
Transaction Support in Web Services

IS660G Web Services
Fall 2004

Prof. Kevin Burns

Team 2
Ian Loe

Pratima Vijayakumar
Simon Chan
Zheng Qin

Introduction
To the general public, the term “transaction” is used to mean a business exchange where
money is traded for goods. But in the domain of computing, the meaning of “transaction”
is more specific. Transactions are a fundamental abstraction in dependable computing
systems. Its inherent value is to allow programmers to make something that went wrong
appear as if it never happened. A transaction implies that a group of activities is
completed as a unit, so they all succeed or all fail together. In other words, it’s a semantic
that means “all or nothing”.

While transaction processing has been around for many years, spanning many transaction
processing systems from CICS to Tuxedo and Microsoft DTC, the underlying
technologies all have one pervasive notion: ACID. ACID is an acronym that represents
the terms Atomic, Consistent, Isolated, and Durable. (See Table 1)

ACID Transactions

Atomic
The transaction will succeed completely or fail completely. This is particularly important when executing
business logic that involves the updating of multiple underlying data sources, where the atomicity property
turns a set of operations into a single indivisible logical operation.

Consistent
The data store changes over time through a sequence of consistent states. That is, any data that has been
updated during the lifetime of the transaction is left in a consistent state at the end of that transaction,
irrespective of any failures that have occurred during the transaction.

Isolated
The effects of a transaction should be invisible to and isolated from other transaction until it has been
committed. This also means that any running transaction believes that it has exclusive access to the
resources associated with it.

Durable
The results are guaranteed to be stored after the transaction completes. That is, once a transaction has
been completed, the resulting changes must not be lost even if hardware or software fails.

Table 1 : Acid Transactions

 1

IS660G Web Services Spring 2004 Transaction Support in Web Services

ACID and Compensating Transactions

ACID transactions are critical to business interactions. Why? For example, when you
deposit some money into your bank account or withdraw some money from it, the bank
wants to ensure that your account is credited exactly once for a deposit, and you want to
ensure that your account is debited exactly once for a withdrawal. Likewise, when you
make changes in the data stored in your application, it must be accessed only when it is
internally consistent - transactions guarantee that consistent view.

To ensure consistency, typically all database entries being used by an ACID transaction
are locked for the duration. If a transaction fails, the database state is rolled back to its
previous state. This capability is provided by database vendors.

While locking will work within a closed system like a database management system, it is
not feasible to have it work across enterprises. Take the following scenerio as an example:
when you make a hotel reservation, your travel agent cannot lock the hotel's reservation
database for as along as the reservation exists (or even as long as a phone call) or the
system would grind to a halt. Beyond the technical reasons, it is also improbable that you
would be able to control access in a system outside your own enterprise. A more probable
scenerio would be an ACID transaction local to each party, i.e. there would be an ACID
transaction local to the hotel chain's database that would perform the tasks of updating
the room inventory, add the information to the reservation tables and generate a
confirmation number, all as a single unit of work. And if the travel agent needs to undo
that reservation, a compensating action is taken.

Compensation is specific to the way business data is managed, so it's always part of
business logic. This is very different from the automatic rollback provided by databases
for ACID transactions. Compensation avoids another problem. Locking of your
company's data by anyone on the Internet allows denial-of-service attacks. Using
compensation means that your data isn't locked for a long time, but we can no longer
have ACID transactions - at least the Isolation guarantees must be relaxed - because the
data is visible between the initial change and the compensation.

In effect, one trades softening of the ACID guarantees for flexibility, safety, and control
over one's own data. While ACID transactions can be achieved in closed systems, the
nature of Web Services applies some limit as to how far you can apply the principles of
ACID. The objective of our project is to examine how transactions can be support in
Web Services and what is the impact on ACID properties.

Standards in the Brew

There are currently a few standards working towards some form of reliable transaction
management using Web Services. The better known ones are the OASIS Business
Transaction Protocol, push by Arjuna Technologies Ltd. (formally part of Hewlett-

 2

IS660G Web Services Spring 2004 Transaction Support in Web Services

Packard Company), Fujitsu Limited, IONA Technologies Ltd., Oracle Corporation, and
Sun Microsystems, Inc.; and WS-Transaction push by IBM, Microsoft and BEA,

OASIS Business Transaction Protocol (BTP)

Background

The OASIS Business Transaction Technical Committee (BTTC) published the BTP 1.0
specification for coordinating transactions between applications controlled by multiple
autonomous parties in May 2002. This is the result of the work of several companies (Sun,
HP, Choreology, ORACLE, and others) that hopes to become a standardized Internet-
based means of managing complex, ongoing business-to-business (B2B) transactions
among multiple organizations. The full BTP specification can be found at
http://www.oasis-open.org/committees/business-transactions.

