Module 3 - Protection of Information Assets

IT304 Internet and Network Security

04/21/2010

Agenda

Information Assurance Career

- □ IA job types & skill set
- Scholarships
- Certifications
- IA Courses
- CISA exam six areas
- Six areas
- Topics in area 5
- Firewalls
- Virtual Private Networks
- Intrusion Detection

© Li-Chiou Chen. CSIS. Pace

IA Job Types

- By contract type:
 - □ Full-time/In-House: typically recruited/promoted from within the company
 - □ Hired Guns: outside security contractors/consultants
- By position levels:
 - □ Security Engineers/Technicians: security in wired & wireless networks, firewall, intrusion detection & prevention, host security, (web) application security
 - Security Analysts: perform security audits and regulatory compliance checks
 - Security Architects: management-level position for designing and managing security infrastructure

© Li-Chiou Chen, CSIS, Pace

IA Skill Set Requirements

- Hard Skills
 - Confidentiality:
 - working (but not necessarily expert) knowledge of encryption and cryptography, access control/authentication
 - → involves protecting the data from disclosure while stored or in transit

 - networking, hashing, public key infrastructure (PKI)
 → ensures data stored or in transit cannot be corrupted or modified by unauthorized personnel without detection

 - physical and network security, expert knowledge in Ethernet, Wifi, TCP/IP, FW/IDS/IPS, DDOS, etc
 - requires not just technical know-how, but also physical construction and environment protections
 - Highly Marketable "Advanced skills":
 - expertise in penetration testing and code reviews, etc. Can really set the candidate apart
- Communications skills, including technical writing and presentation skills, general management skills

© Li-Chiou Chen CSIS Pace

Scholarships

- Department of Defense
 - DoD IA scholarship provides stipend and tuition
 - Will be required to serve a period of obligated service in DoD as a civilian employee or a member of one of the armed forces
- National Science Foundation
 - □ Federal Cyber Service: Scholarship for Service (SFS)
 - 2 years full scholarship
 - Will be required to work within the Federal Executive Branch at a Federal Agency, Independent Agency, Government Corporation, Commission, or Quasi-Official Agency, or at a National Laboratory
- Pace summer projects
 - Potential projects from Pace faculty

© Li-Chiou Chen, CSIS, Pace

Industry certifications

- Information Systems Audit and Control Association, ISACA
 - Certified Information Security Auditor (CISA)
 - for professionals possessing information security audit and controls
 - Certified Information Security Manager (CISM)
 - for the individual who manages, designs, oversees and/or assesses an enterprise's information security
- The International Information Systems Security Certification Consortium, (ISC)2
 - Certified Information Systems Security Professionals (CISSP)
 - for mid- and senior-level managers who are working toward or have already attained positions as Chief Information Security Officers or Senior Security Engineers

IA classes that you can take (for UG)

- CIT251 Computer Security Overview (originally IT300)
 - □ This course is usually offered in Fall
 - □ Wednesday 6:00-8:45PM
- CIT352 Network and Internet Security (originally IT304)
 - □ This course is usually offered in Spring
 - □ Wednesday 6:00-8:45PM
- CIT354 Computer Forensics (originally IT308)
 - This course is usually offered in Spring

© Li-Chiou Chen. CSIS. Pace

MSIS or MSIT with a concentration on IA

- Introduction to Computer Security
- Information Security Management
- Web Security
- Network Security
- Security Forensics

© Li-Chiou Chen, CSIS, Pace

Agenda

- Information Assurance Career
 IA job types & skill set
 - Scholarships
 - Certifications
 - □ IA Courses
- CISA exam six areas
 - Six areas
 - Topics in area 5

© Li-Chiou Chen, CSIS, Pace

CISA exam

- 200 multiple-choice questions that cover the six job practice areas
- The IS Audit Process (10%)
- IT Governance (15%)
- Systems and Infrastructure Life Cycle Management (16%)
- IT Service Delivery and Support (14%)
- Protection of Information Assets (31%)
- Business Continuity and Disaster Recovery (14%)

© Li-Chiou Chen, CSIS, Pace

10

Importance of Information Security Management

- Key elements
- ISM Roles & responsibilities
- Inventory and classification of information assets
- System access permission
- Access control
- Privacy management and the role of IS auditor
- External parties and risks
- Addressing security when dealing with customers & 3rd party
- Human Resource Security
- Computer crimes & exposures
- Security incidence handling and responses

© Li-Chiou Chen, CSIS, Pace

Logical Access

- Exposures
- Social engineering
- Logical access entry points
- Logical access control software
- Identification and authentication
- Authorization & access control lists
- Storing, retrieving, transporting and disposing of confidential information

