenatthe complexity level of anOSkernel.[CV]

Onespecialfeatureof the Linux situationthatclearly helpsalongthe Delphi effectis thefactthatthe contritutors
for ary givenprojectareself-selectedAn earlyrespondenpointedout thatcontritutionsarerecevednotfrom a
randomsample put from peoplewho areinterestecenoughto usethe software,learnabouthow it works, attempt
to find solutionsto problemsthey encounterand actually producean apparentlyreasonabldix. Anyonewho
passesll thesefiltersis highly likely to have somethingusefulto contritute.

Linus’s Law can be rephrasedas “Debugging is parallelizable”. Although dehugging requiresdeluggersto
communicatevith somecoordinatingdeveloper it doesnt requiresignificantcoordinationbetweendehuggers.
Thusit doesnt fall prey to the samequadraticcompleity and managementoststhat make addingdevelopers
problematic.

In practice,the theoreticalloss of efficiency dueto duplicationof work by deluggersalmostnever seemso be
anissuein the Linux world. Oneeffect of a “releaseearly andoften” policy is to minimize suchduplicationby
propagatindged-backfixesquickly [JH].

Brooks(theauthorof TheMythical Man-Month evenmadeanoff-handobsenationrelatedto this: “The total cost

of maintainingawidely usedprogramis typically 40 percenor moreof the costof developingit. Surprisinglythis

costis stronglyaffectedby the numberof users.More usess find more bugsMoe usess find more bugs” [emphasis
added].

More usersfind morebugsbecauseaddingmore usersaddsmore differentwaysof stressinghe program. This
effectis amplifiedwhentheusersareco-developers. Eachoneapproachethetaskof bug characterizatiomvith a
slightly differentperceptuasetandanalyticaltoolkit, adifferentangleon theproblem.The“Delphi effect” seems
to work preciselybecausef this variation.In the specificcontext of delugging,thevariationalsotendsto reduce
duplicationof effort.

So adding more beta-testersnay not reducethe compleity of the current “deepest”bug from the devel-
oper’sdeselopers point of view, but it increaseshe probability that someones toolkit will be matchedto the
problemin suchaway thatthebugis shallov to that persontothat person

Linus coppershis bets,too. In casethereareare seriousbugs,Linux kernelversionarenumberedn sucha way
thatpotentialuserscanmalke a choiceeitherto run the lastversiondesignatedstable” or to ride the cuttingedge
andrisk bugsin orderto getnew features.This tacticis not yet systematicallymitatedby mostLinux haclers,
but perhapst shouldbe;thefactthateitherchoiceis availablemakesbothmoreattractive. [HBS]

How Many Eyeballs Tame Complexity

It's one thing to obsene in the large that the bazaarstyle greatly accelerateslehugging and code evolution.
It's anotherto understandxactly how andwhy it doesso at the micro-level of day-to-daydeveloperandtester
behaior. In this section(written threeyearsafter the original paper usinginsightsby developerswho readit

andre-examinedtheir own behaior) we’ll take a hardlook at the actualmechanismsNon-technicallyinclined
readersansafelyskip to the next section.

Onekey to understandings to realizeexactlywhy it is thatthekind of bug reportnon—sourcesaareusersormally
turnin tendsnotto bevery useful. Non—source-aareuserstendto reportonly surfacesymptomsthey take their
environmentfor granted,sothey (a) omit critical backgrounddata,and (b) seldomincludea reliablerecipefor
reproducinghebug.

Theunderlyingproblemhereis amismatchbetweerthetestersandthedevelopers mentalimodelsof theprogram;
thetester on the outsidelooking in, andthe developeron the insidelooking out. In closed-sourcelevelopment
they're both stuckin theseroles,andtendto talk pasteachotherandfind eachotherdeeplyfrustrating.

Open-sourcalevelopmentbreaksthis bind, making it far easierfor testerand developerto develop a shared
representatiolgroundedn the actualsourcecodeandto communicateeffectively aboutit. Practically thereis

a hugedifferencein leveragefor the developerbetweerthe kind of bug reportthatjust reportsexternally-visible
symptomsand the kind that hooksdirectly to the developers source-code—basadentalrepresentatiorf the

program.

Most bugs, mostof thetime, are easily nailed given even anincompletebut suggestie characterizatiorf their
error conditionsat source-codéevel. Whensomeoneamongyour beta-testersanpoint out, "theres a boundary
problemin line nnn", or evenjust "underconditionsX, Y, andZ, this variablerolls over", a quick look at the
offendingcodeoftensufficesto pin down the exactmodeof failure andgenerate fix.

Thus,source-codewarenes$y bothpartiesgreatlyenhancedothgoodcommunicatiorandthesynegy between
whata beta-testereportsandwhatthe coredeveloper(sknow. In turn, this meanghatthe coredevelopers’time
tendsto bewell consered,evenwith mary collaborators.

Anothercharacteristiof the open-sourcenethodthat conseresdevelopertime is the communicatiorstructure
of typical open-sourcerojects. Above | usedthe term "core developer”; this reflectsa distinction betweenthe
projectcore(typically quite small;a singlecoredeveloperis common,andoneto threeis typical) andthe project
halo of beta-testerandavailablecontributors(which oftennumbersn thehhundreds).

Thefundamentaproblemthattraditionalsoftware-deelopmenbrganizatioraddresses Brook's Law: “Adding
more programmergo a late projectmakesit later” More generally Brooks's Law predictsthat the compleity
andcommunicatiorcostsof aprojectrisewith thesquareof the numberof developerswhile work doneonly rises
linearly.

Brooks's Law is foundedon experiencethat bugstendstronglyto clusterat the interfacesbetweencodewritten

by differentpeople,andthat communications/coordinatiooverheadon a projecttendsto rise with the number
of interfacesbetweerhumanbeings. Thus, problemsscalewith the numberof communicationgpathsbetween
developers,which scalesasthe squareof the humberof developers(more precisely accordingto the formula
N*(N - 1)/2whereN is the numberof developers).

10

When

The Brookss Law analysis(andthe resultingfear of large numbersin developmentgroups)restson a hidden

assummptionthatthe communicationstructureof the projectis necessarilya completegraph,that everybody

talksto everybodyelse. But on open-sourcéerojects,the halo developerswork on what arein effect separable
parallelsubtasksandinteractwith eachothervery little; codechangesandbug reportsstreamthroughthe core

group,andonly withinwithin thatsmallcoregroupdo we paythefull Brooksianoverhead[SU]

Therearearestill morereasonshatsource-code—keel bug reportingtendsto bevery efficient. They centeraround
thefactthatasingleerrorcanoftenhave multiple possiblesymptomsmanifestingdifferentlydependingn details
of the users usagepatternandernvironment. Sucherrorstendto be exactly the sort of complex andsubtlebugs
(suchasdynamic-memory-maagenenterrorsor nondeterministiénterrupt-windav artifacts)thatarehardesto
reproduceatwill orto pindown by staticanalysisandwhichdothemostto creatdong-termproblemsn software.

A testerwho sendsin atentative source-code—ieel characterizatiof sucha multi-symptombug (e.g. "It looks

to melike theres awindow in the signalhandlingnearline 1250" or "Whereareyou zeroingthatbuffer?") may

give a developer otherwisetoo closeto the codeto seeit, the critical clue to a half-dozendisparatesymptoms.
In casedike this, it may be hardor evenimpossibleto know which externally-visiblemisbeha&iour wascaused
by preciselywhich bug—hut with frequentreleasesit’s unnecessario know. Othercollaboratorswill be likely

to find out quickly whethertheir bug hasbeenfixed or not. In mary casessource-leel bug reportswill cause
misbehaioursto dropoutwithout ever having beenattributedto any specificfix.

Complex multi-symptomerrorsalsotendto have multiple tracepathsfrom surfacesymptomsbackto the actual
bug. Which of the tracepathsa given developeror testercan chasemay dependon subtletiesof that persons
ervironment,andmaywell changen a not obviously deterministioway overtime. In effect, eachdeveloperand
testersamplesa semi-randonsetof the programs statespacewhenlooking for the etiology of a symptom.The
moresubtleandcomplec thebug, thelesslik ely thatskill will beableto guarantegherelevanceof thatsample.

For simpleandeasilyreproducibléougs,then,theaccentill beonthe"semi"ratherthanthe"random";delugging
skill andintimacy with the codeandits architecturewill matteralot. But for complex bugs,the accentwill be
onthe"random". Underthesecircumstancesnary peoplerunningtraceswill be muchmoreeffective thanafew
peoplerunningtracessequentially—eenif the few have amuchhigheraverageskill level.

This effect will be greatlyamplifiedif the difficulty of following trace pathsfrom differentsurfacesymptoms
backto a bug variessignificantlyin away thatcant be predictedoy looking atthe symptoms A singledeveloper
samplingthosepathssequentiallywill be aslikely to pick a difficult tracepathon thefirst try asaneasyone.On
theotherhand,supposeanary peoplearetrying tracepathsin parallelwhile doingrapidreleasesThenit is likely
oneof themwill find theeasiespathimmediatelyandnail thebugin amuchshortertime. Theprojectmaintainer
will seethat, shipanew releaseandthe otherpeoplerunningtraceson the samebug will be ableto stopbefore
having spenttoo muchtime ontheir moredifficult traceqRJ].

Is a Rose Not a Rose?

Having studiedLinus’s behaior andformedatheoryaboutwhy it wassuccessfull madea consciousiecisionto
testthis theoryon my new (admittedlymuchlesscomple< andambitious)project.

