
Chapter 13

Security—The Challenges

“The stuff that keeps you up at night is security.”
—Tony Scott, CTO, General Motors19

When a group of software development managers was asked to iden-
tify the obstacles to the deployment of web services, nearly half (47
percent) pointed to security. That was more than twice the percentage
of other challenges mentioned, such as bandwidth and access issues
(21 percent) and interoperability problems (13 percent).20 While man-
agers justifiably fear hackers and loss of confidential customer infor-
mation such as they’ve experienced with their e-commerce web sites,
web services present even greater security challenges that managers
haven’t previously encountered.

The good news is that Internet security technologies for both
the World Wide Web and web services have progressed beyond the
rocket-science phase. The Ph.D.’s have completed their work, leaving
us with well-understood technologies for encryption, authentication,
non-repudiation, and trust. The bad news is that we’ve now got to
figure out how to stitch these technologies together into an end-to-
end security quilt that meets the needs of complex web-services ap-
plications. What keeps IT managers up at night is wondering when
that quilt will be completed—and whether they should try to move
forward with piecemeal solutions in the meantime.

172 173 Chapter 13: Security—The ChallengesLoosely Coupled

In this chapter, we’ll explore the unique challenges of security for
web services. We’ll begin with the concept of security contexts, high-
lighting the variations in security requirements among different types
of web services and the more familiar security technologies of the
World Wide Web. Then we’ll introduce the building blocks of Inter-
net security, followed by a detailed analysis of the security require-
ments for web services. In the following chapter, we’ll explore the
various solutions to these web-services security challenges.

Security Contexts

You’ll recall that in Chapter 5 we segregated web services according
to their complexity. One of the starkest distinctions between simple
and complex web services is the difference in their security require-
ments. What works well for simple web services (most notably those
that are synchronous) doesn’t come close to solving the security
problems encountered by more demanding asynchronous services.

To get a handle on the differences in requirements between these
categories of web services, let’s look at the security context, or the en-
vironment in which a system’s security technologies must function.
The security context includes two properties or dimensions: space
and time. The table in Figure 13-1 summarizes the differences among
three security contexts: those of the World Wide Web, simple web
services, and complex web services.

����

�����

����������
���

������
������������

�������
������������

����������
�������

���������������

����������
�������

��������������
���������

�������������

�����������
�������������
����������

Figure 13-1: Security Contexts

172 173 Chapter 13: Security—The Challenges

Let’s take a few moments to explore this table in more detail, so
that we can understand the fundamental differences in the security
requirements of the three environments.

Space

Each security context has certain physical boundaries that create a
defined space within which information must be secured. As you can
see from the table in Figure 13-1, there are three possible locations to
consider: in-transit, multi-hop, and in-storage.

In-Transit

While data is being transmitted from one system to another, it’s said
to be in transit. For example, on the World Wide Web the Secure
Sockets Layer (SSL) protocol is used to encrypt data as it moves be-
tween web browsers and web servers, as illustrated in Figure 13-2.

�������������������������������

�����

����������� ����������

�������

����� �����

�������

Figure 13-2: In-Transit Encryption via SSL

Using SSL, data is encrypted at one end of the connection just
prior to transmission and decrypted immediately upon receipt at the
other end. SSL is a transport-layer security technology that provides
a point-to-point encrypted transmission path between two systems. In
other words, the security provided by SSL only exists while informa-
tion is in transit between systems, not while it’s stored on the systems
themselves. The web’s standards and protocols don’t address the se-
curity requirements of the computer systems on which the browser
or server software run—only the links between them, so the web’s

174 Loosely Coupled 175 Chapter 13: Security—The Challenges

security context is limited to in-transit security, as illustrated in Figure
13-3.

���
�������������

����������������

Figure 13-3: In-Transit Security Context for the World Wide Web

The simplest synchronous web services operate in a security con-
text that’s essentially the same as that of the World Wide Web, so SSL
is often sufficient to meet their security requirements.

Multi-Hop

More elaborate synchronous web services and all asynchronous web
services operate in a security context that’s substantially broader and
more complex than that of the World Wide Web. Specifically, such
web services may communicate through intermediaries, in which case
messages will make multiple hops between systems or hosts. This is
where we begin to see a divergence between the security contexts of
the web and those of web services, and in the ability of SSL to meet
the needs of those web services. In a multi-hop topology, as illustrat-
ed in Figure 13-4, SSL encrypts and decrypts data each time it’s sent
over a point-to-point link.

