Transaction Support in Web Services

lan Loe, Pratima Vijayakumar, Simon Chan, Zheng Qin

Pace University

Introduction

To the general public, the term “transaction” is
used to mean a business exchange where money
is traded for goods. But in the domain of
computing, the meaning of “transaction” is more
specific. Transactions are a fundamental
abstraction in dependable computing systems. Its
inherent value is to allow programmers to make
something that went wrong appear as if it never
happened. A transaction implies that a group of
activities is completed as a unit, so they all
succeed or all fail together. In other words, it’s a
semantic that means “all or nothing”.

While transaction processing has been around for
many years, spanning many transaction
processing systems from CICS to Tuxedo and
Microsoft DTC, the underlying technologies all
have one pervasive notion: ACID. ACID is an
acronym that represents the terms Atomic,
Consistent, Isolated, and Durable. (See Table 1)

ACID and Compensating Transactions

ACID transactions are critical to business
interactions. Why? For example, when you
deposit some money into your bank account or
withdraw some money from it, the bank wants to
ensure that your account is credited exactly once
for a deposit, and you want to ensure that your
account is debited exactly once for a withdrawal.
Likewise, when you make changes in the data
stored in your application, it must be accessed
only when it is internally consistent -
transactions guarantee that consistent view. To
ensure consistency, typically all database entries
being used by an ACID transaction are locked
for the duration. If a transaction fails, the

database state is rolled back to its previous state.
This capability is provided by database vendors.
While locking will work within a closed system
like a database management system, it is not
feasible to have it work across enterprises.

ACID Transactions

Atomic

The transaction will succeed completely or fail
completely. This is particularly important when
executing business logic that involves the updating of
multiple underlying data sources, where the atomicity
property turns a set of operations into a single
indivisible logical operation.

Consistent

The data store changes over time through a sequence
of consistent states. That is, any data that has been
updated during the lifetime of the transaction is left in a
consistent state at the end of that transaction,
irrespective of any failures that have occurred during
the transaction.

Isolated

The effects of a transaction should be invisible to and
isolated from other transaction until it has been
committed. This also means that any running
transaction believes that it has exclusive access to the
resources associated with it.

Durable

The results are guaranteed to be stored after the
transaction completes. That is, once a transaction has
been completed, the resulting changes must not be lost
even if hardware or software fails.

Table 1 : Acid Transactions

Take the following scenario as an example: when
you make a hotel reservation, your travel agent
cannot lock the hotel's reservation database for

as along as the reservation exists (or even as long
as a phone call) or the system would grind to a
halt. Beyond the technical reasons, it is also
improbable that you would be able to control
access in a system outside your own enterprise

A more probable scenario would be an ACID
transaction local to each party, i.e. there would
be an ACID transaction local to the hotel chain's
database that would perform the tasks of
updating the room inventory, add the
information to the reservation tables and
generate a confirmation number, all as a single
unit of work. And if the travel agent needs to
undo that reservation, a compensating action is
taken.

Compensation is specific to the way business
data is managed, so it's always part of business
logic. This is very different from the automatic
rollback provided by databases for ACID
transactions. Compensation avoids another
problem. Locking of your company's data by
anyone on the Internet allows denial-of-service
attacks. Using compensation means that your
data isn't locked for a long time, but we can no
longer have ACID transactions - at least the
Isolation guarantees must be relaxed - because
the data is visible between the initial change and
the compensation.

In effect, one trades softening of the ACID
guarantees for flexibility, safety, and control
over one's own data. While ACID transactions
can be achieved in closed systems, the nature of
Web Services applies some limit as to how far
you can apply the principles of ACID. The
objective of our project is to examine how
transactions can be support in Web Services and
what is the impact on ACID properties.

Standards in the Brew

There are currently a few standards working
towards some form of reliable transaction
management using Web Services. The better
known ones are the OASIS Business Transaction
Protocol, push by Arjuna Technologies
Ltd.(formally part of Hewlett-Packard Company),
Fujitsu Limited, IONA Technologies Ltd.,
Oracle Corporation, and Sun Microsystems, Inc.;
and WS-Transaction push by IBM, Microsoft
and BEA.

We shall now examine the two standards in
detail starting with OASIS Business Transaction
Protocol.

OASIS Business Transaction Protocol
Background

The ASIS Business Transaction Technical
Committee (BTTC) published the BTP 1.0
specification for coordinating transactions
between applications controlled by multiple
autonomous parties in May 2002. BTP 1.0 is the
work of several companies (Sun, HP,
Choreology, ORACLE, and others) that hopes to
become a standardized Internet-based means of
managing complex, ongoing business-to-
business (B2B) transactions among multiple
organizations. The full BTP specification can be
found at http://www.oasis-
open.org/committees/business-transactions.

One of the key design factors that BTP
recognizes is that in a business transaction, no
single party controls all resources needed. In
such an environment, it is assumed that the
respective parties manage their own resources
but the activities will be coordinate in a defined
manner to accomplish the work scoped by a
transaction. There is also a provision for
individual service providers to decide if they
want to be part of a transaction or not; if they
decide that they want to be part of the transaction,
they must provide a mechanism to confirm or
cancel their commitments to the transaction.
BTP also allows service providers to
autonomously decide when to unlock resources
they hold and/or whether to use compensating
transactions to roll back transient states that were
persisted.

Although not design specifically for Web
Services, the protocol will be especially useful in
a Web Services environment. The BTP
specification was formed to address the needs of
inter-organizational transactions and of
workflow systems in general. It was also design
to overcome the limitations of similar
coordination protocols tied to communication
protocols.

