The Rule Markup Language:
RDF-XML Data Model, XML Schema
Hierarchy, and XSL Transformations*

Harold Boley

DFKI GmbH
boley@dfki.de

Abstract. Shared declarative aspects of Prolog and XML are examined.
An XML version of pure Prolog is shown to be at the center of the Rule
Markup Language. The RuleML data model uses Order-Labeled trees,
combining the RDF and XML models. As part of RuleML’s hierarchy
of sublanguages, the RuleML-Prolog DTD is developed into an XML
Schema. XSLT (XSL Transformations) is employed for practical XML-
t0-XML and XML-to-(X)HTML transformation of Prolog on the Web.

1 Introduction

The original Web enabled the distributed development, usage and maintenance of
HTML-based informal documents. The Semantic Web [BLHLO1] now attempts
to employ the same infrastructure for formal specifications or declarative pro-
grams. Besides description logic, Horn logic and Prolog have the potential to
serve as a uniform semantic and pragmatic (implementational) foundation in
this endeavor.

The potential is due to Web-based B2C and B2B business rules becoming an
important application area of the Semantic Web. This can be illustrated by a
merchant-customer exchange scenario. Suppose a customer (who can represent
a business) has preselected some merchants who can all offer a desired product.
The customer now wants to compare their discounts etc., which may be con-
ditional on the customer as well as the product, hence are best formulated as
(Horn) rules. While the merchants may use different internal formats for such
business rules, they need to translate them into a standard format to be under-
standable to the customer (or to his agent). For example, some merchant may
use the following business rule:

* T would like to thank Oskar Bartenstein, Osamu Yoshie, Ulrich Geske, and the pro-
gram committee of INAP2001 for inviting me to give this presentation. Moreover,
thanks go to this volume’s referees for valuable suggestions. I also want to express
my gratitude to Said Tabet, Benjamin Grosof, Gerd Wagner, and all other colleagues
from the Rule Markup Initiative for joining their forces on this Web standards effort.
This research was funded by the EU in the IST project Clockwork.

The discount for a customer buying a product is 5.0 percent
if the customer is premium and the product is reqular.

Internally, this merchant may express it in the Datalog subset of Prolog, thus:

discount (Customer,Product,"5.0 percent") :-
premium(Customer), regular(Product).

Another merchant may express similar discounting conditions as an SQL view.
Yet another one could use some proprietary representation.

The syntactic exchange format, however, will most likely be a version of the
Extensible Markup Language (XML) standard. Fortunately, translators between
the XML and, say, Prolog syntaxes can be defined, which can also form the basis
for semantic-pragmatic technology transfers [Bol02]. If two rule languages are
already expressed in XML, translators between them can even be based on the
standard Extensible Stylesheet Language Transformations (XSLT) technology.
In the current paper these possibilities will be exemplified using the XML syntax
of the Rule Markup Language (RuleML), Version 0.8 [BTWO01], in the following
just called ‘RuleML’. The RuleML form of the above business rule is depicted in
section 7. Similar RuleML rules are processed by the rule-applying comparison-
shopping agent RACSA [http://www.dfki.de/racsa/].

The Rule Markup Initiative [http://www.dfki.de/ruleml/] constitutes an open
network of various groups from industry and academia. Our first goal has thus
been to provide a modular system of RuleML sublanguages based on XML and
RDF. This led to the development of a novel XML-RDF-integrating Web data
model. On its basis, RuleML was initially defined with a hierarchy of DTDs,
which has been partially redefined with XML Schema. Java-based user interfaces
and engines for this RuleML definition have been developed. To facilitate rule
exchange, XSLT-based translators between RuleML and other rule languages
have been specified. For details see the initiative’s website above.

After this introduction, XML elements and attributes will be shown to corre-
spond to Prolog ground structures (section 2). Next, the RuleML data model will
be presented and illustrated via Order-Labeled trees (section 3). This then per-
mits to generically represent Herbrand terms as RuleML XML elements (section
4). Horn clauses will be similarly represented as XML elements (section 5). Pro-
log will subsequently be defined within the DTD/Schema hierarchy of RuleML
sublanguages (section 6). XSLT translators will be exemplified by a bidirec-
tional RuleML-RFML transformer and an associated HTML renderer (section 7),
followed by some conclusions.