One of the key design factors of BTP is that in a business transaction, no single party
controls all resources needed. In such an environment, it is assumed that the respective
parties manage their own resources but the activities will be coordinate in a defined
manner to accomplish the work scoped by a transaction. There is also a provision for
individual service providers to decide if they want to be part of a transaction or not; if
they decide that they want to be part of the transaction, they must provide a mechanism to
confirm or cancel their commitments to the transaction. BTP also allows service
providers to autonomously decide when to unlock resources they hold and/or whether to
use compensating transactions to roll back transient states that were persisted.

Although not design specifically for Web Services, the protocol will be especially useful
in a Web Services environment. The BTP specification was formed to address the needs
of inter-organizational transactions and of workflow systems in general. It was also
design to overcome the limitations of similar coordination protocols tied to
communication protocols.

Another design factors for BTP was to have the new protocol work in conjunction with
current business messaging standards, especially those in development by the ebXML
Initiative (another OASIS project). That said, BTP is not locked into any one protocol; in
fact it can be layered over any transport technology, such as the Simple Object Access
Protocol (SOAP) or RosettaNet messaging. BTP also requires that implementations
bound to the same carrier protocols should be interoperable. The current specification of
BTP describes a SOAP 1.1/HTTP binding.

A key fact to note is that although transaction and security aspects of an application
system are often related, the BTP specification consciously does not address how a BTP
transaction will integrate with a security system, because Web services security standards
were developed independently of the transaction specifications and the WS-Security
standards has only just been ratified by OASIS. One of the goals of the BTTC is that BTP

 3

http://www.oasis-open.org/committees/business-transactions

IS660G Web Services Spring 2004 Transaction Support in Web Services

would avoid dependencies on other standards and constraints on implementation choices.
This is intended to address a major challenge of B2B development: the problem of how
to coordinate the information systems of separate businesses (which typically use
different business practices, equipment, and technologies) so that they can communicate
effectively. By working independently of any messaging frameworks, complex XML
message exchanges among multiple businesses are tracked and managed as ongoing,
loosely coupled ‘conversations.’ BTP defines the roles that a business’ software agents
(called actors) may perform, the messages that will be exchanged by those actors, and the
responsibilities of the actors in those defined roles.

How It Works

BTP is a protocol, i.e. it is a set of well-defined messages exchanged between the
application-systems involved in a business transaction. Each system that participates in a
business transaction can be thought of as having two elements—an application element
and a BTP element. (Figure 1)

Figure 1: BTP Elements

The application elements exchange messages to accomplish the business function. For
example, when you use a money transfer service that sends a message to the banking
service with details of the payee's name, address, and payment amount, the application
elements of the two services are exchanging a message. The BTP elements of the two

 4

IS660G Web Services Spring 2004 Transaction Support in Web Services

services exchange messages that help compose, control, and coordinate a reliable
outcome for the message sent between the application elements.

Note that the application element pertains to the application or business logic that the
service consumer and service producer deploy, while the BTP elements are supplied by
the BTP vendor. The separation of system components into BTP and application
elements is a logical one and these elements may or may not coexist in a single address
space.
With respect to a BTP transaction, application elements play the role of initiator (the Web
service that starts the transaction) and terminator (the Web service that decides to commit
or end the transaction). The initiator and terminator of a transaction are usually played by
the same application element.

BTP elements play either a superior or inferior role. The BTP element associated with the
application element that starts a business transaction is usually assigned the superior role.
The superior informs the inferior when to prepare to terminate the transaction and waits
for the inferior to report back on the result of its request. The following parts will discuss
the types of transactions and the nature and content of BTP messages.

Types of Transaction in BTP

In traditional transactions, a transaction manger will roll back a transaction if any
resource manager participating in the transaction cannot commit or cannot prepare. But in
BTP, this cannot be assured. With BTP, you have to define the set of participants that
must confirm before a transaction can be committed; this group of participants makes up
what is known as the confirm-set. The confirm-set may include all or a subpart of all the
participants. To cater for this, BTP has defined 2 types of transactions:

• BTP Atomic Business Transactions, or atoms, are like traditional

transactions, with a relaxed isolation property.

• BTP Cohesive Business Transactions, or cohesions, are transactions where
both isolation and atomicity properties are relaxed.

Atomic Business Transactions (Atoms)

Atomic business transaction is where all participants have to agree before a transaction
can be committed. If any participant cannot confirm, the entire transaction is canceled.
Because BTP transactions do not require strict isolation, it is up to each participating
service to determine how to implement transaction isolation. In an atomic Business
Transaction, the confirm-set is the set of all inferiors and any of the inferior elements has
power to veto the transaction.