Another design factors for BTP was to have the
new protocol work in conjunction with current
business messaging standards, especially those in
development by the ebXML Initiative (another
OASIS project). That said, BTP is not locked
into any one protocol; in fact it can be layered
over any transport technology, such as the
Simple Object Access Protocol (SOAP) or
RosettaNet messaging. BTP also requires that
implementations bound to the same carrier
protocols should be interoperable. The current

http://www.oasis-open.org/committees/business-transactions
http://www.oasis-open.org/committees/business-transactions

specification of BTP describes a SOAP
1.1/HTTP binding.

One key fact to note is that although transaction
and security aspects of an application system are
often related, the BTP specification consciously
does not address how a BTP transaction will
integrate with a security system, because Web
services security standards are still evolving
(independently of the transaction specifications).
One of the goals of the BTTC is that BTP would
avoid dependencies on other standards and
constraints on implementation choices. This is
intended to address a major challenge of B2B
development: the problem of how to coordinate
the information systems of separate businesses
(which typically use different business practices,
equipment, and technologies) so that they can
communicate effectively. By working
independently of any messaging frameworks,
complex XML message exchanges among
multiple businesses are tracked and managed as
ongoing, loosely coupled ‘conversations’. BTP
defines the roles that a business’ software agents
(called actors) may perform, the messages that
will be exchanged by those actors, and the
responsibilities of the actors in those defined
roles.

How It Works

BTP is a protocol, i.e. it is a set of well-defined
messages exchanged between the application-
systems involved in a business transaction. Each
system that participates in a business transaction
can be thought of as having two elements - an
application element and a BTP element. (Fig. 1)

) R
Initiating
Application 7 Service
Element Application Praducer
(Initiator) Messages
RSO Application Element
—

BTP
Element BTP Element
(Superior) Messages (Inferior)

BTP

BTF Element BTP Element

Service Consumer Service Producer

Figure 1: BTP Elements

The application elements exchange messages to
accomplish the business function. For example,
when you use a money transfer service that sends
a message to the banking service with details of
the payee's name, address, and transfer amount,

the application elements of the two services are
exchanging a message. The BTP elements of the
two services exchange messages that help
compose, control, and coordinate a reliable
outcome for the message sent between the
application elements.

Note that the application element pertains to the
application or business logic that the service
consumer and service producer deploy, while the
BTP elements are supplied by the BTP vendor.
The separation of system components into BTP
and application elements is a logical one and
these elements may or may not coexist in a
single address space.

With respect to a BTP transaction, application
elements play the role of initiator (the Web
service that starts the transaction) and terminator
(the Web service that decides to commit or end
the transaction). The initiator and terminator of a
transaction are usually played by the same
application element.

BTP elements play either a superior or inferior
role. The BTP element associated with the
application element that starts a business
transaction is usually assigned the superior role.
The superior informs the inferior when to
prepare to terminate the transaction and waits for
the inferior to report back on the result of its
request. The following parts will discuss the
types of transactions and the nature and content
of BTP messages.

Types of Transaction in BTP

In traditional transactions, a transaction manger
will roll back a transaction if any resource
manager participating in the transaction cannot
commit or cannot prepare. But in BTP, this
cannot be assured. With BTP, you have to define
the set of participants that must confirm before a
transaction can be committed; this group of
participants makes up what is known as the
confirm-set. The confirm-set may include all or a
subpart of all the participants. To cater for this,
BTP has defined 2 types of transactions:

— BTP Atomic Business Transactions, or
atoms, are like traditional transactions, with
a relaxed isolation property.

— BTP Cohesive Business Transactions, or
cohesions, are transactions where both
isolation and atomicity properties are
relaxed.

Atomic Business Transactions (Atoms)

Atomic business transaction is where all
participants have to agree before a transaction
can be committed. If any participant cannot
confirm, the entire transaction is canceled.
Because BTP transactions do not require strict
isolation, it is up to each participating service to
determine how to implement transaction
isolation. In an atomic Business Transaction, the
confirm-set is the set of all inferiors and any of
the inferior elements has power to veto the
transaction.

Take for example, a web service consumer
transaction that invokes two business methods on
two different services. If the overall transaction
is atomic, the BTP element (superior) at the
service consumer end is called a coordinator. In
this case, the BTP element plays the coordinator
role and coordinates a BTP atomic transaction. It
does this by exchanging BTP messages with the
BTP elements associated with the two service
producers when the application asks it to
complete the transaction. On the other side, the
inferior BTP elements are called participants and
is responsible for persisting the state change
made by the associated application element
(service producer), which it does by following
instructions (via BTP messages) from the
superior (coordinator). If either participant
informs the superior that it cannot confirm the
transaction, the transaction is rolled back.

Cohesive Business Transactions (Cohesions)

Cohesive Business Transactions are transactions
where not all involved parties must agree to
commit their changes before a transaction is
committed. Only some subset of the parties may
need to agree. The subset of parties that need to
agree before a transaction can be completed is
usually determined through the business logic in
the application.

In the case of a Cohesive Business Transactions,
the BTP element (superior) at the service
consumer end is called a composer (as oppose to
as a coordinator). The BTP element associated
with the service producer is called a participant.
In this case, the business logic in initiating
application element can determine whether the
transaction can be completed, i.e. whether one or
both services must confirm. If only one
participant must confirm but both eventually
confirm, the composer will ask the unwanted
participant to cancel or roll back his part of the
transaction.

To illustrate this, let’s take the example of a
travel agent system that would check a few
airlines services for the cheapest fare and get the
hotel and car rental all in one transaction. In this
case we can say that the hotel and car rental can
be atomic transaction while for the airlines, only
1 of the airlines need to have a successful
booking. We ca say that both the hotel and car
rental service are in the confirm-set but only 1 of
the airlines need to be in that confirm-set.

