B2B Web Services Application

Group Members:

Patricia Zamorski
Julian Tsisin
Muhammad Nadeem
Larry Perrone

Project Scope

Project Definition

Building a B2B application for electronic business transactions between an Online Books
Seller and a Wholesale Book Supplier with the help of web services invocation.

TheProject Scenario

The scenario for this project consists of two fictitious companies:

Tom’s Online Books, and

John's Wholesale Book Supplier.

John’s company is merely a wholesale supplier of books. He has no storefront and no
direct customer sales; he simply provides books at wholesale prices to other book
suppliers.

Tom’s company runs an online bookstore that allows Internet customers to purchase
books through his shopping cart.

Tom carries no inventory; instead, he accepts customer orders and passes them to John,
who supplies the books. Because John has no storefront, his only means of generating
revenue is to have other bookstores place orders with him. To accommodate this, John
has decided to build an ASP.NET application with a Web services layer to allow real-
time sales with his vendors, and Tom has decided to increase his productivity and create
his own online shopping cart system with ASP.NET and a Web services tie-in to John’s
application. By making this business collaboration agreement, both hope to increase
revenue and productivity.

WE'l act as the system designer for both applications. Because the only link is through
the Web services layer, providing a generic design allows both applications to be flexible
enough for future expansion, and prevents Web service API conflicts between the two
development parties.

Some Web Services Scenarios
In this project, no doubt the Web service is the backbone of both applications and is the
quintessential components to the B2B collaboration aspect of the products. By
implementing asynchronous web service invocations, we can create a fast responding,
multithreaded B2B information exchange between two business partners. Without web
services, the collaborative requirement of both customers could not have been met.
We will have following three web services in this B2B applicatiors:

Web service for searching books in John’s application

Web service for creating order in John’s application
Web service for confirming order in Tom’s application

Application Architecture Outline:
Use case Modeling
Domain Model
Design Model
Implementation Model
- Database Design
Database Tier
Business Tier
Exceptions and Loging
- Web Services
Data Model

Softwar e Specifications:
ASP.Net

VB.Net

SQL Server 2000
Microsoft Visio

Domain M odel

A domain modd is illustrated with a set of classes diagrams in which no operations are
defined.

It may show

domain objects or conceptual classes
association between conceptual classes
attributes of conceptual classes

Use Cases M odel

Use cases
Use cases Diagrams

Use Cases
John'sWholesale Store

Information gathered for John's Wholesale Store:

Must be able to accept orders from other vendors, specifically Tom

Needs a way to manage his inventory of books

Needs to be able to view and process orders

Wants his inventory to be secured from unauthorized vendors

- Wants to provide access to his book inventory to select vendors

By using extrapolation techniques we can identify the following use cases for John’s
application:

View books

Edit book

View/search orders, with filters for client and order status

Confirm order (flag an order as completed)
Web service use cases

Create orders

Get orders

Search books (filtered by ID, author name, book name, or availability)

Tom's Online Book Store

Tom has slightly mor e involved requirements because of the customer
interaction. Information gathered for Tom's Online Book Store:

Requires a public areafor regular surfers and a secured area for authorized users
Needs to be able to track customer accounts

Must be able to search John's database for books

Needs a customer login screen

Needs a shopping cart mechanism to let customers add/remove books from their
cart

Needs an areato let customers review their cart and place an order

Needs away to place orders in John's application

Wanits to let customers view the orders they’ ve placed

Needs to have away to let John's application notify his system automatically on
order completion

Wants to notify customers by e-mail whentheir order is completed

Wants a user friendly error page
Wants to display to customers the number of itemsin their cart in an areathat’s
always viewable to the customer
Again, by using our extrapolation techniques we can decipher the following use
casesfor Tom’sapplication:
- Search books (filter by book name, author, or availability)
Add book to cart
Remove book from cart
View shopping cart (Secured)
Create order (Secured)
View customer orders (Secured)
Create customer
- Log in customer
W eb service use cases
Confirm order

Use Cases Diagrams

6\VWHP [$ CP IMIDVRD

——

- REQEISSB VH& DVHEIRQA{ \IDJ WDP

Logle b Cusomers

Crak Caztome iz

WewCizDmeroder

Caromer

A0d Books ToCart

Remous Books From VW Shopphg Cart

can

Syrem &dm v EtEor

Mavage Wleb Se b
e carhy

Maiag Crsomers

Tom App Lse Case Context Diagram

Design Modéd

Use Case — Search Books
A customer enters Book Name, Author name, and select AvailabilitylD [In Stock,

Back Order].
Listing of books with Author Name and Price is shown for the customer.