 5

IS660G Web Services Spring 2004 Transaction Support in Web Services

Take for example, a web service consumer transaction that invokes two business methods
on two different services. If the overall transaction is atomic, the BTP element (superior)
at the service consumer end is called a coordinator. In this case, the BTP element plays
the coordinator role and coordinates a BTP atomic transaction. It does this by exchanging
BTP messages with the BTP elements associated with the two service producers when
the application asks it to complete the transaction. On the other side, the inferior BTP
elements are called participants and is responsible for persisting the state change made by
the associated application element (service producer), which it does by following
instructions (via BTP messages) from the superior (coordinator). If either participant
informs the superior that it cannot confirm the transaction, the transaction is rolled back.

Cohesive Business Transactions (Cohesions)

Cohesive Business Transactions are transactions where not all involved parties must
agree to commit their changes before a transaction is committed. Only some subset of the
parties may need to agree. The subset of parties that need to agree before a transaction
can be completed is usually determined through the business logic in the application.

In the case of a Cohesion, the BTP element (superior) at the service consumer end is
called a composer (as oppose to as a coordinator). The BTP element associated with the
service producer is called a participant. In this case, the business logic in initiating
application element can determine whether the transaction can be completed, i.e. whether
one or both services must confirm. If only one participant must confirm but both
eventually confirm, the composer will ask the unwanted participant to cancel or roll back
his part of the transaction.

To illustrate this, let’s take the example of a travel agent system that would check a few
airlines services for the cheapest fare and get the hotel and car rental all in one transaction.
In this case we can say that the hotel and car rental can be atomic transaction while for
the airlines, only 1 of the airlines need to have a successful booking. We ca say that both
the hotel and car rental service are in the confirm-set but only 1 of the airlines need to be
in that confirm-set.

 6

IS660G Web Services Spring 2004 Transaction Support in Web Services

Figure 2 : Transaction Example

Although at first glance, it may seem that the 2 transactions type are distinct, but in fact,
cohesions is a superset of atoms: if you have a cohesion coordinator, you can use the
same implementation to provide support for atoms, but the inverse is not the case.

In BTP, the actions of transaction coordinator or composer can be influenced by
application elements (i.e., business logic). In a cohesion, the initiating application
element determines which subset of activities is to be included in the over-all transaction
by providing that information to the superior. Application elements can also influence the
control and coordination of the transaction by providing the superior with additional
context information (via qualifiers; see next section), such as transaction time limits and
other application-specific values.

Locking in BTP

In BTP, for both types of transactions, the isolation level for cohesions is left up to each
service. Some of the ways in which applications can achieve isolation include:

• Making changes but applying locks, as in traditional transactions
• Deferring changes until a transaction commits (perhaps by writing a log of

changes that will be applied later)

 7

IS660G Web Services Spring 2004 Transaction Support in Web Services

• Making changes and making the interim results visible to others. (This is also
known as the provisional effect.)

If a service makes visible provisional changes and the transaction is ultimately rolled
back, new compensating transactions may have to be generated to undo the changes made
(This is known as the counter effect).

BTP Players and Messages

The BTP element associated with the initiator plays the superior role and is usually also
the terminator of the initiated transaction. Depending on the type of business transaction,
superiors are either coordinators or composers of the business transaction where an atom
is coordinated by an atom coordinator (coordinator), and a cohesion is composed by a
cohesive composer (composer). All other BTP elements will be inferiors to this superior.
In the simplest case, with only two parties of one superior and one inferior, the inferior is
called a participant.

Figure 3 shows a more detailed version of Figure1. The application (initiator) first asks a
BTP element called the factory to create the coordinator/composer. The factory creates
the superior and returns the transaction context. The initiator then invokes the business
method on the service consumer and passes the context to the service.

Figure 3: BTP and application elements

 8

IS660G Web Services Spring 2004 Transaction Support in Web Services

How the context is passed depends on the protocol binding; for example, it can be passed
as a header block in a SOAP message. At the receiving side, the invoked service asks a
BTP element called enroller to enroll in the transaction, passing the received context. The
enroller creates the inferior (participant) and enrolls in the transaction with the superior.
Finally, the service provides the response to the business method and passes along the
context reply. Figure 4 shows the exchange of messages between the different elements.

Figure 4 BTP sequence diagram

Note: BTP messages must be bound to a protocol such as SOAP. Because we have not yet described the
BTP binding to SOAP, the following section shows only abstract forms of BTP messages

All BTP messages have an associated schema. The CONTEXT message shown below is
an example of a BTP message.