������� �������

���������������������������������������

�����

��������

����� �����

��������

�����

��������

�����
������� �������

Figure 13-4: SSL for Web Services

174 Loosely Coupled 175 Chapter 13: Security—The Challenges

There are two problems with using SSL in this application. First,
unlike topologies that consist of only two systems, the exchange of
XML documents between complex web services may involve a num-
ber of stops along the way. Some data should be able to be seen, in-
terpreted, and optionally modified by these intermediate nodes (e.g.,
System B in Figure 13-4), while other data must remain encrypted
and unreadable by the same intermediate nodes. SSL only encrypts
data while in transit, so the data is fully decrypted on each interme-
diate node and is no longer secure. The second problem with using
SSL in this case is that if the objective is to deliver data securely from
System A to System C, twice as many encryption and decryption op-
erations will be performed than are required.

In-Storage

Complex web services present yet another challenge not shared with
either simpler web services or the World Wide Web: the need to se-
cure information while stored as well as while it’s in transit. Consider
a confidential document, such as a medical record, sent from System
A to System C as shown in Figure 13-4. The medical record may
need to be stored on System C for later retrieval. For that matter, the
record may need to be securely stored on Systems A or B as well.
But SSL explicitly decrypts data as it arrives at each new system, so if
received data is to be stored securely on any system, it must be re-en-
crypted via a technology other than SSL.

If a document used in a web-services transaction must be con-
fidential, the web service’s security context encompasses the various
systems on which that document may reside even temporarily, as well
as the infrastructure that connects those systems. The greater the
number of systems that have access to the document, the broader the
spatial scope of the security context, and the more demanding the
security requirements.

Time

The security contexts shown in Figure 13-1 are also defined ac-
cording to time, or how long security must be preserved. For the
World Wide Web and the simplest web services, data must only be

176 Loosely Coupled 177 Chapter 13: Security—The Challenges

secured during transmission from one system to another. But for
complex web services, data must also be protected during the time
it’s stored—potentially for very long periods. The complexity of the
security requirements increases with a corresponding increase in the
time dimension of a security context.

On the web and for simple web services, the time component
ranges from a few seconds to a few minutes, so security requirements
are comparatively simple and short-lived. A web browser sends a
request to a web server, then waits for and receives a response—and
that’s the end of the relationship between the two entities. If it takes
more than a minute or so, a timeout occurs, and the entire process
must begin again. Since the time dimension of the web’s security con-
text is so short, the security technologies can be relatively simple.

Underlying SSL is the web’s HyperText Transfer Protocol
(HTTP). Although this is a connection-oriented protocol, it only supports
very short-lived connections—those that consist of no more than a
single request/response exchange. Yet because the security contexts
of both the web and simple web services also exist for such short pe-
riods of time, both can be based on the primitive security features of
HTTP and SSL. The short-lived transport-layer connections between
browser and web server or between web-services requestors and pro-
viders are sufficient for the brief duration of these applications.

When a somewhat longer-term relationship is required on the
web, it can be managed through the use of cookies or other means,
but no comparable standard exists for web services. And truly long-
running asynchronous web services require that security be persistent
and maintained over an extended period of time. This is a challenge
rarely encountered in simpler World Wide Web applications, which is
another reason why the security requirements for complex web ser-
vices exceed the solutions offered by the web’s existing standards and
protocols.

Security for Asynchronous Web Services

The security context matrix has helped us see that the security re-
quirements of simple web services are similar to those of the World
Wide Web, and that many simple web services’ security requirements

176 Loosely Coupled 177 Chapter 13: Security—The Challenges

can be met by using standard web protocols. HTTP and SSL provide
a shortcut for simple web services that have the following attributes:

• They involve only two entities or endpoints.
• The entities are only connected for relatively short periods of

time (seconds or minutes).
• All that needs to transpire between the two entities can be

accomplished within the context of those short-lived connec-
tions.

For the remainder of this chapter, we’ll take on the more difficult
security challenges of external, asynchronous, and aggregated web
services, beginning with an analysis of the building blocks of security.

