
Babel: Representing Business Rules in XML for Application Integration

Huaxin Zhang, Eleni Stroulia
Computing Science Department, University of Alberta

Edmonton, AB, T6G 2H1, Canada
{hxzhang,stroulia}@cs.ualberta.ca

Abstract1

 In this paper, we discuss Babel, a prototype tool for
integrating multiple heterogeneous applications, by
wrapping them and by specifying the logic of their
interoperation in XML.

1. Introduction and Background
Application interoperability is a challenging problem

because different applications assume different data types
and control-of-processing models. Even when related
applications are aggregated in so-called portals, it is up to
the user of the portal to access the different applications,
collect information, and then combine this information to
access yet other applications.

There has already been a lot of work on integrating
existing data resources, such as MIX [2] and CQ [3]. Both
these projects focus on query planning over multiple
sources of data to answer complex user’s questions (MIX)
or to continuously monitor these resources in order to
generate alarms of interest to the user (CQ).

The Babel project takes this work one step further:
from query planning and monitoring to application
monitoring and integration. Babel supports the
specification of related applications in terms of the
functionalities they deliver and the data they expect as
input and produce as output. Furthermore, it enables the
specification of “business rules” for how these
functionalities should be integrated. Based on these
specifications, Babel produces a run-time mediator that
receives records of the behavior of the underlying
applications, evaluates the defined rules on the global
state of the integrated system, and, in response, generates
triggers for more behaviors to be accomplished by other
applications in the interoperating consortium.

2. The Babel System Architecture
The Babel mediator is a component in a three-tier

environment. At the lowest tier exist the integrated
applications and in the middle tier exist the wrappers of
these applications. The Babel mediator is situated at the

1 This work was funded through a CRD grant by NSERC-CRD
215451-98 and Celcorp.

top tier, interacting with the applications through the
wrappers.

Three important differences distinguish Babel from
related systems. First, Babel has been designed and
developed based on XML and its related languages and
APIs. All information exchanged between the mediator
and the wrappers are XML documents. The mediator itself
uses XSLT—an XML transformation standard—to apply
the predefined rules on the data exchanged. Second, Babel
integrates applications, not databases. These applications
have their own control of processing and each one makes
different assumptions regarding its interaction with users
and other applications in its environment. The Babel
design-time environment enables the specification of
explicit rules for how these independent applications may
interact with each other, i.e., what data they exchange and
under what conditions. These “business rules” define the
data and control inter-dependencies among the pre-
existing applications and therefore, the overall behaviors
of the integrated system. Finally, the wrappers of the
underlying resources, with which the Babel mediator
interacts, are of a novel type. They consist of (a) a
canonical multi-platform user interface and (b) a planner
that, given sufficient data, can navigate through (and
interact with) the original user interface of the underlying
application to accomplish a task. When accessed through
its user interface, a wrapper records the task data
exchanged between the user and its underlying application
and feeds these records to the Babel mediator. The
mediator, in turn, processes the records, evaluates whether
they trigger some pre-defined business rule, applies the
rule, and if the rule succeeds, generates new task data.
This data is then forwarded to some other wrapper, to
execute another task in another application in the
interoperating consortium.

2.1 The Babel Mediator

The Babel mediator receives as inputs tasks and rules,
specified in XML. Task XML documents contain the
actual data that flow between the underlying applications.
A task is the record of some specific behavior instance of
an underlying application. Rule XML documents define
the required data manipulation that the Babel mediator is
intended to accomplish at run time. Each rule is the XML
specification of an Event-Condition-Action rule,

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

implemented by a XSLT program. The output of the
Babel mediator is also task XML documents, containing
only the data inputs for the tasks to be executed by an
application wrapper. All Babel data, tasks and rules, are
built according to predefined DTDs.