 <btp:context id>
 <btp:superior-address>address</btp:superior-address>
 <btp:superior-identifier>URI</btp:superior-identifier>
 <btp:superior-type>atom</btp:superior-type>
 <btp:qualifiers>qualifiers</btp:qualifiers>
 <btp:reply-address>address</btp:reply-address>
 </btp:context>

The superior-address element contains the address to which ENROLL and other
messages from an inferior are to be sent. Every BTP address element (superior-
address, reply-address, etc.) has the following XML format:

 9

IS660G Web Services Spring 2004 Transaction Support in Web Services

 <btp:superior-address>
 <btp:binding-name> </btp:binding-name>
 <btp:binding-address></btp:binding-address>
 <btp:additional-information>information ...
 </btp:additional-information>
 </btp:superior-address>

superior-identifier contains a unique identifier (URI) for the superior. superior-
type indicates whether the context is for a transaction that is an atom or a cohesion. The
qualifiers element provides a means for application elements to have some control over
transaction management. Qualifiers are data structures whose contents can influence how
the transaction coordinator/composer controls the transaction. BTP defines a few
standard qualifiers (such as transaction time limit), but BTP vendors can define more
such parameters.

The reply-address element contains the address to which a CONTEXT_REPLY
message is to be sent (this is required only if the BTP message is not sent over a request-
response transport).

BTP Two-Phase Protocol

The two-phase commit used in BTP is quite similar to the two-phase protocol used in the
flat transaction model with some key differences which will be discussed later. Figure 5
shows how such a transaction is terminated using the two-phase protocol.

Figure 5 A simple atom example illustrating the BTP two-phase protocol

On receiving a PREPARE message, an inferior (participant) can reply with a
PREPARED, CANCEL, or RESIGN message. In Figure 5, because only one inferior
exists, the participant must reply with a PREPARED message if the transaction is to be

 10

IS660G Web Services Spring 2004 Transaction Support in Web Services

confirmed and progress to phase 2 (CONFIRM). An example of the BTP message for
PREPARE is shown below:

<btp:prepare id>
 <btp:inferior-identifier> URI </btp:inferior-identifier>
 <btp:qualifiers>qualifiers</btp:qualifiers>
 <btp:target-additional-information>
 additional address information
 </btp:target-additional-information>
 <btp:sender-address>address</btp:sender-address>
</btp:prepare>

The qualifiers element contains a set of standard or application-specific qualifiers. The
timeout for inferiors is one of the qualifiers that should be sent for a PREPARE message.
target-address points to the address of the inferior that was ENROLLed. The
PREPARE message will be sent to that address. The sender-address points to address
of the superior.

The effect on the outcome of a final transaction of having multiple inferiors depends on
whether the transaction is a cohesion or is an atom. The set of inferiors that must
eventually return CONFIRMED to a CONFIRM message for the transaction to be
committed is called a confirm-set. For an atomic transaction, the set consist of all of a
superior's inferiors. For a cohesion, the confirm-set is a subset of all its inferiors. The
subset is decided by the application element associated with the superior (this implies that
business logic is involved).

Figure 6 illustrates how a composer with multiple participants confirms a cohesion with
the two-phase protocol. The application element (the initiator and the terminator of the
transaction) decides that only participants 1 and 2 should confirm—that the confirm-set
consists of participants 1 and 2. To accomplish this,

1. The terminator sends a CONFIRM_TRANSACTION with the IDs of the
participants in the confirm-set.

2. The decider (composer) sends PREPARE messages to participants 1 and 2 and a
CANCEL message to participant 3.

3. As soon as PREPARED messages return from participants in the confirm-set, the
decider sends out CONFIRM (phase 2) messages.

4. When the confirm-set replies with CONFIRMED messages, the transaction is
confirmed.

 11

IS660G Web Services Spring 2004 Transaction Support in Web Services

Figure 6: Cohesion completion

How the confirm subset is passed to the decider is better understood by examining the
CONFIRM_TRANSACTION message structure:

<btp:confirm-transaction id>
 <btp:transaction-identifier> ... URI ...
 </btp:transaction-identifier>
 <btp:inferiors-list>
 <btp:inferior-identifier>inferior URI</btp:inferior-identifier>
 <btp:inferior-identifier>inferior URI</btp:inferior-identifier
 </btp:inferiors-list>
 <btp:report-hazard>true</btp:report-hazard>
 <btp:qualifiers>qualifiers</btp:qualifiers>
 <btp:target-additional-information>
 info
 </btp:target-additional-information>
 <btp:reply-address>decider address</btp:reply-address>
</btp: confirm_transaction>

 12

IS660G Web Services Spring 2004 Transaction Support in Web Services

Note that the inferiors-list contains only the confirm-set of inferiors. If this element
is absent, all inferiors are part of the confirm-set. For an atom, because all participants are
in the confirm set, this element must not be present.

