Module 1: IT Auditing, Governance and Business Continuity

Module 1.1: IT Auditing

- Questions to be addressed in module 1.1 include:
 - What are the scope and objectives of audit work, and what major steps take place in the audit process?
 - What are the objectives of an information systems audit, and what is the four-step approach for meeting those objectives?
 - How can a plan be designed to study and evaluate internal controls in an AIS?
 - How can computer audit software be useful in the audit of an AIS?

THE NATURE OF AUDITING

- Auditors used to audit around the computer and ignore the computer and programs.
 - Assumption: If output was correctly obtained from system input, then processing must be reliable.
- Current approach: Audit through the computer.
 - Uses the computer to check adequacy of system controls, data, and output.
 - SAS-94 requires that external auditors evaluate how audit strategy is affected by an organization’s use of IT.
 - Also states that auditors may need specialized skills to:
 - Determine how the audit will be affected by IT.
 - Assess and evaluate IT controls.
 - Design and perform both tests of IT controls and substantive tests.

THE NATURE OF AUDITING

- The internal auditor’s responsibilities include:
 - Review the reliability and integrity of operating and financial information and how it is identified, measured, classified, and reported.
 - Determine if the systems designed to comply with these policies, plans, procedures, laws, and regulations are being followed.
 - Review how assets are safeguarded, and verify their existence.
 - Examine company resources to determine how effectively and efficiently they are used.
 - Review company operations and programs to determine if they are being carried out as planned and if they are meeting their objectives.

THE NATURE OF AUDITING

- Types of Internal Auditing Work
 - Three different types of audits are commonly performed.
 - Financial audit
 - Information systems audit
 - Operational or management audit

THE NATURE OF AUDITING

- An Overview of the Auditing Process
 - All audits follow a similar sequence of activities and may be divided into four stages:
 - Planning
 - Collecting evidence
 - Evaluating evidence
 - Communicating audit results
THE NATURE OF AUDITING

• Audit Planning
 – Purpose: Determine why, how, when, and by whom the audit will be performed.
 – The first step in audit planning is to establish the scope and objectives of the audit.
 – An audit team with the necessary experience and expertise is formed.
 – Team members become familiar with the auditee by:
 • Conferring with supervisory and operating personnel;
 • Reviewing system documentation; and
 • Reviewing findings of prior audits.

• Collection of Audit Evidence
 – Much audit effort is spent collecting evidence.

• Evaluation of Audit Evidence
 – The auditor evaluates the evidence gathered in light of the specific audit objective and decides if it supports a favorable or unfavorable conclusion.
 – If inconclusive, the auditor plans and executes additional procedures until sufficient evidence is obtained.
 – Two important factors when deciding how much audit work is necessary and in evaluating audit evidence are:
 • Materiality
 • Reasonable assurance

• Communication of audit results
 – The auditor prepares a written (and sometimes oral) report summarizing audit findings and recommendations, with references to supporting evidence in the working papers.
 – Report is presented to:
 • Management
 • The audit committee
 • The board of directors
 • Other appropriate parties
 – After results are communicated, auditors often perform a follow-up study to see if recommendations have been implemented.

THE NATURE OF AUDITING

• The audit should be planned so that the greatest amount of audit work focuses on areas with the highest risk factors.
• There are three types of risk when conducting an audit:
 – Inherent risk
 – Control risk
 – Detection risk
THE NATURE OF AUDITING

• The Risk-Based Audit Approach
 – A risk-based audit approach is a four-step approach to internal control evaluation that provides a logical framework for carrying out an audit. Steps are:
 • Determine the threats (errors and irregularities) facing the AIS.
 • Identify control procedures implemented to minimize each threat by preventing or detecting such errors and irregularities.
 • Evaluate the control procedures.
 • Evaluate weaknesses (errors and irregularities not covered by control procedures) to determine their effect on the nature, timing, or extent of auditing procedures and client suggestions.

INFORMATION SYSTEMS AUDITS

• The purpose of an information systems audit is to review and evaluate the internal controls that protect the system.
• When performing an information system audit, auditors should ascertain that the following objectives are met:
 – Security provisions protect computer equipment, programs, communications, and data from unauthorized access, modification, or destruction.
 – Program development and acquisition are performed in accordance with management’s general and specific authorization.
 – Program modifications have management’s authorization and approval.