2 XML Elements and Attributes as Ground Structures

From a Prolog perspective the expressive power of XML looks quite limited, as it
is on the level of ground structures, needing no variables. This section will show
the direct correspondence between XML elements and Prolog ground structures,
and a somewhat indirect correspondence between XML attributes and Prolog
ground structures.

XML documents consist of (nested) elements. Each element is a sequence of
the form <tag> ¢; . . . ¢y </tag>, i.e. some ordered content “c; . . . ¢y,” enclosed
by tag-‘colored’ start- and end-brackets. This content may consist of text or
again of elements. Prolog terms can represent XML elements as variablefree or
ground structures of the form tag(cy, ..., ¢n).

For example, suppose we want to mark up power formulas, in a typed manner,
as integer bases raised to integer exponents. In XML we can use a positional
representation, where a power formula consists of a base followed by an exponent;
the base and exponent can each be marked up as an integer. Thus, the power
formula 32 would be marked up as the following nested element:

<powform>
<integer>3</integer>
<integer>2</integer>
</powform>

In Prolog this corresponds to the following, more compact, ground structure
(integers and lower-case words will directly be used as constants):

powform(integer(3) ,integer(2))

Graph-theoretically, we obtain a tree with left-to-right-ordered arcs and two
kinds of nodes labeled by their types, here powform and integer, where oval
nodes are XML-like (sub)elements or RDF-like resources while rectangular nodes
are XML-like PCDATA or RDF-like literals, here 3 and 2:

powform

-

integer integer

In general, these simple XML elements and Prolog terms con-
stitute two equivalent ways of linearizing left-to-right-ordered, node-
labeled trees (with oval inner nodes and rectangular leaf mnodes
[http://www.dfki.de/ boley/xslt/xmlrdf/powformdivrootposi.gif]).

Besides elements, XML uses attributes: A start-tag can be enhanced by
n non-positional attribute-value pairs of the form a;=v;, where v; must be
a string (XML’s CDATA); in general, every element thus has the form
<tag a1=v1...0,=V,> €1 . .. ¢y </tag>. However, this can be re-represented as
the attributeless form <tag> vi...v, ¢1 . . . ¢m </tag>, where the n attribute
values become positionalized as the first n subelements. This again corresponds
to a Prolog ground structure. We can thus treat XML elements, with attributes
included, as Prolog-like terms.

A data model that better — non-positionally — captures XML attributes, as
a special case, will be developed in the following section.

3 The RuleML Data Model

Since XML-based serializations are quite verbose, a good underlying graph-
theoretical data model will be essential — for semantic formalizations, translator
and engine implementations, as well as user interfaces. This section will develop
the RuleML data model by unifying existing Web data models.

The XML and RDF communities have developed W3C recommendations
with different data models. XML is based on, possibly attributed, left-to-right
ordered, node-labeled trees, reminiscent of parse (syntax) trees, except that their
hierarchical structure permits an overlay of ’horizontal’ id/idref links. RDF
[LS99] is based on directed, arc-labeled (unordered) graphs with two kinds of
nodes, resources and literals, where the latter do not allow outgoing arcs. While
originally the intended uses of XML and RDF seemed to be sufficiently distinct
to justify two different data models, it later turned out, e.g. with the advent
of the Semantic Web [http://www.w3.0org/2001/sw/], that a unified data model
would be advantageous.

Consider the following problem with positional XML markup. While in sec-
tion 2 powform’s binary-positional convention “First subelement is base, second
subelement is exponent” seemed natural and easy to memorize, without some
kind of ‘signature declaration’ this markup could instead mean 2% according to
a “First subelement is exponent, second subelement is base” convention. Analo-
gous conventions for N-ary operators (N > 2) need to disambiguate a combina-
torially exploding number of possible interpretations. Without extra information
the positions of the 'roles’ (powform: base and exponent) of two or more subele-
ments cannot in general be uniquely determined from some such markup.