The Building Blocks

Security is a broad topic, but it can be broken down into five very
specific elements or building blocks, as illustrated in Figure 13-5.
These building blocks are applicable to virtually all data-processing
environments, including the World Wide Web and web services.

���������������

���������������

�������������

��������������

���������

Figure 13-5: The Building Blocks of Security

• Integrity ensures that documents, messages, and their com-
ponents have not been altered.

• Authentication guarantees that an entity (a person or sys-
tem) is who or what it claims to be.

• Authorization determines the privileges available to an au-
thenticated entity.

178 Loosely Coupled 179 Chapter 13: Security—The Challenges

• Confidentiality ensures that unauthorized parties can’t read
documents, messages, or their components.

• Non-repudiation prohibits an entity from denying that it
sent or received a message.

Integrity

Perhaps no other concept is as fundamental to security as our abil-
ity to know for certain that the documents and messages we receive
haven’t been altered, either maliciously or due to technical errors such
as packets damaged in transit. Credentials presented by a consumer
or business partner can’t be trusted unless you’re confident they
haven’t been forged. Likewise, a digital receipt is of little value unless
it can be shown to be tamper-proof. Without integrity there can be
no authentication, authorization, confidentiality, or non-repudiation.

SSL is a sufficient solution for the integrity of simple synchronous
web services where the security context consists of only a single pair
of endpoints, and the relationship between them lasts for no more
than the time it takes to exchange a single pair of request/response
messages. But SSL is inadequate for complex web services, whose
unique requirements include both end-to-end integrity and component-level
integrity.

End-to-End Integrity

SSL can ensure the integrity of information between a single pair of
entities, but not if the information must pass through one or more
intermediaries. Once data has been decrypted on an intermediate
system, SSL can no longer guarantee the integrity of the original
data. This is the fatal flaw of using transport-layer encryption to try
to guarantee the integrity of data in any but the simplest of web-ser-
vices architectures. Even some synchronous web services make use
of intermediaries, so SSL may not be adequate even for them.

Component Integrity

Transport-layer encryption provides all-or-nothing integrity. In this
case, a stream of data containing packets, messages, and documents

178 Loosely Coupled 179 Chapter 13: Security—The Challenges

is decrypted in its entirety, so there’s no way to allow an intermediary
to modify one portion of a message or document while prohibiting
that intermediary from modifying other portions. In other words, if
any of the data can be altered, there’s no way to keep other data from
being altered as well.

Intermediaries can be used to perform transformations that inten-
tionally modify portions of messages or documents. For instance, a
transformation service might convert an invoice amount from US
dollars to Euros. However, this intermediary should not be allowed to
modify other components or elements of the message. Web services
must be able to guarantee the integrity of information at multiple lev-
els, such as the following:

• Documents. In some applications, integrity should be main-
tained at the document level. For example, a contract or other
traditional document should be guaranteed intact.

• XML elements. Some applications require that the integrity
of individual elements within an XML document be main-
tained separately. This allows some elements of the document
to be modified by intermediate processes, yet guarantees pro-
tection to elements that must not be changed. For instance,
as documents are routed through various stages of electronic
approval, the documents may accumulate digital signatures,
but the original content should not be altered.

• SOAP messages. XML payloads may be carried within
SOAP messages, and in some instances integrity must be
maintained at the SOAP level rather than for each individual
document.

• Digital credentials. The integrity of usernames, passwords,
and digital certificates must also be guaranteed, sometimes
independently of the documents and messages to which they
apply.

Authentication

After a foundation of integrity is established, authentication is the
next building block for web-services security. Authentication allows
web-service requestors and providers to verify the identity of the en-
tities with which they interact.

180 Loosely Coupled 181 Chapter 13: Security—The Challenges

Usernames and passwords are by far the most common form of
authentication on the World Wide Web, and this web-based approach
to authentication may meet the needs of particularly simple web ser-
vices. But many web services have requirements that exceed what’s
available from the web’s security mechanisms. Five authentication
requirements for web services go beyond what we typically encounter
on the web:

• Loosely coupled authentication
• Bi-directional authentication
• Credential consolidation
• Multi-party authentication
• Durable authentication

Loosely Coupled Authentication Models

Web-services endpoints that are owned by different entities will
probably have their own models, systems, and standards for authen-
tication. One system may be based on Kerberos (an authentication
system developed by MIT and used within Microsoft’s .NET), while
another may use public-key infrastructure (PKI). In order for these web
services to work together, there must be a trusted mechanism by
which the disparate models can exchange identities. And because au-
thentication models can vary so greatly, such a system must be loosely
coupled just as web services themselves are loosely coupled. Well-
designed web services must be flexible in their expectations of other
systems’ authentication models.