OBJECTIVE 1: OVERALL SECURITY

• Types of security errors and fraud faced by companies:
 – Accidental or intentional damage to system assets.
 – Unauthorized access, disclosure, or modification of data and programs.
 – Theft.
 – Interruption of crucial business activities.

OBJECTIVE 2: PROGRAM DEVELOPMENT AND ACQUISITION

• Types of errors and fraud:
 – Two things can go wrong in program development:
 • Inadvertent errors due to careless programming or misunderstanding specifications; or
 • Deliberate insertion of unauthorized instructions into the programs.
OBJECTIVE 2: PROGRAM DEVELOPMENT AND ACQUISITION

• Control procedures:
 – The preceding problems can be controlled by requiring:
 • Management and user authorization and approval
 • Thorough testing
 • Proper documentation

OBJECTIVE 3: PROGRAM MODIFICATION

• Control Procedures
 – When a program change is submitted for approval, a list of all required updates should be compiled by management and program users.
 – Changes should be thoroughly tested and documented.
 – During the change process, the developmental version of the program must be kept separate from the production version.
 – When the amended program has received final approval, it should replace the production version.
 – Changes should be implemented by personnel independent of users or programmers.
 – Logical access controls should be employed at all times.

OBJECTIVE 3: PROGRAM MODIFICATION

– To test for unauthorized program changes, auditors can use a source code comparison program to compare the current version of the program with the original source code.
 • Any unauthorized differences should result in an investigation.
 • If the difference represents an authorized change, the auditor can refer to the program change specifications to ensure that the changes were authorized and correctly incorporated.

OBJECTIVE 3: PROGRAM MODIFICATION

– Two additional techniques detect unauthorized program changes:
 • Reprocessing
 – On a surprise basis, the auditor uses a verified copy of the source code to reprocess data and compare that output with the company’s data.
 – Discrepancies are investigated.
 • Parallel simulation
 – Similar to reprocessing except that the auditor writes his own program instead of using verified source code.
 – Can be used to test a program during the implementation process.

OBJECTIVE 4: COMPUTER PROCESSING

• Processing Test Data
 – Involves testing a program by processing a hypothetical series of valid and invalid transactions.
 – The program should:
 • Process all the valid transactions correctly.
 • Identify and reject the invalid ones.
 – All logic paths should be checked for proper functioning by one or more test transactions, including:
 • Records with missing data
 • Fields containing unreasonably large amounts
 • Invalid account numbers or processing codes
 • Non-numeric data in numeric fields
 • Records out of sequence

OBJECTIVE 4: COMPUTER PROCESSING

• The following resources are helpful when preparing test data:
 – A listing of actual transactions
 – The transactions that the programmer used to test the program
 – A test data generator program, which automatically prepares test data based on program specifications
OBJECTIVE 4: COMPUTER PROCESSING

• Concurrent audit techniques
 – Millions of dollars of transactions can be processed in an online system without leaving a satisfactory audit trail.
 – In such cases, evidence gathered after data processing is insufficient for audit purposes.
 – Also, because many online systems process transactions continuously, it is difficult or impossible to stop the system to perform audit tests.
 – Consequently, auditors use concurrent audit techniques to continually monitor the system and collect audit evidence while live data are processed during regular operating hours.

OBJECTIVE 4: COMPUTER PROCESSING

• Concurrent audit techniques use embedded audit modules.
 – These are segments of program code that:
 • Perform audit functions;
 • Report test results to the auditor; and
 • Store collected evidence for auditor review.
 – Are time-consuming and difficult to use, but less so if incorporated when programs are developed.

OBJECTIVE 4: COMPUTER PROCESSING

• An ITF technique places a small set of fictitious records in the master files:
 – May represent a fictitious division, department, office, customer, or supplier.
 – Processing test transactions to update these dummy records will not affect actual records.
 – Because real and fictitious transactions are processed together, company employees don’t know the testing is taking place.