Use Case— Create Order
- PreCondition:
A customer has successfully login.
The customer has added items in shopping cart.

Customer clicks Make Order button. The system generates OrderID.
It sends asynchronous call to JohnWsS.

JohnWS creates order datain John Database.

The Customer receives notification about order creation.

Use Case— Confirm Order
John App administrator search orders by Clients Name and clicks Confirm Order

button.
System calls TomWS that updates order status in Tom Database.

TomWS sends notification about order confirmation to JohnApp.

YWeb Services Sequence Diagram - Search Books [Consumed in Tom App]

Tom ASPH

Johin ASPI

Feturm Book Datails List

TomDB Tom Wieh Sanices Jobn ‘b Services John OB
]
|
| Gat AailabiityD
1
| Check Aagilability 1D
| —
|
| Retun AagilabiityiD
: Reaturm Aoailabiktyl D <
|
| Search BookstBook Mame, Adthorbame, Aoalabiling O) Send 0=
I
|
|
|
| Fetun Recordsst
|
L
|
|

Wwiab Services Sequence Diagram - Create Order [Consumed in Tam App]

Tom A5 FX Tom OB Tom Wieb Senices

Jobn s Senices

JohnDB

Fetum Prirrary Key
a

A=y Call Create Onder

Creation Success1l

Create [E@ H

Jobin AS P

Wb Services Sequence Diagram - Confirm Order [Consumed in John App)

Tom A5PX Tom DB Tom Web Se ks s Joby Web Se p e Joba DA Joby 8EPX

Cowflm Onder

Update O rde rsates

Send Notheatbw

| mplementation M odel

The ntier architecture model

We used the following product technologies to build our final application:

1. Visua Studio .NET 2002
2. SQL Server 2000.

The application framework employed an n-tier architecture model, a commonly used model in more
intricate enterprise systems. A simple diagram of this model can found in figure.

ASP.NET N-Tier Architecture

—Fresentation Layer

~,
HTML Layer <
(ASPX) Web Services
Code Behind Files —‘ Proxy Classes
L >y
~—Busiress Lgic Layer ~
Business Logic Components
Saparation by Entity
. j
~—Dala Tier Layer J' -
Data Access Components
Separation by Entity
- y

S0L Server 2000

Stored Procedures

Exception Handling

One of the most important aspects of proper system design is exception handling. Each layer is represented
by atier in our framework.

We have a database layer, abusiness layer, an ASPX layer, and aWeb service layer.

By implementing a custom exception class for each layer, we can easily identify and trace our exceptions at
any point in our application.

The figure diagrams the exception flow in both of our applications

Application Exception Flow in n-Tier Design

_w|Log File
All non custom
exceplions get logged
from this method
e

ey
WSException

A

Log to file Global.asax

Application_Error

F Y

Web service exceptions
thrown Lo Global asax

|

[] All business and database tier 3
exceptions System_Exception

are thrown to Global.asax

Web Service Layer

ASPX layer throws regular
System Exceptions

ASPX Layer ‘
Exception thrown B

up to ASPX layer e Business Layer

L~
—_— A
DbTierException
Log to file
Exceplion thrown —e Database Layel’
up o business
component

Web Servicesin Dot Net

A diagram shows the web service mechanism for creating an order.

. HEB HMFHVIS UFKIWRMUH

[BUWBE R\ 0&OW
BARPHUZHQG/[THT XHWRIZ RP (5SS
[MELR] \ [0 HWRG& UD\W2 WGHU

— HEBHYEH&RQUP HIFRP (5SS N [BHEDUP HWWARE HED HWRG
MELUHW2 UGHIBMGHW? (HWO HMRG
" RIBMDQGBIU BUNZ WCHUIGRKQSSSI] DWEDWH
l VUQT RMEDURQ
BEHDXAW = g AHVEP SOP HOMGIDE HKRGY
EXVWRHU
EELR\ 00 HMRGEBIDWR LGHU
$'2 HW
- HEB HOFHVGE] [HV
: HEBHWIFH] HVFUSVIRQ
RERDSBHDGHU |—————— [UHDAHBWR[\ (BOW ——] "
(UG 63URNCVED 2 U3 6 [DVP[" ZVGDR WBHJ 6[ZVED
A
" DACEDH
D
6\RLHG 64/
URFHEUHY BHUYHU
- Y
. HEBHWIFHBRVIGHURKQSSST
- o8 ™
—' RHADQEEU ~
" RIBNDAHVIP SBIP HQMGTR HWRG/
A Y
BHIIDUDP HWWRE HEID HWRG " - '
| $'2 (LHW
UQURMIFDARQ 6RDSE LRMRO : HEB HYIFHV
L | :o0/mRHE773 UG 63UR[\DVP[O
BUNZ (GHIY DIVEDMH
) !
" DWEDVH
N
<
6WRHG 64/
URFHGXURV 6HUYHY
J
o J