Bi-Directional Authentication

Authentication is accomplished when one entity presents its credentials
to the other, as illustrated for the World Wide Web in Figure 13-6.

���������������� ����������
�����������

Figure 13-6: Consumer Use of Credentials

180 Loosely Coupled 181 Chapter 13: Security—The Challenges

E-commerce web sites authenticate consumers through a combi-
nation of usernames, email addresses, passwords, and other schemes,
and many simple web services can use these same techniques. But
authentication in the opposite direction is rare on the web. Although
server-side digital certificates are always used in conjunction with
SSL, few web-site visitors bother to check them. In fact, few consum-
ers know how to verify the identity of the sites they visit, and even
fewer do so as a matter of course.

There have been many cases where high-visibility sites have been
hijacked, and web-site content delivered from unauthorized servers.
Sometimes going to the wrong web site is a simple user error—for
example, www.whitehouse.gov is an official site of the President of
the United States, whereas www.whitehouse.com is a porn site. In the
case of consumer e-commerce, the risks due to weak authentication
are mostly embarrassing rather than costly.

For web services the need for bi-directional authentication (as il-
lustrated in Figure 13-7) is more critical.

��������������
��������������������

����������������������

Figure 13-7: Bi-Directional Authentication

There are three reasons why this bi-directional authentication is
required for web services. First, the consumer-protection laws that
apply to individuals using their credit cards online don’t similarly
protect businesses that utilize web services. A US consumer’s liability
for fraudulent purchases made using his or her credit card is limited
by statute to US$50. No such limits exist in the US for businesses-to-
business transactions.

Second, the values of business-to-business web-services transac-
tions are typically much greater than those in business-to-consumer
commerce. Such values can be either monetary or derived from the
confidential nature of information being exchanged, since the un-
authorized or inadvertent publication of a trade secret can be very
expensive.

182 Loosely Coupled 183 Chapter 13: Security—The Challenges

Third, web services are based on unattended automated systems,
so there’s an increased risk that damage may go undetected. Whether
due to an error or a malicious attack, automated web services that
run amok can create substantial liabilities. When using web services,
bi-directional authentication can be critical.

Credential Consolidation
In the typical multi-tiered architecture used by e-commerce web sites
and web services alike, consumers and requestors don’t interact di-
rectly with back-end systems such as databases or legacy applications.
Instead there’s typically at least one intermediate system—often an
application server or portal—that accepts requests from consumers
and communicates with the database or other back-end system on
their behalf. In this sense, the application server is acting as an agent
of the requestor or consumer, as illustrated in Figure 13-8.

��������
�

�����������
������ ��������������������

�����������
������������
�����������

��������
� �������� ���

�����������

��������
�

���
���

�� �
��

���
���
�����

Figure 13-8: Credential Consolidation

For its own protection, a back-end database system must authen-
ticate its users—but in the above example, the actual user of the da-
tabase is the application server rather than a consumer. The typical
solution to this problem is to develop business logic within the ap-
plication server to perform both the authentication and authorization
functions (in other words, to authenticate the consumers and also to
determine their privileges). The application server must have broad
superuser privileges on the database system, and then parcel out these

182 Loosely Coupled 183 Chapter 13: Security—The Challenges

privileges on a consumer-by-consumer basis. In this instance, the
authorization logic is located within the application server—which is
not particularly appropriate if authentication must be performed in
other locations as well. This also creates an additional vulnerability: If
a hacker can gain access to the application server, he or she will then
have superuser privileges to read and modify the database.

Furthermore, this architecture destroys the ability of the database
to discriminate or even identify individual consumers. The application
server can pass along the consumer-identifying data to the database,
but this requires a custom application on the database system to en-
force consumer-specific authorization and authentication policies.
Such one-off applications can be difficult and expensive to maintain.