In ‘object-centered’ modeling and ‘feature’/‘frame’ logics the way out is rep-
resenting powers and other operators in a non-positional manner, making them
objects with explicitly indicated roles for their arguments. In the Frame/Horn-
logic-integrating DOOD system F-Logic [KL89], developed for RDF in TRIPLE
[SD01], our example could thus be represented as a fact:

powform[base->3:integer; exponent->2:integer].

Paralleling such an approach in RuleML, we complement XML ‘type tags’
by explicitly distinguished, RDF-like ‘role tags’ [Bol01]. Generalizing XML at-
tributes, roles will allow values that themselves contain markup. In our example
we thus use powform with _base and _exponent subelements as follows, where
a leading “_” distinguishes roles:

<powform>
<_base><integer>3</integer></_base>
<_exponent><integer>2</integer></_exponent>
</powform>

This is algebraically equivalent to the following commutative markup using the
other correctly prefixed powform-subelement permutation:

<powform>
<_exponent><integer>2</integer></_exponent>
<_base><integer>3</integer></_base>
</powform>

Graph-theoretically, the RuleML data model permits trees with unordered
arcs labeled by their roles, here base and exponent, and with the nodes intro-
duced earlier:

powform

base exponent

integer integer

Generally, for trees the branching order of (explicitly labeled) arcs is
immaterial and for markups the following equation holds:

<type>. . .<_role;>...</_role;>. . .<_roles>...</_roles>. . .</type>

<type>. . .<_rolex>...</_roles>. . .<_roley>...</_roley>. . .</type>

RDF-like role-prefixed and XML’s positional children can be easily combined,
obtaining our basic RDF-XML integration of Order-Labeled (OrdLab) Trees.

For example, suppose we want to combine the markup of a power sequence
a',...,a™ with the marked up formula showing its base a and highest exponent
(length) n. For the sequence 3,9 combined with the formula 3? we obtain the
following markup (like RDF, we allow an object, e.g. 3, to have multiple types,

e.g. rational and integer):

<powseqform>
<rational>3</rational>
<rational>9</rational>
<_base><integer>3</integer></_base>
<_exponent><integer>2</integer></_exponent>
</powseqform>

Graph-theoretically, positional children become left-to-right-ordered arcs, here
targeting the rationals 3 and 9, while role children become labels on unordered
arcs, here targeting the integers 3 and 2 (emphasized by different kinds of
arrows for ordered and labeled arcs):

powseqform

rational rational integer

By the nature of unordered children/arcs, in the example they could also be
internally permuted and/or put before the sequence of ordered children/arcs.
In a generalized F-Logic this could be represented as the fact

powseqform[3:rational, 9:rational;
base->3:integer; exponent->2:integer].

and

) W,
’

where the ‘ordered infix’ “,” has precedence over the ‘unordered infix
the ordered sequence is connected with “-~>” pairs via “;”.

A startrole (endrole) normal form can be defined for OrdLab trees, their
markups, and generalized F-Logic, where all role children are put before (after)
the positional children and are ordered lexicographically according to their role
names; for the empty sequence of positional children the startrole and endrole
normal forms coincide. Thus, the previous OrdLab, markup, and F-Logic ver-
sions of the “32” example are both in startrole and endrole normal form; the
above versions of the “3,9;32” example are in endrole normal form.

4 General Herbrand Terms as XML Elements

The RuleML data model can be used to represent general Herbrand terms by
combining — in prefix or postfix form — one role child for the constructor with n
positional children for the arguments. While section 2 re-represented XML ele-
ments as Prolog ground structures, the current section thus generically encodes
Prolog’s Herbrand terms as XML elements, using the RuleML data model of
section 3.

The representation of Herbrand terms (individual constants, logic variables,
and structures) in RuleML XML requires, in essence, the use of ind, var, and
cterm elements, where the occurrence of a structure or complex term distin-
guishes Prolog from Datalog.