But thefirst thing | did wasreorganizeandsimplify popclientalot. CarlHarris'simplementatiorwasvery sound,
but exhibiteda kind of unnecessargomplexity commonto mary C programmersHe treatedthe codeascentral

11

andthe datastructuresassupportfor the code. As a result,the codewasbeautifulbut the datastructuredesign
ad-hocandratherugly (atleastby the high standardsf this veteranLISP hacler).

| hadanothempurposefor rewriting besidesmproving the codeandthe datastructuredesign,however. Thatwas
to evolveit into something understooadtompletely It's no fun to beresponsibldor fixing bugsin a programyou
don’t understand.

For thefirst monthor so,then,l wassimply following outtheimplicationsof Carl’'s basicdesign.Thefirst serious
changel madewasto addIMAP support.| did this by reomganizingthe protocolmachinesnto a genericdriver
andthreemethodtables(for POP2 POP3.andIMAP). This andthe previouschangedllustratea generaprinciple
that's goodfor programmergo keepin mind, especiallyin languagedike C that don’t naturally do dynamic

typing:

9. Smart data struc-
tures and dumb code
works a lot betterthan
theotherway around.

Brooks, Chapter9: “Show me your flowchart and concealyour tables,and | shall continueto be mystified.
Shov me your tables,and| won'’t usually needyour flowchart;it'll be obvious? Allowing for thirty yearsof
terminological/culturakhift, it’s the samepoint.

At this point (early Septembel996,aboutsix weeksfrom zero)| startedthinking thatanamechangemightbein
order—aftenall, it wasnt justa POPclientary more.But | hesitatedbecaus¢herewasasyet nothinggenuinely
new in the design.My versionof popclienthadyetto developanidentity of its own.

Thatchangedradically, whenpopclientlearnedhow to forwardfetchedmail to the SMTP port. I' Il getto thatin
amoment.But first; | saidearlierthat!’ d decidedto usethis projectto testmy theoryaboutwhatLinus Torvalds
haddoneright. How (you maywell ask)did | dothat?In theseways:

« | releaseakarlyandoften(almostneverlessoftenthanevery tendays;during periodsof intensedevelopment,
onceaday).

« | grew my betalist by addingto it everyonewho contactedne aboutfetchmail.
« | sentchattyannouncement® the betalist whenever| releasedencouragingeopleto participate.

« And | listenedto my beta-testergyolling themaboutdesigndecisionsandstrokingthemwhenerer they sent
in patchesandfeedback.

12

The payof from thesesimplemeasuresvasimmediate.Fromthe beginningof the project,| got bug reportsof a
quality mostdeveloperswouldkill for, oftenwith goodfixesattachedl gotthoughtfulcriticism, | gotfanmail, |
gotintelligentfeaturesuggestionswhich leadsto:

10. If you treatyour
beta-testers as if
they're your most
valuable resource,
they will respondby
becoming your most
valuableresource.

Oneinterestingmeasurenf fetchmail's successs the sheersizeof the projectbetalist, fetchmail-friends.At the
time of latestrevision of this paper(November2000)it has287 membersandis addingtwo or threeaweek.

Actually, whenl revisedin late May 19971 foundthe list wasbeginningto losememberdrom its high of close
to 300for aninterestingreason Several peoplehave asled meto unsubscribéhembecausdetchmailis working
sowell for themthatthey no longerneedto seethelist traffic! Perhapghis is partof the normallife-cycle of a
maturebazaastyle project.

Popclient becomes Fetchmail

The realturning point in the projectwaswhen Harry Hochheiseisentme his scratchcodefor forwardingmail
to the client machines SMTP port. | realizedalmostimmediatelythat a reliableimplementatiorof this feature
would malke all the othermail delivery modesnext to obsolete.

For mary weeksl hadbeentweakingfetchmailratherincrementallywhile feeling like the interfacedesignwas
serviceabldout grubby—inelgantandwith too mary exiguousoptionshangingoutall over. Theoptionsto dump
fetchedmail to amailboxfile or standardbutputparticularlybotheredne, but | couldn't figure outwhy.

(If youdon't careaboutthetechnicaliaof Internetmail, the next two paragraphsanbe safelyskipped.)

Whatl sawv whenl thoughtaboutSMTP forwardingwas that popclienthadbeentrying to do too mary things.
It had beendesignedo be both a mail transportagent(MTA) anda local delivery agent(MDA). With SMTP
forwarding,it couldgetoutof the MDA businessaandbeapureMTA, handingoff mail to otherprogramsfor local
deliveryjustassendmaildoes.

Why messawith all thecomplexity of configuringa mail delivery agentor settingup lock-and-appendn amailbox
whenport 25 is almostguaranteedo bethereon ary platformwith TCP/IPsupportin thefirst place?Especially
whenthis meangetrievedmail is guaranteetb look like normalsendetinitiated SMTP mail, whichis really what
we wantarnyway.

(Backto ahigherlevel....)

Evenif youdidn'tfollow theprecedingechnicajargon,thereareseveralimportaniessondere.First,thisSMTP-
forwardingconceptwasthe biggestsingle payof | got from consciouslytrying to emulateLinus’s methods.A
usergave methis terrific idea—alll hadto do wasunderstandheimplications.

13

11. Thenext bestthing
to having good ideas
is recognizing good
ideasfrom your users.
Sometimeghelatteris
better

Interestinglyenough,you will quickly find thatif you arecompletelyandself-deprecatinglyruthful abouthow
muchyou owe otherpeople theworld atlargewill treatyou asthoughyou did every bit of theinventionyourself
andarejustbeingbecominglymodestaboutyour innategenius.We canall seehow well this workedfor Linus!

(Whenl gave my talk at the first Perl Conferencen August1997, hacler extraordinaireLarry Wall wasin the
frontrow. As | gotto thelastline above he calledout, religious-revival style,“Tell it, tell it, brother!”. Thewhole
audiencdaughedbecausé¢hey knew this hadworkedfor theinventorof Perl,too.)

After a very few weeksof runningthe projectin the samespirit, | beganto getsimilar praisenot just from my
usersbut from otherpeopleto whomthe word leaked out. | stashedway someof thatemail; I’ |l look atit again
sometimdf | ever startwonderingwhethemy life hasbeenworthwhile:-).

But therearetwo morefundamentalnon-politicallessonsherethataregenerako all kindsof design.

12. Often, the most
striking andinnovative
solutions come from
realizing that your
concepiof theproblem
waswrong.

I hadbeentrying to solve thewrong problemby continuingto developpopclientasa combinedVITA/MD A with
all kinds of funky local delivery modes.Fetchmails designneededo be rethoughtfrom the groundup asa pure
MTA, apartof thenormalSMTP-speakindnternetmail path.

Whenyou hit awall in development—whewoufind yourselfhardputto think pastthe next patch—its oftentime
to asknotwhetheryou've got theright answeybut whetheryou're askingtheright question.Perhapshe problem
needdso bereframed.

Well, I hadreframedmy problem. Clearly, the right thing to do was(1) hack SMTP forwardingsupportinto the
genericdriver, (2) makeit the default mode,and(3) eventuallythrow outall the otherdelivery modes gspecially
the deliver-to-file anddeliver-to-standard-outpugptions.

| hesitatedver step3 for sometime, fearingto upsetong-timepopclientusersdependentnthealternatedelivery
mechanismslin theory they couldimmediatelyswitchto . f or war d files or their non-sendmaiequialentsto
getthe sameeffects.In practicethetransitionmight have beenmessy

But whenl! did it, the benefitsproved huge. The cruftiest partsof the driver codevanished. Configurationgot
radically simpler—nomore grovelling aroundfor the systemMDA andusers mailbox, no moreworriesabout
whethertheunderlyingOS supportdile locking.

14

Also, the only way to lose mail vanished.If you specifieddelivery to a file andthe disk got full, your mail got
lost. This cant happenwith SMTP forwardingbecauserour SMTP listenerwon’t returnOK unlessthe message
canbedeliveredor atleastspooledfor laterdelivery.

Also, performancamproved (thoughnot soyou’d noticeit in a singlerun). Anothernot insignificantbenefitof
this changewasthatthe manualpagegot alot simpler

Later, | hadto bring delivery via a userspecifiedlocal MDA backin orderto allow handlingof someobscure
situationsinvolving dynamicSLIP. But | founda muchsimplerwayto doit.

Themoral?Don't hesitatdo throw away superannuateféaturesvhenyou cando it withoutlossof effectiveness.
Antoine de Saint-Exupérywho wasan aviator andaircraftdesignemwhenhewasnt authoringclassicchildren’s
books)said:

13. “Perfection(in de-
sign) is achiered not
when thereis nothing
moreto add,but rather
when thereis nothing
moreto take away”

Whenyour codeis gettingboth betterandsimpler, thatis whenyou knowknowit’ s right. And in the processthe
fetchmaildesignacquiredanidentity of its own, differentfrom theancestrapopclient.

It wastime for thenamechange Thenew designlookedmuchmorelik e adualof sendmaithantheold popclient
had; both are MTAs, but wheresendmailpusheshendelivers, the new popclientpulls thendelivers. So, two
monthsoff theblocks,l renamedt fetchmail.

Thereis amoregeneralessonin this storyabouthow SMTP delivery cameto fetchmail.It is notonly detugging

that is parallelizable;developmentand (to a perhapssurprising extent) exploration of designspaceis, too.

Whenyour developmentmodeis rapidly iterative, developmentand enhancementay becomespecialcases
of delugging—fixing‘bugsof omission’in the original capabilitiesor conceptof the software.

Evenatahigherlevel of design,jt canbeveryvaluableto have lots of co-developersandom-valkingthroughthe
designspacenearyour product.Considetheway a puddleof waterfindsadrain,or betteryethow antsfind food:
explorationessentiallyby diffusion,followedby exploitationmediatecdby a scalablecommunicatiormechanism.
This works very well; aswith Harry Hochheisemandme, oneof your outridersmay well find a hugewin nearby
thatyou werejustalittle too close-focusedo see.