Multi-Party Authentication

When web services are aggregated, it results in a problem similar to
the one faced by aggregators on the World Wide Web, such as travel-
reservation services. When an individual consumer uses a web brows-
er to visit a travel aggregator’s web site and make airline reservations,
there are actually three authentication operations required, as shown
in 13-9.

�������������������������� ����������
�����������

����������
�����������

�������������
�����������

Figure 13-9: The ID-Passthrough Problem

Not only must the consumer authenticate him- or herself to
the travel site (to guarantee payment, for example), but the travel
site must also present credentials for itself and pass-through the
consumer’s credentials to the airline. The travel site must provide the
consumer’s name, address, and frequent-flyer numbers, and it must
authenticate itself in order to receive its commission. When aggregat-
ed web services are built upon many such relationships—linearly or
hierarchically—the challenges of multi-party authentication become
increasingly complex.

184 Loosely Coupled 185 Chapter 13: Security—The Challenges

Where to Provide Authentication Services

After deciding what to authenticate, the second question an imple-
menter of web services must answer is: At what point in the archi-
tecture should authentication be provided? Previously, we looked at
a model where the application server was responsible for authenti-
cation. On the World Wide Web, this function is performed either
in the transport layer (using the authentication facilities built into
HTTP) or within the custom-written web applications. Neither of
these solutions is ideal, even for e-commerce web sites. But although
we’ve become accustomed to them both as consumers and as de-
velopers, a better and more standardized solution for web-services
authentication is required. (We’ll look more closely at the question of
where to provide security solutions in the next chapter.)

Durable Authentication

Another requirement for web-services authentication is durability or
persistence. Using the mechanisms built into HTTP, authentication is
valid only for a single request/response exchange. Although user-
names and passwords need not be re-entered, they’re re-transmitted
by the browser or web-services requestor each time a request is made.
Due to the stateless nature of the HTTP family of transports, there
is no association of one request/response exchange to the next, and
each subsequent request must therefore include the authentication
credentials.

When it comes to asynchronous web services, there’s a need for
authentication to persist far longer than the time during which two
endpoints are communicating. In our example of the online book-
store in Chapter 8, the session during which the customer’s creden-
tials were presented was terminated once the order had been placed.
However, those credentials must be accessible for as long as the mer-
chant retains the order information, perhaps for many years.

This presents two challenges. First, the authentication credentials
must be retained along with the documents and messages that move
through the web-services pipeline. (In some cases, the credentials will
be contained within the documents.) Second, there must be a mecha-
nism for verifying credentials long after they’re initially presented, and

184 Loosely Coupled 185 Chapter 13: Security—The Challenges

it must work for an appliation that may not be able to connect to the
system that originated the transaction.

A web site’s server can query a user for additional authentication
information at any time, because the browser and server remain con-
nected for the life of the session. But asynchronous web services
often need to verify credentials or perform other authentication tasks
long after the consumer or web-services system involved with the
transaction have been disconnected. This is also a requirement for
non-repudiation, since it may be necessary to re-establish the au-
thenticity of the parties months or years after a transaction has been
completed.

Authentication is made even more difficult when there’s a break in
the chain of trust—for instance, when a digital certificate expires or
an intermediate certificate authority goes out of business. These are very
real challenges in situations where credentials must be stored and re-
tained for extended periods.

Authorization

Once an entity’s identity has been authenticated, the next step is to
determine what that entity is authorized to do. Some of the authori-
zation challenges faced by web services include the need for loosely
coupled authorization models, authorization durability, identity con-
solidation, and service-level authorization.

Loosely Coupled Authorization Models

Two endpoints controlled by different entities will probably have
their own models and systems for authorization as well as authenti-
cation. One system may simply associate usernames with directory
and file privileges, while another might depend on a more elaborate
rules-based system for authorization. In order for these web services
to work together, there must be a mechanism by which the multiple
models can exchange identities and mediate their authorization-con-
cept differences.

186 Loosely Coupled 187 Chapter 13: Security—The Challenges

Durable Authorization

Because complex asynchronous web services may involve long-
lived transactions—particularly those supporting external business
processes—it’s quite possible that authorizations and permissions
will change over a transaction’s lifetime. This presents a number
of challenges that can be difficult to resolve. For example, when a
customer’s purchasing limits are lowered, is that customer allowed to
increase the quantities on already-approved orders? It’s one thing to
code the business logic that implements such policies within a stand-
alone application, but it’s far more difficult to do so in the distributed
asynchronous environment of web services.