OBJECTIVE 4: COMPUTER PROCESSING

• The snapshot technique examines the way transactions are processed.
 – Selected transactions are marked with a special code that triggers the snapshot process.
 – Audit modules in the program record these transactions and their master file records before and after processing.
 – The selected data are recorded in a special file and reviewed by the auditor to verify that all processing steps were properly executed.

OBJECTIVE 4: COMPUTER PROCESSING

• The system control audit review file (SCARF) uses embedded audit modules to continuously monitor transaction activity and collect data on transactions with special audit significance.
 • Data recorded in a SCARF file or audit log include transactions that:
 – Exceed a specified dollar limit;
 – Involve inactive accounts;
 – Deviate from company policy; or
 – Contain write-downs of asset values.
 • Periodically the auditor:
 – Receives a printout of SCARF transactions;
 – Looks for questionable transactions among them; and
 – Investigates.

• Audit hooks are audit routines that flag suspicious transactions.
 • Example: State Farm Life Insurance looking for policyholders who change their name or address and then subsequently withdraw funds.
 • When audit hooks are used, auditors can be informed of questionable transactions as they occur via real-time notification, which displays a message on the auditor’s terminal.
OBJECTIVE 4: COMPUTER PROCESSING

• Continuous and intermittent simulation (CIS) embeds an audit module in a database management system.
• The module examines all transactions that update the DBMS using criteria similar to those of SCARF.
• When a transaction has audit significance, the module:
 – Processes the data independently (similar to parallel simulation);
 – Records the results;
 – Compares results with those obtained by the DBMS.
• If there are discrepancies, details are written to an audit log for subsequent investigation.
• Serious discrepancies may prevent the DBMS from executing the update.

OBJECTIVE 4: COMPUTER PROCESSING

• The following software packages can help:
 – Automated flowcharting programs
 – Automated decision table programs
 – Scanning routines
 – Mapping programs
 – Program tracing

OBJECTIVE 5: SOURCE DATA

• Audit Procedures: Tests of Controls
 – Observe and evaluate data control department operations and specific data control procedures
 – Verify proper maintenance and use of data control log
 – Evaluate how items recorded in the error log are handled
 – Examine samples of accounting source data for proper authorization
 – Reconcile a sample of batch totals and follow up on discrepancies
 – Trace disposition of a sample of errors flagged by data edit routines

OBJECTIVE 5: SOURCE DATA

• Auditors should ensure the data control function:
 – Is independent of other functions
 – Maintains a data control log
 – Handles errors
 – Ensures overall efficiency of operations
• Usually not feasible for small businesses and PC installations to have an independent data control function.
OBJECTIVE 5: SOURCE DATA

- To compensate, user department controls must be stronger over:
 - Data preparation
 - Batch control totals
 - Edit programs
 - Physical and logical access restrictions
 - Error handling procedures
- These procedures should be the focus of the auditor’s systems review and tests of controls when there is no independent data control function.

OBJECTIVE 6: DATA FILES

- The sixth objective concerns the accuracy, integrity, and security of data stored in machine-readable files.
- Data storage risks include:
 - Unauthorized modification of data
 - Destruction of data
 - Disclosure of data
- Many of the controls discussed in Chapter 8 protect against the preceding risks.
- If file controls are seriously deficient, especially with respect to access or backup and recovery, the auditor should strongly recommend they be rectified.

OBJECTIVE 6: DATA FILES

- Auditing-by-objectives is a comprehensive, systematic, and effective means of evaluating internal controls in an AIS.
 - Can be implemented using an audit procedures checklist for each objective.
 - Should help the auditor reach a separate conclusion for each objective and suggest compensating controls.
- A separate version of the checklist should be completed for each significant application.

COMPUTER SOFTWARE

- Computer audit software (CAS) or generalized audit software (GAS) are computer programs that have been written especially for auditors.
- Two of the most popular:
 - Audit Control Language (ACL)
 - IDEA
- Based on auditor’s specifications, CAS generates programs that perform the audit function.
- CAS is ideally suited for examination of large data files to identify records needing further audit scrutiny.