Yy
Y

Reserve

Travel Agent
(Coordinator/ Reserved
Composer)

Hotel
(Participant)

0
Car Rental
(Participant)

N —

Sqe|IEABUN
aledalg

Airline C Airline B

(Participant) (Participant) Airline A
(Participant)
Fully Booked Expensive
N~

Atomic Subset
Figure 2 : Transaction Example

Although at first glance, it may seem that the 2
transactions type are distinct, but in fact,
cohesions is a superset of atoms: if you have a
cohesion coordinator, you can use the same
implementation to provide support for atoms, but
the inverse is not the case.

In BTP, the actions of transaction coordinator or
composer can be influenced by application
elements (i.e., business logic). In a cohesion, the
initiating application element determines which
subset of activities is to be included in the over-
all transaction by providing that information to
the superior. Application elements can also
influence the control and coordination of the
transaction by providing the superior with
additional context information (via qualifiers; see
next section), such as transaction time limits and
other application-specific values.

Locking in BTP

In BTP, for both types of transactions, the
isolation level for cohesions is left up to each
service. Some of the ways in which applications
can achieve isolation include:

— Making changes but applying locks, as in
traditional transactions

— Deferring changes until a transaction
commits (perhaps by writing a log of
changes that will be applied later)

— Making changes and making the interim
results visible to others. (This is also known
as the provisional effect.)

If a service makes visible provisional changes
and the transaction is ultimately rolled back, new
compensating transactions may have to be
generated to undo the changes made (This is known as
the counter effect).

BTP Players and Messages

The BTP element associated with the initiator
plays the superior role and is usually also the
terminator of the initiated transaction. Depending
on the type of business transaction, superiors are
either coordinators or composers of the business
transaction where an atom is coordinated by an
atom coordinator (coordinator), and a cohesion is
composed by a cohesive composer (composer).
All other BTP elements will be inferiors to this
superior. In the simplest case, with only two
parties of one superior and one inferior, the
inferior is called a participant.

Figure 3 shows a more detailed version of Figure
1. The application (initiator) first asks a BTP
element called the factory to create the
coordinator/composer. The factory creates the
superior and returns the transaction context. The
initiator then invokes the business method on the
service consumer and passes the context to the
service.

Service
Consumer)
(Initiator/ Application
Terminator) Messages
Application Element / Application Element
‘Coordinator
R BTP Participant Enraller
Composer Messages
BTP Element BTF Element
Service Consumer Service Producer

Figure 3: BTP and application elements

How the context is passed depends on the
protocol binding; for example, it can be passed
as a header block in a SOAP message. At the
receiving side, the invoked service asks a BTP

element called enroller to enroll in the
transaction, passing the received context. The
enroller creates the inferior (participant) and
enrolls in the transaction with the superior.
Finally, the service provides the response to the
business method and passes along the context
reply. Figure 4 shows the exchange of messages
between the different elements.

| ZgeiConted |

| IBEGUN with |
i CONTERT |

AbusinassMEssAgRCONTEXT]

4.2 BusinesshesgRoply CONTEXT_REFLY)

44 L ENROLLICONTEXT)
Partigipant

4.1 2ENACLL| |41.1:0ew{CONTEXT)

4,121 ENADLLED)

T

Figure 4 BTP sequence diagram

Note: BTP messages must be bound to a protocol such
as SOAP. Because we have not yet described the BTP
binding to SOAP, the following section shows only
abstract forms of BTP messages

All BTP messages have an associated schema.
The CONTEXT message shown below is an
example of a BTP message.

<btp:context id>
<btp:superior-address>
Address </btp:superior-address>
<btp:superior-identifier>
URI </btp:superior-identifier>
<btp:superior-type>
Atom </btp:superior-type>
<btp:qualifiers>
Qualifiers </btp:qualifiers>
<btp:reply-address>
address</btp:reply-address>
</btp:context>

The superior-address element contains the
address to which ENROLL and other messages
from an inferior are to be sent. Every BTP
address element (superior-address,
reply-address, etc.) has the following XML
format:

<btp:superior-address>
<btp:binding-name> </btp:binding-name>
<btp:binding-address>
</btp:binding-address>
<btp:additional-information>
information ...
</btp:additional-information>
</btp:superior-address>

transaction is to be confirmed and progress to
phase 2 (CONFIRM). An example of the BTP
message for PREPARE is shown below:

superior-identifier contains a unique
identifier (URI) for the superior. superior-
type indicates whether the context is for a
transaction that is an atom or a cohesion. The
qualifiers element provides a means for
application elements to have some control over
transaction management. Qualifiers are data
structures whose contents can influence how the
transaction coordinator/composer controls the
transaction. BTP defines a few standard
qualifiers (such as transaction time limit), but
BTP vendors can define more such parameters.
The reply-address element contains the
address to which a CONTEXT_REPLY message
is to be sent (this is required only if the BTP
message is not sent over a request-response
transport).

BTP Two-Phase Protocol

The two-phase commit used in BTP is quite
similar to the two-phase protocol used in the flat
transaction model with some key differences
which will be discussed later. Figure 5 shows
how such a transaction is terminated using the
two-phase protocol.

Initialor ‘g;;;y_dnu,- [r‘ ‘ Sarvice ‘ ‘ Barlicipant ‘

LCONFIRM_TRANSACTION

5, 1.1PREPARE

| 11.0PREPARED I
m) !
1.2.CONFIRM

|12 1.CONFIRMED ‘
i i
H i

1.3 TRANSACTION_CONFIRMED

Figure 5: A simple atom example illustrating the BTP
two-phase protocol

On receiving a PREPARE message, an inferior
(participant) can reply with a PREPARED,
CANCEL, or RESIGN message. In Figure 5,
because only one inferior exists, the participant
must reply with a PREPARED message if the

<btp:prepare id>
<btp:inferior-identifier>
URI </btp:inferior-identifier>
<btp:qualifiers>
Qualifiers </btp:qualifiers>
<btp:target-additional-information>
additional address information
</btp:target-additional-information>
<btp:sender-address>
address</btp:sender-address>
</btp:prepare>

The qualifiers element contains a set of standard
or application-specific qualifiers. The timeout for
inferiors is one of the qualifiers that should be
sent for a PREPARE message. target-
address points to the address of the inferior that
was ENROLLed. The PREPARE message will
be sent to that address. The sender-address
points to address of the superior.