Identity Consolidation

From our discussion of credential consolidation, you’ll recall that in
many application environments, the identity of the individual user
is lost when back-end system access is performed through an agent.
The problem is compounded for authorization, as it’s no longer pos-
sible to make decisions about user privileges once a user’s identity has
been lost or consolidated.

Service-Level Authorization

Ultimately, web services will require an authorization model of their
own, beyond what currently exists for the World Wide Web. Such a
system must determine who has access to what services, and within
the context of an individual service, what those individuals are al-
lowed to do. Evolving web-services protocols address these unique
requirements, determining which specific individuals or other services
are allowed to execute certain methods and which are authorized to
modify specific XML elements.

Confidentiality

By combining the building blocks of integrity, authentication, and
authorization, we can create confidentiality: the ability to ensure
that documents, messages, or their components can’t be read by any

186 Loosely Coupled 187 Chapter 13: Security—The Challenges

other than authorized entities. Integrity gives us the knowledge that
information hasn’t been intentionally or otherwise altered; authentica-
tion allows us to identify entities; and authorization lets us determine
whether those entities should be allowed access to the confidential
information.

Confidentiality is often confused with integrity, and it’s true that
the two are very closely related. But integrity only allows us to deter-
mine whether information has been modified, and only coincidentally
keeps that information out of the hands of unauthorized entities.
Encryption guarantees integrity while prohibiting information from
being understood by unauthorized entities, but it’s quite possible to
guarantee the integrity of data without encrypting it. One such ex-
ample would be when a digitally signed document is sent as clear or
unencrypted text, which can be read by anyone who intercepts it but
can’t be altered without detection.

On the World Wide Web and for simple synchronous web ser-
vices, transport-layer encryption (SSL) is the most common way of
maintaining the confidentiality of information in narrow and short-
lived security contexts. But as we’ve seen before, the limitations of
SSL quickly become apparent when applied to the broader, long-lived
security context of asynchronous web services.

Using SSL, once data is received at its ultimate destination or at
an intermediate location, it’s restored to its unencrypted format. Data
stored on disk or even retained in RAM can no longer be considered
confidential, except to the extent that it’s protected using additional
methods.

For example, if you download account information from a bank-
ing web site using SSL, it will be protected while in transit. But if you
save that information on your disk drive, it becomes as vulnerable as
any other data stored there. Protecting data stored on users’ systems
or on a web server falls within the domain of security techniques that
are beyond the scope of SSL, and hence require more sophisticated
solutions.

Web services have confidentiality requirements that extend beyond
what SSL provides and fall into four categories: end-to-end encryp-
tion, transport independence, encrypted storage and element-level
encryption.

188 Loosely Coupled 189 Chapter 13: Security—The Challenges

End-to-End Encryption

This challenge is similar to the problem of integrity. In the same way
that SSL can’t guarantee that data hasn’t been modified on intermedi-
ate systems, it also can’t protect that data from unauthorized access.
Data is unencrypted—and therefore accessible—on each intermedi-
ate system between the endpoints.

As we saw in Figure 13-4 earlier in this chapter, any data flow-
ing from A to C is temporarily decrypted while on B. A and C can’t
depend on SSL for confidentiality, since SSL doesn’t support end-to-
end encryption. The solution is true end-to-end encryption, as illus-
trated in Figure 13-10.

��������

�������

�������� ��������

�������

Figure 13-10: End-to-End Encryption

End-to-end encryption can’t be implemented in the transport
layer. Instead, it must be implemented either within the applications
that run on Systems A and C—or better still, in standard software
libraries or hardware or software firewalls. (We’ll look at these options
in the next chapter.)

Transport Independence

The World Wide Web uses HTTP(S) over TCP/IP as its transport
protocols, but web services aren’t tied to a single transport protocol.
Since a web service might use HTTP for one exchange and SMTP or
FTP for another, it’s inappropriate to implement encryption uniquely
within each of these protocols. The solution should be moved up the
protocol stack, so that encryption is applied to web-services docu-
ments and messages rather than to the transport protocols that carry
them.