Fetchmail Grows Up

Therel waswith a neatandinnovative design,codethat| knewv workedwell becausé usedit every day, anda
burgeoningbetalist. It graduallydavnedon methatl wasnolongerengagedn atrivial personahackthatmight
happento be usefulto few otherpeople.l hadmy handson a programthat every hacler with a Unix box anda
SLIP/PPPmail connectiorreally needs.

15

With the SMTP forwarding feature, it pulled far enoughin front of the competitionto potentially becomea
“category killer”, oneof thoseclassicprogramghatfills its nichesocompetentiythatthe alternatvesarenot just
discardedbut almostforgotten.

| think you cant really aim or planfor aresultlike this. You have to getpulledinto it by designideasso powerful
thatafterwardtheresultsjust seeminevitable,natural,evenforeordained The only wayto try for ideaslik e thatis
by having lots of ideas—omy having the engineeringudgmentto take otherpeoples’goodideasbeyondwhere
theoriginatorsthoughtthey couldgo.

Andy Tanenbaunhadthe original ideato build a simplenative Unix for IBM PCs,for useasateachingtool (he
calledit Minix). Linus TorvaldspushedheMinix concepfurtherthanAndrew probablythoughtit couldgo—and
it grew into somethingvonderful. In the sameway (thoughon a smallerscale),| took someideasby Carl Harris
andHarry Hochheiserand pushedthemhard. Neitherof uswas‘original’ in the romanticway peoplethink is
genius. But then,mostscienceand engineeringand software developmentisn’t doneby original genius,hacler
mythologyto thecontrary

Theresultswerepretty headystuff all the same—irfact,justthekind of successvery haclerlivesfor! And they
meantl would haveto setmy standardgvenhigher To make fetchmailasgoodasl now saw it couldbe,!’d have
to write notjust for my own needsput alsoincludeandsupportfeaturesecessaryo othersbut outsidemy orbit.
And do thatwhile keepingthe programsimpleandrobust.

Thefirstandoverwhelminglymostimportantfeaturel wroteafterrealizingthiswasmultidropsupport—theability
to fetchmail from mailboxesthathadaccumulateéll mail for agroupof usersandthenrouteeachpieceof mail
to its individual recipients.

| decidedto addthe multidrop supportpartly becausesomeuserswere clamoringfor it, but mostly becausd

thoughtit would shale bugsout of the single-dropcodeby forcing meto dealwith addressingn full generality
And soit proved. Getting RFC 822 [http://info.internet.isi.edu:80/in-otes/rfdfiles/rfc82.txt] addressparsing
right took me aremarkablylong time, not becausary individual pieceof it is hardbut becausét involveda pile
of interdependerdndfussydetails.

But multidropaddressingurnedout to beanexcellentdesigndecisionaswell. Hereshow | knew:

14. Any tool shouldbe
usefulin the expected
way, but a truly great
tool lendsitself to uses
you never expected.

Theunexpectedusefor multidrop fetchmailis to run mailing lists with thelist kept,andaliasexpansiondone,on
the clientclientsideof the Internetconnection.This meanssomeonaunninga personaimachinethroughanISP
accounttanmanagea mailing list without continuingaccesdo the ISP’s aliasfiles.

Anotherimportantchangedemandedby my beta-testersrassupportfor 8-bit MIME (MultipurposelnternetMail

Extensionspperation.This waspretty easyto do, becausé hadbeencarefulto keepthe code8-bit clean(thatis,

to not pressthe 8th bit, unusedn the ASCII charactesset,into serviceto carryinformationwithin the program).
Not becausé anticipatedhe demandor this feature but ratherin obedienceo anotherrule:

16

15. When writing
gatevay software
of ary kind, take
pains to disturb the
data stream as little
as possible—and
nevernever throw
away information
unless the recipient
forcesyouto!

Had| notobeyedthis rule, 8-bit MIME supportwould have beendifficult andbuggy: As it was,all | hadto dois
readthe MIME standardRFC 1652[http://info.internet.isi.edu:80/in-wtes/rfc/files/rfc1652.txt]) andaddartrivial
bit of headergeneratiorogic.

SomeEuropeanusersbuggedme into addingan option to limit the numberof messagesetrieved per session
(sothey cancontrol costsfrom their expensve phonenetworks). | resistedhis for along time, andI'm still not

entirely happy aboutit. But if you're writing for the world, you have to listento your customers—thisloesnt

changgust becausehey’re not payingyouin money.

A Few More Lessons from Fetchmall

Before we go backto generalsoftware-engineeringssues,thereare a couple more specificlessonsfrom the
fetchmailexperienceto ponder Nontechnicateadersansafelyskip this section.

Therc (control)file syntaxincludesoptional'noise’ keywordsthatareentirelyignoredby theparser TheEnglish-
like syntaxthey allow is considerablynorereadablehanthe traditionaltersekeyword-valuepairsyou getwhen
you strip themall out.

Thesestartedout asa late-nightexperimentwhen| noticedhow muchtherc file declarationsverebeginningto
resemblean imperative minilanguage.(This is alsowhy | changedhe original popclient“server” keyword to

“poll”).

It seemedo methattrying to make thatimperative minilanguagemorelike Englishmight male it easierto use.
Now, althoughl’'m a corvincedpartisanof the “make it a language”schoolof designasexemplifiedby Emacs
andHTML andmary databasengines] amnotnormallya big fanof “English-like” syntayes.

Traditionally programmerdave tendedto favor control syntaxesthatarevery preciseand compactandhave no
redundang at all. Thisis a cultural legag/ from when computingresourcesvere expensve, so parsingstages
hadto be ascheapandsimpleaspossible.English,with about50% redundanyg, lookedlik e a very inappropriate
modelthen.

This is not my reasonfor normally avoiding English-like syntaxes;| mentionit hereonly to demolishit. With
cheapcyclesandcore,tersenesshouldnotbeanendin itself. Nowadayst's moreimportantfor alanguageo be
corvenientfor humanghanto be cheapfor the computer

17

Thereremain,however, goodreasongo bewary. Oneis thecomplexity costof theparsingstage—youwon’t want
to raisethatto the point whereit’s a significantsourceof bugsanduserconfusionin itself. Anotheris thattrying
to make alanguagesyntaxEnglish-like oftendemandshatthe “English” it speakde bentseriouslyout of shape,
somuchsothatthe superficialresemblancéo naturallanguagés asconfusingasatraditionalsyntaxwould have
been.(Youseethis badeffectin alot of so-called‘fourth generation'andcommercialdatabase-quefgnguages.)

Thefetchmailcontrol syntaxseemdo avoid theseproblemsbecausehe languagelomainis extremelyrestricted.
It's nowhereneara general-purposkanguagethe thingsit sayssimply arenot very complicatedsotheres little
potentialfor confusionin moving mentally betweena tiny subsetof Englishandthe actualcontrollanguage.|
think theremaybea broadetdessorhere:

16. When your
language is nowhere
near Turing-complete,
syntacticsugarcan be
your friend.

Anotherlessonis aboutsecurityby obscurity Somefetchmailusersasked me to changethe softwareto store
passwerdsencryptedn therc file, sosnoopersvouldn’t beableto casuallyseethem.

| didn't doit, becausehis doesnt actuallyadd protection. Anyonewho’s acquiredpermissiongo readyour rc
file will be ableto runfetchmailasyou anyway—andif it's your passverd they're after, they’d be ableto rip the
necessargecodermut of thefetchmailcodeitself to getit.

All . f et chmai | r ¢ passwerd encryptionwould have doneis give a falsesenseof securityto peoplewho don't
think very hard. Thegenerakule hereis:

17. A security sys-
tem is only as secure
asits secret.Bewareof
pseudo-secrets.

Necessary Preconditions for the Bazaar Style

Early reviewers and test audiencesfor this essayconsistentlyraised questionsabout the preconditionsfor
successfubazaaistyle development,including both the qualificationsof the projectleaderandthe stateof code
atthetime onegoespublic andstartsto try to build a co-developercommunity

It'sfairly clearthatonecannotcodefrom the groundup in bazaastyle[IN]. Onecantest,delugandimprovein
bazaarstyle,but it would bevery hardto originateoriginatea projectin bazaamode.Linusdidn’t try it. | didn’t
either Your nascentlevelopercommunityneedgo have somethingunnableandtestablego play with.

Whenyou startcommunity-tuilding, whatyou needto be ableto presents aplausiblepromiseplausiblgromise
Your programdoesnt have to work particularlywell. It canbecrude,buggy, incomplete andpoorly documented.
Whatit mustnotfail to dois (a) run,and(b) corvincepotentialco-developerghatit canbeevolvedinto something
really neatin theforeseeabléuture.

18

Linux andfetchmailbothwentpublic with strong attractive basicdesigns Many peoplethinking aboutthebazaar
modelas| have presentedt have correctlyconsideredhis critical, thenjumpedfrom thatto the conclusionthata
high degreeof designintuition andclevernessn the projectleaderis indispensable.

But Linus gothisdesignfrom Unix. | gotmineinitially from theancestrapopclient(thoughit wouldlaterchange
a greatdeal,muchmore proportionatelyspeakinghanhasLinux). Sodoesthe leader/coordinatofor a bazaar
style effort really have to have exceptionaldesigntalent,or canhe getby throughleveragingthe designtalentof
others?

| think it is notcritical thatthecoordinatobeableto originatedesignsof exceptionabrilliance,but it is absolutely
critical thatthe coordinatorbe ableto recaynizegooddesignideasfrom otheisrecaynizegooddesignideasfrom
others.