Proceeding by example here, the Prolog ground structure
undersea—-connection(britain,france) in RuleML becomes a cterm el-
ement with a role (unordered) subelement _opc for the functor/constructor
of type ctor and two sequential (ordered) subelements for its argument terms,
here two individual constants of type ind:

<cterm>
<_opc><ctor>undersea-connection</ctor></_opc>
<ind>britain</ind>
<ind>france</ind>

</cterm>

This RuleML cterm markup can be visualized as an OrdLab tree as introduced
in section 3:

cterm
ope,
ctor ind | ind
undersea- iy
iAo britain| |france

The single unordered arc is no problem, of course; it could have equivalently be
drawn on the right-hand side of the two ordered arcs.

Lists — as they are used, e.g, in Prolog — could be reduced to
nested (cons-)structures, but are directly represented as n-tuples in RuleML
[http://www.dfki.de/ruleml/dtd /0.8 /ruleml-hornlog.dtd].

In RuleML, a logic variable is marked through a var element of the form
<var> ... </var>. Thus, the Prolog variable Xyz becomes the XML element
<var>xyz</var>, whereby the var markup makes conventions like first-letter
capitalizing superfluous.

Hence, a (not variablefree, i.e.) non-ground structure such as Prolog’s
undersea-connection(britain,Xyz) can be written in RuleML as the follow-
ing element (we now put the constructor-role subelement after the two argument-
sequence subelements):

<cterm>
<ind>britain</ind>
<var>xyz</var>
<_opc><ctor>undersea-connection</ctor></_opc>
</cterm>

Visualizing this as an OrdLab tree gives us (with the unordered arc now drawn
on the right-hand side):

cterm
opc
ind + var ctor
o undersea-
|br1tam| | xyz | connection

Note that the ground OrdLab and markup example is in startrole normal
form; the non-ground example is in endrole normal form.

The unification of Prolog terms (in RuleML) can be rendered as the unifi-
cation of OrdLab trees, their markups, or generalized F-Logic facts, which can
retain ‘linearity’ via a possible 1-step swap into either startrole or endrole nor-
mal form. For the above sample pair of ground and non-ground structures this
binds <var>xyz</var> to <ind>france</ind>

5 Horn Clauses as XML Elements

The RuleML data model can also be used to represent Horn clauses by combining
— in either order — a role child for the clause head with an optional role child
for the clause body. This section will develop corresponding XML elements for
Horn facts and rules with a Datalog example.

The representation of Horn clauses (facts and rules) in XML calls for further
elements. A predicate or relation symbol will in RuleML be a rel element. The
application of an _opr-role-embedded relation symbol to a sequence of terms
is marked by an atom element in RuleML. For example, a travel application
travel (john,channel-tunnel) to two individual constants will thus be

<atom>
<_opr><rel>travel</rel></_opr>
<ind>john</ind>
<ind>channel-tunnel</ind>
</atom>

Moreover, a Horn fact in RuleML is asserted as a fact element that possesses
exactly one subelement —the _head-role-embedded atom element. In the example,
the Prolog fact

travel (john,channel-tunnel).
becomes

<fact>
<_head>
<atom>
<_opr><rel>travel</rel></_opr>
<ind>john</ind>
<ind>channel-tunnel</ind>
</atom>
</ _head>
</fact>

Finally, a RuleML imp element is required to represent Horn rules.
A relation call is again written as an atom element. The carry call
carry(eurostar,Someone), with an individual constant and a logic variable,
becomes

<atom>
<_opr><rel>carry</rel></_opr>
<ind>eurostar</ind>
<var>someone</var>

</atom>

A Horn rule, then, in RuleML is asserted as an imp element that has two
subelements — a _head-role atom element augmented (either to its right or left)
by a _body-role atom or and element. The above fact example is thus generalized
to the Datalog rule
travel (Someone,channel-tunnel) :- carry(eurostar,Someone).
and rewritten in RuleML as
<imp>

<_head>
<atom>
<_opr><rel>travel</rel></_opr>
<var>someone</var>
<ind>channel-tunnel</ind>
</atom>
</_head>
<_body>
<atom>
<_opr><rel>carry</rel></_opr>
<ind>eurostar</ind>
<var>someone</var>
</atom>
</_body>
</imp>

Graph-theoretically, RuleML clauses are again OrdLab trees, as illustrated for
this rule:

imp

opF,

rel var var

ind rel ind
|trave1| |someone| ﬁ}llnan“glel' | canyl |eurostar| |S0me0ne|

We could proceed to a full Prolog rule — both in the RuleML markup and in
the OrdLab tree — by replacing the individual channel-tunnel with the ground
undersea-connection cterm from section 4.