188 Loosely Coupled 189 Chapter 13: Security—The Challenges

Encrypted Storage

Because SSL only encrypts documents and messages while in transit,
those messages must be re-encrypted using another technology if
they’re to remain confidential while stored. Looking again at Figure
13-4, let’s suppose B acts as a third-party auditing web service, main-
taining a log of messages between A and C. While it’s important for
B to store copies of the messages, it may be inappropriate for B to
be able to read them. An end-to-end encryption scheme will prohibit
B from decrypting the messages, but allow it to store them in their
encrypted form.

One common mistake is to assume that storing information in
an encrypted form is the same as limiting access to that information.
Encryption is a helpful tool, but it isn’t the complete solution. If
hackers can reach your information, encryption can keep them from
reading it, but there are also two important reasons why you should
take reasonable steps to keep the hackers from getting to the infor-
mation in the first place.

First, even if they can’t exploit the encrypted information, they
might be able to do harm in other ways, just by virtue of being inside
your systems. For example, they might find a way to delete an impor-
tant document, even though they can’t read it.

Second, allowing hackers to gain the knowledge that a document
or file exists may be enough to cause you serious harm. For instance,
a personnel document may be encrypted, but if the file name hap-
pens to be the employee’s US Social Security Number, hackers can
identify employees and collect valid SSNs. (But no one would be
so foolish as to design a system that used SSNs as filenames, right?
Wrong! It happens.)

Element-Level Encryption

Because simple web services involve only two endpoints (the re-
questor and the provider), there’s no need for the individual elements
within the messages that pass between them to be encrypted individ-
ually. These web services can use SSL or a comparable transport-layer
encryption scheme, even though such a scheme has no awareness of
the structure of the data it encrypts. Transport-layer encryption in-
discriminately makes all data inaccessible to third parties. It’s a brute-

190 Loosely Coupled 191 Chapter 13: Security—The Challenges

force approach, with no way to let selected participants gain access
to some portions of a message but not to others. 13-11 illustrates a
web-service message envelope, which in turn contains a header, a body,
and (within the header or body) individual elements.

��� �����������������
����� ������������������������

��������������� �����
����� �������
��������

����� ��������
��������� ���������������
����� ��������
��������������� ��
������������ �����
�������� ��

������������
������������ �������������������
����������� ��������
����� ������������

����������
��������� �
������������ ������

�������
��������

�������
����

�������
��������

�������
������

Figure 13-11: Web-Service Message

Using SSL or another transport-layer encryption scheme, a mes-
sage such as this would be encrypted in its entirety, but only while
in transit between two nodes. This is a problem for multi-hop web
services, which often need to protect the elements or fields of web-
service messages individually. Consider the requirements of an aggre-
gated web service, as illustrated in Figure 13-12.

190 Loosely Coupled 191 Chapter 13: Security—The Challenges

�������� �������
����������

�������
����������

�����������
�������

Figure 13-12: Web-Services Message Flow

The merchant’s system creates an order such as the one shown in
Figure 13-11, and forwards it to the service aggregator. The aggrega-
tor’s system must be able to read and understand most of the mes-
sage, but there’s no reason it should have access to the consumer’s
credit-card information. The aggregator should merely forward that
data as-is to a payment-processing service. Therefore, the merchant
uses element-level encryption to keep the consumer’s credit-card data con-
fidential end-to-end, or all the way through to the payment-process-
ing service. Element-level encryption protects the individual elements
or fields within a web-services message, as illustrated in Figure 13-13.

��������������� �����
����� �������
��������

����� ��������
��������� ���������������
����� ��������
��������������� ��
������������ �����
�������� ��

������������
������������ �������������������
����������� ��������
����� ������������

����������
��������� �
������������ ������

���������

���������

�������
��������

�������
����

�������

�������

��� �����������������
����� ������������������������

�������
������

Figure 13-13: Element-Level Encryption

192 Loosely Coupled 193 Chapter 13: Security—The Challenges

The merchant encrypts the ship-to data in a manner that it can be
read by the aggregator (who perhaps handles customer service, and
therefore needs to know the shipping address), by the fulfillment ser-
vice, and by the payment processor. However, it encrypts the credit-
card data in such a way that it can be decrypted only by the payment-
processing service. The message passes through the aggregator’s sys-
tem, and can even be safely stored there in case it’s required at some
time in the future. Likewise, the aggregator forwards the message to
both the fulfillment and payment services, but only the payment pro-
cessor has access to the credit-card data.

