
B2B Web Services Application

Group Members:
Patricia Zamorski
Julian Tsisin
Muhammad Nadeem
Larry Perrone

Project Scope

Project Definition
Building a B2B application for electronic business transactions between an Online Books
Seller and a Wholesale Book Supplier with the help of web services invocation.

The Project Scenario
The scenario for this project consists of two fictitious companies:
Tom’s Online Books, and
John’s Wholesale Book Supplier.
John’s company is merely a wholesale supplier of books. He has no storefront and no
direct customer sales; he simply provides books at wholesale prices to other book
suppliers.
Tom’s company runs an online bookstore that allows Internet customers to purchase
books through his shopping cart.
Tom carries no inventory; instead, he accepts customer orders and passes them to John,
who supplies the books. Because John has no storefront, his only means of generating
revenue is to have other bookstores place orders with him. To accommodate this, John
has decided to build an ASP.NET application with a Web services layer to allow real-
time sales with his vendors, and Tom has decided to increase his productivity and create
his own online shopping cart system with ASP.NET and a Web services tie- in to John’s
application. By making this business collaboration agreement, both hope to increase
revenue and productivity.
We'll act as the system designer for both applications. Because the only link is through
the Web services layer, providing a generic design allows both applications to be flexible
enough for future expansion, and prevents Web service API conflicts between the two
development parties.

Some Web Services Scenarios
In this project, no doubt the Web service is the backbone of both applications and is the
quintessential components to the B2B collaboration aspect of the products. By
implementing asynchronous web service invocations, we can create a fast responding,
multithreaded B2B information exchange between two business partners. Without web
services, the collaborative requirement of both customers could not have been met.
We will have following three web services in this B2B applications:

• Web service for searching books in John’s application

• Web service for creating order in John’s application
• Web service for confirming order in Tom’s application

Application Architecture Outline:
Use case Modeling
Domain Model
Design Model
Implementation Model

• Database Design
• Database Tier
• Business Tier
• Exceptions and Loging
• Web Services

Data Model

Software Specifications:
ASP.Net
VB.Net
SQL Server 2000
Microsoft Visio

Domain Model

A domain model is illustrated with a set of classes diagrams in which no operations are
defined.

It may show

• domain objects or conceptual classes
• association between conceptual classes
• attributes of conceptual classes

Use Cases Model
• Use cases
• Use cases Diagrams

Use Cases

John's Wholesale Store

Information gathered for John's Wholesale Store:
• Must be able to accept orders from other vendors, specifically Tom
• Needs a way to manage his inventory of books
• Needs to be able to view and process orders
• Wants his inventory to be secured from unauthorized vendors
• Wants to provide access to his book inventory to select vendors

By using extrapolation techniques we can identify the following use cases for John’s
application:

• View books
• Edit book
• View/search orders, with filters for client and order status
• Confirm order (flag an order as completed)

Web service use cases
• Create orders
• Get orders
• Search books (filtered by ID, author name, book name, or availability)

Tom's Online Book Store

Tom has slightly more involved requirements because of the customer
interaction. Information gathered for Tom's Online Book Store:

• Requires a public area for regular surfers and a secured area for authorized users
• Needs to be able to track customer accounts
• Must be able to search John’s database for books
• Needs a customer login screen
• Needs a shopping cart mechanism to let customers add/remove books from their

cart
• Needs an area to let customers review their cart and place an order
• Needs a way to place orders in John’s application
• Wants to let customers view the orders they’ve placed
• Needs to have a way to let John’s application notify his system automatically on

order completion
• Wants to notify customers by e-mail when their order is completed

• Wants a user friendly error page
• Wants to display to customers the number of items in their cart in an area that’s

always viewable to the customer
Again, by using our extrapolation techniques we can decipher the following use
cases for Tom’s application:

• Search books (filter by book name, author, or availability)
• Add book to cart
• Remove book from cart
• View shopping cart (Secured)
• Create order (Secured)
• View customer orders (Secured)
• Create customer
• Log in customer

Web service use cases
• Confirm order

Use Cases Diagrams

- RKQ�$ SS

(GLW�%RRNV

$GG�%RRNV

9LHZ� 2 UGHUV

&RQILUP�2 UGHUV

9LHZ�%RRNV

0 DQDJH�: HE�6HUYLFH
6HFXULW\

0DQDJH�&OLHQWV

6\VWHP�$GPLQLVWUDWRU

ZHE�VHUYLFHV�XVH
FDVH/ HJHQG� VLPSOH�XVH�FDVH

- RKQ�$SS�8VH�&DVH�&RQWH[W�' LDJUDP

Design Model

Use Case – Search Books

• A customer enters Book Name, Author name, and select AvailabilityID [In Stock,
Back Order].

• Listing of books with Author Name and Price is shown for the customer.

Use Case – Create Order

• Pre Condition:
A customer has successfully login.
The customer has added items in shopping cart.

• Customer clicks Make Order button. The system generates OrderID.
• It sends asynchronous call to JohnWS.
• JohnWS creates order data in John Database.
• The Customer receives notification about order creation.