The effect on the outcome of a final transaction
of having multiple inferiors depends on whether
the transaction is a cohesion or is an atom. The
set of inferiors that must eventually return
CONFIRMED to a CONFIRM message for the
transaction to be committed is called a confirm-
set. For an atomic transaction, the set consist of
all of a superior's inferiors. For a cohesion, the
confirm-set is a subset of all its inferiors. The
subset is decided by the application element
associated with the superior (this implies that
business logic is involved).

Figure 6 illustrates how a composer with
multiple participants confirms a cohesion with
the two-phase protocol. The application element
(the initiator and the terminator of the
transaction) decides that only participants 1 and
2 should confirm—that the confirm-set consists
of participants 1 and 2. To accomplish this,

1. The terminator sends a
CONFIRM_TRANSACTION with the
IDs of the participants in the confirm-set.

2. The decider (composer) sends PREPARE
messages to participants 1 and 2 and a
CANCEL message to participant 3.

3. As soon as PREPARED messages return
from participants in the confirm-set, the
decider sends out CONFIRM (phase 2)
messages.

4. When the confirm-set replies with
CONFIRMED messages, the transaction
is confirmed.

Participant 1 Participant 3|

Initiator{Terming] er‘ il li It Particigant 2

1:CONFIRM_TRANSACTION(1.2} 1.1-PREPARE

g

1.2:PREPARE i

1.3 CANCEL

2 PREPARED
] [
JCONFIRM]]

| 4:CANCELLED
ore I I
| SPREPARED |
; 8}
CONFIRMED

TCONFIRM

{8:CONFIRMED |
T u}

1 3 TRANSACTION_CONFIRMED |

Figure 6: Cohesion completion

How the confirm subset is passed to the decider
is better understood by examining the
CONFIRM_TRANSACTION message structure:

<btp:confirm-transaction id>
<btp:transaction-identifier>
--- URI __.
</btp:transaction-identifier>
<btp:inferiors-list>
<btp:inferior-identifier>
inferior URI
</btp:inferior-identifier>
<btp:inferior-identifier>
inferior URI
</btp:inferior-identifier>
</btp:inferiors-list>
<btp:report-hazard> true
</btp:report-hazard>
<btp:qualifiers>
Qualifiers </btp:qualifiers>
<btp:target-additional-information>
info
</btp:target-additional-information>
<btp:reply-address>
decider address
</btp:reply-address>
</btp: confirm_transaction>

Note that inferiors-list contains only the confirm-
set of inferiors. If this element is absent, all
inferiors are part of the confirm-set. For an atom,
because all participants are in the confirm set,
this element must not be present.
The report-hazard element defines when the
decider informs the application that the
transaction is conformed
(TRANSACTION_CONFIRMED message):
— If report-hazard is true, the decider waits
to hear from all inferiors, not just the

confirm-set, before informing the terminator.

— If report-hazard is false, the decider
must wait for all elements (even elements
that receive a CANCEL message) to reply
before communicating the outcome of the
transaction to the terminator.

report-hazard is useful when the application

element wants to know if there was a hazard

(problem) with any inferior.

If a coordinator or composer has only one

inferior, it may decide to use a single-phase

confirm operation and skip the two-phase
protocol. Instead of a PREPARE + CONFIRM

message exchange, it may send a

CONFIRM_ONE_PHASE message to the

inferior. The two-phase protocol used in BTP

ensures that either the entire transaction is
canceled or that a consistent set of participants is
confirmed.

Critique of BTP

One of the key advantages of BTP is that it has
been worked on for a longer time and is
considered well-formed and complete. But
although it is pretty straightforward, the
specification is very full and hard for customers
to digest.

BTP uses business logic to control the flow of
the transaction; while this seems to give you
more control over how the transaction will flow,
it reduces what you would expect from a
transaction protocol like consistency, isolation,
etc. All these means is that when using BTP, you
would have to do a lot more work to ensure a
transaction is valid. Because of this reliance on
the business logic to flow the transaction, the
user or initiator has to be very close to (or even
be) the coordinator. Critical business information
such as the ability for a participant to remain
prepared (for example, hold onto a hotel room)
for a specific period of time is propagated from
the participant to the coordinator, but there is
nothing within the protocol to allow this
information to filter up to the application/client
where it really belongs. Because of the lack of
flow control in the protocol, in order to use
cohesions it is also necessary for Web services to
expose back-end implementation choices about
participants.

In order to parameterize the two-phase
completion protocol, the terminator of the
cohesion obviously needs to be able to say
"prepare A and B and cancel C and D," where A,
B, C and D are participants that have been
enrolled in the cohesion by services (such as a
flight reservation system). In a traditional

transaction system, users don’t see the
participants (imagine if you had to explicitly tell
all of your XA resource managers to prepare and
commit?) Naturally this is something that
programmers don’t feel comfortable with and it
goes against the Web services orthodoxy.

Also, because BTP requires transaction control
to use the open-top approach, it is difficult to
leverage existing enterprise transaction
implementations. Few transaction systems (or
their administrators) will feel comfortable
exposing their coordinators through the two-
phase interface.

