
Business rule evolution and measures of business rule evolution

Liwen Lin, Suzanne Embury and Brian Warboys
Department of Computer Science

The University of Manchester
Oxford Road, Manchester, United Kingdom

{l.lin, suzanne, brian}@cs.man.ac.uk

Abstract

There is an urgent industrial need to enforce the changes
of business rules (BRs) to software systems quickly, reliably
and economically. Unfortunately, evolving BRs in most ex-
isting software systems is both time-consuming and error-
prone. In order to manage, control and improve BR evo-
lution, it is necessary that the Software Evolution commu-
nity comes to an understanding of the ways in which BRs
are implemented and how BR evolution can be facilitated
or hampered by the design of software systems. We suggest
that new software metrics are needed to allow us to measure
the characteristics of BR evolution and to help us to explore
possible improvements in a systematic way. A suitable set of
BR-related metrics will help us to discover the root causes
of the difficulties inherent in BR evolution, evaluate the suc-
cess of proposed approaches to BR evolution and improve
the BR evolution process as a whole.

1. Introduction

A Business Rule (BR) is “a statement that defines or
constrains certain aspects of a business” [13]. For exam-
ple, a car rental company may have such a BR – each rental
car must be serviced every 10,000 kilometres. BRs are ma-
jor factors that affect the competitive of a business and they
are therefore subject to frequent and unpredictable changes;
these changes in turn lead to changes in the software sys-
tems that enforce the BRs.

However when software systems are large and complex,
making changes to the BRs they implement can be too ex-
pensive and risky to be worth the attendant benefits. Thus
the owners of such systems are discouraged from making
changes to their BRs. In order to make evolution of BRs
easier, we need to make substantial progress in understand-
ing the characteristics of BR implementations and under-
standing how BR evolution is facilitated or hampered by

the design features of the systems in which they are imple-
mented.

One way to approach these issues is to use software met-
rics to precisely characterise the process of evolution for
BRs. In particular, we could try to derive a relationship be-
tween different approaches to BR implementation and their
attendant difficulties in evolution. Thus, we can deepen our
understanding of how different software architectures can
support BR evolution, and of what it is that makes BR evo-
lution so difficult. This would then allow us to propose more
effective solutions than those which currently exist. And,
in addition to these benefits, BR-specific software metrics
could be used to quantify the strengths and weaknesses of
any proposed approaches, and thus allow us to make in-
formed choices between them.

While many generic software metrics exist (e. g. com-
plexity metrics, coupling/cohesion metrics [12]), there are
few that are tailored specifically at the measurement of BRs.
It seems likely however that some of the existing metrics
can be adapted to our purposes. For example, it might be
possible that traditional measures of software complexity
can be used to measure some aspects of the complexity of
BR implementations. But other aspects of BRs, such as
the complexity of BR representation and effort required to
evolve a BR, will not be clearly defined by existing metrics,
and we therefore suggest that there is a need to define a new
set of metrics, preferably agreed upon by a significant part
of the business rule community, in order to allow us to cap-
ture the data on the characteristics of BR evolution that is
needed in order to support further progress in this area.

In the remainder of this paper, we will describe the chal-
lenge of BR evolution and emphasise the importance and
potential benefits of a systematic study into BR evolution.

2. The challenge of BR evolution

The challenge for BR evolution is to be able to support
unforeseen changes to BRs quickly, economically and reli-
ably. Unfortunately, in reality, the process of evolving BRs

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

is both time-consuming and error-prone [11]. For example,
BRs are typically implemented in both application modules
and in database structures, and are scattered throughout the
source code of many application modules. The form of
the BR is lost during the translation to conventional object-
oriented or procedural software. What was once a concise
and declarative statement of business behaviour is converted
into a set of programming instructions, which are spread
widely throughout the application and which have no eas-
ily discernable connection to one another. Indeed, it is not
even easy to decide which lines of code are part of a BR
implementation, once the translation has been made, and
the documentation which would preserve this information
rarely exists.

Consequently, such BR implementations are difficult to
modify and keep consistent. Moreover, when implemen-
tation of some BRs are scattered across several program
units, the process of evolving these rules requires not only
changes to the program units that implement them but it
may also require changes to other program units that inter-
face with these program units. When the system is badly
designed or long-lived, most program units may be related
to each other in some way; the consequence is that it be-
comes impossible to evolve BRs without restructuring large
parts of the system. The expense of such a change can be
prohibitive.