© Li-Chiou Chen, CSIS, Pace

Network Infrastructure Security

- LAN security
- Client-server security
- Wireless security
- Internet threat & security
 - □ IDS; firewalls/VPN
- Encryption
- Viruses
- Voice-over IP
- Private branch exchange

© Li-Chiou Chen, CSIS, Pace

13

Auditing Information Security Management Framework

- Reviewing policies, procedures, and standards
- Logical access security policies
- Formal security awareness and training
- Data ownership; Documented authorization
- Terminate employee access; Security baseline
- Access standard
- Auditing logical access
- Testing tools & techniques

© Li-Chiou Chen, CSIS, Pace

Auditing Network Infrastructure Security

- Auditing remote access
- Network penetration tests
- Full network assessment review
- Development and authorization of network changes
- Unauthorized changes
- Computer forensics

© Li-Chiou Chen, CSIS, Pace

15

Environmental Exposures and Controls

- Environmental issues & exposures
 - Computer failure; power surge, etc
- Controls
- Fire suppression systems
- Location of computer rooms
- Emergency evacuation plan
- Power management

© Li-Chiou Chen, CSIS, Pace

WiFi security

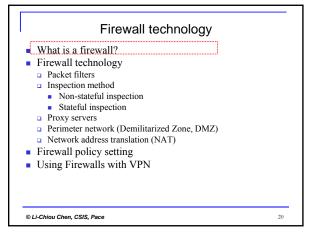
Authentication; encryption; etc

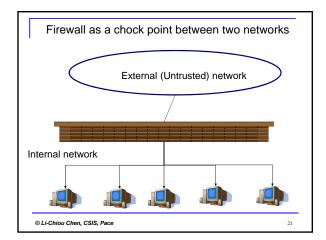
Laptop physical security

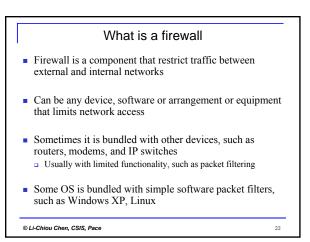
16

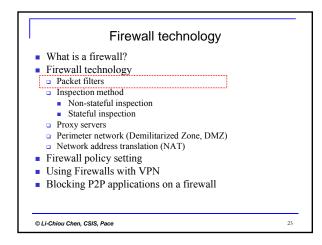
Physical Access Exposures and Controls

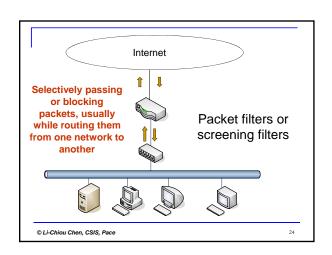
- Physical exposures
 - □ Blackmail; damage of equipments and documents
- Possible perpetrators
- Controls
- Auditing physical access


© Li-Chiou Chen, CSIS, Pace


© Li-Chiou Chen, CSIS, Pace


n, CSIS, Pace

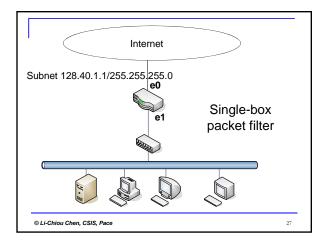

Mobile Computing


Firewall technology IT304 Network and Internet security Li-Chiou Chen 03/12/2010

Data that a packet filter analyzes

- Device interface
 - □ The interface that the packet arrives on
 - □ The interface the packet will go out on
- Packet header
 - □ IP source & destination address
 - Protocol type
 - □ TCP/UDP source port and destination port
 - □ ICMP message type

© Li-Chiou Chen, CSIS, Pace


25

Actions that a packet filter can take

- Block or send network traffic packet by packet
 - Accept the packet sent to its intended destination
 - Drop the packet without notifying the ender
 - Reject the packet with notification to the sender
- Log packet information
- Enforce security policy
 - Set off an alarm
 - Apply filtering rules
 - Send the packet to other server than its intended destination (e.g. or loaf balancing)
 - Modify a packet (e.g. NAT)

© Li-Chiou Chen. CSIS. Pace

26

Firewall technology

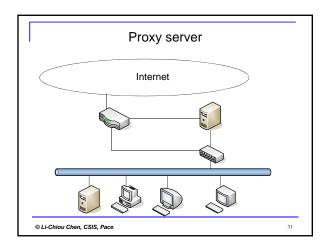
- What is a firewall?
- Firewall technology
- Packet filters
- Inspection method
 - Non-stateful inspection
 - Stateful inspection
- Proxy servers
- Perimeter network (Demilitarized Zone, DMZ)
- Network address translation (NAT)
- Firewall policy setting
- Using Firewalls with VPN
- Blocking P2P applications on a firewall