Furthermore, the BTP specification expends
great efforts to ensure that two-phase completion
does not imply ACID semantics. This is good in
so far that traditional ACID transactions are not

suitable for all types of Web services interactions.

However, everything is left up to back-end
implementation choices and there is nothing in
the protocol (implicit or explicit) to allow a user
to determine what choices have been made.
Therefore, it is impossible to reason about the
ultimate correctness of a distributed application.
For example, if you wanted to use BTP for
ACID transactions, then of course services could
use traditional XA resource managers (for
example) wrapper by BTP participants.
Unfortunately, there is no way within the BTP
for those services to inform external users that
this is what they have done so that they can
safely be used within the scope of a BTP
“ACID” transaction.

WS-Coordination/WS-Transaction

Before we go into WS-Transaction, we have to
understand WS-Coordination service. WS-
Coordination protocol is used to distributed
services.

WS-Coordination is an extensible framework for
providing protocols that coordinate the actions of
distributed applications. Also, it provides a
generic framework for specific coordination
protocols, like WS-Transaction, to be plugged in.
Traditional transaction protocols assumed that
the request and response are synchronous. Where
the WS-Transaction is layered upon the WS-
Coordination protocol and their communication
patterns are asynchronous by default.

“i

BusinessAgresme
WithComplete

Business
Agresment

)¢

Cutcome
Maotificatio

3-Tx Business Activity
Frotocol Endpoint

Wa-Transaction
O "

WS-Coordination

j_[l'—"hasezeru @

ion

Transaction Coordinator

omipleti
Vithack

=Tx Atomic Transaction
Protocol Endpaoint

OWS

WE-Coordination
Frotocol Endpoint

O

&Mtvﬁlmr}[ﬁqslmtnnﬁ Completion j_[':

Figure 7: WS-Coordination Foundations

WS-Coordination

The foundation of WS-Coordination has the
following functions:

WS-Transaction
distinct

Activation service that enables an
application to create a coordination instance
or context. (Option for Coordination Service)
Registration service that enables an
application to register for coordination
protocol. (Mandatory for Coordination
Service)

Coordination service type (Stock Trades,
Supply Chain) to allow the protocol has to

be understand by both end of the
communication

2) an application message containing Ca

kit

<CodrdinationType>Qs</
Coordin: >
<Coordinatio fce>

<Address>RSa</Address>

<MarkKey> ... </MarkKey>
</CoordinationService>
1) Create CC | </CoordinationContext=

Cb

Y
/3) Criate CC
/ passjng Ca

Activation
service ASa

Protocol
Coordinatar A service Ya

Registration
servica RSa [pass

Figure 8: Coordination Service

specification proposes two

models, Atomic Transactions and

Business Activity. Both models are extensible
and allow implementations to tailor the protocols
as they see fit.

An atomic transaction is an XML marked-up
version of the classical all-or-nothing atomic
transaction. It is meant to be used by activities
that last for short periods of time, where the
locks necessary to maintain consistency will not
be held for so long that performance will not be

degraded.
transactions

atomic
trusted

Because of its nature,
should be run in

environments to prevent denial-of-service attacks.

WS-Coordination

Activation
Framework

WS-Transaction
(Coordination Patterns)
Husines!
Activity

Coordination
Pattern

Atomic
Coordination
Pattern

Figure 9: WS-Transaction Context

To determine that a transaction is a “short-lived”
or not is really subjective. It will be differ from
architecture to architecture.

fig";‘. - Coordinator i
=
- -
<

N
Y

-~

Client
Application

Figure 10: Using AT to ensure All-or-Nothing

AT Activities

An atomic transaction consists of five distinct
activities:

1.

Completion - Once the application that
created the transaction registers for the
completion protocol, it can tell the
coordinator to either try to commit the
transaction or force a rollback. A status is
returned to indicate the final transaction
outcome.

CompletionWithAck — Basically the same as
Completion, but the coordinator must
remember the outcome until receipt of an
acknowledgment notification

PhaseZero - The Phase Zero message is sent
to interested participants to inform them that
the two-phase commit protocol is about to
begin. This message allows those
participants to synchronize any persistent
data to a durable store prior to the actual two
phase commit algorithm being executed.
2PC - A nparticipant registers for these
messages for a particular transaction, so that
the coordinator can manage a commit-abort
decision across all the participants. If more
than one participant is involved, both phases
of 2PC are executed. If only one participant
is involved, a One Phase Commit (a 2PC
performance optimization used in the case of
a single participant) is used to communicate
the commit-abort decision to the participant.

5. OutcomeNotification - A participant that
wants to be notified of the commit-abort
decision registers to receive this “third-
phase” message. Applications use outcome
notification to release resources or perform
other actions after commit or abort of a
transaction.

Application

Program
) cre

Coordination Framework

Activation
Service
T
T

Registration
Service

Service
(Coordinator)

1.) result {activityContext) .

* operation sequence [CoordinationContext] .

).} Prepare/Commit (2PC)

mmmmmmm

jik.) PreparediCommitted)

Figure 11: A scenario of Atomic transactions

This example scenario is broken down by each
phase of the transaction with details of the steps
within each phase. These phases are in turn:
Activation, Registration, and Completion /
Coordination.

To begin an atomic transaction, the client
application firstly locates a WS-Coordination
coordinator Web Service that supports WS-
Transaction. Once located, the client sends a
WS-Coordination “CreateCoordinationContext”
message to the activation service and will get
back an appropriate WS-Transaction context
from the activation service. After obtaining a
transaction context from the coordinator, the
client application then proceeds to interact with
the Web Service to accomplish its business-level
work. When all the necessary application level
work has been completed, the client can
terminate the transaction by firstly registering its
own participant for the “Completion” or
“CompletionWithAck” protocol. Once registered,
the participant can instruct the coordinator to
either try to commit or rollback the transaction.
When the commit or rollback operation has
completed, a status is returned to the participant
to indicate the outcome of the transaction. The
“CompletionWithAck” protocol goes one step
further and insists that the coordinator must
remember the outcome until it has received
acknowledgment of the notification from the
participant.