2.1 The contemporary approaches

One widespread approach to improving the evolvability
of BRs is to “externalise” their implementation from the ap-
plications that depend upon them. Over the past 30 years,
several technologies and tools have been proposed which
aim to do just this. These include integrity constraints in
database systems [21], triggers in active database systems
[17], constraints in object-oriented systems (e.g. coordina-
tion contracts [2, 3] and IBM’s Accessible Business Rules
(ABR) [14]), expert systems (e.g. OPS5 [8] and CLIPS
[19]), and knowledge-based inference engines (e.g. ILog
JRules [16], CommonRules [15], and Versata Logic Server
[22]).

The common feature of all these technologies is that BRs
are managed and enforced through some centralised rule
management facility. BRs are given to the system as self-
contained units (whether as declarative integrity constraints
or procedural descriptions of condition-action rules) and the
rule manager takes over the task of checking the actions of
the system against the current set of BRs.

With such an approach, it is relatively easy to locate the
rules that need to be changed and to discover what rules
the system is currently enforcing. One needs only to exam-
ine the central rule repository. The rule management sys-
tem will also offer facilities for deleting existing rules and

adding news ones. These technologies can therefore claim
to make BRs much easier to implement and evolve than if
BRs are implemented directly in the source code of appli-
cation programs.

2.2 Limitations of the contemporary approaches

these above mentioned technologies, however, can pro-
vide only a partial solution to the BR evolution problem,
and they have some new disadvantages of their own. Most
of these technologies are only suitable for use with re-
stricted types of BRs. For example, rule engines implement
their rules as a set of mid-tier services in software appli-
cations, using a special procedural rule language that re-
quires the programmer to embed calls to the rule manager
at appropriate points in the processing. This approach is
suited only to certain forms of inference and data derivation
rule. Worse still, the need to embed calls to the rule man-
ager means that rules are not completely externalised, and
much code may need to be examined and modified when
BRs change. It also suffers from the disadvantage that such
engines cannot easily be grafted onto an existing software
system (especially a database-oriented application). To take
another example, triggers in active database systems can be
used to implement BRs that apply to the elements and val-
ues of the database. Due to the limitations of existing trig-
ger languages, it is not possible to implement all BRs in this
manner. In addition, even when complex BRs can be imple-
mented by the trigger language, the result is often a large set
of highly complicated triggers, which can be challenging to
understand and evolve in their own right [10].

In addition to the above limitations, this group of tech-
nologies suffers from performance problems when rules are
complex or when the rule set as a whole is large [10, 20].
These problems are so severe that they can be seen as the
principal reason why companies have not adopted technol-
ogy such as triggers and rule engines as widely as might
have been hoped. The most important (and often the most
volatile) BRs are concerned with key aspects of how the
company which enforces them does its business. Poor per-
formance cannot be tolerated in the parts of the system
where speed of transaction processing translates into in-
come for the company.

Finally, while these technologies can help to make BR
evolution less error prone, they do not solve the problem
completely - especially when rule sets are large. For in-
stance, when introducing a new rule, developers still have
to detect and locate possible conflicts between the new rule
and the existing rules, something that can be a difficult task
given the size of typical rule sets and the current paucity of
software support. At the moment, the only support for con-
flict resolution that is provided by rule management tech-
nology is based on assigning priorities to rules. For exam-

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

ple, in active databases conflict resolution is limited to hard-
coded rule ordering or numeric priorities [1], while CLIPS
tag rules with specific priorities such as low, medium or
high [19]. Ironically, such priority mechanisms typically
mean that rules sets are even harder to evolve, as the com-
plex interactions between rules at different priority levels
are even more difficult to predict correctly.

While externalisation of rules and centralisation of rule
management is an interesting and worthwhile avenue for
exploration, there is clearly still scope for improvement.
However, the most significant barrier in the way of such
improvement is our lack of understanding of the factors that
make BR evolution so difficult. Previous work has been
based on intuitions and guesses about the problem, rather
than on any systematic study of the real causes of errors
and difficulties inherent in the process. Nor do we really
understand how the architecture and design of a software
system can facilitate or hamper the evolution of BRs. If
we can make substantial progress with these issues, then
research effort expended on developing tools and methods
to manage and control BR evolution is more likely to yield
significant benefits.

3 Measures of BR evolution

In the previous section, we have drawn attention to the
following questions: how can we discover the root prob-
lems underlying BR evolution? How can we discover the
relationships between the characteristics of BR implemen-
tations and the difficulties inherent in the evolution of BRs?
Can we elicit an understanding of how software design
structures constrain or enable BR changes?

One way to approach these questions is to use software
metrics to measure the detailed aspects of the BR evolution
process. For example, we might measure the complexity
of the rule to be evolved, the fragmentation or dispersal of
its code during its implementation or the degree of struc-
ture imposed on its implementation. Or, we might measure
aspects of the process itself, such as the effort required to
locate and evolve a business rule, or the number of errors
introduced by the modification.