COMPUTER SOFTWARE

- CAS functions include:
 - Reformattting
 - File manipulation
 - Calculation
 - Data selection
 - Data analysis
 - File processing
 - Statistics
 - Report generation
OPERATIONAL AUDITS OF AN AIS

- Techniques and procedures in operational audits are similar to audits of information systems and financial statement audits.
- The scope is different.
 - IS audit scope is confined to internal controls
 - Financial audit scope is limited to system output
 - Operational audit scope is much broader and encompasses all aspects of information systems management.
- Objectives are also different in that operational audit objectives include evaluating factors such as:
 - Effectiveness
 - Efficiency
 - Goal achievement

1.2.A: Computer Fraud and Abuse Act of 1986

- Federal regulation, USC Title 18, Section 1030
- Updates to USC title 18
 - National Information Infrastructure Protection Act of 1996
 - Homeland Security Act of 2002

Computer Fraud and Abuse Act

- Criminalizes intentional access of protected computers without authorization or in excess of authorization (Hacking)
- Criminalizes the transmission of a program, information, code, or command that intentionally causes damage without authorization of a protected computer (Denial-of-Service and Viruses)
- Punishment
 - For first offenses, usually 1-5 years; usually 10 years for second offenses
 - For theft of sensitive government information, 10 years, with 20 years for repeat offense
 - For attacks that harm or kill people, up to life in prison

Electronic Communications Privacy Act of 1986 (ECMA)

- U.S. C., Title 47
- Also referring as Federal Wiretapping Act
- Regulates interception and disclosure of electronic information

Digital Millennium Copyright Act (DMCA) of 1998

- Addresses copyright related issues
- Makes the following things illegal
 - Remove or alter copyright management information from digital copies of copyrighted works
 - Bypass technical measures used by copyright owners to protect their works
 - Manufacture or distribute technologies primarily designed to circumvent technical measures used by copyright owners to protect their works

Module 1.2: IT Governance

- A. Laws Governing Hacking and Other Computer Crimes
- B. Corporate Auditing
- C. Governance Frameworks
- D. Risk Analysis
Laws Around the World Vary

• The general situation: lack of solid laws in many countries
• Cybercrime Treaty of 2001
 – Signatories must agree to create computer abuse laws and copyright protection
 – Nations must agree to work together to prosecute attackers

1.2.B: Compliance Laws and Regulations

• Compliance laws and regulations create requirements for corporate security
 – Documentation requirements are strong
 – Identity management requirements tend to be strong
• Compliance can be expensive
• There are many compliance laws and regulations, and the number is increasing rapidly

The Sarbanes-Oxley Act of 2002 (1)

• Makes internal controls a legal requirement
• Affects corporate governance, financial disclosure and the practice of public accounting
• To restore the public’s confidence in corporate governance by making chief executives of publicly traded companies personally validate financial statements and other information
 – After Enron/Worldcom
• http://www.aicpa.org/sarbanes/index.asp

The Sarbanes-Oxley Act of 2002 (2)

• Section 404 of the Sarbanes-Oxley Act mandates that all public organizations
 – demonstrate due diligence in the disclosure of financial information and
 – implement a series of internal controls and procedures to communicate, store and protect that data.
• Public organizations are also required under Section 404 to protect these controls from internal and external threats and unauthorized access, including those that could occur through online systems and networks
• Publicly traded companies need to file SOX reports to SEC
• Need to be certified by external auditors

Privacy Protection Laws (1)

• The European Union (E.U.) Data Protection Directive of 2002
• Many other nations have strong commercial data privacy laws
• The U.S. Gramm–Leach–Bliley Act (GLBA)
• The U.S. Health Information Portability and Accountability Act (HIPAA) for private data in health care organizations

Privacy Protection Laws (2)

- Data Breach Notification Laws
 - California’s SB 1386
 - Requires notification of any California citizen whose private information is exposed
 - Companies cannot hide data breaches anymore
- Federal Trade Commission (FTC)
 - Can punish companies that fail to protect private information
 - Fines and required external auditing for several years
PCI-DSS
- Payment Card Industry–Data Security Standards
- Applies to all firms that accept credit cards
- Has 12 general requirements, each with specific subrequirements