Database Web Service

Database| |Resource|
Mgr
i 1 '

10

.
. Vi
)

-

Committed

|'I'
fw
E}

Commit
Oy or Abore

Read
Abarted

T AENETE T

Coordinator Generated
Participant Generated

Figure 12: Two Phase Commit State Transition

The two-phase commit protocol is used to ensure
atomicity between participants, and is based on
the classic two-phase commit with presumed
abort technique. During the first phase, when the
coordinator sends the prepare message, a
participant must make durable any state changes
that occurred during the scope of the transaction,
such that these changes can either be rolled back
or committed later. If the participant cannot
prepare then it must inform the coordinator via
the “Aborted” message and the transaction will
ultimately roll back. Assuming no failures
occurred during the first phase, in the second
phase the coordinator sends the commit message
to participants, who will make permanent the
tentative work done by their associated services.

Business Activity Coordination protocols

BA handles long-lived activities, mostly used in
Business-to-Business transaction. Atomic
transaction holds resource from multiple parties
until being committed or roll backed. You
business Partner may not allow you to hold their
resources. Some web service connection could
be timed out due to system failure or lengthy
execution time from your business partners. BA
protocol implements business logic to handle
such exceptions.

Sample CoordinationContext envelope between
two parties:

<?xml version="1.0" encoding=""utf-8"?>
<S:Envelope
xmlns:S=
"http://www._w3.0rg/2001/12/soap-envelope"
<S:Header>
<wscoor:CoordinationContext
xmlns:wscoor=
"http://schemas.xmlsoap.org/ws/2002/08/ws
coor™
xmlIns:wsu=
"http://schemas.xmlsoap.org/ws/2002/07/ut
ility"
xmIns:myApp=
"http://www.pace.com/myApp*>
<wsu: ldentifier>
http://Fabrikaml23.com/SS/1234
</wsu:ldentifier>
<wsu:Expires>
2004-07-21T13:20:00-05:00
</wsu:Expires>
<wscoor :CoordinationType>
http://schemas.xmlsoap.org/ws/2002/08/wsb
a

</wscoor:CoordinationType>
<wscoor :RegistrationService>
<wsu:Address>
http://Schedule456.com/
mycoordinationservice/registration
</wsu:Address>
<myApp:Myapp:BetaMark> ...
</myApp :Myapp : BetaMark>
<myApp:EBDCode> ...
</myApp :EBDCode>
<myService:NestedCreate
wsu:MustUnderstand=""true">
</myService:NestedCreate>

</wscoor :RegistrationService>
</wscoor :CoordinationContext>

</S:Header>

</S:Envelope>

There are basically two types of BA coordination
protocols, namely:

11

1. BusinessAgreement Protocol:

With this protocol, the Coordinators send 4 types
of messages:

Close Send by Terminate a business activity

normally.

Cancel Send by Coordinators to back out of a

business activity.

Compensate | A message to a Completed scope
from a coordinator to execute its

compensation.

Forget Send by coordinators when received

faulted message from participants.

The Participants send 6 types of messages (Same
as BusinessAgreement Protocol):

Completed Participant notifies the coordinator
when the participant finished the
tasks but waiting for close or
compensate messages from

coordinator.

Faulted Participant failed to execute or

compensate the transactions.

Compensated | Successfully compensated the
transactions as requested by

coordinator.

Closed Participant replies to close request

from the coordinator.

Canceled Participant replies to cancel request

from the coordinator.

Exited Send by participant when the
participant finishes all the tasks and
the nature of the task requires no
more participation in the business

activity.

Register Cancel
"

Close__@;;g\

npensate

Closed

Cum_p_ensafé;'l_

Compensating

-‘-Fpulted Forgel

Figure 13: BusinessAgreement Protocol State
Diagram

2. BusinessAgreementWithComplete Protocol:

With this protocol, the Coordinators send 5 types
of messages:

http://schedule456.com/

Complete

Send by coordinators to participants
when participants received all the
required transactions from
coordinators.

Close

Send by Terminate a business activity
normally.

Cancel

Send by Coordinators to back out of a
business activity.

Compensate

A message to a Completed scope
from a coordinator to execute its
compensation.

Forget

Send by coordinators when received
faulted message from participants.

And the Participants send 6 types of messages
(Same as BusinessAgreement Protocol):

Completed

Participant notifies the coordinator
when the participant finished the
tasks but waiting for close or
compensate messages from
coordinator.

Faulted

Participant failed to execute or
compensate the transactions.

Compensated

Successfully compensated the
transactions as requested by
coordinator.

Closed

Participant replies to close request
from the coordinator.

Canceled

Participant replies to cancel request
from the coordinator.

Exited

Send by participant when the
participant finishes all the tasks and
the nature of the task requires no
more participation in the business
activity.

Register

Exited
c omplete

Coordinator generateg

Canceled

Participant generated |

Figurel4: BusinessAgreeWithComplete Protocol State

Diagram

Below shows a table comparing and contrasting
the difference between Atomic and BA protocol:

Average
Execution
Time

Atomic
Protocol
Short

BA Protocol

Long

12

Scope Mostly interoperates with
Internal multiple external
Systems systems
Resource Lock the Don't lock the
Locking resource. resource. Flexible
Prevent isolation
changes policies or
from other | compensations.
transactions
Roll Back | Abort Use compensation to
transaction | reverse the effects of
the original business
task.
Request Abort Resent request
Time out transaction
and retry

Table 2: Difference between Atomic and BA protocol

Critique of WS-Coordination/Ws-

Transaction

With WS-C/WS-Transaction, applications have
to communicate through coordination services,
which could exist outside of company firewall.
Domain-specific coordination protocols have to
be created and inserted into coordination services
and out of the box WS-Coordination service
provides only activity and registration services.
Another point to note is that most business logics
are defined in the coordination protocol services
within the coordinator, so there is less flexibility
to change the business logics.