Non-Repudiation

SSL or other transport-layer encryption schemes can be used to meet
many of the security needs of simple web services, much as they do
on the World Wide Web. But SSL has no built-in capability for non-
repudiation: proof of events, such that (for example) buyers can’t
deny placing orders, and sellers can’t deny receiving them.

The existing non-repudiation methods on the World Wide Web
have been implemented by custom applications or in some cases
using proprietary packages. The most familiar non-repudiation tech-
nique would be a printable receipt delivered as a web page, although
this isn’t particularly strong in a legal sense because it can easily be
forged. Receipts offer a degree of protection for consumers, but
most merchants simply rely on credit-card fraud detection to mini-
mize risk and absorb the cost of whatever fraud can’t otherwise be
prevented.

Some web services can get by without a non-repudiation strat-
egy. For instance, web services that don’t include commercial
transactions typically don’t require non-repudiation. If you query
Amazon.com for the price of a book, there’s no need for either you
or Amazon.com to be able to prove that the event occurred. But
many commercial transactions—even those conducted over simple
synchronous web services—require non-repudiation for the legal
protection of the business entities involved.

The techniques for establishing non-repudiation using digital
certificates are well understood, although they haven’t yet been uni-

192 Loosely Coupled 193 Chapter 13: Security—The Challenges

versally and consistently adopted. We’ll explore these solutions in the
following chapter.

Defensive Security

We can’t conclude our discussion of web-services security without
considering the vulnerability of web services to attacks, and the mea-
sures required to defend against such attacks. Although web-services
systems are susceptible to many of the same attacks as those that oc-
cur on e-commerce web sites, we’ll focus our attention on the vulner-
abilities unique to web services.

Denial of Service (DoS)

Network firewalls and other tools can be used to detect and block
DoS attacks—attempts to disable a service by flooding it with traf-
fic—at the network and transport layers. But web services are also
vulnerable to application-layer DoS attacks. It’s not enough to merely
watch for packets sent to particular ports or carrying payloads based
on one protocol or another. Web-services defensive systems must
employ application-layer logic, such as looking for sudden increases
in the number of transactions per unit time or tracking high-level
business metrics (e.g., the total dollars per hour that are processed by
a service).

Replay Attacks

Another application-layer attack is referred to as a replay attack, and
occurs when a hacker captures and then repeatedly re-submits a
transaction request. The damage can be similar to that caused by a
DoS attack, when the system rejects the forged transactions but gets
bogged down doing so. Worse still, the forged transaction may actu-
ally be accepted and acted upon. The best protections against this are
strong authentication, document or message integrity, and the unique
(and encrypted) identification of all transactions.

194 Loosely Coupled

Downgrade Attacks

Security downgrades aren’t attacks in the traditional sense, but they
pose a risk similar to that of any explicit attack. In its simplest form,
a downgrade attack occurs whenever you interact with a business
partner whose security policies or practices are less robust than
your own. Once you send data to a partner, the information is only
protected to the extent of the partner’s own security policies and
practices—even if that information is encrypted. If your partner’s
environment isn’t as secure as yours, the level of security will effec-
tively be downgraded simply by virtue of your data being shared with a
less robust partner. Furthermore, what guarantees do you have that
your partner’s security policies or practices won’t change over time?
A partner that meets your security requirements today may not do so
tomorrow.

Now consider a scenario where your data passes through a mid-
dleman or aggregator, such as illustrated in Figure 13-12. Even if you
have agreed to strong levels of authentication, encryption, and so
on, the aggregator may have far less robust relationships with other
entities with whom your data will be shared (such as the fulfillment
service or the payment processor). Again, you may be subject to a se-
curity downgrade attack, and this may occur without your knowledge
or approval.

Given all the challenges of web-servies security, perhaps it’s no won-
der it keeps IT managers up at night. As complex as this landscape
may appear, there are solutions on the horizon, and now that we’ve
detailed the security challenges for web services, we’ll turn our atten-
tion to exploring and comparing the variety of security solutions in
the chapter that follows.