Use Case – Confirm Order

• John App administrator search orders by Clients Name and clicks Confirm Order
button.

• System calls TomWS that updates order status in Tom Database.
• TomWS sends notification about order confirmation to JohnApp.

Implementation Model

The n-tier architecture model

We used the following product technologies to build our final application:

1. Visual Studio .NET 2002
2. SQL Server 2000.

The application framework employed an n-tier architecture model, a commonly used model in more
intricate enterprise systems. A simple diagram of this model can found in figure.

Exception Handling

One of the most important aspects of proper system design is exception handling. Each layer is represented
by a tier in our framework.

We have a database layer, a business layer, an ASPX layer, and a Web service layer.

By implementing a custom exception class for each layer, we can easily identify and trace our exceptions at
any point in our application.

The figure diagrams the exception flow in both of our applications

Web Services in Dot Net

A diagram shows the web service mechanism for creating an order.

: HE�6 HUYLFH�&RQVXP HU�7RP � $SS�

' RW�1 HW�+ DQGOHU

' RW�1 HW�&ODVVHV�,P SOHP HQWHG�LQ�P HWKRGV

: HE�6 HUYLFHV�3 UR[LHV
RU�6RDS�5 HDGHU

� UGHU: 63UR[\� YE�

$ ' 2 � 1 HW

' DWDEDVH

6 4 /
6HUYHU

6WRUHG
3URFHGXUHV

&XVWRPHU

: HE�6HUYLFH�' HVFULSWLRQ
2 UGHU: 6 � DVP [" ZVGO� �2 UGHU: 6�ZVGO

: HE�6HUYLFH�3URYLGHU�- RKQ�$SS�

' RW�1 HW�+ DQGOHU

: HE�6 HUYLFHV
� UGHU: 63UR[\� DVP[�

$ ' 2 � 1HW

' DWDEDVH

6 4 /
6HUYHU

6WRUHG
3URFHGXUHV

' RW�1 HW�&ODVVHV�,P SOHP HQWHG�LQ�P HWKRGV

��6H�5 HTXHVW

��&D�3 UR[\ � 0 HWKRG�&UHDWH2 UGHU

��6H�3 DUDP HWHUV�WR�: HE�0 HWKRG

��WXUQ�1 RWLILFDWLRQ 6RDS�3 URWRFRO
; 0 / � RYHU�+ 773

��&UWH�2 UGHU�LQ�' DWDEDVH

��OO�&UHDWH2 UGHU�%XVLQHVV7LHU�0 HWKRG

: HE�6HUYLFHV�$UFKLWHFWXUH

�UHDWH�3UR[\ � &ODVV

��&UWH�3 UR[\ � &ODVV
��&WRPHU�VHQGV�UHTXHVW�WR�7RP � $SS
��OO�3UR[\ � 0 HWKRG�&UHDWH2 UGHU
��6H�3DUDP HWHUV�WR�: HE�0 HWKRG
��OO�&UHDWH2 UGHU�%XVLQHVV7LHU�0 HWKRG
��&UWH�2 UGHU�LQ�- RKQ�$SS�' DWDEDVH
��WXUQ�1 RWLILFDWLRQ

Web Service Security
Security is probably the biggest technology-related buzzword. There are two main
aspects of application security: authorization/authentication and data transmission. You
basically want to keep out the people who shouldn't be accessing your application and
also prevent data from being captured in transit.

To secure John's Web services, we have implemented a custom SOAP header, which is
essentially an inner class definition with some public properties that get wrapped into the
SOAP envelope during a Web method call. By defining properties of this SOAP header
class, we have set properties that allowed the Web service to determine if the consumer is
in fact authorized to access the application.

The second security measure we have implemented is the lock down of specific
protocols, thus preventing the Web service from being accessed in certain ways.
Following figure depicts the protocol policies for John's application.

Web Service Protocol Policy Diagram

By removing the HttpPost, HttpGet, and Documentation protocols, we have prevented the
invocation of our Web services via Post and Get, and also remove the ability to generate
WSDL documents, which could allow unauthorized users to generate Web references and
proxy classes for our Web services.

By using both security measures in conjunction, we accomplish the following:

• We prevent the discovery and the ability to invoke our Web service through any
means other than HttpSoap, which essentially means the consumers must have a
valid proxy class prior to the Web service lock down. This allows the developer to
be the only distributor of Web service access.

• If, somehow, a user managed to discover the Web service, he or she would not be
able to generate the WSDL file for the service because the Documentation
protocol is removed.

• If, somehow, an unauthorized user managed to acquire a proxy class or WSDL
file by some extraneous means, he or she would not pass the authentication
checks because the user wouldn't have valid ClientIds or WSTokens, which must
be present in our custom SOAP header.

We have a nearly impenetrable security mechanism in place. An unauthorized user must
break through three strict tiers of security before he or she would be able to compromise
our application. Adding SSL to the equation only further increases the security level.

Web service for searching books in John’s application
This web service searches books in John’s application and returns list of books to Tom’s
application.