Comparative Analysis

Although there is commonality between the two
specifications (both support a two-phase
completion protocol, for example) there are
many more differences between the 2 models,
the key differences can be categorized into 2
general points:

WS-C / WS-Tx
WS-C and WS-
Transaction are
specifically designed for
the Web Services
environment and hence
build upon the basic
definition of a Web
service infrastructure.

BTP was not specifically
designed just for Web
Services; it can be used
for other environments.

As such, BTP defines the
transactional XML
protocol and must specify
all of the service
dependencies within the
specification.

Foundations of WS-
Transaction are based
upon traditional
transaction
infrastructures, where
there is a strong
separation between the
functional aspect of
business logic and the
non-functional aspects of
using transactions within
an application.

BTP does not assume any
transaction infrastructure,
and thus has to
essentially start from
scratch and requires
business-level decisions

to be incorporated within
the transaction
infrastructure.

Table 3: Key Differences between Models

Some of the major difference can be seen in the
way each model defines their semantics of the
protocol. For example, each model in WS-Tx
clearly defines the semantics within the protocol
(Atomic Transaction is ACID, for example), this
is because the models in WS-C/WS-Tx are each
aimed at a specific problem domain and is not
intended to be used as a global panacea. On the
other hand, BTP does not have such well-
differentiated models; the cohesion model is
essentially a superset of the atom model, thereby
limiting itself to only 1 model to solve all
problems. The differentiator for BTP, while not
in the semantics, is in the boundaries of the
properties of ACID. By relaxing the restrictions
on properties such as atomicity and durability
within the protocol, it allows those semantics to
be defined outside of the model. This approach
can be considered a “double-edged sword” as on
one hand, it gives great flexibility to the
application developer, but on the other hand, it
does not allow them to be able to reason about an
application’s overall functionality and behavior,
thus making it very difficult to construct
applications from arbitrary services since within
the protocol.

As can be seen from the table below, the
differences between the 2 protocols are many but
subtle. There are also similarities between the
two protocols; both WS-C/WS-Tx and OASIS
BTP can be used to support business process
execution environments like BPEL4WS, WSFL,
WSCI, BPMI, and others which make both
models useful as an implementing technology for
things like workflows; and in terms of types of
transactions, the high level mechanism of WS-
C/WS-Tx Business Activities is very similar to
BTP Cohesions.

13

Coordination
framework

None, tied to
2-phase

~ WS-C/WS-Tx

WS-
Coordination

Transaction
framework

General
protocol,
statically
defined

None, but
current defined
protocols cover
typical patterns
(AT and BA)

Strict atomic
model

Atom, which is
atomic only,
other
properties
specified by
service (not
available via
protocol). Uses
open-top
protocol which
makes
interoperabilit
y with existing
transaction
systems
difficult.

Atomic
Transactions,
which requires
strict ACID
properties,
specifically for
interoperability
with traditional
transaction
systems.

Relaxed model

Cohesion
allow flexible
participant
list. Requires
participants to
be exposed to
application/ter
minator

Business
Activity allows
flexible
participant list.

No. Cohesion
manages
relationship
within scope.

Yes, Business
Activity
manages
relationship
between scopes.
Nested scopes
allowed.

Flexible
outcomes for
consensus
groups

Yes, via
Cohesions

Yes, via
Business
Activity.

Flexible
participation
in consensus
groups

Yes,
participants
can resign
from
Cohesion.

Yes, participants
can exit in
Business
Activity
protocol

Service
behavior

Services
define
behavior (not
specified by
BTP)

Defined by the
protocol

Business logic/
coordinator
separation

Mixed (open-
top protocol
requires
strong
coupling
between
business logic
and
coordinator)

Distinct

No, requires a
lot of extra
Web services- effort from
specific the
specification/
protocol

Re-drive
protocol

Optimized
protocol

Failure
recovery

Table 2: Summary of similarities and differences

Conclusion

In our review, we have found that both models
are relevant and can be used in many of today’s
transactional context.

BTP was developed to solve what was then
deemed as a new problem beyond traditional
transaction support, but after implementation, it
was found that it required brand new architecture
and infrastructure to support it. In some sense, it
defeats the purpose of having Web Service as a
connector across company domains mainly
because with BTP, back end implementations of
participating companies needs to be exposed for
BTP to operate successfully. In many established
firms (such like finance, brokerage and
healthcare firms) that have heavy security
concerns, exposing the back end implementation

is not something that would be readily acceptable.

In those cases, BTP might not be an option.

As for WS-transactions, the infrastructure to
implement it is more extensive as you would also
require a coordination service which could incur
higher cost.

BTP allows finer control and flexibility of
implementing business transactions. In cases
where the transaction logic and participants are
simple, BTP offers a more attractive approach.
Our team’s recommendation is to examine the
nature of the business transactions and the
complexity of the transaction workflow together
with security and infrastructure concerns of the
organization before determining the right fit. We
believe that both models have their purposes and
will be useful in their own ways depending on
environment.

14

References

McGovern, J., Tyagi, S., Stevens, M., Mathew, S.,
(2003). Java Web Services Architecture. Morgan
Kaufmann.

