Lecture Notes

Structured
Systems Analysis

Lecture 3

Structured Analysis
&
Data Flow Diagrams

Written by Dr. Fred Grossman

Copyright [0 1999 Fred Grossman All Rights Reserved



Structured Systems Analysis

Structured analysis is a methodology for determining and documenting the requirements
for a system. As we shall see, the operative term is structured. The goal of structured
analysis is to determine and document the requirements for a system so that the correct
system is constructed. Key to this is the ability for the system owner to understand (and
validate) that the system requirements are correctly and completely specified, and that the
designer interprets the requirements in exactly the same way as the system owner.

The two major documentation tools for a structured analysis are the Data Flow Diagram
(DFD) and the Data Dictionary. The data dictionary defines and describes all of the
names which appear in the system documentation. We will have more to say about the
data dictionary later.

Structured analysis is a pure requirements methodology. It should be completely devoid
of design. It specifies WHAT and not HOW. The design methodology that follows the
requirements phase of development is not predetermined by the structured analysis. The
design may be a structured design or an object design, or any other design methodology.
Whatever the design methodology (structure) that may be used, it is necessary that the
design faithfully represent the requirements. Structured analysis supports this.

Data Flow Diagrams (DFDs)

Data flow diagrams provide graphical documentation for systems analysis. They are
analogous to blue prints in a construction project. They are leveled set of diagrams so that
it is easier to understand the system requirements with fewer pieces than textual
documentation. The leveling process also helps control complexity.

Using DFDs to document a system does not necessarily imply that we are doing a
structured analysis. DFDs are a documentation tool and can be used to document various
things. DFDs can be used to document design flows or control flows as well as
requirements. In this discussion we are concerned with structured analysis and will use
the DFD to document the analysis.

DFDs help manage complexity. Complexity almost always means the number of things
that we need to manage at once. Through the leveling process that the structured analysis
methodology mandates, a diagram will always have a manageable number of
components. Miller's law states that humans tend to lose control when they have to
manage more than 7 plus or minus 2 things at one time. For example, consider a juggler.



Data Flow Diagram Symbols

There are four symbols in a DFD - the External Entity (Source/Sink), the Process, the
Data Store and the Data Flow.

External Entity

An external entity is in the system environment. It is a source or sink of data flows. Data
flows from an external entity to the system and from the system to an external entity. The
system cannot control when or if the data flows from the external entity since these
entities are not in the system. There is an implied contract that it will flow as expected,
but we don't control external entities. The name of an external entity is a singular noun.

Process

A process transforms data flows in to data flows out. It is the only active component in
the DFD. There must be at least one flow in and one flow out. The name of a process is
traditionally an imperative sentence, i.e., a verb and object but no subject, since a subject
implies who is performing the action. That would be a design decision. When the
requirements analysis is for an object-oriented design, the name of a process can be a
noun phrase describing the role and responsibility. For example, we could name a process
Manage Inventory or we could name it Inventory Management or Inventory Manager.

Processes are numbered hierarchically. The top level processes are numbered 1, 2, etc.
The child diagram (explosion) of process 2 will have processes numbered 2.1, 2.2, etc.
This numbering scheme facilitates navigation so that you can always know where you are
in the leveled set of diagrams.



Data store

A data store contains a data structure at rest. Data stores are not necessary, but aid in
understanding and documenting the important data resources of the system. It is a logical
structure, not a physical structure. When considering Object-Oriented design, the data
store will belong to only one class. In the DFD, it is shared by two or more processes, but
only one of these processes "owns" the data. Data stores are named with plural nouns
since they represent a collection if things.

Data flow

A data flow is a data structure in motion. A data flow is named with a singular noun.



DFD Example - Order Processing Model

As an example of a DFD, consider a system with responsibility for managing customer
orders, billing, inventory and general business accounting functions. The following is a
top-level data flow diagram. The top-level DFD specifies the major components of the
system under consideration -- functions, external entities and major data resources.

Order Processing (Top Level)

D5 | Open Orders

Shippable

Order
Order

demand

Order
to
Ship

Purchase Order

Order

Manage
Order

Customer Manage < Supplier

Inventory

Invoice Inventory Receiving
'I’\Vﬁ"ab'e Availability A
nventory nventory
D6
Inventory AP
Receiving

A-R

Invoice
EE———N —— supplier Invoice
Customer Payment anage ¢
P-Accounting

Supplier Payment

What does this diagram specify?

There are three major functions in the system under analysis -- managing orders,
managing inventory and managing accounting. Two major external entities (not in the
system but in the system environment) interact with the system -- the Customer and
Supplier. The most important data resources for this system are the Open Orders and
the Inventory.

The Customer sends in an Order to the system. The system responds with an Invoice
indicating that the Order has been processed and the goods shipped to the Customer.
Note: DFD's do not show the flow of materials, only information regarding their flow.

In order to satisfy the Customer's request (Order), the Manage Order process must
ensure that when an Order is due to be shipped, there is Available Inventory. The
information about an Order To Ship is contained in the Open Orders data store, and the
Available Inventory is contained in the Inventory data store.



The Manage Inventory process is responsible for ensuring that there is available
inventory at the requested ship date. In order to accomplish this, the Manage Inventory
process examines the Order Demand and compares it with the Inventory Availability.
If there will not be enough inventory to satisfy the demand, a Purchase Order is sent to
the Supplier. When the Supplier sends the ordered items, the New Inventory will be
entered into the Inventory data store.

Since the Supplier will send an invoice expecting payment, the Manage Accounting
process must be notified as to what it should pay for. When the order is shipped to the
Customer, an accounts receivable will be established in the Manage Accounting
function. When the Customer sends a Payment, the Manage Accounting function will
process it.

DFD's Are Leveled Diagrams

The top-level data flow diagram describes the system requirements at the highest level.
More specificity about a process is documented by exploding the process into a child
diagram. Each diagram provides requirements for a particular subsystem. Each process
may be viewed as a system. Thus the Manage Order process on the top level is a system
(subsystem of the main system) and thus has a top-level DFD to specify its requirements
(its child diagram). Every item on a diagram should be of equal importance (relevance) to
that particular system view. This is the major principle of the leveling process in the
structured analysis methodology.

For example, suppose we want to understand the requirements for the Manage Order
process. We can explode it as is shown below.



Manage Order Explosion

Manage Order

Order Shippable Order
Make >
Shippable
Order

Order to Ship
1.2 Invoice
>

Ship Order

: >

Auvailable Inventory A-R Invoice

Level-to-level Balancing

A child diagram must account for every in-flow and out-flow of the parent process. This
is known as level-to-level balancing. The Manage Order process has three in-flows and
three out-flows. These are accounted for in the explosion. The child diagram must
describe the requirements for transforming these in-flows into the out-flows.

We will illustrate this leveling process further by exploding the Make Shippable Order
process.



Make Shippable Order Explosion

Make Shippable Order

Order

Valid
Order

Determine Shippable Order

Credit >
Status




Manage Inventory Explosion
When we explode the Manage Inventory process, we introduce a new data store to hold
the Open Purchase Orders. This is an important data resource for the organization since

it is an source of data for cash flow projections, i.e., how much we will expect to pay to
suppliers and when these payments are likely to be required.

Manage Inventory

Order demand

Purchase Order

Purchase
Item

Inventory Availability

Open
Purchase
Order

P D7 Open Purchase

Orders
Open
Purchase Order

New Inventory

Receiving

Receive
Item

A-P Receiving