Both the Linux and fetchmail projectsshov evidenceof this. Linus, while not (as previously discusseda
spectacularlyoriginal designer hasdisplayeda powerful knack for recognizinggood designand integrating it
into theLinux kernel. And | have alreadydescribecow thesinglemostpowerful designideain fetchmail(SMTP
forwarding)camefrom somebodyelse.

Early audience®f this essaycomplimentedme by suggestinghat! am proneto undenaluedesignoriginality in
bazaamprojectsbecause have alot of it myself,andthereforetake it for granted.Theremaybe sometruth to this;
design(asopposedo codingor delugging)is certainlymy strongesskill.

But the problemwith beingcleverandoriginalin softwaredesignis thatit getsto beahabit—youstartreflexively
making things cute and complicatedwhenyou shouldbe keepingthemrobust and simple. | have had projects
crashon mebecausé madethis mistale, but | managedo avoid this with fetchmail.

Sol believe the fetchmailprojectsucceedegartly becausé restrainedmy tendeng to be clever; this argues(at
least)againsdesignoriginality beingessentiafor successfubazaaprojects.And considerLinux. Supposé.inus
Torvaldshadbeentrying to pull off fundamentalnnovationsin operatingsystemdesignduringthe development;
doesit seematall likely thattheresultingkernelwould be asstableandsuccessfuhswhatwe have?

A certainbaselevel of designand coding skill is required,of course,but | expectalmostanybody seriously
thinking of launchinga bazaareffort will alreadybe above thatminimum. The open-sourceommunitysinternal
marketin reputationexertssubtlepressureon peoplenot to launchdevelopmentefforts they’re not competento
follow throughon. Sofar this seemdo have workedprettywell.

Thereis anotheikind of skill not normallyassociateavith softwaredevelopmentvhich | think is asimportantas
designclevernesso bazaarprojects—andt maybe moreimportant. A bazaaiprojectcoordinatoror leademmust
have goodpeopleandcommunicationskills.

This shouldbe obvious. In orderto build a developmentcommunity you needto attractpeople,interestthemin
whatyou're doing,andkeepthemhapypy aboutthe amountof work they're doing. Technicalsizzlewill goalong
way towardsaccomplishinghis, but it’s far from the whole story. The personalityyou projectmatterstoo.

It is not a coincidencethat Linus is a nice guy who makes peoplelike him andwant to help him. It's not a
coincidenceahat!’'m anenegeticextrovertwho enjoysworking acrowd andhassomeof thedelivery andinstincts
of a stand-upcomic. To make the bazaamodelwork, it helpsenormouslyif you have at leasta little skill at
charmingpeople.

19

The Social Context of Open-Source Software

It is truly written: the besthacksstartout aspersonalsolutionsto the authors everydayproblems,and spread
becausehe problemturnsout to betypical for alarge classof users.This takesus backto the matterof rule 1,
restatedn a perhapsnoreusefulway:

18. To solve an
interesting problem,
start by finding
a problem that is
interestingto you.

Soit waswith CarlHarrisandtheancestrapopclient,andsowith meandfetchmail. But this hasbeenunderstood
for along time. The interestingpoint, the point that the historiesof Linux andfetchmail seemto demandwe

focuson, is thenext stage—thevolution of softwarein thepresencef alargeandactive communityof usersand

co-developers.

In TheMythical Man-Month FredBrooksobsenedthatprogrammetime is notfungible;addingdeveloperdo a

late software projectmalesit later As we've seenpreviously, he arguedthatthe compleity andcommunication
costsof a projectrise with the squareof the numberof developerswhile work doneonly riseslinearly. Brooks’s

Law hasbeenwidely regardedasa truism. But we've examinedin this essayan numberof waysin which the

proces®f open-sourcelevelopmenfalsifiestheassumptionmbehindit—and,empirically, if Brooks’sLaw were
thewhole pictureLinux would beimpossible.

GeraldWeinbeg’s classicThe Psytology of ComputerProgrammingsuppliedwhat, in hindsight,we cansee
asa vital correctionto Brooks. In his discussionof “egolessprogramming”,Weinbeg obsenedthatin shops
wheredevelopersare not territorial abouttheir code,andencouragetherpeopleto look for bugsand potential
improvementsn it, improvementhappensiramaticallyfasterthanelsavhere. (Recently Kent Beck's ‘extreme
programming’techniqueof deploying codersin pairslooking over oneanothers’shoulderamight be seenasan
attemptto forcethis effect.)

Weinbeg'’s choice of terminology has perhapsprevented his analysisfrom gaining the acceptancdt de-
sened—onehasto smile at the thoughtof describinginternethaclersas“egoless”. But | think his argument
looks morecompellingtodaythanever.

The bazaamethod, by harnessinghe full power of the “egolessprogramming”effect, strongly mitigatesthe
effectof Brooks’s Law. TheprinciplebehindBrooks’sLaw is notrepealedbut givenalargedeveloperpopulation
andcheapcommunicationdts effectscanbe swampedby competingnonlinearitieghatarenot otherwisevisible.
ThisresemblesherelationshipbetweerNewtonianandEinsteinianphysics—thenldersystemis still valid atlow
enegies,butif you pushmassandvelocity high enoughyou getsurprisedik e nuclearexplosionsor Linux.

The history of Unix should have preparedus for what we're learning from Linux (and what I've verified
experimentallyonasmallerscaleby deliberatelycopying Linus’s method4EGCS]). Thatis, while codingremains
anessentiallysolitary actiity, the really greathackscomefrom harnessinghe attentionandbrainpaver of entire
communities. The developerwho usesonly his or her own brain in a closedprojectis going to fall behind
the developerwho knows how to createan open,evolutionary contet in which feedbackexploring the design

20

space codecontributions, bug-spotting,and otherimprovementscomefrom from hundredqperhapshousands)
of people.

But the traditionalUnix world waspreventedfrom pushingthis approacho the ultimateby severalfactors.One
wasthe legal contraintsof variouslicensesradesecretsand commercialinterests.Another (in hindsight)was
thatthe Internetwasnt yetgoodenough.

Before cheaplnternet, there were some geographicallycompactcommunitieswhere the culture encouraged
Weinbeg's “egoless” programming,and a developer could easily attract a lot of skilled kibitzers and co-

developers. Bell Labs,the MIT Al andLCS labs, UC Berkeley—thesebecamethe homeof innovationsthat

arelegendaryandstill potent.

Linux wasthe first projectfor which a consciousand successfukffort to usethe entireworldworld asits talent
poolwasmade.l don't think it's a coincidencehatthe gestationperiodof Linux coincidedwith the birth of the
World Wide Web, andthatLinux left its infang/ duringthe sameperiodin 1993—1994hatsaw the takeoff of the
ISPindustryandthe explosionof mainstreaninterestin the Internet.Linus wasthefirst persorwho learnedhow
to play by thenew rulesthatpenasie Internetaccessnadepossible.

While cheaplnternetwas a necessaryondition for the Linux modelto evolve, | think it was not by itself a
sufficientcondition. Anothervital factorwasthe developmenbf aleadershigstyleandsetof cooperatre customs
thatcouldallow developergo attractco-derelopersandgetmaximumleverageout of the medium.

But whatis this leadershipstyle andwhatarethesecustoms?I'hey cannotbe basedn power relationships—and
even if they could be, leadershipby coercionwould not producethe resultswe see. Weinbeg quotesthe
autobiographyof the 19th-centuryRussiananarchistPyotr Alexeyvich Kropotkin's Memoiis of a Revolutionist
to goodeffect on this subject:

Having been brought
up in a serf-ovner’s
family, | entered
active life, like all
young men of my
time, with a great
deal of confidence
in the necessity
of commanding,
ordering, scolding,
punishing and the
like. But when, at
an early stage, | had
to manage serious
enterprisesandto deal
with [free] men, and
when each mistale
would lead at onceto
heary consequences,
| began to appreciate

21

the differencebetween
actingon the principle
of command and
discipline and
acting on the
principle of common
understanding.

The former works
admirablyin amilitary
parade but it is worth
nothingwherereallife
is concerned,and the
aim can be achieved
only through the
severe effort of mary
convergingwills.

The"severeeffort of mary convergingwills” is preciselywhata projectlik e Linux requires—andhe“principle of
command’is effectively impossibleto applyamongvolunteersn theanarchist paradiseve call theInternet. To
operateand competeeffectively, haclkers who want to lead collaboratve projectshave to learnhow to recruit
and enegize effective communitiesof interestin the mode vaguely suggestedy Kropotkin's “principle of
understanding”They mustlearnto useLinus’s Law.[SP]

Earlier| referredto the “Delphi effect” asa possibleexplanationfor Linus’s Law. But morepowerful analogies
to adaptve systemsn biology and economicsalsoirresistablysuggesthemseles. The Linux world behaes
in mary respectdike a free market or an ecology a collection of selfishagentsattemptingto maximize utility
which in the procesgproduces self-correctingspontaneousrdermoreelaborateandefficient thanany amount
of centralplanningcould have achieved. Here,then,is the placeto seekthe “principle of understanding”.

The*“utility function” Linux haclersaremaximizingis notclassicallyeconomicputis theintangibleof their own
ego satishctionandreputationamongotherhaclers. (Onemay call their motivation “altruistic”, but thisignores
the fact that altruismis itself a form of ego satishctionfor the altruist). Voluntary culturesthat work this way
arenot actuallyuncommon;oneotherin which | have long participateds sciencefiction fandom,which unlike
haclerdomhaslong explicitly recognizedegoboo”(ego-boostingor the enhancemendf one’sreputationramong
otherfans)asthe basicdrive behindvolunteeractivity.

Linus, by successfullypositioning himself as the gateleeperof a projectin which the developmentis mostly
doneby others,andnurturinginterestin the projectuntil it becameself-sustaininghasshavn an acutegraspof

Kropotkin's “principle of sharedunderstanding”This quasi-economiwiew of the Linux world enablesisto see
how thatunderstandings applied.