FISMA
- Federal Information Security Management Act of 2002
- Processes for all information systems used or operated by a U.S. government federal agencies
- Also by any contractor or other organization on behalf of a U.S. government agency
- Certification, followed by accreditation
- Continuous monitoring
- Criticized for focusing on documentation instead of protection

1.2.C: Governance Frameworks

COSO - Background
- **Origins**
 - Committee of Sponsoring Organizations of the Treadway Commission (www.coso.org)
 - Ad hoc group to provide guidance on financial controls
- **Focus**
 - Corporate operations, financial controls, and compliance
 - Effectively required for Sarbanes-Oxley compliance
 - Goal is reasonable assurance that goals will be met

COSO Components
- Control Environment
 - General security culture
 - Includes "tone at the top"
 - If strong, specific controls may be effective
 - If weak, strong controls may fail
 - Major insight of COSO
- Risk assessment
 - Ongoing preoccupation
- Control activities
 - General policy plus specific procedures
- Monitoring
 - Both human vigilance and technology
 - Information and communication
 - Must ensure that the company has the right information for controls
 - Must ensure communication across all levels in the corporation

Enterprise Risk Management (COSO)
- Intent of ERM is to achieve all goals of the internal control framework and help the organization:
 - Provide reasonable assurance that company objectives and goals are achieved and problems and surprises are minimized.
 - Achieve its financial and performance targets.
 - Assess risks continuously and identify steps to take and resources to allocate to overcome or mitigate risk.
 - Avoid adverse publicity and damage to the entity’s reputation.
CONTROL FRAMEWORKS

• Basic principles behind ERM:
 – Companies are formed to create value for owners.
 – Management must decide how much uncertainty they will accept.
 – Uncertainty can result in:
 • Risk
 • Opportunity

• ERM Framework Vs. the Internal Control Framework
 – The internal control framework has been widely adopted as the principal way to evaluate internal controls as required by SOX. However, there are issues with it.
 • It has too narrow of a focus.
 • Focusing on controls first has an inherent bias toward past problems and concerns.

• These issues led to COSO’s development of the ERM framework.
 – Takes a risk-based, rather than controls-based, approach to the organization.
 – Oriented toward future and constant change.
 – Incorporates rather than replaces COSO’s internal control framework and contains three additional elements:
 • Setting objectives.
 • Identifying positive and negative events that may affect the company’s ability to implement strategy and achieve objectives.
 • Developing a response to assessed risk.

• The ERM model is three-dimensional.
• Means that each of the eight risk and control elements are applied to the four objectives in the entire company and/or one of its subunits.

CONTROL FRAMEWORKS

– Controls are flexible and relevant because they are linked to current organizational objectives.
– ERM also recognizes more options than simply controlling risk, which include accepting it, avoiding it, diversifying it, sharing it, or transferring it.

INTERNAL ENVIRONMENT

• The most critical component of the ERM and the internal control framework.
• Is the foundation on which the other seven components rest.
• Influences how organizations:
 – Establish strategies and objectives
 – Structure business activities
 – Identify, access, and respond to risk
• A deficient internal control environment often results in risk management and control breakdowns.
INTERNAL ENVIRONMENT

- Internal environment consists of the following:
 - Management's philosophy, operating style, and risk appetite
 - The board of directors
 - Commitment to integrity, ethical values, and competence
 - Organizational structure
 - Methods of assigning authority and responsibility
 - Human resource standards
 - External influences

INTERNAL ENVIRONMENT

- The following policies and procedures are important:
 - Hiring
 - Compensating
 - Training
 - Evaluating and promoting
 - Discharging
 - Managing disgruntled employees
 - Vacations and rotation of duties
 - Confidentiality insurance and fidelity bonds

OBJECTIVE SETTING

- Objective setting is the second ERM component.
- It must precede many of the other six components.
- For example, you must set objectives before you can define events that affect your ability to achieve objectives

OBJECTIVE SETTING

- Objective-setting process proceeds as follows:
 - First, set strategic objectives, the high-level goals that support the company's mission and create value for shareholders.
 - To meet these objectives, identify alternative ways of accomplishing them.
 - For each alternative, identify and assess risks and implications.
 - Formulate a corporate strategy.
 - Then set operations, compliance, and reporting objectives.