© Li-Chiou Chen, CSIS, Pace

28

Stateful Inspection Firewalls

- State: whether the packet is part of an open connection.
- By default, permit connections openings from internal clients (on trusted network) to external servers (on untrusted network)
- By default, deny connection openings from the outside to inside servers
- These default behaviors can be changed with ACLs
- Accept future packets between hosts and ports in open connections with little or no more inspection


© Li-Chiou Chen, CSIS, Pace

29

Firewall technology

- What is a firewall?
- Firewall technology
 - Packet filters
 - Inspection method
 - Non-stateful inspection
 - Stateful inspection
- Proxy servers
- Perimeter network (Demilitarized Zone, DMZ)
- Network address translation (NAT)
- Firewall policy setting
- Using Firewalls with VPN
- Blocking P2P applications on a firewall

© Li-Chiou Chen, CSIS, Pace

Proxy servers

- Specialized application or server programs that take users' requests for Internet services, such as telnet or
- Proxy servers forward users' requests as appropriate according to the site's security policy
- Also known as "application-level gateway"

© Li-Chiou Chen. CSIS. Pace

Firewall technology

- What is a firewall?
- Firewall technology
- Packet filters
- Inspection method
 - Non-stateful inspection
- Stateful inspection Proxy servers
- Perimeter network (Demilitarized Zone, DMZ)
- Network address translation (NAT)
- Firewall policy setting
- Using Firewalls with VPN
- Blocking P2P applications on a firewall

© Li-Chiou Chen, CSIS, Pace

Screened Subnet Internet Architecture Zone (DMZ) or router server Internal router Internal netwo © Li-Chiou Chen CSIS Pace 34

Bastion host

33

- Main point of contact for incoming connections from external network
 - □ For FTP connections to the site's anonymous FTP server
 - □ For DNS queries about the hosts in the site
 - □ For SMTP sessions to deliver emails
- Outbound connections handled as one of the two methods
 - Through routers that allows direct internal to external
 - Through proxy server that runs on bastion host
- Must be highly secure because it is usually exposed to the

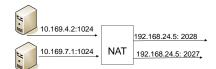
© Li-Chiou Chen, CSIS, Pace

Perimeter network

- A network added between an external network and an internal network in order to provide an additional layer of security
- Also called "demilitarized zone" (DMZ)
- No internal traffic is allowed
 - All traffic on the perimeter network should be to/from an external network or to/from bastion host

Firewall technology

- What is a firewall?
- Firewall technology
 - Packet filters
 - Inspection method
 - Non-stateful inspection
 - Stateful inspection
 - Proxy servers


Perimeter network (Demilitarized Zone, DMZ)

- Network address translation (NAT)
- Firewall policy setting
- Using Firewalls with VPN
- Blocking P2P applications on a firewall

© Li-Chiou Chen, CSIS, Pace

Network Address Translation (NAT)

- Also called IP-masquerading
- Dynamically allocate external address and port for each connection initiated by an internal host
- Mainly used to multiplex numerous IP addresses over a
- Enforces a firewall over outbound connections
- Helps to conceal internal network configuration

© Li-Chiou Chen. CSIS. Pace

IPv4 Private IP Addresses

Name	IP address range	number of IPs	<u>classful</u> description	largest CIDR block
24-bit block	10.0.0.0 – 10.255.255.255	16,777,215	single class A	10.0.0.0/8
20-bit block	172.16.0.0 – 172.31.255.255	1,048,576	16 contiguous class Bs	172.16.0.0/12
16-bit block	192.168.0.0 – 192.168.255.255	65,535	256 continguous class Cs	192.168.0.0/1 6

© Li-Chiou Chen. CSIS. Pace

Firewall technology

- What is a firewall?
- Firewall technology
 - Packet filters
 - Inspection method
 - Non-stateful inspection
 - Stateful inspection
 - Proxy servers
 - Perimeter network (Demilitarized Zone, DMZ)
- Network address translation (NAT)
- Firewall policy setting
- Using Firewalls with VPN
- Blocking P2P applications on a firewall

© Li-Chiou Chen, CSIS, Pace

Keep the Rule Base Simple

- Keep list of rules as short as possible
 - □ About 30 and 50 rules
 - □ Shorter the rule base, faster the firewall will perform
- Firewalls process rules in a particular order
 - Usually rules are numbered starting at 1 and displayed in a grid
 - Most important rules should be at the top of the list
 - Make the last rule a cleanup rule
 - A catch-all type of rule

© Li-Chiou Chen, CSIS, Pace

Restrict Subnets, Ports, and Protocols

- Filtering by IP addresses
 - You can identify traffic by IP address range
 - Most firewalls start blocking all traffic
 - You need to identify "trusted" networks
 - Firewall should allow traffic from trusted sources