Web Service Security

Security is probably the biggest technology-related buzzword. There are two main
aspects of application security: authorization/authentication and data transmission. Y ou
basically want to keep out the people who shouldn't be accessing your application and
also prevent data from being captured in transit.

To secure John's Web services, we have implemented a custom SOAP header, which is
essentially an inner class definition with some public properties that get wrapped into the
SOAP envelope during a Web method call. By defining properties of this SOAP header
class, we have set properties that allowed the Web service to determine if the consumer is
in fact authorized to access the application.

The second security measure we have implemented is the lock down of specific
protocols, thus preventing the Web service from being accessed in certain ways.
Following figure depicts the protocol policies for John's application.

i o

Web Service Protocol Policy

‘ HttpSoap \ ‘ HttpGet \ ‘ HitpPost HitpPost

.,f Allow YBlock YBlock P Block

.,
h

Web Service Layer

Web Service Protocol Policy Diagram

By removing the HttpPost, HttpGet, and Documentation protocols, we have prevented the
invocation of our Web services via Post and Get, and also remove the ability to generate
WSDL documents, which could allow unauthorized users to generate Web references and
proxy classes for our Web services.

By using both security measures in conjunction, we accomplish the following:

We prevent the discovery and the ability to invoke our Web service through any
means other than HitpSoap, which essentially means the consumers must have a
valid proxy class prior to the Web service lock down. This allows the developer to
be the only distributor of Web service access.

If, somehow, a user managed to discover the Web service, he or she would not be
able to generate the WSDL file for the service because the Documentation
protocol is removed.

If, somehow, an unauthorized user managed to acquire a proxy class or WSDL
file by some extraneous means, he or she would not pass the authentication
checks because the user wouldn't have valid Clientlds or WSTokens, which must
be present in our custom SOAP header.

We have a nearly impenetrable security mechanism in place. An unauthorized user must
break through three strict tiers of security before he or she would be able to compromise
our application. Adding SSL to the equation only further increases the security level.

Web service for searching booksin John’s application
This web service searches books in John's application and returns list of booksto Tom's
application.

Code implementation of searching books

" When the search button is clicked we invoke John's web service and search his books. The result is bound to our datagrid

. Private Sub
btnSearch_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnSearch.Click

Dim ProxyObj As New BookWSProxy.BookWS()

ProxyObj.BookSecurityContextV a ue = WSULtil.GetBook Security Context

Dim Availabilityld As Int32

If Not WSB2BUTil.Utils.IsNull(Me.choAvailability.Selecteditem.VValue) Then
Availabilityld = Convert. Tolnt32(Me.choAvail ability.Sel ectedl tem.Val ue)

End If

Dim BookDs As DataSet = ProxyObj.SearchBooks(Nothing, Me.txtAuthor. Text, Me.txtBookName. Text, Availabilityld)
If Not BookDs Is Nothing Then
Me.dgBooks.DataSource = BookDs.Tables(0)
Me.dgBooks.Visible = True
Me.DataBind()
End If
End Sub

Web servicefor creating order in John’s application
This web service creates order for the books in John’s application.

Code implementation of creating order

' The customer clicks this button to create their order. We create the order in this system first, generating the Pk
' for the order, and then invoke John's WS to create the order in his system. If the webservicefails, we delete

' the order from our system. John's web service isinvoked asynchronously and the user is notified via email regarding
' the status of the order

Private Sub btnCreateOrder_Click(ByVa sender As Object, ByVd e As Syst em.EventArgs) Handles btnCreateOrder.Click
Dim OrderObj As New BizTier.OrderServices()
Dim SessionObj As ClientSession = Session.ltem(ClientSession.CLIENT_SESSION_REF)

Dim Orderld As Int32 = OrderObyj.CreateOrder(Sessi onObj.Customerl d)