A Horn logic subset of RuleML — the pure Prolog in our XML syntax that
was up to now introduced by examples — will be precisely defined in section 6.

6 Prolog in the DTD/Schema Hierarchy of RuleML

The XML DTD/Schema definition of RuleML can be viewed as syntactically
characterizing certain semantic expressiveness subclasses of the language. This
section will focus on the subclasses of Datalog and — on top of it — Prolog
(actually, Horn logic).

RuleML has been modularized through a hierarchy of rule sublanguages, en-
compassing derivation rules (Prolog-like clauses), transformation rules (function-
defining equations), and reaction rules (Event-Condition-Action rules). The fol-
lowing sublanguage hierarchy focusses on the 12 sublanguages of derivation rules
that together constitute the modularized basic RuleML definition. All sublan-
guages except the 'UR’ (URI) group correspond to well-known rule systems
where each sublanguage has an associated semantic (model- and proof-theoretic)
characterization [BTWO01] (more expressive sublanguages are closer to the root):

derivation rules

ur-equalog Rooted DAG will be extended with

\3 branches for firrther sublanguages
cqialog

ur-hornlog

ur-datalog ~ homlog

I ur-datalog =
Join(ur,datalog)
datalog
-_—""?--_
ur urc-datalog bin-datalog
URL/URI-like - .
‘ur-objects urc-bin-datalog RDF-like rules
urc-bin-data-lground- log
urc-bin-data-lground-faot RDF-like triples

In sections 4 and 5 we introduced RuleML’s ‘hornlog’ sublanguage based on
examples. XML also permits the general definition of this language via Document
Type Definitions (DTDs) or, more expressively, XML Schemas [Fal01].

Actually, each node in the above hierarchy, e.g. ‘hornlog’, corresponds to a
DTD/Schema that defines the syntax of this sublanguage: instance documents

— knowledge bases — can then refer to the most specific DTD/Schema to max-
imize interoperability. Non-leaf nodes are composed of the — possibly modified
— node(s) reachable via their outgoing link(s) below plus possibly some extra
definition parts. For example, ‘hornlog’ is composed of a — slightly modified —
‘datalog’ plus complex terms; ‘datalog’ itself contains ‘bin-datalog’, etc.

Let us first exemplify the DTD-to-Schema transition via the two initial DTD
lines of ‘datalog’ and their — quite a bit longer — Schema transcriptions. A
rulebase root element with imp rules and fact assertions as subelements, or
the (EBNF-like) DTD line

<!ELEMENT rulebase ((imp | fact)*)>

along with imp rules consisting of — in any order — a conclusion role _head and
a premise role _body, or the DTD line

<!ELEMENT imp ((_head, _body) | (_body, _head))>

become the following Schema, with the DTD’s _head/_body-sequence permuta-
tion becoming the Schema’s xsd:all set:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="rulebase">
<xsd:complexType>
<xsd:choice minOccurs="0" max0Occurs="unbounded">
<xsd:element name="imp" type="impType"/>
<xsd:element name="fact" type="factType"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="impType">
<xsd:all>
<xsd:element name="_head" type="_headType"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="_body" type="_bodyType"
minOccurs="1" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>

</xsd:schema>
The remaining essential lines of the ‘datalog’ DTD,

<!ELEMENT _head (atom)>

<!ELEMENT _body (atom | and)>

<'ELEMENT and (atom*)>

<!ELEMENT atom ((_opr, (ind | var)*) | ((ind | var)+, _opr))>

can likewise be quite straightforwardly transcribed to XML Schema
[http://www.dfki.de/ruleml/inxsd0.8.html]. For example, the atom line in XML
Schema becomes