EVENT IDENTIFICATION

- Events are:
 - Incidents or occurrences that emanate from internal or external sources
 - That affect implementation of strategy or achievement of objectives.
 - Impact can be positive, negative, or both.
 - Events can range from obvious to obscure.
 - Effects can range from inconsequential to highly significant.

EVENT IDENTIFICATION

- By their nature, events represent uncertainty:
 - Will they occur?
 - If so, when?
 - And what will the impact be?
 - Will they trigger another event?
 - Will they happen individually or concurrently?
EVENT IDENTIFICATION

- Management must do its best to anticipate all possible events—positive or negative—that might affect the company:
 - Try to determine which are most and least likely.
 - Understand the interrelationships of events.
- COSO identified many internal and external factors that could influence events and affect a company’s ability to implement strategy and achieve objectives.

EVENT IDENTIFICATION

- Some of these factors include:
 - External factors:
 - Economic factors
 - Natural environment
 - Political factors
 - Social factors
 - Technological factors

EVENT IDENTIFICATION

- Some of these factors include:
 - Internal factors:
 - Infrastructure
 - Personnel
 - Process
 - Technology

EVENT IDENTIFICATION

- Companies usually use two or more of the following techniques together to identify events:
 - Use comprehensive lists of potential events
 - Perform an internal analysis
 - Monitor leading events and trigger points
 - Conduct workshops and interviews
 - Perform data mining and analysis
 - Analyze processes

RISK ASSESSMENT AND RISK RESPONSE

- The fourth and fifth components of COSO’s ERM model are risk assessment and risk response.
- COSO indicates there are two types of risk:
 - Inherent risk

RISK ASSESSMENT AND RISK RESPONSE

- The fourth and fifth components of COSO’s ERM model are risk assessment and risk response.
- COSO indicates there are two types of risk:
 - Inherent risk
 - Residual risk
RISK ASSESSMENT AND RISK RESPONSE

- Companies should:
 - Assess inherent risk
 - Develop a response
 - Then assess residual risk
- The ERM model indicates four ways to respond to risk:
 - Reduce it
 - Accept it
 - Share it
 - Avoid it

RISK ASSESSMENT AND RISK RESPONSE

- Risks that are not reduced must be accepted, shared, or avoided.
 - If the risk is within the company’s risk tolerance, they will typically accept the risk.
 - A reduce or share response is used to bring residual risk into an acceptable risk tolerance range.
 - An avoid response is typically only used when there is no way to cost-effectively bring risk into an acceptable risk tolerance range.

CONTROL ACTIVITIES

- Generally, control procedures fall into one of the following categories:
 - Proper authorization of transactions and activities
 - Segregation of duties
 - Project development and acquisition controls
 - Change management controls
 - Design and use of documents and records
 - Safeguard assets, records, and data
 - Independent checks on performance

CONTROL ACTIVITIES

- The following independent checks are typically used:
 - Top-level reviews
 - Analytical reviews
 - Reconciliation of independently maintained sets of records
 - Comparison of actual quantities with recorded amounts
 - Double-entry accounting
 - Independent review

INFORMATION AND COMMUNICATION

- The seventh component of COSO’s ERM model.
- The primary purpose of the AIS is to gather, record, process, store, summarize, and communicate information about an organization.
- So accountants must understand how:
 - Transactions are initiated
 - Data are captured in or converted to machine-readable form
 - Computer files are accessed and updated
 - Data are processed
 - Information is reported to internal and external parties
• According to the AICPA, an AIS has five primary objectives:
 – Identify and record all valid transactions.
 – Properly classify transactions.
 – Record transactions at their proper monetary value.
 – Record transactions in the proper accounting period.
 – Properly present transactions and related disclosures in the financial statements.

• The eighth component of COSO’s ERM model.
 Monitoring can be accomplished with a series of ongoing events or by separate evaluations.