3.1 Benefits of measuring BR evolution

Measuring the characteristics of BR evolution through
empirical studies will enable us to formulate and test new
hypotheses about the root causes of BR evolution problems.
For example, we are currently engaged in a study of the de-
gree and effects of fragmentation of BRs during implemen-
tation. By fragmentation of a rule, we mean the separation
of the initial high-level rule statement into the fragments
that will be embedded into the various application programs
and code modules, and then the further separation of these

fragments into individual lines of code scattered throughout
them. Clearly, different approaches to the implementation
of a BR will result in different degrees of fragmentation for
that rule. We hypothesise that the greater degree of frag-
mentation of BR implementation, the more effort is required
to evolve the BR.

Using the GQM/MEDEA approach [5, 6, 7], we have
derived and selected several software metrics to measure
the fragmentation of a BR implementation and the effort
required to evolve it. We are now undertaking an empiri-
cal study to collect data relating to these two aspects of BR
evolution, and are looking for evidence of a relationship be-
tween them. Discovering the root problems of BR evolution
in this way will enable us to propose new tools that can help
programmers to control, or at least mitigate the bad effects
of, these problems. Other than that, through quantitative
measurement of those characteristics of BR implementation
which cause difficulties, we can evaluate the strengths and
weaknesses of various BR implementation technologies and
compare them on a more systematic basis. As a result, we
can choose the best technology to implement BRs in a way
that meets our evolution needs.

For example, one factor of software systems that inhibits
BR evolution is the cost and difficulty of restructuring exist-
ing software systems to adapt to dramatic changes in BRs,
such as when a new set of government regulations is is-
sued or the company embarks on a completely new way
of doing business (e.g. through e-commerce). The ques-
tion that arises is whether we can adapt existing proposals
for more flexible software architectures for software evolu-
tion, such as ArchWare [4], FLEXX [18], and DESEL [9]
projects to improve support for BR evolution. These ar-
chitectures aim to support the design and development of
evolvable software systems, but we do not know as yet how
far they can solve the specific problems inherent in the evo-
lution of BRs. Without a more detailed understanding of
these problems, we cannot determine how far such frame-
works are helpful in promoting more evolvable BR imple-
mentation approaches.

3.2 Difficulties of using metrics in BR evolution

In considering BR evolution, we must remember that it
is not sufficient to take a short-term view of improving the
evolution capabilities of our systems. What is highly evolv-
able for the current set of BRs may be extremely cumber-
some to change in the light of the BRs being enforced in
future versions of the system. What is required is a contin-
uous approach to the improvement of the software system’s
ability to support BR evolution. However, such an approach
would rely heavily on the collection and monitoring of soft-
ware metrics relating to the implementation and evolution
of BRs. Such a facility would exploit software measure-

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

ments to identify where evolution is required, which tech-
nology is most appropriate for use at that stage, select alter-
native BR structures for promoting continuous BR evolu-
tion and even evolve the evolution process itself to improve
the reliability, efficiency and accuracy of BR evolution.

For all these reasons, therefore, it would appear that an
agreed set of software metrics describing the various as-
pects of BR implementation and evolution would be of great
value to researchers investigating the BR evolution prob-
lem. Unfortunately, however, it is not at all easy to measure
the characteristics of BR evolution. The difficulties that at-
tend metrics research in general would apply equally to any
BR-specific efforts. For example, the measures of BR evo-
lution would involve quantifying some attributes that de-
pend on human behaviour and capabilities which cannot be
controlled and measured easily. A classic example of such a
metric would be the effort required to evolve a BR. Further-
more, many other aspects of BR evolution are very difficult
to define precisely. For example, it is in practice non-trivial
to define a notion of the complexity of a BR in a succinct
and measurable way.

3.3 The next step

Although a large number of software measures have been
proposed in the literature, their applicability to the specific
problem of BR evolution is still in doubt. For example, can
we use traditional software complexity metrics to measure
the complexity of a BR implementation? How far do such
metrics reflect our intuition about what makes a BR imple-
mentation complex or not? In addition, many software met-
rics have never been subjected to empirical validation, thus
their credibility is undermined [7, 12]. Consequently, fur-
ther study on metrics for BRs will be necessary, including
the following elements:
(1)Provide a clear rationale of the definition of characteris-
tics of BR evolution and the measures for these characteris-
tics.
(2) Use of software metrics in a language independent way
is essential so that measurement results using different lan-
guages are comparable.
(3) Realistic case studies are essential to investigate and val-
idate applicable measures that capture attributes of BR evo-
lution in a quantitative way.