<xsd:complexType name="atomType">
<xsd:choice>
<xsd:sequence>
<xsd:element name="_opr" type="_oprType"/>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="ind" type="indType"/>
<xsd:element name="var" type="varType'"/>
</xsd:choice>
</xsd:sequence>
<xsd:sequence>
<xsd:choice maxOccurs="unbounded">
<xsd:element name="ind" type="indType"/>
<xsd:element name="var" type="varType'"/>
</xsd:choice>
<xsd:element name="_opr" type="_oprType"/>
</xsd:sequence>
</xsd:choice>
</xsd:complexType>

The ‘hornlog’” DTD can now be composed from the ‘datalog’ DTD using
conditional DTD parts via INCLUDE/IGNORE switches. Essentially, we thus ob-
tain a choice-extended atom line plus an extra cterm (cf. section 4) line, as
still employed for RuleML [http://www.dfki.de/ruleml/dtd/0.8/ruleml-hornlog.dtd]
(here without tup lists etc.):

<!ELEMENT atom ((_opr, (ind|var|cterm)*) | ((ind|var|cterm)+, _opr))>
<!ELEMENT cterm ((_opc, (ind|var|cterm)*) | ((ind|var|cterm)+, _opc))>

But we are currently investigating in XML Schema the issue of modular-
ization/composition mechanisms better than conditional DTD/Schema parts,
possibly involving xsd:redefine. In the ‘datalog’ Schema, if xsd:all groups
would permit complex content (unfortunately, they currently do not), then the
above sequence-permuting xsd: choice group for atoms could be rewritten thus:

<xsd:complexType name="atomType">
<xsd:all>
<xsd:element name="_opr" type="_oprType"
minOccurs="1" maxOccurs="1"/>
<xsd:sequence minOccurs="1" maxOccurs="1">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="ind" type="indType"/>
<xsd:element name="var" type="varType"/>
</xsd:choice>
</xsd:sequence>
</xsd:all>
</xsd:complexType>

We would then require that xsd:redefine permit (which it currently does not)
choice-extending the embedded sequence to

<xsd:sequence minOccurs="1" maxOccurs="1">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="ind" type="indType"/>
<xsd:element name="var" type="varType"/>
<xsd:element name="cterm" type="ctermType"/>
</xsd:choice>
</xsd:sequence>

for maximum inheritance in the ‘hornlog’ Schema.

7 XSL Transformations from and to RuleML

It is well-known that intertranslating between every pair of languages leads to
growth of the number of translators quadratic in the number of languages, while
selecting one as the canonical language keeps growth linear. Applying this to
XML-based rule languages, this section proposes RuleML as the canonical one
and presents the first pair of translators.

XSLT (XSL Transformations) [Cla99] has been employed for practical XML-
to-XML and XML-to-(X)HTML transformation of RuleML Prolog on the Web.

The example discussed here consists of XSLT translators between the
Horn-logic subsets of RuleML and RFML (Relational-Functional Markup Lan-
guage) [http://www.relfun.org/rfml/]. We have specified a pair of ‘inverse’ trans-
lators (‘stylesheets’) exporting/importing markup between RuleML and RFML,
where only the logic part is needed for Prolog [http://www.relfun.org/ruleml/rfml-
ruleml.html]:

ruleml2rfml.xsl: Stylesheet translates a Hornlog RuleML rulebase to a corre-
sponding RFML program: its RuleML input analysis can be transferred to
other “RuleML — XML-rule-language” translators.

rfml2ruleml.xsl: Stylesheet translates a Hornlog RFML program to a corre-
sponding RuleML rulebase: its RuleML output generation can be transferred
to other “XML-rule-language — RuleML” translators.

The two XML-to-XML stylesheets are quite different, since RFML — like
normal Prolog — is positional while RuleML is role-based.