• Key methods of monitoring performance include:
 – Perform ERM evaluation
 – Implement effective supervision
 – Use responsibility accounting
 – Monitor system activities
 – Track purchased software
 – Conduct periodic audits
 – Employ a computer security officer and security consultants
 – Engage forensic specialists
 – Install fraud detection software
 – Implement a fraud hotline

• Control Objectives for Information and Related Technologies
• CIO-level guidance on IT governance
• Offers many documents that help organizations understand how to implement the framework

The CobiT Framework
– Four major domains
 1. Planning and Organization
 2. Acquisition and Implementation
 3. Delivery and Support
 4. Monitoring

• Four major domains (Figure 2-26)
• 34 high-level control objectives
 – Planning and organization (11)
 – Acquisition and implementation (60)
 – Delivery and support (13)
 – Monitoring (4)
• More than 300 detailed control objectives
CobiT

- Dominance in the United States
 - Created by the IT governance institute
 - Which is part of the Information Systems Audit and Control Association (ISACA)
 - ISACA is the main professional accrediting body of IT auditing
 - Certified information systems auditor (CISA) certification

The ISO/IEC 27000 Family of Security Standards

- ISO/IEC 27000
 - Family of IT security standards with several individual standards
 - From the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC)

- ISO/IEC 27002
 - Originally called ISO/IEC 17799
 - Recommendations in 11 broad areas of security management

The ISO/IEC 27000 Family of Security Standards

- ISO/IEC 27002: Eleven Broad Areas

<table>
<thead>
<tr>
<th>Security Policy</th>
<th>Access Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization of information security</td>
<td>Information systems acquisition, development and maintenance</td>
</tr>
<tr>
<td>Asset management</td>
<td>Information security incident management</td>
</tr>
<tr>
<td>Human resources security</td>
<td>Business continuity management</td>
</tr>
<tr>
<td>Physical and environmental security</td>
<td>Compliance</td>
</tr>
<tr>
<td>Communications and operations management</td>
<td></td>
</tr>
</tbody>
</table>

1.2.D: Risk Analysis

- Asset Value (AV)
 - Percentage loss in asset value if a compromise occurs

- X Exposure Factor (EF)
 - Annual probability of a compromise

- Single Loss Expectancy (SLE)
 - Expected loss in case of a compromise

- Annualized Loss Expectancy (ALE)
 - Expected loss per year from this type of compromise

<table>
<thead>
<tr>
<th>SLE</th>
<th>X Annualized Rate of Occurrence (ARO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100,000</td>
<td>$100,000</td>
</tr>
</tbody>
</table>

- Annualized Rate of Occurrence (ARO)
 - Annual probability of a compromise

<table>
<thead>
<tr>
<th>Single Loss Expectancy (SLE)</th>
<th>Annualized Loss Expectancy (ALE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$80,000</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

- Annualized Loss Expectancy (ALE)
 - Expected loss per year from this type of compromise

<table>
<thead>
<tr>
<th>Annualized Loss Expectancy (ALE)</th>
<th>Annualized Net Countermeasure Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$40,000</td>
<td>$30,000</td>
</tr>
</tbody>
</table>

- Annualized Net Countermeasure Value
 - Expected loss per year from this type of compromise

<table>
<thead>
<tr>
<th>Countermeasure Cost</th>
<th>Annualized Net Countermeasure Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$17,000</td>
<td>$13,000</td>
</tr>
</tbody>
</table>

- Countermeasure A should reduce the exposure factor by 75%
Problems with Classic Risk Analysis Calculations

• Uneven Multiyear Cash Flows
 – For both attack costs and defense costs
 – Must compute the return on investment (ROI) using discounted cash flows
 – Net present value (NPV) or internal rate of return (ROI)

• Many-to-Many Relationships between Countermeasures and Resources
 – Classic risk analysis assumes that one countermeasure protects one resource
 – Single countermeasures, such as a firewall, often protect many resources
 – Single resources, such as data on a server, are often protected by multiple countermeasures
 – Extending classic risk analysis is difficult

Problems with Classic Risk Analysis Calculations

• Impossibility of Knowing the Annualized Rate of Occurrence
 – There simply is no way to estimate this
 – This is the worst problem with classic risk analysis
 – As a consequence, firms often merely rate their resources by risk level
Problems with Classic Risk Analysis Calculations