Control Internet Services

- Web services
 - Employees always want to surf the Internet
- DNS
- Resolves fully qualified domain names (FQDNs) to their corresponding IP addresses
- □ DNS uses UDP port 53 for name resolution
- □ DNS uses TCP port 53 for zone transfers
- E-mail
 - POP3 and IMAP4
 - SMTP
 - LDAP and HTTP

© Li-Chiou Chen. CSIS. Pace

43

Firewall technology

- What is a firewall?
- Firewall technology
- Packet filters
- Inspection method
 - Non-stateful inspection
 - Stateful inspection
- Proxy servers
- Perimeter network (Demilitarized Zone, DMZ)
- Network address translation (NAT)
- Firewall policy setting
- Using Firewalls with VPN
- Blocking P2P applications on a firewall

© Li-Chiou Chen. CSIS. Pace

Using VPNs with Firewalls

- VPNs do not reduce the need for a firewall
 - Always use a firewall as part of VPN security design
- Install VPN software on the firewall itself
 - □ Firewall allows outbound access to the Internet
 - □ Firewall prevents inbound access from the Internet
 - VPN service encrypts traffic to remote clients or networks

© Li-Chiou Chen, CSIS, Pace

45

Install VPN software on the firewall itself

- Advantages
 - Control all network access security from one server
 - Fewer computers to manage
 - Use the same tools for VPN and firewall
- Disadvantages
 - Single point of failure
 - Must configure routes carefully
 - Internet access and VPN traffic compete for resources on the server

© Li-Chiou Chen, CSIS, Pace

46

Set up VPN parallel to your firewall inside the DMZ

- Advantages
 - No need to modify firewall settings to support VPN traffic
 - Configuration scales more easily
 - Can deal with congested servers
- Disadvantages
 - □ VPN server is connected directly to the Internet
 - ☐ If VPN server becomes compromised, attacker will have direct access to your internal network
 - Cost of supporting a VPN increases with new servers

© Li-Chiou Chen, CSIS, Pace

47

Set up VPN server behind the firewall connected to the internal network

- Advantages
 - □ VPN server is completely protected from the Internet
 - Firewall is the only device controlling access
 - □ VPN traffic restrictions are configured on VPN server
- Disadvantages
 - VPN traffic must travel through the firewall
 - □ Firewall must handle VPN traffic
 - Firewall might not know what to do with IP protocols other than ICMP, TCP, and UDP

© Li-Chiou Chen, CSIS, Pace

PPTP Filters

- Might be only option when VPN connections pass through NAT
- PPTP uses two protocols
 - □ TCP
 - □ GRE

© Li-Chiou Chen, CSIS, Pace

L2TP and IPSec Filters

- IKE uses protocol ID 171 and UDP on port 500
- ESP uses protocol ID 50
- AH uses protocol ID 51

© Li-Chiou Chen. CSIS. Pace

Virtual Private Network

IT304 Internet and Network Security Li-Chiou Chen 03/03/2010

Agenda

- VPN basics
- Types of VPN
- Encapsulation
- Encryption in VPNs
- Authentication in VPNs
- Pros and Cons
- Configuration and Implementation
 - Design considerations
 - Configuration Options
 - Set up VPNs with firewalls
 - Guidelines for auditing VPNs and VPN policies
- Lab #7

© Li-Chiou Chen, CSIS, Pace

What VPNs are

- A secure tunnel: enables computers to communicate securely over insecure channels such as the Internet
- Enables computers to exchange private encrypted messages that others cannot decipher
- Virtual network connection
- Extends an organization's network perimeter

© Li-Chiou Chen, CSIS, Pace

Business incentives driving VPN adoption

52

- VPNs are cost-effective
- VPNs provide secure connection for remote users
 - Contractors
 - Traveling employees
 - Partners and suppliers

VPN Components

- VPN server or host
 - Configured to accept connections from clients
- VPN client or guest
 - Endpoints connecting to a VPN
- Tunnel
 - Connection through which data is sent
- VPN protocols
 - Sets of standardized communication settings
 - Used to encrypt data sent along the VPN

© Li-Chiou Chen, CSIS, Pace

Types of VPNs

- In terms of VPN implementation
 - Hardware VPN
 - Software VPN
- In terms of end points
- End-point solutions
 - Site-to-site VPN
 - Gateway-to-gateway VPN
 - Client-to-site VPN
 - Remote access VPN
- □ Infrastructure solution: MPLS VPN

© Li-Chiou Chen, CSIS, Pace

. .