The report-hazard element defines when the decider informs the application that the
transaction is conformed (TRANSACTION_CONFIRMED message):

• If report-hazard is true, the decider waits to hear from all inferiors, not
just the confirm-set, before informing the terminator.

• If report-hazard is false, the decider must wait for all elements (even
elements that receive a CANCEL message) to reply before communicating
the outcome of the transaction to the terminator.

report-hazard is useful when the application element wants to know if there was a
hazard (problem) with any inferior.

If a coordinator or composer has only one inferior, it may decide to use a single-phase
confirm operation and skip the two-phase protocol. Instead of a PREPARE + CONFIRM
message exchange, it may send a CONFIRM_ONE_PHASE message to the inferior. The
two-phase protocol used in BTP ensures that either the entire transaction is canceled or
that a consistent set of participants is confirmed.

Critique of BTP

One of the key advantages of BTP is that it has been worked on for a longer time and is
considered well-formed and complete. But although it is pretty straightforward, the
volume and complexity can make it hard to digest.

BTP uses business logic to control the flow of the transaction; while this seems to give
you more control over how the transaction will flow, it in fact reduces what you would
expect from a transaction protocol like consistency, isolation, etc. This means that when
using BTP, you would have to do a lot more work to ensure a transaction is valid.
Because of this reliance on the business logic to flow the transaction, the user or initiator
has to be very close to (or even be) the coordinator. Critical business information such as
the ability for a participant to remain prepared (for example, hold onto a hotel room) for a
specific period of time is propagated from the participant to the coordinator, but there is
nothing within the protocol to allow this information to filter up to the application/client
where it really belongs. Because of the lack of flow control in the protocol, in order to
use cohesions it is also necessary for Web services to expose back-end implementation
choices about participants.

In order to parameterize the two-phase completion protocol, the terminator of the
cohesion needs to be able to determine among the participants that has been enrolled in
the cohesion, which ones to prepare and which ones to cancel, unlike a traditional
transaction system where users do not need to know all the participants. This is
something that goes against the Web services orthodoxy. Also, because BTP requires

 13

IS660G Web Services Spring 2004 Transaction Support in Web Services

transaction control to use the open-top approach, it is difficult to leverage existing
enterprise transaction implementations. Few transaction systems (or their administrators)
will feel comfortable exposing their coordinators through the two-phase interface.

Furthermore, the BTP specification expends great efforts to ensure that two-phase
completion does not imply ACID semantics. This is a double-edged sword as it may be
good in the sense that traditional ACID transactions are not suitable for all types of Web
services interactions, but on the other hand, everything is left up to back-end
implementation choices and there is nothing in the protocol (implicit or explicit) to allow
a user to determine what choices have been made. Therefore, it is impossible to reason
about the ultimate correctness of a distributed application. For example, if you wanted to
use BTP for ACID transactions, then of course services could use traditional XA resource
managers (for example) wrapper by BTP participants. Unfortunately, there is no way
within the BTP for those services to inform external users that this is what they have done
so that they can safely be used within the scope of a BTP “ACID” transaction.

 14

IS660G Web Services Spring 2004 Transaction Support in Web Services

WS-Coordination/WS-Transaction

Before getting into the details of the WS-Transaction, we have to firstly understand WS-
Coordination service. The WS-Coordination protocol is used to distributed services. WS-
Coordination is an extensible framework for providing protocols that coordinate the
actions of distributed applications. Also, it provides a generic framework for specific
coordination protocols, like WS-Transaction, to be plugged in.

Traditional transaction protocols assumed that the request and response are synchronous.
Where the WS-Transaction is layered upon the WS-Coordination protocol and their
communication patterns are asynchronous by default.

Figure 7: WS-Coordination Foundations

WS-Coordination:

The foundation of the WS-Coordination has the following functions:

• Activation service that enables an application to create a coordination
instance or context. (Option for Coordination Service)

• Registration service that enables an application to register for coordination
protocol. (Mandatory for Coordination Service)

• Coordination service type (Stock Trades, Supply Chain) that allows the
protocol to be understood by both end of the communication.

 15

IS660G Web Services Spring 2004 Transaction Support in Web Services

Figure 8: Coordination Service

WS-Transaction specification proposes two distinct models: Atomic Transactions and
Business Activity. Both models are extensible and allow implementations to tailor the
protocols as they see fit. Below is a context diagram of how WS-Transaction is
implemented. (Figure 9)

Figure 9: WS-Transaction Context

An atomic transaction is an XML marked-up version of the classical all-or-nothing
atomic transaction. It is meant to be used by activities that last for short periods of time,
where the locks necessary to maintain consistency will not be held for so long that
performance may be degraded. Because of its nature, atomic transactions should be run in
a trusted environment to prevent denial-of-service attacks.