As an example let us consider a transformational roundtrip (and an HTML
digression) starting and ending at the sample RuleML Datalog business rulebase
for discounting [http://www.dfki.de/ruleml/exa/0.8/discount.ruleml]. We focus on
its first rule, discussed in the introduction (section 1). This is marked up in
RuleML as follows (an individual constant can syntactically be an entire phrase
like ”5.0 percent”):

<rulebase>
<imp>
<_head>
<atom>
<_opr><rel>discount</rel></_opr>
<var>customer</var>
<var>product</var>
<ind>5.0 percent</ind>
</atom>
</_head>
<_body>
<and>
<atom>
<_opr><rel>premium</rel></_opr>
<var>customer</var>
</atom>
<atom>
<_opr><rel>regular</rel></_opr>
<var>product</var>
</atom>
</and>
</_body>
</imp>

</rulebase>

Via ruleml2rfml, this markup is transformed to the following RFML markup
(except that additional whitespace has been inserted here):

<rfml>
<hn>
<pattop>
<con>discount</con>
<var>customer</var>
<var>product</var>
<con>5.0 percent</con>
</pattop>
<callop>
<con>premium</con>
<var>customer</var>
</callop>
<callop>
<con>regular</con>
<var>product</var>
</callop>
</hn>

</rfml>

Via rfml2ruleml, this result is transformed back to the original RuleML
version (again except for whitespace handling).

As a digression from the roundtrip, the RFML version, via the XML-to-
HTML stylesheet rfmlsp [http://www.relfun.org/rfml/rfmlsp.xsl], leads to a font-
and-color-coded HTML Prolog version, rendered in a browser as follows (the
first line is our sample rule):

| Netscape: Reltun KB for discountote.___ MEE

File Edit View Go Caommunicatar Help

€ = 3 & =2 $ & @ W
Back Forward Reload Home Search MNetscape Print Security Shop Siop

| ™ Bookmarks i Location: fhttp //vwv. relfun. org/rulenl/discount. htnl /| @57 wnars Related

discount({_customer, product,5.0 percent) :— premium{_customer), regular(product).

discount(_customer, _product,7.5 percent) :— premium(_customer), luxury(_product).

premium(_custorner) : - spending(_customer, min 5000 euro, previous year).

luxury(Porsche).

regular(Honda) .

spending(Peter Miller, min 5000 euro, previous year) .

& [o0 I 1% % ap @ 2
Using something like “File | Save As... | Text”, an ASCII Prolog ver-

sion can be obtained, which permits space-separated phrases as constant sym-
bols.

The inverse transformation of (ordinary) ASCII Prolog to RFML markup,
hence to RuleML, requires a separate parser/generator as (Lisp-)implemented
in Relfun [http://www.relfun.org/]: there are no ASCII-to-XML stylesheets.

Exporting from RuleML: With the example in mind, let us now inspect
our XML-to-XML stylesheets in some more detail, starting with the two initial
transformation rules of rulem12rfml.

The first stylesheet rule (‘template’) matches the document root “/” followed
by a rulebase element; it ‘recursively’ maps (‘applies’) all matching templates
to all rulebase subelements and generates an rfml element from the result:

<!-- process rulebase and position fact/imp transformers -->
<xsl:template match="/rulebase">
<rfml>
<xsl:apply-templates/>
</rfml>
</xsl:template>

The second template matches a fact element, does apply-templates over
its _head in mode pattop (for RFML’s operator patterns), and generates an hn
element from the result:

<!-- process fact, transforming it to hn clause without premises -->
<xsl:template match="fact">
<hn>
<xsl:apply-templates select="_head" mode="pattop"/>
</hn>
</xsl:template>

Importing to RuleML: We now also look at the two initial transformation
rules of rfml2ruleml.

The first template is the exact ‘inverse’ of the first rulem12rfml template:

<!-- process rfml program and position hn transformer -->
<xsl:template match="/rfml">
<rulebase>
<xsl:apply-templates/>
</rulebase>
</xsl:template>

The second template matches an hn element, and, for the fact case, expects
one child; a fact element with a _head role is generated from the result of an
apply-templates over the pattop:

<!-- process hn clause, that is a fact, ... -->
<xsl:template match="hn">
<xsl:choose>
<xsl:when test="count(child::*)=1">
<fact>
<_head>
<xsl:apply-templates select="pattop"/>
</ _head>
</fact>
</xsl:when>

</xsl:choose>
</xsl:template>

XML comments also explain the other important XSLT-template
rules in both stylesheets. The XSLT-stylesheet engines used for the
translations were Xalan [http://xml.apache.org/xalan-j/] as well as Cocoon
[http://xml.apache.org/cocoon/].