Hardware-based VPNs

- Connect one gateway to another
- Routers at each network gateway encrypt and decrypt packets
- VPN appliance
 - Designed to serve as VPN endpoint
 - Join multiple LANs
- Benefits
 - Scalable
 - Better security

© Li-Chiou Chen, CSIS, Pace

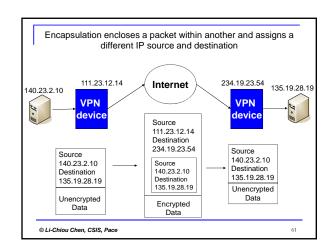
Software-based VPNs

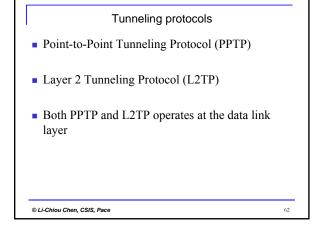
- Integrated with firewalls
- Appropriate when participating networks use different routers and firewalls
- Benefits
 - More cost-effective
 - Offer maximum flexibility

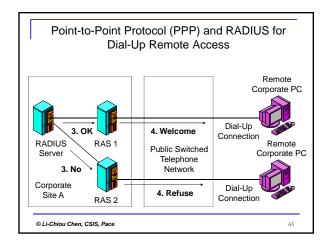
© Li-Chiou Chen, CSIS, Pace

58

End point solutions


- Use tunneling protocols to encrypt and encapsulate IP packets
- Encrypted route through the Internet
 - Routes may be asymmetric as regular Internet routing
- Need VPN compliant routers
- Do not need to subscribe specific services from ISPs

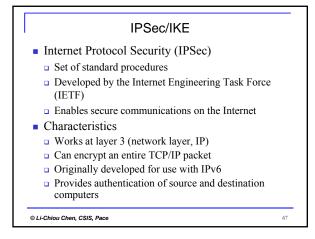

© Li-Chiou Chen, CSIS, Pace

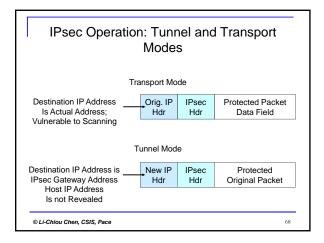

Agenda

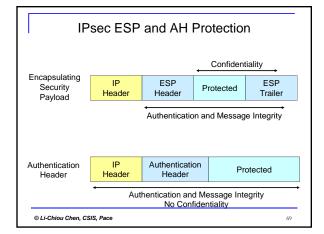
- VPN basics
 - Types of VPN
- Encapsulation
- Encryption in VPNsAuthentication in VPNs
- Pros and Cons
- Configuration and Implementation
 - Design considerations
 - Configuration Options
- Set up VPNs with firewalls
- Guidelines for auditing VPNs and VPN policies
- Lab #7

© Li-Chiou Chen, CSIS, Pace

Point-to-Point Tunneling Protocol (PPTP)


- Encapsulates PPP data frames within IP packets for Internet
- Allow corporations that used PPP dialup systems to transform to VPN for remote access
- Header contains only information needed to route data from the VPN client to the server
- Uses Microsoft Point-to-Point Encryption (MPPE)
 - Encrypt data that passes between the remote computer and the remote access server


© Li-Chiou Chen, CSIS, Pace


Layer 2 Tunneling Protocol (L2TP)

- Provides better security through IPSec
- IPSec encryption is more secure and widely supported
- IPSec enables L2TP to perform
 - Authentication
 - Encapsulation
 - Encryption

© Li-Chiou Chen, CSIS, Pace

Authentication Header (AH) Provides authentication of TCP/IP packets Ensures data integrity Packets are signed with a digital signature Adds a header calculated by the values in the datagram Creating a messages digest of the datagram AH in tunnel mode Authenticates the entire original header Places a new header at the front of the original packet AH in transport mode Authenticates the payload and the header

© Li-Chiou Chen, CSIS, Pace

Encapsulation Security Payload (ESP)

- Provides confidentiality for messages
- Encrypts different parts of a TCP/IP packet
- ESP in tunnel mode
 - Encrypts both the header and data part of each packet
 - Data cannot pass through a firewall using NAT
- ESP in transport mode
 - Encrypts only data portion of the packet
 - Data can pass through a firewall
- IPSec should be configured to work with transport mode

© Li-Chiou Chen, CSIS, Pace 71

Other tunneling protocol listed in the textbook Considered as tunneling protocols (or VPN technology) from a pragmatic point of view Operate at the Application Layer. Do not provide encapsulation Secure Shell (SSH) Provides authentication and encryption Works with UNIX-based systems Versions for Windows are also available Uses public-key cryptography Socks V. 5 Provides proxy services for applications That do not usually support proxying Socks version 5 adds encrypted authentication and support for UDP

TLS (transport Layer Security)

- RFC 5246
- A session layer protocol (between application layer and transport layer)
- Largely used for Secure HTTP
- Build on TCP (not UDP)
- Ensure
 - Authentication of the server
 - Confidentiality of the communication
 - □ Integrity of the data

© Li-Chiou Chen, CSIS, Pace

73

DTLS (Datagram TLS)

- RFC 4374, session layer protocol
- Similar to TLS but work on UDP
- Provide security for both UDP applications, such as IP phones and gaming programs
- Pace VPN client, CISCO AnyConnect uses DTLS

© Li-Chiou Chen. CSIS. Pace

_

Intrusion Detection Systems

IT304 Internet and Network Security Li-Chiou Chen 02/24/2010

Agenda

- Intrusion Detection Systems (IDS) basics
 - IDS components
 - Steps of intrusion detection
 - Options for implementing IDS
 - Evaluate different types of IDS products
- IDS configuration
 - Configure an IDS and develop filter rules
 - False alarms
 - Options for dealing with legitimate security alerts

© Li-Chiou Chen, CSIS, Pace

76

What is an Intrusion Detection System (IDS)?

