
A Web Service is programmable application logic accessible using standard Internet protocols. Web Services combine the 
best aspects of component-based development and the Web. Like components, Web Services represent black-box 
functionality that can be reused without worrying about how the service is implemented. Unlike current component 
technologies, Web Services are not accessed via object-model-specific protocols, such as DCOM, RMI, or IIOP. Instead, Web 
Services are accessed via ubiquitous Web protocols (ex: HTTP) and data formats (ex: XML). 

The software industry is finally coming to terms with the fact that integrating software applications across multiple operating 
systems, programming languages, and hardware platforms is not something that can be solved by any one particular 
proprietary environment. Traditionally, the problem has been one of tight-coupling, where one application that calls a remote 
network is tied strongly to it by the function call it makes and the parameters it requests. In most systems before Web services, 
this is a fixed interface with little flexibility or adaptability to changing environments or needs. 

Web services uses XML that can describe any and all data in a truly platform-independent manner for exchange across 
systems, thus moving towards loosely-coupled applications. Furthermore, Web services can function on a more abstract level 
that can reevaluate, modify or handle data types dynamically on demand. So, on a technical level, Web services can handle 
data much easier and allow software to communicate more freely. 

On a higher conceptual level, we can look at Web services as units of work, each handling a specific functional task. One step 
above this, the tasks can be combined into business-oriented tasks to handle particular business operational tasks, and this in 
turn allows non-technical people to think of applications that can handle business issues together in a workflow of Web 
services applications. Thus, once the Web services are designed and built by technical people, business process architects 
can aggregate them into solving business level problems. To borrow a car engine analogy, a business process architect can 
think of putting together a whole car engine with the car frame, body, transmission, and other systems, rather than look at the 
many pieces within each engine. Furthermore, the dynamic platform means that the engine can work together with the 
transmission or parts from other car manufacturers. 

What rises from this last aspect is that Web services are helping to bridge the gap between business people and technologists 
in an organization. Web services make it easier for business people to understand technical operations. Business people can 
describe events and activities and technologists can associate them with appropriate services. 

With universally defined interfaces and well designed tasks, it also becomes easier to reuse these tasks and thus, the 
applications they represent. Reusability of application software means a better return on investment on software because it 
can produce more from the same resources. It allows business people to consider using an existing application in a new way 
or offering it to a partner in a new way, thus potentially increasing the business transactions between partners. 

Therefore, the primary issues that Web services tries to tackle are the issues of data and application integration, and that of 
transforming technical functions into business-oriented computing tasks. These two facets allow businesses to communicate 
on a process or application level with their partners, while leaving dynamic room to adapt to new situations or work with 
different partners on demand. 

  

Description 

Page 1 of 1Description

1/27/2004http://csis.pace.edu/~kburns/IS660G/introduction.html