- **Problems with “Hard-Headed Thinking”**
 - Security benefits are difficult to quantify
 - If only support “hard numbers” may underinvest in security

- **Perspective**
 - Impossible to do perfectly
 - Must be done as well as possible
 - Identifies key considerations
 - Works if countermeasure value is very large or very negative
 - But never take classic risk analysis seriously

2-16: Responding to Risk

- **Risk Reduction**
 - The approach most people consider
 - Install countermeasures to reduce harm
 - Makes sense only if risk analysis justifies the countermeasure

- **Risk Acceptance**
 - If protecting against a loss would be too expensive, accept losses when they occur
 - Good for small, unlikely losses
 - Good for large but rare losses

- **Risk Transference**
 - Buy insurance against security-related losses
 - Especially good for rare but extremely damaging attacks
 - Does not mean a company can avoid working on IT security
 - If bad security, will not be insurable
 - With better security, will pay lower premiums

- **Risk Avoidance**
 - Not to take a risky action
 - Lose the benefits of the action
 - May cause anger against IT security

- **Recap: Four Choices when You Face Risk**
 - Risk reduction
 - Risk acceptance
 - Risk transference
 - Risk avoidance

Module 1.3: Business Continuity Process

- The basic principle of BCP is to protect people first
 - Evacuation plans and drills
 - Never allow staff members back into unsafe environments
 - Must have a systematic way to account for all employees and notify loved ones
 - Counseling afterwards
Principles of Business Continuity Management

- People have reduced capacity in decision making during a crisis
 - Planning and rehearsal are critical
- Avoid rigidity
 - Unexpected situations will arise
 - Communication will break down and information will be unreliable
 - Decision makers must have the flexibility to act

Business Process Analysis

- Identification of business processes and their interrelationships
- Prioritization of business processes
 - Downtime tolerance
 (in the extreme, mean time to belly-up)
 - Importance to the firm
 - Required by higher-importance processes
- Resource needs (must be shifted during crises)
 - Cannot restore all business processes immediately

Business Continuity Planning

- Testing the Plan
 - Difficult because of the scope of disasters
 - Difficult because of the number of people involved
- Updating the Plan
 - Must be updated frequently
 - Business conditions change and businesses reorganize constantly
 - People who must execute the plan also change jobs constantly
 - Telephone numbers and other contact information must be updated far more frequently than the plan as a whole
 - Should have a small permanent staff

Business Continuity versus Disaster Response

IT Disaster Recovery

- IT Disaster Recovery
 - IT disaster recovery looks specifically at the technical aspects of how a company can get its IT back into operation using backup facilities
 - A subset of business continuity or for disasters that only affect IT
 - All decisions are business decisions and should not be made by mere IT or IT security staffs
Types of Backup Facilities
- Hot sites
 - Ready to run (power, HVAC, computers): Just add data
 - Considerations: Rapid readiness at high cost
 - Must be careful to have the software at the hot site up-to-date in terms of configuration
- Cold sites
 - Building facilities, power, HVAC, communication to outside world only
 - No computer equipment
 - Less expensive but usually take too long to get operating
- Site sharing
 - Site sharing among a firm's sites (problem of equipment compatibility and data synchronization)
 - Continuous data protection needed to allow rapid recovery

IT Disaster Recovery
- Office Computers
 - Hold much of a corporation's data and analysis capability
 - Will need new computers if old computers are destroyed or unavailable
 - Will need new software
 - Well-synchronized data backup is critical
 - People will need a place to work

IT Disaster Recovery
- Restoration of Data and Programs
 - Restoration from backup tapes: Need backup tapes at the remote recovery site
 - May be impossible during a disaster
- Testing the IT Disaster Recovery Plan
 - Difficult and expensive
 - Necessary

AVAILABILITY
- Key components of effective disaster recovery and business continuity plans include:
 - Data backup procedures
 - Provisions for access to replacement infrastructure (equipment, facilities, phone lines, etc.)
 - Thorough documentation
 - Periodic testing
 - Adequate insurance