- A system that identifies intrusions by monitoring network traffic and/or host activities
- Intrusions
 - Misuse
 - Unauthorized use by authorized users
 - Unauthorized use by external advisories
- What the system is looking for
 - Malicious traffic
 - Unusual traffic, source, types
 - Unknown patterns
 - Reconnaissance activities
- Log and report the suspicious activity

© Li-Chiou Chen, CSIS, Pace

Goals of IDS

- Detect a wide variety of intrusions
- Detect intrusions in a timely fashion
- Present the analysis in a simple and easy-tounderstand format
- Be accurate: avoid false positives and false negatives
 Attack
 No Attack

Detected Attack detection False positive

Not Detected False negative No attack

Intrusion Detection System Components

- Network sensors
- Alert systems
- Command console
- Response system
- Database of attack signatures or behaviors

© Li-Chiou Chen. CSIS. Pace

Network Sensors

- Electronic "eyes" of an IDS
- Hardware or software that monitors traffic in your network and triggers alarms
- Sensors should be placed at common-entry points
 - Internet gateways
 - Connections between one LAN and another
 - Remote access server that receives dial-up connections from remote users
 - Virtual private network (VPN) devices
 - Sensors could be positioned at either side of the firewall
 - Behind the firewall is a more secure location
- Management program controls sensors

© Li-Chiou Chen, CSIS, Pace

Alert Systems

- Trigger
 - Circumstances that cause an alert message to be sent
- Types of triggers
 - Detection of an anomaly
 - Detection of misuse

© Li-Chiou Chen, CSIS, Pace

Command Console

- Provides a graphical front-end interface to an IDS
 - Enables administrators to receive and analyze alert messages and manage log files
- IDS can collect information from security devices throughout a network
- Command console should run on a computer dedicated solely to the IDS
 - □ To maximize the speed of response

© Li-Chiou Chen, CSIS, Pace

82

Response System

- IDS can be setup to take some countermeasures
- Response systems do not substitute network administrators
 - Administrators can use their judgment to distinguish a false positive
 - Administrators can determine whether a response should be escalated
 - Increased to a higher level

© Li-Chiou Chen, CSIS, Pace

83

Database of Attack Signatures or Behaviors

- IDSs don't have the capability to use judgment
 - Can make use of a source of information for comparing the traffic they monitor
- Misuse detection
 - □ References a database of known attack signatures
 - □ If traffic matches a signature, it sends an alert
 - Keep database updated
 - Passive detection mode
- Anomaly-based IDS
 - Store information about users in a database

© Li-Chiou Chen, CSIS, Pace

Base-Rate Fallacy of Intrusion Detection Systems (IDS)

- IDS is useless unless accurate
 - Significant fraction of intrusions detected
 - False Alarms are suppressed significantly
- Suppose that an IDS can identify 99 intrusions out of 100 intrusions and generate one false alarm out of every 100 non-intrusions

	Attack	No Attack
Detected	Detection rate=99%	False positive rate = 1%
Not Detect	egalse negative rate	True negative = 99%

© Li-Chiou Chen. CSIS. Pace

An example: Base-Rate Fallacy of IDS

- IDS false positives and false negatives
 - An IDS can detect 99% of intrusions (false negative = 1%)
 - 1% of non-intrusions generate alarms (false positive = 1%)
- The IDS filters 100,000 events per hour
- When 10 in 100,000 events are really an intrusion; that is, 99990 in 100,000 are non-intrusions
- How many alarms that the systems will generate per hour?
- The system will generate 999.90 false alarms in 99990 non-intrusion events (99990*1%)
- The system will generate 9.9 real alarms in 10 intrusion events (10*99%)
- The system will generate 999.9+9.9 = 1009.8 alarm
- What is the percentage of alarms that are real per hour?
- only 9.9 in 1009.8 alarms are real, that is, ONLY about 1% of alarms are "real" (9.9/1009.8 \sim 1%)