The run-time Babel mediator interacts with the
wrappers through an RMI interface and consists of a Data
Validation component, a Rule Manager, and a Database
Manager. The Data Validation Component evaluates
whether the incoming tasks or rules are well formed and
valid. The Database Manager controls the mediator’s task
repository, recording new tasks to its history tasks
depository and providing the history tasks DOM to the
rule-manager. To overcome memory limitations, Babel
uses RDBMS for its task repository. Babel saves the
parsed task DOMs as byte streams in an RDBMS together
with the task’s meta-data, i.e., type, and time-stamp. The
Rule Manager initiates a fixed number of “working
threads” when the Babel mediator starts. As tasks are
received, the rule-manager identifies all the rules
applicable to the incoming tasks, and adds each of these
task-rule pairs to the “bag of jobs” to be processed by the
“working threads”. Each working thread applies the rule
on the task in the context of all the history tasks. To do
that, the rule manager gets the DOM tree of the history
from the database. The relevant rules are applied and the
task instances implied by the rules are sent to the
destination application wrappers.

2.2 The Babel Design-time Environment

The interoperation rules of the Babel mediator are
defined with the Visual X-Rule Generator (VXG) of
Babel. The tool’s graphical user interface provides a tree-
like document structure for the incoming task (event), the
history of tasks (part of the condition), and the output task
(action) according to the task DTD.

The VXG user defines the rule condition by applying
simple conditions on the document elements of the
incoming task and the tasks in the history and by
combining these conditions with compound logic
operators. Furthermore, the VXG user specifies the data
elements of the new task by dragging and dropping
constrained elements from the incoming task and the task
history to the output task document. VXG automatically
constructs XSLT programs to implement the operations
defined by the user, thus defining rules using VXG does
not require the user to possess much knowledge of XSLT
programming.

The design-time environment serves two purposes. It is
a planning tool for the application integration process.
The environment enables modeling the integration to
ensure that all the underlying applications are capable of
providing the required information and that each
component is receiving the information it requires. It also
constitutes the configuration tool for the run-time

mediator. It creates the rules according to which the
mediator handles the data-exchange operations for the
modeled integration.

3. An Example
To illustrate the functionality of the Babel mediator, let

us consider two systems: a text-based legacy library that
allows users to search for books using their title, and an
email system. Suppose that we construct an email-reader
and an email-sender wrapper and a library-search wrapper
using the CelLEST environment [1]. We can then define
two rules for Babel in VXG: “When a user emails a book
title as subject, a search task is forwarded to the library
wrapper”, and “When a search task is executed, a send-
mail task is forwarded to the email-sender wrapper to
inform the user, who have requested searches with the
same title, of the search results”.

At run-time, when a user sends an email with a search
request the email-reader wrapper records the relevant data
of the executed task and forwards it to the Babel mediator.
In response, the Babel mediator invokes the search query
and when the wrapper has executed it, it sends a record
with the task data back to the mediator. At this point, the
mediator creates a new email-send task and forwards it to
the email-send wrapper that send the relevant email.
Finally, the user may access the message through the
email-read wrapper.

4. Reflections
This example illustrates how Babel integrates multiple

heterogeneous, independent applications, and increases
the usefulness of legacy systems, such as the library
system. Users do not need to use the library text interface
and do not have to wait to receive the results of their
search. We are currently working on (a) extending VXG
to construct more complex XSLT programs, for more
complex rules (such as, “if the user has borrowed a book
more than 3 times, send a message to urge him to buy it
from an on-line book retailer”), (b) enabling the mediator
to execute them efficiently at run time, and (c) exploring
other models for complex, web-based mediators [4].

References
[1] E. Stroulia, M. El-Ramly, L. Kong, P. Sorenson, B.
Matichuk: Reverse Engineering Legacy Interfaces: An
Interaction-Driven Approach. In Proc. of the 6th Working Conf.
on Reverse Engineering, 292-302, IEEE.
[2] C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y.
Papakonstantinou, P. Velikhov, V. Chu: XML-Based
Information Mediation with MIX. In exhibition program, ACM
Conf. on Management of Data, 597-599, ACM.
[3] L. Liu, C. Pu, W. Han: XWRAP: An XML-enabled Wrapper
Construction System for Web Information Sources. In Proc. of
the 16th Int. Conf. on Data Engineering, 611-621, IEEE.
[4] E. Stroulia, J. Thomson, Q. Situ: Constructing XML-
speaking wrappers for web-applications: Towards an
interoperating WEB. In Proc. of the 7th Working Conf. on
Reverse Engineering, 59-69, IEEE.

Proceedings of the 23rd International Conference on Software Engineering (ICSE’01)
0270-5257/01 $10.00 © 2001 IEEE