 16

IS660G Web Services Spring 2004 Transaction Support in Web Services

How we would determine that a transaction is “short-lived” or not is really subjective and
it will differ from architecture to architecture.

Figure 10: Using AT to ensure All-or-Nothing

Atomic Transaction (AT) Activities

An atomic transaction consists of five distinct activities:

1. Completion - Once the application that created the transaction registers for the

completion protocol, it can tell the coordinator to either try to commit the transaction
or force a rollback. A status is returned to indicate the final transaction outcome.

2. CompletionWithAck – This is basically the same as Completion, but the coordinator
must remember the outcome until receipt of an acknowledgment notification.

3. PhaseZero - The Phase Zero message is sent to interested participants to inform them
that the two-phase commit protocol is about to begin. This message allows those
participants to synchronize any persistent data to a durable store prior to the actual
two phase commit algorithm being executed.

4. 2PC - A participant registers for these messages for a particular transaction, so that
the coordinator can manage a commit-abort decision across all the participants. If
more than one participant is involved, both phases of 2PC are executed. If only one
participant is involved, a One Phase Commit (a 2PC performance optimization used
in the case of a single participant) is used to communicate the commit-abort decision
to the participant.

 17

IS660G Web Services Spring 2004 Transaction Support in Web Services

5. OutcomeNotification - A participant that wants to be notified of the commit-abort

decision registers to receive this “third-phase” message. Applications use outcome
notification to release resources or perform other actions after commit or abort of a
transaction.

Figure 11: A scenario of Atomic transactions

This example scenario is broken down by each phase of the transaction with details of the
steps within each phase. These phases are in turn: Activation, Registration, and
Completion/Coordination.

To begin an atomic transaction, the client application firstly locates a WS-Coordination
coordinator Web Services that supports WS-Transaction. Once located, the client sends a
WS-Coordination “CreateCoordinationContext” message to the activation service and
will get back an appropriate WS-Transaction context from the activation service.

After obtaining a transaction context from the coordinator, the client application then
proceeds to interact with the Web Services to accomplish its business-level work. When
all the necessary application level work has been completed, the client can terminate the
transaction by first registering its own participant for the “Completion” or
“CompletionWithAck” protocol. After it has been registered, the participant can instruct
the coordinator either to try to commit or rollback the transaction. When the commit or

 18

IS660G Web Services Spring 2004 Transaction Support in Web Services

rollback operation has completed, a status is returned to the participant to indicate the
outcome of the transaction.

The “CompletionWithAck” protocol goes one step further and insists that the coordinator
must remember the outcome until it has received acknowledgment of the notification
from the participant.

Figure 12: Two Phase Commit State Transition

The two-phase commit protocol is used to ensure atomicity between participants, and is
based on the classic two-phase commit with presumed abort technique. During the first
phase, when the coordinator sends the prepare message, a participant must make durable
any state changes that occurred during the scope of the transaction, such that these
changes can either be rolled back or committed later. If the participant cannot prepare
them it must inform the coordinator via the “Aborted” message and the transaction will
ultimately roll back. Assuming no failures occurred during the first phase, in the second
phase the coordinator sends the commit message to participants, who will make
permanent the tentative work done by their associated services.

Business Activity (BA) Coordination

BA handles long-lived activities, mostly used in Business-to-Business transaction.
Atomic transaction holds resource from multiple parties until being committed or roll
backed. Your business partner may not allow you to hold their resources. Some web
service connection could be timed out due to system failure or lengthy execution time
from your business partners. BA protocol implements business logic to handle such
exceptions.

Sample CoordinationContext envelope between two parties:

<?xml version="1.0" encoding="utf-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"
 <S:Header>
 <wscoor:CoordinationContext
 xmlns:wscoor="http://schemas.xmlsoap.org/ws/2002/08/wscoor"
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

 19

IS660G Web Services Spring 2004 Transaction Support in Web Services

 xmlns:myApp="http://www.pace.com/myApp">
 <wsu:Identifier>
 http://Fabrikam123.com/SS/1234
 </wsu:Identifier>
 <wsu:Expires>2004-07-21T13:20:00-05:00</wsu:Expires>
 <wscoor:CoordinationType>
 http://schemas.xmlsoap.org/ws/2002/08/wsba
 </wscoor:CoordinationType>
 <wscoor:RegistrationService>
 <wsu:Address>
 http://Schedule456.com/mycoordinationservice/registration
 </wsu:Address>
 <myApp:Myapp:BetaMark> ... </myApp:Myapp:BetaMark>
 <myApp:EBDCode> ... </myApp:EBDCode>