© Li-Chiou Chen. CSIS. Pace

Types of IDS

- Based on data
 - Network-based IDS
 - Monitors and inspects network traffic
 - Host-based IDS
 - Runs on a single host
- Based on detection techniques
 - Signature-based IDS
 - · Uses pattern matching to identify known attacks
 - Anomaly-based IDS
 - Uses statistical, data mining or other techniques to distinguish normal from abnormal activities

© Li-Chiou Chen, CSIS, Pace

Network-based IDS (NIDS)

- Can be a single monitor that looks for a specific network device
- Can locate at multiple machines across the network
- Advantages
 - Can monitor multiple machines from one location
 - Can test effectiveness of firewalls if it is configured properly
- Disadvantages
 - Cannot see through encrypted traffic or tunnels
 - Local view as monitored hosts
- Require high performance to analyze fast links

© Li-Chiou Chen CSIS Pace

Host-based IDS (HIDS)

- Centralized configuration
 - HIDS sends all data to a central location
 - Host's level of performance is unaffected by the IDS
 - Alert messages that are generated do not occur in real
- Distributed configuration
 - Processing of events is distributed between host and
 - Host generates and analyzes it in real time
 - Performance reduction in host

© Li-Chiou Chen, CSIS, Pace

Advantages and disadvantages of HIDSs

- Advantages
 - Detect events on host systems
 - Can process encrypted traffic
 - Not affected by use of switched network protocols
- Can compare records stored in audit logs
- Disadvantages
 - More management issues
 - Vulnerable to direct attacks and attacks against host
 - Susceptible to some denial-of-service attacks
 - Can use large amounts of disk space
 - Could cause increased performance overhead on host

Signature-based IDS

- Data available to the IDS
 - □ Packet header/data or log/audit trails
- Advantages
 - Widely available
 - Can be fairly fast
 - Easy to update and implement
 - Numerous commercial systems
- Disadvantages
 - Cannot detect attacks that have no known signatures
 - Must be updated for new attack or attack variants
 - Large rules base

© Li-Chiou Chen, CSIS, Pace

91

Anomaly-based IDS

- Assumes that abnormal activities are intrusive
- Advantages
 - May be able to detect new attacks
- Disadvantages
 - What is the appropriate notion of normal?
 - Numerous research systems but few commercial systems
 - Can be computational intensive
 - Generally considered as high false positive
 - Think of a case with 0.001 false positives?

© Li-Chiou Chen. CSIS. Pace

02

Hybrid IDS Implementations

- Hybrid IDS
 - Combines the features of HIDSs and NIDSs
 - Gains flexibility and increases security
- Combining IDS sensor locations
 - Put sensors on network segments and network hosts
 - Can report attacks aimed at particular segments or the entire network

© Li-Chiou Chen, CSIS, Pace

93

Hybrid IDS Implementations (continued)

- Combining IDS detection methods
 - □ IDS combines anomaly and misuse detection
 - Database enables IDS to run immediately
 - Anomaly-based systems keep the alert system flexible
 - Can respond to the latest, previously unreported attacks
 - Both external and internal attacks
 - Administrators have more configuration and coordination work to do

© Li-Chiou Chen, CSIS, Pace

94

Hybrid IDS Implementations (continued)

- Shim IDS
 - Acts like a type of NIDS
 - Involves sensors being distributed around a network
 - Data collected by sensors is sent to a central location
 - Sensors are installed in selected hosts and network segments
 - Those that require special protection

© Li-Chiou Chen, CSIS, Pace

95

Hybrid IDS Implementations (continued)

- Distributed IDS
 - Multiple IDS devices are deployed on a network
 - Reduces response time
 - $\hfill\Box$ Two popular DIDSs
 - myNetWatchman
 - DShield

© Li-Chiou Chen, CSIS, Pace

Hybrid IDS Implementations (continued)

- Advantages
 - Combine aspects of NIDS and HIDS configurations
 - Can monitor network as a whole
 - Can monitor attacks that reach individual hosts
- Disadvantages
 - Need to get disparate systems to work in coordinate fashion
 - Data gathered by multiple systems can be difficult to absorb and analyze

© Li-Chiou Chen. CSIS. Pace

97

Evaluating Intrusion Detection Systems

- Survey various options and match them to your needs
- Review topology of your network identifying
 - Number of entry points
 - Use of firewalls
 - Number of network segments
- Evaluating IDSs can be time consuming

© Li-Chiou Chen. CSIS. Pace

90

IDS Hardware Appliances

- Can handle more network traffic
 - Have better scalability than software IDSs
- Plug-and-play capabilities
 - One of its major advantages
 - Do not need to be configured to work with a particular OS
- You should create a custom configuration
 - □ To reduce the number of false positives and false negatives
- Upgrade appliances periodically
 - Can be complicated and expensive
- Examples
 - □ iForce, Intrusion SecureNet, StealthWatch G1