We may view Linus’s methodasa way to createan efficient market in “egoboo”—toconnectthe selfishnes®f
individual haclersasfirmly aspossibleto difficult endsthatcanonly be achievedby sustaineaooperationWith
thefetchmailprojectl have shavn (albeiton asmallerscale)thathis methodscanbeduplicatedwith goodresults.
Perhaps have evendoneit abit moreconsciouslyandsystematicallyhanhe.

22

Many people(especiallythosewho politically distrustfreemarkets)would expecta cultureof self-directedegoists
to be fragmented territorial, wasteful, secretve, and hostile. But this expectationis clearly falsified by (to
give just one example)the stunningvariety, quality, anddepthof Linux documentation.t is a hallowed given
that programmersatehatedocumentinghow is it, then,that Linux haclersgenerateso muchdocumentation?
Evidently Linux’s free market in egoboo works betterto producevirtuous, otherdirectedbehaior than the
massiely-fundeddocumentatiorshopsof commerciakoftwareproducers.

Both thefetchmailandLinux kernelprojectsshown thatby properlyrewardingthe egosof mary otherhaclers,a
strongdeveloper/coordinatocanusethe Internetto capturethe benefitsof having lots of co-developerswithout
having a projectcollapseinto a chaoticmess.Soto Brookss Law | counterproposethefollowing:

19: Provided
the development
coordinator has a
communications
medium at least as
good as the Internet,
and knows how to
lead without coercion,
mary heads are
inevitably better than
one.

| think thefutureof open-sourcsoftwarewill increasinglybelongto peoplewhoknow how to play Linus’sgame,
peoplewho leave behindthe cathedraland embracethe bazaar This is not to say that individual vision and
brilliancewill nolongermatter;rather | think thatthe cuttingedgeof open-sourcsoftwarewill belongto people
who startfrom individual vision and brilliance, then amplify it throughthe effective constructionof voluntary
communitieof interest.

Perhapdhis is not only the future of open-souceopen-souresoftware. No closed-sourcelevelopercan match
the pool of talentthe Linux communitycanbring to bearon a problem. Very few could afford evento hire the
morethan200(1999:600,2000: 800) peoplewho have contributedto fetchmail!

Perhapsan the end the open-sourceculture will triumph not becausecooperationis morally right or software

“hoarding” is morally wrong (assumingyou believe the latter, which neitherLinus nor | do), but simply because
the closed-sourcavorld cannotwin anevolutionaryarmsracewith open-sourceommunitieghatcanputorders

of magnitudemoreskilled time into a problem.

On Management and the Maginot Line

Theoriginal Cathedal andBazaamaperof 1997endedwith thevisionabove—thatof happy networkedhordesof
programmer/anarchistaitcompetingandoverwhelmingthe hierarchicaWworld of corventionalclosedsoftware.

A goodmary skepticswerent corvinced,however; andthe questionghey raisedesere afair engagementMost
of the objectionsto the bazaarargumentcomedown to the claim that its proponentshave underestimatedhe
productiity-multiplying effect of corventionalmanagement.

23

Traditionally-mindedsoftware-deelopmenimanager®ften objectthatthe casualneswith which projectgroups
form and changeanddissole in the open-sourcavorld negatesa significantpart of the apparentadvantageof

numberghatthe open-sourceommunityhasover ary singleclosed-sourcéeveloper They would obsene that
in software developmentit is really sustainedeffort over time and the degreeto which customerscan expect
continuinginvestmentn the productthatmattersnotjusthow mary peoplehave thrown abonein thepotandleft

it to simmer

Thereis somethingo thisargumentto besure;in fact,| have developedtheideathatexpectedutureservicevalue
is the key to the economicsof software productionin the essay The Magic Cauldron [http://www.tuxedo.og/-
~esr/writings/magic-cauldron/].

But this agumentalsohasa major hiddenproblem:;its implicit assumptiorthatopen-sourcélevelopmenicannot
deliver suchsustaineckffort. In fact,therehave beenopen-sourcerojectsthat maintaineda coherentirection

andan effective maintainercommunityover quite long periodsof time without the kinds of incentive structures
or institutional controls that conventional managementinds essential. The developmentof the GNU Emacs
editoris anextremeandinstructve example;it hasabsorbedhe efforts of hundredf contributorsover 15 years
into a unified architecturalvision, despitehigh turnover andthe fact that only one person(its author)hasbeen
continuouslyactive duringall thattime. No closed-sourceditorhasever matchedhis longevity record.

This suggests reasonfor questioningthe advantagef corventionally-managedoftware developmentthatis
independentf the restof the argumentsover cathedralvs. bazaamode. If it's possiblefor GNU Emacsto
expressa consistenarchitecturalision over 15 years,or for anoperatingsystemlik e Linux to dothesameover8
yearsof rapidly changinghardwareandplatformtechnology;andif (asis indeedthe case)therehave beenmary
well-architectedopen-sourcerojectsof morethan5 yearsduration-- thenwe are entitledto wonderwhat, if
anything, thetremendousverheacdf corventionally-manageédevelopmenis actuallybuying us.

Whatever it is certainly doesnt include reliable executionby deadline,or on budget,or to all featuresof the
specificationjt’s a rare‘managed’projectthatmeetseven oneof thesegoals,let aloneall three. It alsodoesnot
appeato beability to adaptto changesn technologyandeconomiccontect duringthe projectlifetime, either;the
open-sourceommunityhasprovenfarfar moreeffective on thatscore(asonecanreadily verify, for example,by
comparinghe 30-yearhistoryof the Internetwith the shorthalf-livesof proprietarynetworking technologies—or
the costof the 16-bit to 32-bit transitionin Microsoft Windows with the nearly effortlessupward migration of
Linux duringthesameperiod,notonly alongthelntel line of developmenbut to morethanadozenotherhardware
platforms,includingthe 64-bit Alpha aswell).

Onething mary peoplethink the traditional modebuys you is somebodyto hold legally liable and potentially
recovercompensatiofrom if the projectgoeswrong. But thisis anillusion; mostsoftwarelicensesarewrittento
disclaimevenwarrantyof merchantabilitylet aloneperformance—andaseof successfutecovery for software
nonperformancearevanishinglyrare. Evenif they werecommon feeling comfortedby having somebodyto sue
would be missingthe point. You didn't wantto bein alawsuit; you wantedworking software.

Sowhatis all thatmanagementverheadouying?

In orderto understandhat, we needto understandvhat software developmentmanagerdelieve they do. A
womanl know who seemgo bevery goodat this job sayssoftwareprojectmanagemerntasfive functions:

« To definegoalsdefinggoalsandkeepeverybodypointedin the samedirection

24

« To monitormonitorandmake surecrucialdetailsdon't getskipped
» To motivatemotivat@eopleto do boringbut necessargrudgevork
* To organizeoganizethe deploymentof peoplefor bestproductvity

» To marshalresoucesmashalresoucesneededo sustaintheproject

Apparentlyworthy goals,all of theseput undertheopen-sourcenodel,andin its surroundingsocialcontext, they
canbegin to seemstrangelyirrelevant. We'll take themin reverseorder

My friend reportsthata lot of resouce marshallingresouce marshalling is basicallydefensve; onceyou have
your peopleandmachinesandoffice spaceyou have to defendthemfrom peermanagergsompetingfor thesame
resourcesandfrom higherupstrying to allocatethe mostefficient useof alimited pool.

But open-sourcelevelopersarevolunteers self-selectedor bothinterestandability to contribute to the projects
they work on (andthis remainsgenerallytrue evenwhenthey arebeingpaid a salaryto hackopensource.)The
volunteerethostendsto take careof the ‘attack’ side of resource-marshallingutomatically;peoplebring their
own resource$o thetable. And thereis little or no needfor amanageto ‘play defensein thecorventionalsense.

Anyway, in aworld of cheapPCsandfastinternetlinks, we find pretty consistentlythatthe only really limiting
resourceis skilled attention. Open-sourceprojects, when they founder essentiallynever do so for want of
machineor links or office spacethey die only whenthe developershemselesloseinterest.

Thatbeingthe case,it’'s doubly importantthat open-sourcéaclersorganizethemselvesganizethemselvesor
maximumproductvity by self-selection—andhe social milieu selectsruthlesslyfor competence.My friend,
familiar with boththe open-sourcevorld andlarge closedprojects believesthatopensourcehasbeensuccessful
partly becausats cultureonly acceptshe mosttalented5% or so of the programmingpopulation. Shespends
mostof hertime organizingthe deploymentof the other95%, and hasthusobsenedfirst-handthe well-known
varianceof afactorof onehundredn productiity betweerthemostableprogrammersndthemerelycompetent.

The size of that variancehasalwaysraisedan awkward question: would individual projects,andthe field asa
whole, be betteroff without morethan50% of the leastablein it? Thoughtfulmanagerdiave understoodor a
longtime thatif corventionalsoftwaremanagement’only functionwereto corvertthe leastablefrom a netloss
to amaminalwin, the gamemight notbeworth thecandle.

The succes®f the open-sourceommunitysharpenghis questionconsiderablyby providing hardevidencethat
it is often cheaperand more effective to recruit self-selected/olunteersfrom the Internetthanit is to manage
buildingsfull of peoplewho would ratherbe doingsomethingelse.

Which brings us neatly to the questionof motivationmotivation An equivalentand often-heardway to state
my friend’s point is thattraditionaldevelopmentmanagemenit a necessargompensatiotior poorly motivated
programmersvho would not otherwiseturn out goodwork.