4 Conclusion

The inability of current software systems to adapt to
(largely unpredictable) changes to BRs presents an un-
solved challenge for researchers in software evolution. Al-
though substantial research has been carried out in this con-
text, the results of this research provide only a partial solu-
tion to the problem, along with new sets of disadvantages

to be overcome. In this position paper, we have proposed
that new software metrics are needed to help us charac-
terise the real problems inherent in BR evolution, in order
to deepen our understanding of the way in which BR evo-
lution is helped or hindered by software systems. With this
increased understanding, we can propose new approaches to
supporting BR evolution and can evaluate and compare the
relative strengths and weaknesses of existing approaches in
a more systematic way.

References

[1] A. S. Abrahams. Developing and executing electric com-
merce applications with occurrences. PhD Thesis, the Uni-
versity of Cambridge, Cambridge, 2002.

[2] L. Andrade, J. L. Fiadeiro, and M. Wermelinger. Enforc-
ing business policies through automated reconfiguration. In
proceedings of automated software engineering (ASE 2001),
M. Feather, M. Goedicke (eds), San Diego, USA, pages 426–
429, November 2001.

[3] L. F. Andrade and J. L. Fiadeiro. Coordination: the evolu-
tionary dimension. In Proceedings of technology of object-
oriented languages and systems, TOOLS Europe 2001, W.
Pree (ed), Zurich, Switzerland, pages 136–147, March 2001.

[4] ArchWare. http://www.arch-ware.org/project.htm, 2002.
[5] V. R. Basili, C. Caldiera, and H. D. Rombach. Goal question

metric paradigm. In Encyclopaedia of software engineering,
vol 1, J. J. Marciniak (Ed.), pages 528–832. John Wiley and
Sons, 1994.

[6] V. R. Basili and D. M. Weiss. A methodology for collect-
ing valid software engineering data. IEEE transaction on
software engineering, 10:728–738, November 1984.

[7] L. C. Briand, S. Morasca, and V. R. Basili. An operational
process for goal-driven definition of measures. IEEE trans-
actions on software engineering, 28(12):1106–1125, De-
cember 2002.

[8] I. Brownstone, R. Farrell, E. Kant, and N. Martin. Program-
ming expert systems in OPS5: an introduction to rule-based
programming. Addison-Wesley, 1985.

[9] DESEL. http://www.personal.rdg.ac.uk/ sis99scc/desel/,
2002.

[10] A. K. Dittrich and E. Simon. Active database systems: Ex-
pectations, commercial experience, and beyond. In Active
rules in database systems, N. W. Paton (ed), pages 367–404.
Springer, 1999.

[11] S. M. Embury and J. Shao. Analysing the impact of adding
new integrity constraints to information systems. In pro-
ceedings of the 15th conference on advanced information
systems engineering, CAiSE’03, Vienna, Austria, June 2003.

[12] N. E. Fenton and S. L. Pfleeger. Software metrics: a rigorous
and practical approach. PWS publishing company, New
York, 1997.

[13] D. Hay and K. Healy. Defining business rules -
what are they really, GUIDE Business Rule Report.
http://www.businessrulesgroup.org/, 2000.

[14] IBM. Accessible Business Rules.
http://www.research.ibm.com/AEM/abr.html.

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

[15] IBM. Overview of IBM CommonRules.
http://www.research.ibm.com/rules/commonrules-
overview.html.

[16] ILog. ILog JRule. http://www.ilog.com/.
[17] N. W. Paton and O. Diaz. Introduction. In Active rules in

database systems, N. W. Paton (ed), pages 1–28. Springer,
1999.

[18] S. Rank, K. Bennett, and S. Glover. Flexx: designing soft-
ware for change through evolvable architectures. In Systems
engineering for business process change, P. Henderson(ed).
Springer, 2000.

[19] G. Riley. CLIPS: a tool for building expert systems.
http://www.ghg.net/clips/CLIPS.html, 2001.

[20] I. Rouvellou, L. Degenaro, K. Rasmus, D. Ehnesbuske, and
B. McKee. Extending business objects with business rules.
In Proceedings of the 33rd international conference on tech-
nology of object-oriented languages and systems (TOOLS
Europe 2000), Mont Saint-Michel/ St-Malo, France, pages
238–249. IEEE Computer Society Press, June 2000.

[21] J. D. Ullman and J. Widom. A first course in database sys-
tems. Prentice-Hall, 1997.

[22] Versata. Versata Logic Suite. http://www.versata.com.

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