© Li-Chiou Chen, CSIS, Pace

Agenda

- Intrusion Detection Systems (IDS) basics
 - □ IDS components
 - Steps of intrusion detection
 - Options for implementing IDS
 - Evaluate different types of IDS products
- IDS configuration
- Configure an IDS and develop filter rules
- False alarms
- Options for dealing with legitimate security alerts
- Lab #5

© Li-Chiou Chen, CSIS, Pace

100

Developing IDS Filter Rules

- IDS effectiveness depends on its database
 - Database should be complete and up to date
- IDS can have its own set of rules
 - You can edit it in response to scans and attacks
- IDS can be used proactively
 - Block attacks
 - Move from intrusion detection to intrusion prevention

© Li-Chiou Chen, CSIS, Pace

101

Rule Actions

- IDS has a passive and reactive nature
- Configure IDS to take actions

during the learning process

- Other than simply triggering alarms
- Provides another layer of network defense
- IDSs include documentation for writing rulesCustomized rules can increase false positives
 - Test your rules before using them in a real system

© Li-Chiou Chen, CSIS, Pace

Rule Data

- Specify the action you want Snort to perform
- Specify the rest of the data that applies to the rule
 - Protocol
 - Source and destination IP addresses
 - Port number
 - Direction

© Li-Chiou Chen, CSIS, Pace

103

Filtering Alerts

- To reduce false alarms adjust rules used by
 - Firewalls
 - Packet filters
 - IDSs
- Exclude specific signature from connecting to a selected IP address
 - Both internal and external addresses
 - Can even exclude an entire subnet or network

© Li-Chiou Chen. CSIS. Pace

104

Dealing with Legitimate Security Alerts

- Determine whether the attack is a false alarm
 - Look for indications such as
 - You notice system crashes
 - New user accounts suddenly appear on the network
 - Sporadic user accounts suddenly have heavy activity
 - New files appear, often with strange file names
 - A series of unsuccessful logon attempts occurs
- Respond calmly and follow established procedures
- Call law enforcement personnel if necessary
 - To handle the intrusion

© Li-Chiou Chen, CSIS, Pace

105

Assessing the Impact

- Was any host on your network compromised
- Determine the extend of the damage
- Determine the scope and impact of the problem
- Determine if the firewall was compromised
 - If firewall was compromised, computers on network could be accessed
- Reconstruct firewall from scratch

© Li-Chiou Chen, CSIS, Pace

106

Developing an Action Plan

- Action plan might involve the following steps:
 - Assess seriousness of the attack
 - □ Notify team leader immediately
 - Begin to document all actions
 - Contain the threat
 - Determine the extend of the damage
 - Make a complete bit-stream backup of the media
 - If you plan to prosecute
 - □ Eradicate the problem
 - Restore the system
 - Record a summary of the incident

© Li-Chiou Chen, CSIS, Pace

107

Handling Internal Versus External Incidents

- Intrusions and security breaches often originate from inside an organization
- Your response needs to be more measured
- Avoid notifying the entire staff
- Human Resources and Legal departments should be made aware of the problem
- Notify the entire staff only when they need to know something serious happened

© Li-Chiou Chen, CSIS, Pace

Taking Corrective Measures to Prevent Reoccurrences

- Take steps to prevent intrusions from recurring
- Set up intrusion rules that send alarms when the same intrusions are detected
- Notify others on the Internet about your attack

© Li-Chiou Chen. CSIS. Pace

109

111

Gathering Data for Prosecution

- Rules to handle evidence
 - Make sure two people handle the data at all times
 - Write everything down
 - □ Lock it up!
- Chain of custody
 - Record of who handled an object to be used as evidence in court
 - Decide SIRT members that will handle the evidence
- Before an incident occurs, decide whether you will prosecute or not
 - Include this in your security policy

© Li-Chiou Chen. CSIS. Pace

110

Steps for handling and examining hard disks and other computer data

- Secure the area
- Prepare the system
- Examine the system
- Shut down the system
- Secure the system
- Prepare the system for acquisition
- Examine the system
- Connect target media
- Secure evidence

© Li-Chiou Chen, CSIS, Pace

BASE: a web GUI for Snort alerts

IDS GUI:
Browser

Web server:
Apache

API: PHP

Database:
My SQL

IDS: Snort

References

- Randy Weaver (2006). "Guide to Network Defense and Countermeasures," Second Edition, Thomson Course Technology. ISBN: 1418836796.
- William Stallings and Lawrie Brown (2008). "Computer Security: Principles and Practice," Prentice Hall. ISBN: 0106004245.
- Raymond R. Panko, <u>Corporate Computer and Network Security</u>, 2nd Edition, 2009, Pearson/Prentice Hall, ISBN: 0-13-185475-5.
- ISACA CISA Exam review Manual, ISACA

© Li-Chiou Chen, CSIS, Pace