Thisanswelsuallytravelswith aclaimthattheopen-sourceommunitycanonly bereliedononly to dowork that
is ‘sexy’ or technicallysweet;arything elsewill beleft undone(or doneonly poorly) unlessit’s churnedout by
mone/-motivatedcubicle peonswith managergrackingwhipsoverthem.| addresshe psychologicabndsocial

25

reasongfor being skeptical of this claim in Homesteadinghe Noosphee [http://www.tuxedo.og/~esr/maig-
cauldron/].For presenpurposeshowever, | think it's moreinterestingto point out theimplicationsof accepting
it astrue.

If the corventional,closed-sourcehearily-managedstyle of software developmentis really defendedonly by
a sort of Maginot Line of problemsconducve to boredom,thenit’'s going to remainviable in eachindividual
applicationareafor only solong asnobodyfindsthoseproblemsreally interestingandnobodyelsefindsany way
to route aroundthem. Becauseghe momentthereis open-source&ompetitionfor a ‘boring’ pieceof software,
customeraregoingto know thatit wasfinally tackledby someonavho chosethatproblemto solve becausef a
fascinationwith the problemitself—which,in softwareasin otherkinds of creative work, is a far moreeffective
motivatorthanmoney alone.

Having a corventionalmanagemenstructuresolely in orderto motivate,then,is probablygoodtacticsbut bad
stratgyy; a short-termwin, butin thelongertermasurerloss.

So far, corventional developmentmanagementooks like a bad bet now againstopen sourceon two points
(resourcemarshalling,organization),andlike it's living on borroved time with respectto a third (motivation).
And the poor beleagueredornventionalmanageis not goingto getany succourfrom the monitoringmonitoring
issue;the strongestargumentthe open-sourceommunity hasis that decentralizedgeerreview trumpsall the
corventionalmethoddor trying to ensurethatdetailsdon’t getslipped.

Canwe save defininggoalsdefininggoals as a justification for the overheadof corventional software project
managementPerhapsbut to doso,we’ll needgoodreasorto believe thatmanagemertommitteesandcorporate
roadmapsaremoresuccessfuhtdefiningworthy andwidely sharedyoalsthantheprojectleadersaandtribal elders
whofill theanalogousolein theopen-sourcevorld.

Thatis onthefaceof it a pretty hardcaseto make. And it's not somuchthe open-sourcaideof the balancethe
longevity of Emacspr Linus Torvalds’s ability to mobilize hordesof developerswith talk of “world domination”)
thatmalesit tough.Rather it'sthedemonstrateawfulnessof corventionalmechanismsor definingthe goalsof
softwareprojects.

Oneof thebest-knavn folk theorem®f softwareengineerings that60%to 75%of corventionalsoftwareprojects
eitherare never completedor arerejectedby their intendedusers. If thatrangeis arywhereneartrue (and!’ve
never meta managenf ary experiencewvho disputest) thenmoreprojectsthannot arebeingaimedat goalsthat
areeither(a) not realisticallyattainablepr (b) just plainwrong.

This, more than ary other problem, is the reasonthat in today’s software engineeringworld the very phrase
“managementommittee”is likely to sendchills down the hearers spine—een (or perhapsespecially)if the
heareris a manager The dayswhenonly programmergripedaboutthis patternarelong past;Dilbert cartoons
hangover executives’gecutivesdesksnow.

Our reply, then, to the traditional software developmentmanageris simple—if the open-sourceommunityhas
really underestimatethe value of conventionalmanagementyhy do so manyof you display contemptfor your
ownprocess?whylo somanyof youdisplaycontempfor your ownprocess?

Onceagainthe exampleof the open-sourceommunitysharpenghis questionconsiderably—becausee have
funfundoingwhatwe do. Our creative play hasbeernrackingup technicalmarket-shareandmind-sharesuccesses
atanastoundingate.We're proving notonly thatwe cando bettersoftware,but thatjoy is an assetjoyis an asset

26

Two anda half yearsafter thefirst versionof this essaythe mostradicalthoughtl canoffer to closewith is no
longeravision of anopen-source—dominatadftwareworld; that,afterall, looksplausibleto alot of soberpeople
in suitsthesedays.

Rather | wantto suggestvhatmaybe a wider lessonaboutsoftware,(andprobablyaboutevery kind of creatve
or professionalwork). Human beingsgenerallytake pleasurein a task when it falls in a sort of optimal-
challengezone;not so easyasto be boring, nottoo hardto achieve. A happy programmeiis onewho is neither
underutilizednor weigheddown with ill-formulated goals and stressfulprocessfriction. Enjoymentpredicts
eficiencyEnjoymenpredictsefficiency

Relatingto your own work procesawith fearandloathing(evenin thedisplacedijronic way suggestedy hanging
up Dilbert cartoons)shouldthereforebe regardedin itself asa signthatthe processhasfailed. Joy, humor, and
playfulnessareindeedassetsit wasnot mainly for thealliterationthat! wrote of "happy hordes"above, andit is
no merejoke thatthe Linux mascots a cuddly, neotenoupenguin.

It maywell turn out thatoneof themostimportanteffectsof opensources successvill beto teachusthatplayis
themosteconomicallyefficient modeof creative work.

Epilog: Netscape Embraces the Bazaar

It'sastrangefeelingto realizeyou're helpingmake history....

On January22 1998, approximatelyseven months after | first published The Cathedal and the Bazaar
NetscapeCommunicationsinc. announceglansto give away the sourcefor NetscapeCommunicatofhttp://-
www.netscape.com/mesref/pr/nevsreleaseb8.html]. | hadhadno clue this wasgoingto happerbeforethe day
of theannouncement.

Eric Hahn,executive vice presidentand chief technologyofficer at Netscapeemailedme shortly afterwardsas
follows: “On behalfof everyoneat Netscapel wantto thankyou for helpingusgetto this pointin thefirst place.
Your thinking andwritings werefundamentalnspirationsto our decision.

Thefollowing weekl flew outto Silicon Valley at Netscapes invitation for a day-longstrately conferencgon 4
Feb1998)with someof theirtop executvesandtechnicalpeople.We designedNetscapes source-releasgtratgy
andlicensetogether

A few dayslater| wrotethefollowing:

Netscape is about
to provide us with
a large-scale, real-
world test of the
bazaar model in the
commercial world.
The open-source
culture now faces a
danger; if Netscapes
execution doesnt

27

work, the open-source
concept may be so
discredited that the
commercial world
won't touch it again
for anotherdecade.

Ontheotherhand,this
is also a spectacular
opportunity Initial
reaction to the move
on Wall Street and
elsavhere has been
cautiously positive.
We're being given
a chance to prove
oursehes, too. If
Netscape regains
substantial market
share through this
move, it just may set
off a long-overdue
revolution in the
softwareindustry

The next year should
be a very instructive
andinterestingtime.

And indeedit was. As | write in mid-2000,the developmentof what was later namedMozilla hasbeenonly
a qualifiedsuccesslt achieved Netscapes original goal, which wasto dery Microsoft a monopolylock on the
browsermarket. It hasalsoachiezed somedramaticsuccessefotablythe releaseof the next-generatiorGeclo
renderingengine).

However, it hasnotyet garneredhe massie developmenteffort from outsideNetscapehatthe Mozilla founders
hadoriginally hopedfor. The problemhereseemgo bethatfor alongtime theMozilla distribution actuallybroke

oneof the basicrulesof the bazaamodel; it didn’t shipwith somethingpotentialcontributorscould easilyrun

andseeworking. (Until morethana yearafterreleasehuilding Mozilla from sourcerequireda licensefor the

proprietaryMotif library.)

Most neggatively (from the point of view of the outsideworld) the Mozilla groupdidn’t ship a production-quality
browserfor two anda half yearsafter the projectlaunch—andn 1999 one of the project’s principalscauseca
bit of a sensatiorby resigning,complainingof poor managemenand missedopportunities.“Open sourcé, he
correctlyobsened,"“is not magicpixie dust’

And indeedit is not. Thelong-termprognosidor Mozilla looksdramaticallybetternow (in November2000)than
it did at the time of JamieZawinski’s resignationletter—in the last few weeksthe nightly releasehave finally

28

passedhe critical thresholdto productionusability But Jamiewas right to point out that going openwill not
necessarilysave an existing projectthat suffers from ill-defined goalsor spaghetticode or ary of the software
engineerings otherchronicills. Mozilla hasmanagedo provide anexamplesimultaneoushof how opensource
cansucceedndhow it couldfail.

In the meantime, however, the open-sourcedeahasscoredsuccesseandfound baclerselsavhere. Sincethe
Netscapeaeleasave've seena tremendougxplosionof interestin the open-sourcelevelopmentmodel,a trend
both driven by anddriving the continuingsucces®f the Linux operatingsystem.The trendMozilla touchedoff
is continuingatanacceleratingate.

Notes

[JB] In ProgramingPearls, the notedcomputerscienceaphoristlonBentley commentson Brooks'’s obsenation
with “If you plan to throw one away, you will throw away two.”. He is almostcertainly right. The point of
Brooks'sobsenation,andBentley’s, isn’t merelythatyou shouldexpectfirst attemptto bewrong,it’ s thatstarting
overwith theright ideais usuallymoreeffective thantrying to sahageamess.

[QR][QR] Examplesof successfubpen-sourcebazaardevelopmentpredatingthe Internetexplosionandunre-
latedto the Unix andInternettraditionshave existed. The developmentf theinfo-Zip [http://www.cdrom.com/-
pub/infozip/] compressiorutility during 1990—x1992,primarily for DOS machines,was one such example.
Anotherwasthe RBBS bulletin boardsystem(againfor DOS),which beganin 1983anddevelopeda sufiiciently

strong community that there have beenfairly regular releasesup to the present(mid-1999) despitethe huge
technicaladvantageof Internetmail and file-sharingover local BBSs. While the info-Zip communityrelied

to someextent on Internetmail, the RBBS developerculture was actually able to basea substantialon-line

communityon RBBSthatwascompletelyindependenof the TCP/IPinfrastructure.