OASIS Business Transactions Technical Committee
http://www.0asis-
open.org/committees/tc_home.php?wg_abbrev=busine
ss-transaction

Specification: Web Services
Transaction). August 2002
http://www-106.ibm.com/developerworks/library/ws-

transpec/

Transaction (WS-

Web Services Coordination
September 2003
http://www-106.ibm.com/developerworks/library/ws-

coor/

(WS-Coordination).

WS-Transaction Specification Index Page
http://msdn.microsoft.com/library/default.asp?url=/libr
ary/en-us/dnglobspec/html/wsatspecindex.asp

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction
http://www-106.ibm.com/developerworks/library/ws-transpec/
http://www-106.ibm.com/developerworks/library/ws-transpec/
http://www-106.ibm.com/developerworks/library/ws-coor/
http://www-106.ibm.com/developerworks/library/ws-coor/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsatspecindex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsatspecindex.asp

Appendix I: Figures

e ™ . I
s R ~ ™
Initiating
Application o Service
Element - Application - Producer
(Initiator) Messages
'-_ Application Element _/l -.\ Application Elemeant J
' I - ™
BTP BTP
Element . BTP - Element
(Superior) Messages (Inferior)
_ BTP Element ‘/J " BTP Elemant J
L Service Consumer) Y Service Producer y
Figure 1: BTP Elements
. I
Y
Reserve -
Travel Agent |,
(Coordinator/ |- Reserved (Pagiﬁe;nt}
Composer) P

BlqeNBABUMN
aledaid

h

Airline C
(Participant)

Fully Booked

Airline B
(Participant)

Expensive

.

—
R

Car Rental
(Participant)

—_

Airline A

(Participant)

Atomic Subset)

Figure 3 : Transaction Example

(N

- . I
a Ty a I
Service
Consumer o
(Initiator/ - Application -
Terminator) Messages
l_ Application Element _/l -\‘_ Application Element J
4 I e ™
Coordinator
Faciory OR BTP - Parficipant
Composer Messages
__ BTP Element _/J _ BTF Element J
Service Consumer Service Producer
vy e vy
Figure 3: BTP and application elements
Initiator Factory Service Enroller
:
! !
i i i i
i i i i
| _teeain_ i . |Coordinator ' !
?1_1 AnewContext
i
! ! |
| | 2:getContext _ !
]
| 3:BEGUN with T ,
! CONTEXT ! i
] 1]
I 1 I
i 4:businessME;ssage(CONTEXT) i i i
- | 4.1:ENROLL{CONTEXT)
! - Participant
! -
]
I
I

4.2:BusinesshMes

4.1.2:ENROLL| |4.1.1:new(CONTEXT)

\'31.2.1 :ENROLLE

I
gReply(CONTEXT_REPLY)

e

k

Figure 4 BTP sequence diagram

Participant

Service

Coordinator

Initiator

|
| 1.1.1.PREPARED

1.2:CONFIRM

[T
-

1
| 1.2.1:CONFIRMED

(T~

1.CONFIRM_TRANSACTION

1.3 TRANSACTION_COMNFIRMED

-]

Figure 5: A simple atom example illustrating the BTP two-phase protocol

Participant 3

Participant 2

Participant 1

Composer{Decider

Initiator{Terminator

ﬂ
!
=____L;-|
]

B:CONFIRMED

1.2:PREFARE
1.3:CANCEL
2:PREPARED

ol

(12)

1:CONFIRM_TRANMSACTION

5:PREPARED

y
g
y

6:CONFIRMED

ol

J:CONFIRM
T:CONFIRM

L]
L:J"
7
L;J‘

T
¥

H—II

1.3 TRANSACTION_COMNFIRME

ol

Figure 6: Cohesion completion

2) an application message containing Ca

<CoordinationContext>

<Address>RSa</Address>
<MarkKey=> ... </Markkey=
=(CoordinationService>
<{CoordinationContext>

Coordinator A

Figure 8: Coordination Service

WS-Coordination

Activation
Framework

Registration
Framewark

Coordination

Framewaork

WS-Transaction

{Coordination Patterns) X
Service

Activity
Coordination
Pattern

Coordination
Pattern

Figure 9: WS-Transaction Context

__bif-?» —+{ Coordinator _
- T -
- i D cq}q.w\ AN
!
J < baegin \mllegl back,
{ oy
| ! b
v i
3 !
y !
A S
% F
s -
~ ~. outcome _, <
S Store
Qﬂlil‘lﬂ Store — - Front-End === J
-"‘1_‘_‘_-__._._,_1-"'-
A
Client
Application
Figure 10: Using AT to ensure All-or-Nothing
Application Coordination Framework Database Web Service
Program Activation | | Registration Service Database| |Resource
Service Service { Coordinator) Magr
: ' ; e
. 1 AtomicTransaction

a) create

Create Response (Cooill
b} Register {Complafid

Register Response (CoordinatorRef)

]
[}
L. :
1, -Completion :
v, -PhaseZero, 2PC, Cutcome |

ation {CoordinationContext l
.} goeration { CoordinationContext) T

1
d | Register (2FC, ResourceRef)

1
1

internal regis.tratinr: 1
................. -, i
& | Register Resphnse (CoordinatorRef) '

y K 1) result {activiyContedt)
1 L) i
| * pparation fequence [CoordinationConbext) 1
= i
g} Commit {ompletion) ' !
! hj.} Prepare/Comemit {2PC) ' i
Commited ! iik.) PreparediCommitted) i

Figure 11: A scenario of Atomic transactions

REQ-IS':EI’ Cancel

= mmmnma

Compenséted

Tl Compensating

Figure 13: BusinessAgreement Protocol State Diagram

Register Canceled

.......
-
-
-

P ——

Coordinator generated

Figurel4: BusinessAgreeWithComplete Protocol State Diagram

Vi

	BTP Players and Messages