 <myService:NestedCreate wsu:MustUnderstand="true">
 </myService:NestedCreate>

 </wscoor:RegistrationService>
 </wscoor:CoordinationContext>

 </S:Header>
 . . .
</S:Envelope>

There are basically two types of BA coordination protocols, namely:

1. BusinessAgreement Protocol:

With this protocol, the Coordinators send 4 types of messages:

Close Send by Terminate a business activity normally.
Cancel Send by Coordinators to back out of a business activity.
Compensate A message to a Completed scope from a coordinator to execute its

compensation.
Forget Send by coordinators when received faulted message from participants.

The Participants send 6 types of messages (Same as BusinessAgreement Protocol):

Completed Participant notifies the coordinator when the participant finished the

tasks but waiting for close or compensate messages from coordinator.
Faulted Participant failed to execute or compensate the transactions.
Compensated Successfully compensated the transactions as requested by coordinator.
Closed Participant replies to close request from the coordinator.
Canceled Participant replies to cancel request from the coordinator.
Exited Send by participant when the participant finishes all the tasks and the

nature of the task requires no more participation in the business activity.

 20

IS660G Web Services Spring 2004 Transaction Support in Web Services

Figure 13: BusinessAgreement Protocol State Diagram

2. BusinessAgreementWithComplete Protocol:

With this protocol, the Coordinators send 5 types of messages:

Complete

Send by coordinators to participants when participants received all the
required transactions from coordinators.

Close Send by Terminate a business activity normally.
Cancel Send by Coordinators to back out of a business activity.
Compensate A message to a Completed scope from a coordinator to execute its

compensation.
Forget Send by coordinators when received faulted message from participants.

And the Participants send 6 types of messages (Same as BusinessAgreement Protocol):

Completed Participant notifies the coordinator when the participant finished the

tasks but waiting for close or compensate messages from coordinator.
Faulted Participant failed to execute or compensate the transactions.
Compensated Successfully compensated the transactions as requested by coordinator.
Closed Participant replies to close request from the coordinator.
Canceled Participant replies to cancel request from the coordinator.
Exited Send by participant when the participant finishes all the tasks and the

nature of the task requires no more participation in the business activity.

 21

IS660G Web Services Spring 2004 Transaction Support in Web Services

Figure14: BusinessAgreeWithComplete Protocol State Diagram

Compare and contrast Atomic and BA protocol:

 Atomic Protocol BA Protocol
Average
Execution Time

Short Long

Scope Mostly Internal Systems interoperates with multiple external
systems

Resource Locking Lock the resource. Prevent changes
from other transactions

Don't lock the resource. Flexible
isolation
 policies or compensations.

Roll Back Abort transaction Use compensation to reverse the effects
of the original business task.

Request Time out Abort transaction and retry Resent request

Table 2: Difference between Atomic and BA protocol

Critique of WS-Coordination/Ws-Transaction

With WS-C/WS-Transaction, applications have to communicate through coordination
services, which could exist outside of company firewall. Domain-specific coordination
protocols have to be created and inserted into coordination services and out of the box
WS-Coordination service provides only activity and registration services. Another point
to note is that most business logics are defined in the coordination protocol services
within the coordinator, so there is less flexibility to change the business logics.

 22

IS660G Web Services Spring 2004 Transaction Support in Web Services

Comparative Analysis

Although there is commonality between the two specifications (both support a two-phase
completion protocol, for example) there are many more differences between the 2 models,
the key differences can be categorized into 2 general points:

BTP WS-Transactions
BTP was not specifically designed just for
Web Services; it can be used for other
environments. As such, BTP defines the
transactional XML protocol and must
specify all of the service dependencies
within the specification.

WS-C and WS-Transaction are specifically
designed for the Web Services environment
and hence build upon the basic definition
of a Web service infrastructure.

BTP does not assume any transaction
infrastructure, and thus has to essentially
start from scratch and requires business-
level decisions to be incorporated within
the transaction infrastructure.

Foundations of WS-Transaction are based
upon traditional transaction infrastructures,
where there is a strong separation between
the functional aspect of business logic and
the non-functional aspects of using
transactions within an application.