[CV][CV] Thattransparengandpeerreview arevaluablefor tamingthecomplexity of OSdevelopmenturnsout,
afterall, notto be a new concept.In 1965, very earlyin the history of time-sharingoperatingsystemsCorbat6
andVyssotsly, co-designersf the Multics operatingsystemwrote [http://www.multicians.og/ficc1.html]

It is expected that
the Multics system
will be published
when it is operating
substantially. Such
publicationis desirable
for two reasons:
First, the system
should withstand
public scrutiry and
criticism volunteered
by interestedreaders;
second,in an age of
increasingcomplexity,
it is an obligation to
present and future

29

system designers
to make the inner
operating system as
lucid as possible so
as to reveal the basic
systemissues.

[JH][JH] JohnHaslerhassuggeste@dninterestingexplanationfor thefactthatduplicationof effort doesnt seem
to beanetdragon open-sourcelevelopment.He proposesvhat!’ [l dub“Hasler’s Law”: the costsof duplicated
work tendto scalesub-gadraticallywith team size—thatis, more slowly than the planningand management
overheadhatwould be neededo eliminatethem.

This claim actually doesnot contradictBrooks's Law. It may be the casethat total compleity overheadand
vulnerability to bugs scaleswith the squareof teamsize, but that the costsfrom duplicatedduplicateavork are
neverthelesa specialcasethatscalesnoreslowly. It's nothardto developplausiblereasongor this, startingwith
theundoubtedactthatit is mucheasieito agreeon functionalboundariebetweerdifferentdevelopers’codethat
will preventduplicationof effort thanit is to preventthe kinds of unplannedbad interactionsacrossthe whole
systemthatunderlymostbugs.

The combinationof Linus’s Law andHaslers Law suggestshatthereareactuallythreecritical sizeregimesin

softwareprojects.On smallprojects(l would sayoneto at mostthreedevelopersno managemergtructuremore
elaboratehanpicking aleadprogrammeis needed And thereis someintermediategangeabove thatin whichthe
costof traditionalmanagemernis relatively low, soits benefitsfrom avoiding duplicationof effort, bug-tracking,
andpushingto seethatdetailsarenot overlookedactuallynetout positive.

Above that,however, the combinationof Linus’s Law andHaslers Law suggestshereis alarge-projectrangein
which the costsandproblemsof traditionalmanagementse muchfasterthanthe expectedcostfrom duplication
of effort. Not the leastof thesecostsis a structuralinability to harnesshe mary-eyeballseffect, which (as
we've seen)seemdo do a muchbetterjob thantraditionalmanagemerait makingsurebugsanddetailsare not
overlooked. Thus,in the large-projectcase,the combinationof theselaws effectively drivesthe net payof of
traditionalmanagemernb zero.

[HBS][HBS] The split betweenLinux’s experimentaland stableversionshasanotherfunction relatedto, but
distinctfrom, hedgingrisk. The split attacksanothermproblem: the deadlines®f deadlines.Whenprogrammers
are held both to an immutablefeaturelist and a fixed drop-deaddate, quality goesout the window and there
is likely a colossalmessin the making. | am indebtedto Marco lansiti and Alan MacCormackof the Harvard
BusinessSchoolfor shaving me me evidencethatrelaxing eitherone of theseconstraintscan make scheduling
workable.

Oneway to do this is to fix the deadlinebut leave the featurelist flexible, allowing featuresto drop off if not
completedby deadline.This is essentiallythe strat@y of the "stable"kernelbranch;Alan Cox (the stable-lernel
maintainer)putsout releasest fairly regularintervals, but makesno guaranteesboutwhenparticularbugswill
befixedor whatfeatureswill beback-portedrom the experimentabranch.

The otherway to do this is to seta desiredfeaturelist anddeliver only whenit is done. This is essentiallythe
stratgyy of the "experimental"kernelbranch. De Marco and Lister cited researchshaving that this scheduling

30

policy ("wake meupwhenit's done")producesiotonly the highestquality but, on average shorterdeliverytimes
thaneither"realistic" or "aggressie” scheduling.

| have cometo suspect(as of early 2000) that in earlier versionsof this essayl severely underestimatedhe
importanceof the"wake meupwhenit’'s done"anti-deadlingolicy to the open-sourceommunitys productvity
andquality. Generakxperiencewith therushedSNOME 1.0releasén 1999suggestshatpressurdor apremature
releasecanneutralizemary of the quality benefitsopensourcenormally confers.

It maywell turn outto bethattheprocesdransparengof opensources oneof threeco-equalbriversof its quality,
alongwith "wake meup whenit's done"schedulinganddeveloperself-selection.

[SU]J[SU] It's tempting, and not entirely inaccurate,to seethe core-plus-haloorganizationcharacteristicof
open-sourcerojectsas an Internet-enabledpin on Brooks's own recommendatiorior solving the N-squared
complity problem, the "surgical-team"organization—Ilot the differencesare significant. The constellation
of specialistroles suchas "code librarian" that Brooks ernvisionedaroundthe teamleaderdoesnt really exist;
thoserolesareexecutednsteadby generalistaidedby toolsetsquite a bit morepowerful thanthoseof Brooks’s
day. Also, the open-sourceultureleansheavily on strongUnix traditionsof modularity APIs, andinformation
hiding—noneof which wereelementof Brooks's prescription.

[RJI][RJ] Therespondenivho pointedout to me the effect of widely varying tracepathlengthson the difficulty
of characterizinga bug speculatedhat trace-pathdifficulty for multiple symptomsof the samebug varies
"exponentially” (which | take to meanon a Gaussiaror Poissondistribution, and agreeseemsvery plausible).
If it is experimentallypossibleto geta handleon the shapeof this distribution, thatwould be extremelyvaluable
data. Large departuredrom a flat equal-probabilitydistribution of tracedifficulty would suggesthat even solo
developersshouldemulatethebazaasstratgy by boundingthetime they spendontracingagivensymptombefore
they switchto another Persistencenaynot alwaysbeavirtue...

[IN][IN] An issuerelatedto whetherone can startprojectsfrom zeroin the bazaarstyle is whetherthe bazaar
style is capableof supportingtruly innovative work. Someclaim that, lacking strongleadershipthe bazaarcan
only handlethe cloningandimprovementof ideasalreadypresentatthe engineeringtateof theart, but is unable
to pushthe stateof the art. This algumentwas perhapsmostinfamouslymadeby the HalloweenDocuments
[http://www.opensource.gyhalloveer], two embarrassiniternalMicrosoftmemorandavritten abouttheopen-
sourcephenomenon.The authorscomparedLinux’s developmentof a Unix-like operatingsystemto “chasing
taillights”, andopined“(once a projecthasachieved "parity" with the state-of-the-art)the level of management
necessaryo pushtowardsnew frontiersbecomesnassve’

Thereareseriouserrorsof factimpliedin thisargument.Oneis exposedvhentheHalloweenauthorghemseseles
later obsene that “often [...] new researctideasare first implementedand available on Linux beforethey are
available/ incorporatednto otherplatforms’.

If we read“open source”for “Linux”, we seethatthis is far from a new phenomenonHistorically, the open-
sourcecommunitydid not invent Emacsor the World Wide Web or the Internetitself by chasingtaillights or
being massvely managed—anéh the presentthereis so muchinnovative work going on in opensourcethat
oneis spoiledfor choice. The GNOME project(to pick oneof mary) is pushingthe stateof theartin GUIs and
objecttechnologyhardenoughto have attractedconsiderablenoticein the computertradepresswell outsidethe
Linux community Otherexamplesarelegion, asavisit to Freshmeaghttp:/freshmeat.netén any givendaywill
quickly prove.

31

But thereis a morefundamentakrrorin theimplicit assumptiorthatthe cathedal modelcathedal model(or the
bazaamodel,or arny otherkind of managemengtructure)cansomeha make innovation happerreliably. This
is nonsense.Gangsdon’t have breakthroughinsights—een volunteergroupsof bazaaranarchistsare usually
incapableof genuineoriginality, let alonecorporatecommitteeof peoplewith a survival stake in somestatusguo
ante.Insightcomedromindividuals.Insightomedromindividuals. Themosttheir surroundingsocialmachinery
canever hopeto dois to beresponsiversponsivéo breakthroughnsights—tonourishandrewardandrigorously
testtheminsteadof squashinghem.

Somewill characterizehis asa romanticview, a reversionto outmodedione-inventor stereotypes.Not so; |
am not assertinghat groupsare incapableof developingdeelopingbreakthroughinsightsoncethey have been
hatchedjndeed,we learnfrom the peerreview procesghat suchdevelopmentgroupsareessentiato producing
a high-quality result. Ratherl am pointing out that every suchgroup developmentstartsfrom—is necessarily
sparledby—onegoodideain onepersonshead.Cathedralandbazaarsandothersocialstructuresancatchthat
lightning andrefineit, but they cannotmake it on demand.

Thereforetheroot problemof innovation(in software,or arywhereelse)is indeedhow notto squasht—but, even
morefundamentallyit is howto grow lots of peoplewho can haveinsightsin the first placehowto grow lots of
peoplewhocanhaveinsightsin thefirstplace

To supposehatcathedral-stylelevelopmentouldmanagehistrick but thelow entrybarriersandprocesdluidity
of the bazaarcannotwould be absurd.If whatit takesis one personwith onegoodidea,thena socialmilieu in
which one personcanrapidly attractthe cooperatiornof hundredsor thousandof otherswith thatgoodideais
goinginevitably to out-innovateary in whichthe persorhasto do a political salegob to a hierarchybeforehecan
work on his ideawithoutrisk of gettingfired.