8 Conclusions

This paper has prepared semantic-pragmatic XML-Prolog transfers using the
XML syntax. In particular, an XML-RDF-integrating data model was used as the
basis for DTD and XML Schema definitions of Prolog on the Web. Meanwhile,
a new foundation for the WWW and the Semantic Web has been proposed on
the basis of a related XML-RDF-integrating data model [PSS02].

The current paper has also started these semantic-pragmatic transfers in
the XML-to-Prolog direction by specifying (semantics-preserving) XSLT-based
translators between RuleML and RFML. It is now possible to build and ex-
change Prolog knowledge bases on the Web (using Web technologies). The online
RACSA application [http://www.dfki.de/racsa/] can be viewed as a start.

We have thus also demonstrated the practical use of W3C technologies such
as DTDs and XML Schema as well as XSLT. On the other hand we have hinted
at a few problems with the current version of XML Schema (1.0), hoping that
a more expressive version will be available in the future (maybe aligned with
RELAX NG [http://www.oasis-open.org/committees/relax-ng/]). Functional and
logic programmers may also have wondered whether the XSLT-based translators
could be specified more concisely in a future version of XSLT. Perhaps XQuery
[bttp://www.w3.org/ TR /query-semantics/] can act as an incentive towards formal
semantics of XML queries and transformations.

Corresponding transfers in the Prolog-to-XML direction have already started
with Mandarax/Oryx, j-DREW, and other RuleML engines based on Prolog
technology [http://www.dfki.de/ruleml/#Engines]. It may also be useful to imple-
ment (orthogonalized versions of) XML Schema, XSLT, etc. in (RuleML and)
Prolog to explore the limits of expressiveness that can be realized formally and
efficiently. A side-effect of this work could be translators between the XML syn-
tax and a more concise Prolog syntax for W3C languages such as XML Schema
and XSLT.

References

[BLHLO1] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web: A
New Form of Web Content that is Meaningful to Computers Will Unleash
a Revolution of New Possibilities. Scientific American, 284(5):34-43, May
2001.

[Bol01l] Harold Boley. A Web Data Model Unifying XML and RDF. Draft
http://www.dfki.de/ boley /xmlrdf.html, September 2001.

[Bol02] Harold Boley. Cross-Fertilizing Logic Programming and XML for Knowledge
Representation. In Rolf Griitter, editor, Knowledge Media in Healthcare:
Opportunities and Challenges, pages 38-56. Idea Group Publishing, Hershey,
London, Melbourne, Singapore, Beijing, 2002.

[BTWO01] Harold Boley, Said Tabet, and Gerd Wagner. Design Rationale of RuleML: A
Markup Language for Semantic Web Rules. In Proc. Semantic Web Working
Symposium (SWWS’01), pages 381-401. Stanford University, July/August
2001.

[Cla99]
[Fal01]

[KL8Y]

[LS99]

[PSS02]

[SDO1]

James Clark. XSL Transformations (XSLT) Version 1.0. Recommendation
REC-xslt-19991116, W3C, November 1999.

David C. Fallside. XML Schema Part 0: Primer. Recommendation REC-
xmlschema-0-20010502, W3C, May 2001.

Michael Kifer and Georg Lausen. F-Logic: A Higher-Order Language for Rea-
soning about Objects, Inheritance, and Scheme. In James Clifford, Bruce G.
Lindsay, and David Maier, editors, Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data, pages 134-146, Portland,
Oregon, 31 May-2 June 1989.

Ora Lassila and Ralph R. Swick. Resource Description Framework
(RDF) Model and Syntax Specification. Recommendation REC-rdf-syntax-
19990222, W3C, February 1999.

Peter F. Patel-Schneider and Jérome Siméon. Building the Semantic Web on
XML. In Ian Horrocks and James A. Hendler, editors, The Semantic Web —
ISWC 2002, First International Semantic Web Conference, pages 147-161,
June 2002.

Michael Sintek and Stefan Decker. TRIPLE—An RDF Query, Inference, and
Transformation Language. In Dietmar Seipel, editor, Deductive Databases
and Knowledge Management (DDLP’2001), October 2001. Workshop in the
Stream “Content Management” of INAP2001.