Code implementation of searching books

'##
 ' When the search button is clicked we invoke John's web service and search his books. The result is bound to our datagrid
Private Sub
btnSearch_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnSearch.Click
 Dim ProxyObj As New BookWSProxy.BookWS()
 ProxyObj.BookSecurityContextValue = WSUtil.GetBookSecurityContext

 Dim AvailabilityId As Int32
 If Not WSB2BUtil.Utils.IsNull(Me.cboAvailability.SelectedItem.Value) Then
 AvailabilityId = Convert.ToInt32(Me.cboAvailability.SelectedItem.Value)
 End If

 Dim BookDs As DataSet = ProxyObj.SearchBooks(Nothing, Me.txtAuthor.Text, Me.txtBookName.Text, AvailabilityId)
 If Not BookDs Is Nothing Then
 Me.dgBooks.DataSource = BookDs.Tables(0)
 Me.dgBooks.Visible = True
 Me.DataBind()
 End If
 End Sub

Web service for creating order in John’s application
This web service creates order for the books in John’s application.

Code implementation of creating order
'###
 ' The customer clicks this button to create their order. We create the order in this system first, generating the Pk
 ' for the order, and then invoke John's WS to create the order in his system. If the webservice fails, we delete
 ' the order from our system. John's web service is invoked asynchronously and the user is notified via email regarding
 ' the status of the order
 '###
 Private Sub btnCreateOrder_Click(ByVal sender As Object, ByVal e As Syst em.EventArgs) Handles btnCreateOrder.Click
 Dim OrderObj As New BizTier.OrderServices()
 Dim SessionObj As ClientSession = Session.Item(ClientSession.CLIENT_SESSION_REF)

 Dim OrderId As Int32 = OrderObj.CreateOrder(SessionObj.CustomerId)

 Try
 Dim ProxyObj As New OrderWSProxy.OrderWS()
 ProxyObj.OrderSecurityContextValue = WSUtil.GetOrderSecurityContext
 ProxyObj.BeginCreateOrder(OrderId, SessionObj.BookIds.ToArray(), New AsyncCallback(AddressOf ReceiveResponse),
ProxyObj)
 Me.lblMsg.Text = "Thank you for your order"

 'Catch ex As System.Web.Services.Protocols.SoapException
 Catch ex As Exception
 ' If the web service fails for any reason, we must remove the order from the Db

 OrderObj.DeleteOrder(OrderId)
 Me.lblMsg.Text = "There was an error processing your order"
 Finally
 'Blank the datagrid of the order that was placed
 Me.dgCart.DataSource = Nothing

 ' Clean up the order information contained in the session
 SessionObj.BookIds = New ArrayList()
 SessionObj.NumItems = 0

 Me.DataBind()
 End Try

 End Sub

Web service for confirming order in Tom’s application
For Tom, only one Web service is required. Its purpose is to provide a way for John's
application to notify Tom's application of completed orders because he needs only to
expose a mechanism for John's application to confirm orders. Access to Tom's Web
service will be provided by distributing a proxy class to John's application.

Code implementation of confirming order
'###
 ' Confirms a pending order by invoking Tom's web service and updating the order in his application first.
 ' The call is made asynchronously to allow for fast user response
 '###
 Public Sub Confirm_Order(ByVal sender As Object , ByVal e As DataGridCommandEventArgs)
 ' Grab the Id of the order being confirmed
 Dim OrderId As Int32 = Convert.ToInt32(e.Item.Cells(0).Text)
 Dim OrderObj As New OrderServices()

 'Get the information regarding the order
 Dim OrderDs As DataSet = OrderObj.GetOrders(OrderId, Nothing, Nothing)

 '## NOTE ##
 ' If we add additional clients, we need to check the client Id and invoke
 ' the correct web service method for that particular client. Since
 ' Tom is the only client in our example, we invoke his web service directly

 Dim OrderProxy As New OrderWSProxy.OrderWS()
 OrderProxy.OrderSecurityContextValue = WSUtil.GetOrderSecurityContext()
 OrderProxy.BeginConfirmOrder(OrderId, OrderDs, New AsyncCallback(AddressOf CompleteOrder), OrderProxy)

 Me.lblMsg.Text = "The order has been sent for completion processing"
 Me.lblMsg.Visible = True
 Me.dgResults.Visible = False
 End Sub

Asynchronous Behaviour of Web Services

Data Model

John's App:
• Client: Table to store clients that are capable of placing orders with John.
• Order: Stores the details about placed orders.
• Book: Stores Johns inventory of books.
• Availability: Support table storing a list of availabilities. This table was added by normalizing

the Book table and removing the redundant availability text field and replacing it with an
optimized foreign key integer field to another table.

• Order_Book_Rel: Many-to-many relationship table between books and orders. This is
required because many books can be tied to many orders. By simply adding book IDs and
order IDs to this table we remove all redundancy required to tie orders to books.

Tom's App:
• Order. Used as a singular entity to map an entire order to a customer. The details of the

order are stored in John's application.
• Customer. Stores a list of customers who can log into Tom's application and place orders.
By adding some basic data fields to each of the tables above we have our completed
database structure

.