And, indeed,if we look at the history of softwareinnovation by organizationsusing the cathedralmodel, we
quickly find it is ratherrare. Large corporationsrely on university researcHor new ideas(thusthe Halloween
Documentsauthors’uneaseboutLinux’s facility at cooptingthatresearchmorerapidly). Or they buy out small
companiesilt aroundsomeinnovator’s brain. In neithercaseis the innovation native to the cathedrakulture;
indeed,mary innovationssoimportedendup beingquietly suffocatedunderthe "massve level of management”
the HalloweenDocumentsauthorssoextol.

That,however, is anegative point. Thereademwouldbebettersenedby apositiveone.|l suggestasanexperiment,
thefollowing:

* Pickacriterionfor originality thatyou believe you canapplyconsistentlylf yourdefinitionis “I know it when
| seeit”, that's nota problemfor purpose®f this test.

* Pick ary closed-sourceperatingsystemcompetingwith Linux, anda bestsourcefor accountsof current
developmentwork onit.

» Watchthat sourceand Freshmeator onemonth. Every day, countthe numberof releaseannouncementsn
Freshmeathatyou consideroriginal’ work. Apply the samedefinition of ‘original’ to announcementtor
thatotherOSandcountthem.

* Thirty dayslater, total up bothfigures.

32

Thedayl wrotethis, Freshmeatarriedtwenty-two releaseannouncementsf whichthreeappeathey mightpush
stateof the artin somerespect;This wasa slow dayfor Freshmeathut | will be astonishedf ary reademreports
asmary asthreelik ely innovationsa monthamonthin arny closed-sourcehannel.

[EGCS][EGCS]We now have historyon a projectthat,in severalways,may provide a moreindicative testof the
bazaapremisethanfetchmail; EGCS[http://egcs.g¢gnus.com/]the ExperimentalGNU CompilerSystem.

This projectwasannouncedn mid-Augustof 1997 asa consciousattemptto applytheideasin the early public
versionsof The Cathedal and the Bazaar The projectfoundersfelt that the developmentof GCC, the Gnu
C Compiletr had beenstagnating.For abouttwenty monthsafterwards, GCC and EGCS continuedas parallel
products—bothdrawing from the samelnternetdeveloperpopulation,both startingfrom the sameGCC source
base bothusingpretty muchthe sameUnix toolsetsanddevelopmentervironment. The projectsdifferedonly in
thatEGCSconsciouslytried to apply the bazaaitacticsl have previously describedwhile GCCretaineda more
cathedral-lile organizatiorwith acloseddevelopergroupandinfrequentreleases.

This wasaboutascloseto a controlledexperimentas one could askfor, andthe resultswere dramatic. Within
months,the EGCSversionshad pulled substantiallyaheadin features;betteroptimization, better supportfor
FORTRAN andC++. Many peoplefound the EGCSdevelopmentsnapshot$o be morereliablethanthe most
recentstableversionof GCC,andmajorLinux distributionsbeganto switchto EGCS.

In April of 1999, the Free Software Foundation(the official sponsorsof GCC) dissohed the original GCC
developmengroupandofficially handedcontrol of the projectto thethe EGCSsteeringteam.

[SP][SP] Of courseKropotkin'scritiqueandLinus’s Law raisesomewider issuesaboutthe cyberneticof social
organizations Anotherfolk theoremof softwareengineeringsuggest®neof them; Conway’s Law—commonly
statedas“If you have four groupsworking on a compiler, you'll geta 4-passcompiler”. The original statement
wasmoregeneral:“Organizationsvhich designsystemsareconstrainedo producedesignswhich arecopiesof
the communicatiorstructuref theseorganizations. We might putit moresuccinctlyas“The meansdetermine
theends”,or even“Processbecomegproduct”.

It is accordinglyworth noting that in the open-sourceeommunity organizationaform and function matchon
mary levels. The network is everything and everywhere: not just the Internet,but the peopledoing the work
form a distributed, loosely coupled,peerto-peernetwork that provides multiple redundang and degradesvery
gracefully In bothnetworks,eachnodeis importantonly to the extentthatothernodeswvantto cooperatewith it.

The peerto-peermartis essentiato the communitys astonishingoroductvity. The point Kropotkin wastrying to

malke aboutpower relationshipss developedfurtherby the'SNAFU Principle’: “Truecommunications possible
only betweenequals,becausénferiors are more consistentlyrewardedfor telling their superiorspleasanties

thanfor telling thetruth? Creative teamvork utterly dependsn true communicatiorandis thusvery seriously
hinderedby the presenceof power relationships. The open-sourceommunity effectively free of suchpower
relationshipsijs teachingus by contrasthow dreadfullymuchthey costin bugs,in loweredproductvity, andin

lostopportunities.

Further the SNAFU principle predictsin authoritarianorganizationsa progressie disconnecbetweendecision-
makersandreality, asmoreandmoreof theinputto thosewho decidetendsto becomepleasanties. Theway this
playsoutin corventionalsoftwaredevelopmenis easyto seetherearestrongincentvesfor theinferiorsto hide,
ignore,andminimize problems Whenthis procesecomegproduct,softwareis a disaster

33

Bibliography

| quotedseveralbits from FrederickP. Brooks's classicThe Mythical Man-Monthbecausein mary respectshis
insightshave yetto beimprovedupon.| heartilyrecommendhe 25th Anniversaryedition from Addison-Wesley
(ISBN 0-201-83595-9)which addshis 1986“No Silver Bullet” paper

The new editionis wrappedup by aninvaluable20-years-lateretrospectie in which Brooksforthrightly admits
to the few judgementsn the original text which have not stoodthe testof time. | first readthe retrospectie
afterthefirst public versionof this essaywassubstantiallyjcomplete,andwas surprisedo discover that Brooks
attributedbazaailik e practicego Microsoft! (In fact,however, this attribution turnedout to be mistalen. In 1998
we learnedfrom the Halloween Documentshttp://www.opensource.grhalloweer] that Microsoft's internal
developercommunityis heavily balkanizedwith the kind of generalsourceaccessieededo supporta bazaar
noteventruly possible.)

GeraldM. Weinbeg's The Psydology Of ComputerProgramming(New York, Van NostrandReinhold1971)
introducedthe ratherunfortunately-labeledonceptof “egolessprogramming”. While he wasnowherenearthe
first personto realizethefutility of the“principle of command” he wasprobablythefirst to recognizeandargue
thepointin particularconnectiorwith softwaredevelopment.

RichardP. Gabriel,contemplatinghe Unix cultureof the pre-Linux era,reluctantlyarguedfor the superiorityof
a primitive bazaatlike modelin his 1989 paper‘LISP: GoodNews, Bad News, andHow To Win Big”. Though
datedin somerespectsthis essayis still rightly celebratecamongLISP fans(including me). A correspondent
remindedme that the sectiontitled “Worsels Better” readsalmostas an anticipationof Linux. The paperis
accessibl®en the World Wide Web at http://www.naggum.no/iarseis-betterhtml.

De Marco and Lister’s Peoplevare: ProductiveProjectsand Teams(New York; DorsetHouse,1987; ISBN 0-
932633-05-6)is an underappreciatedemwhich | was delightedto seeFred Brooks cite in his retrospectie.
While little of whatthe authorshave to sayis directly applicableto the Linux or open-sourceommunitiesthe
authors’insightinto the conditionsnecessaryor creative work is acuteandworthwhilefor anyoneattemptingto
import someof thebazaamodels virtuesinto acommerciakontext.

Finally, | mustadmitthat| very nearly calledthis essay‘The Cathedralandthe Agora”, the latter term being
the Greekfor anopenmarket or public meetingplace. The seminal‘agoric systems’papersby Mark Miller and
Eric Drexler, by describingthe emegentpropertiesof market-like computationakcologies helpedprepareme
to think clearly aboutanalogouphenomenan the open-sourceulturewhenLinux rubbedmy nosein themfive
yearslater. Thesepapersareavailableon the Web at http://www.agorics.com/agorpapehtml.

Acknowledgements

Thisessaywasimprovedby conversationsvith alargenumberof peoplewho helpeddelugit. Particularthanksto
Jef Dutky <dut ky @vam und. edu>, who suggestethe“debuggingis parallelizable’formulation,andhelped
developthe analysisthat proceeddrom it. Also to Nang/ Lebovitz <nancyl @ini ver se. di gex. net > for
hersuggestiorthat! emulateWeinbeg by quotingKropotkin. Perceptie criticismsalsocamefrom JoanEslinger
<wonbat @i | i manj ar 0. engr. sgi . con> andMarty Franz<mar t y@et - | i nk. net > of the General
Technicslist. Glen Vandenhirg <gl v@ander bur g. or g> pointeedout the importanceof self-selectionn
contributor populationsandsuggestethefruitful ideathatmuchdevelopmenrectifies’bugsof omission’;Daniel

34

Upper<upper @eak. or g> suggestethe naturalanalogiedor this. I'm gratefulto thememberof PLUG, the
Philadelphid.inux Usersgroup,for providing thefirst testaudiencdor thefirst public versionof this essayPaula
Matuszek<mat usp00@rh. us. sbphr d. con® enlightenedme aboutthe practiceof software management.
Phil Hudson<phi | . hudson@ nane. con® remindedme that the social organizationof the hacler culture
mirrors the organizationof its software,andvice-versa. JohnBuck <j ohnbuck @ea. ece. unassd. edu>
pointedout that MATLAB makes an instructive parallelto Emacs. RussellJohnston<r ussj j @mi | . con®
broughtmeto consciousnesaboutsomeof themechanismdiscussedh “How Many EyeballsTameComplexity.”
Finally, Linus Torvalds's commentsverehelpful andhis early endorsementery encouraging.

35