Table 3: Key Differences between Models

Some of the major difference can be seen in the way each model defines their semantics
of the protocol. For example, each model in WS-Transaction clearly defines the
semantics within the protocol (Atomic Transaction is ACID, for example), this is because
the models in WS-C/WS-Transaction are each aimed at a specific problem domain and is
not intended to be used as a global panacea. On the other hand, BTP does not have such
well-differentiated models; the cohesion model is essentially a superset of the atom
model, thereby limiting itself to only 1 model to solve all problems. The differentiator for
BTP, while not in the semantics, is in the boundaries of the properties of ACID. By
relaxing the restrictions on properties such as atomicity and durability within the protocol,
it allows those semantics to be defined outside of the model. This approach can be
considered a “double-edged sword” as on one hand, it gives great flexibility to the
application developer, but on the other hand, it does not allow them to be able to reason
about an application’s overall functionality and behavior, thus making it very difficult to
construct applications from arbitrary services since within the protocol.

As can be seen from the table below, the differences between the 2 protocols are many
but subtle. There are also similarities between the two protocols; both WS-C/WS-
Transaction and OASIS BTP can be used to support business process execution
environments like BPEL4WS, WSFL, WSCI, BPMI, and others which make both models
useful as an implementing technology for things like workflows; and in terms of types of
transactions, the high level mechanism of WS-C/WS-Transaction Business Activities is
very similar to BTP Cohesions.

 23

IS660G Web Services Spring 2004 Transaction Support in Web Services

 BTP WS-Transaction
Coordination framework None, tied to 2-phase WS-Coordination

Transaction framework
General protocol, statically
defined

None, but current defined
protocols cover typical
patterns (AT and BA)

Strict atomic model

Atom, which is atomic only,
other properties specified by
service (not available via
protocol). Uses open-top
protocol which makes
interoperability with existing
transaction systems difficult.

Atomic Transactions, which
requires strict ACID properties,
specifically for interoperability
with traditional transaction
systems.

Relaxed model
Cohesion allow flexible
participant list. Requires
participants to be exposed to
application/terminator

Business Activity allows
flexible participant list.

Scopes
No. Cohesion manages
relationship within scope.

Yes, Business Activity
manages relationship between
scopes. Nested scopes
allowed.

Flexible outcomes for
consensus groups

Yes, via Cohesions Yes, via Business Activity.

Flexible participation in
consensus groups

Yes, participants can resign
from Cohesion.

Yes, participants can exit in
Business Activity protocol

Service behavior Services define behavior (not
specified by BTP)

Defined by the protocol

Business logic/coordinator
separation

Mixed (open-top protocol
requires strong coupling
between business logic and
coordinator)

Distinct

Web services-specific
No, requires a lot of extra
effort from the
specification/protocol

Yes

Failure recovery Re-drive protocol Optimized protocol

Table 2: Summary of similarities and differences

Conclusion

In our review, we have found that both models are relevant and can be used in many of
today’s transactional context.

BTP was developed to solve what was then deemed as a new problem beyond traditional
transaction support, but after implementation, it was found that it required brand new
architecture and infrastructure to support it. In some sense, it defeats the purpose of
having Web Service as a connector across company domains mainly because with BTP,
back end implementations of participating companies needs to be exposed for BTP to
operate successfully. In many established firms (such like finance, brokerage and
healthcare firms) that have heavy security concerns, exposing the back end

 24

IS660G Web Services Spring 2004 Transaction Support in Web Services

implementation is not something that would be readily acceptable. In those cases, BTP
might not be an option.

As for WS-transactions, the infrastructure to implement it is more extensive as you would
also require a coordination service which could incur higher cost.

BTP allows finer control and flexibility of implementing business transactions. In cases
where the transaction logic and participants are simple, BTP offers a more attractive
approach.

Our team’s recommendation is to examine the nature of the business transactions and the
complexity of the transaction workflow together with security and infrastructure concerns
of the organization before determining the right fit. We believe that both models have
their purposes and will be useful in their own ways depending on environment.

References

McGovern, J., Tyagi, S., Stevens, M., Mathew , S., (2003). Java Web Services
Architecture. Morgan Kaufmann.

OASIS Business Transactions Technical Committee
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction

Specification: Web Services Transaction (WS-Transaction). August 2002
http://www-106.ibm.com/developerworks/library/ws-transpec/

Web Services Coordination (WS-Coordination). September 2003
http://www-106.ibm.com/developerworks/library/ws-coor/

WS-Transaction Specification Index Page
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/wsatspecindex.asp

 25

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction
http://www-106.ibm.com/developerworks/library/ws-transpec/
http://www-106.ibm.com/developerworks/library/ws-coor/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsatspecindex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsatspecindex.asp

	Introduction
	ACID and Compensating Transactions
	Standards in the Brew

	OASIS Business Transaction Protocol (BTP)
	Background
	How It Works
	Types of Transaction in BTP
	Atomic Business Transactions (Atoms)
	Cohesive Business Transactions (Cohesions)

	Locking in BTP
	BTP Players and Messages
	BTP Two-Phase Protocol