Try
Dim ProxyObj As New OrderWSProxy.Order\WWS()
ProxyObj.OrderSecurityContextV alue = WSULil.GetOrder Security Context
ProxyObj.BeginCreateOrder(Orderld, SessionObj.Booklds. ToArray(), New AsyncCallback(AddressOf ReceiveResponse),
ProxyObj)
MelblMsg.Text = "Thank you for your order"

'Catch ex As System.Web.Services.Protocol s.SoapException
Catch ex As Exception
' If the web servicefails for any reason, we must remove the order from the Db

OrderObj.DeleteOrder(Orderld)

Me.lbIMsg.Text = "There was an error processing your order”
Finally

‘Blank the datagrid of the order that was placed

Me.dgCart.DataSource = Nothing

' Clean up the order information contained in the sesson
SessionObj.Booklds = New ArrayList()
SessionObj.Numltems =0

Me.DataBind()
End Try

End Sub

Web service for confirming order in Tom’sapplication

For Tom, only one Web service is required. Its purpose is to provide a way for John's
application to notify Tom's application of completed orders because he needs only to
expose a mechanism for John's application to confirm orders. Access to Tom's Web
service will be provided by distributing a proxy class to John's application.

Code implementation of confirming order

' Confirms a pending order by invoking Tom's web service and updating the order in his application first.
' The call is made asynchronoudly to allow for fast user response

Public Sub Confirm_Order(ByVa sender As Object, ByVal e As DataGridCommandEventArgs)
' Grab the Id of the order being confirmed
Dim Orderld As Int32 = Convert.Tolnt32(e.ltem.Cells(0). Text)
Dim OrderObj As New OrderServices()

'Get the information regarding the order
Dim OrderDs As DataSet = OrderObj.GetOrders(Orderld, Nothing, Nothing)

'# NOTE ##

" If we add additional clients, we need to check the client I1d and invoke

' the correct web service method for that particular client. Since

' Tomisthe only client in our example, we invoke his web service directly

Dim OrderProxy As New OrderWSProxy.OrderWS()
OrderProxy.OrderSecurityContextV a ue = WSULil.GetOrder Security Context()
OrderProxy.BeginConfirmOrder(Orderld, OrderDs, New AsyncCallback(AddressOf CompleteOrder), OrderProxy)

MelbIMsg.Text = "The order has been sent for completion processing"
MelblIMsg.Visible = True
Me.dgResults.Visible = False

End Sub

Asynchronous Behaviour of Web Services

Data M odel

John's App:

Client: Table to store clients that are capable of placing orders with John.
Order: Stores the details about placed orders.
Book: Stores Johns inventory of books.

Availability: Support table storing a list of availabilities. This table was added by normalizing
the Book table and removing the redundant availability text field and replacing it with an

optimized foreign key integer field to another table.

Order_Book_Rel: Many-to-many relationship table between books and orders. This is
required because many books can be tied to many orders. By simply adding book IDs and

order IDs to this table we remove all redundancy required to tie orders to books.

CLIENT
PK | CLIENT ID int identity
CLIENT_NAME | nvarchar(50)
WS_TOKEN nvarchar(100)
CRDER
ORDER_BOOK_REL
PK | ORDER_ID int
i OéPK,FKl ORDER_ID | int
ORDER_STATUS | nvarchar(20) [PK,FK2 | BOOK ID |int
FK1 | CLIENT_ID int
CREATION_DATE | datetime
AVAILABILITY BOOK
PK | AVAILABILITY ID intidentity |44 - PK |BOOK ID int identity
AVAILABILITY_MNAME | nvarchar(25) BOOK_NAME nvarchar(100)
AUTHOR nvarchar(50)
PRICE smallmoney
FK1 | AVAILABILITY_ID |int
Tom's App:

Order. Used as a singular entity to map an entire order to a customer. The details of the

order are stored in John's application.

Customer. Stores a list of customers who can log into Tom's application and place orders.
By adding some basic data fields to each of the tables above we have our completed

database structure
ORDER
PK | ORDER ID int identity
FK1 | CUSTOMER_ID |int
ORDER_STATUS | nvarchar(20)
CREATION_DATE |datetime

CLSTOMER

PK

CUSTOMER ID

int identity

EMAIL
PASSWORD
FIRST_MAME

LAST NAME

nvarchar{50)
nvarchar(12)
rvarchar(25)
mvarchar(25)

