


Abstract— Web security education depends heavily on

hands-on labs that guide the students in developing web
applications, evaluating the effectiveness of available security
mechanisms, and detecting the security flaws of existing web
applications. Since a typical web application runs on multiple
servers including web servers, application servers and database
servers, it has been a great challenge in supporting them in
university laboratories. This paper introduces some of our
virtual web security labs developed as part of our NSF SWEET
(Secure WEb dEvelopment Teaching) and Department of
Defense Information Assurance Scholarship projects. All of
these labs are developed on our open-source Ubuntu virtual
machines, and all servers and applications are open-source thus
are freely available. Course modules have been developed to use
these open-source virtual labs to study cryptography, HTTP
and HTTPS protocols, and introduction to Java web
technologies. All of these resources are freely available to the
public.

Index Terms—Network security, Virtual labs, Web
technology, Web security.

I. INTRODUCTION

One challenge in web security education is its
interdisciplinary and practical nature. Students need to have
the basic knowledge and skills of a web developer to
understand many of the web security topics, and some of
them are normally covered in multiple advanced courses like
Computer Networks and Network Security, or are absent from
many existing undergraduate or graduate degree programs
(like Ajax or web services). The students also need to
actually practice to learn how to prevent, identify and resolve
web security breaches, but limited university resources and
few local web security domain experts sometimes limit the
scope and scale of projects that students could practice in lab
environments. If such labs are not designed properly,
students could also cause web security problems when they
explore security vulnerabilities of university or company
public web sites.

This paper shares our experience of using VMware virtual
machines in supporting hands-on web security education,
and developing multiple virtual web security lab modules
based on the virtual machines. The lab modules are part of
our NSF SWEET (Secure WEb dEvelopment Teaching)
project [9] and our Department of Defense Information
Assurance Scholarship project, and each of them contains (1)

Manuscript received June 15, 2010. This work was supported in part by
the National Science Foundation under Grant No. 0837549 and the
Department of Defense under the Information Assurance Scholarship
Program.

All the three authors are with Seidenberg School of Computer Science
and Information Systems, Pace University, Pleasantville, NY 10570 USA
(emails: ltao@pace.edu, lchen@pace.edu, and clin@pace.edu; Lixin Tao is
the corresponding author with phone: 914-773-3449; fax: 914-773-3533).

concepts in a nutshell; (2) lab objectives; (3) software setup;
(4) detailed lab instructions; and (5) lab evaluations.
Comprehensive lab modules have been developed to guide
students to build virtual Ubuntu virtual machines with
publicly available tools and install all necessary web servers,
application servers and database servers on them so they can
function as the foundation and platforms of the other course
modules. The other covered course modules include
cryptography, HTTP and HTTPS protocols, and introduction
to Java web technologies. All the lab modules can be
installed on portable USB thumbnail disks and run on any
computer that installs the free VMware Player. The paper
will also present our experience in adopting these course
modules in multiple network and web security courses at
Pace University..

II. SELECTION OF COMPUTER LAB

VIRTUALIZATION TECHNOLOGIES

The virtualization of a computer means to run emulator
software, like VMware Player [1] or Microsoft Virtual PC
[2], on a computer (host computer or physical computer) to
emulate another desired computer (virtual computer). A
virtual computer is implemented by a folder of 2-8 GB files,
and the emulator runs these files to emulate the virtual
computer as a computer window or the complete computer
desktop. To the users a virtual computer is just the same as
the physical one. The virtual and host computers can have
different operating systems, and share data and Internet
access. The users can work on multiple virtual computers and
the host computer at the same time. The users can install new
applications on the virtual computer as on a physical one. A
virtual computer can run most operating systems including
all versions of Windows and Linux.

There are two virtualization technologies: (1) server-side
virtualization for running the virtual computers on a remote
server computer, and (2) client-side virtualization for running
the virtual computers on users’ own computers. While
company/university IT infrastructure servers can use the
server-side virtualization to improve resource utilization,
client-side virtualization greatly reduces the pressure on the
servers and network bandwidth, and take advantage of
faculty and student PCs’ excessive computing power already
available today. In the recent years we have studied many
PC/lab outsourcing services based on server-side
virtualization, including those based on IBM mainframes,
and concluded that they all have recurring high costs or very
limited flexibility and resources for the users (such remote
virtual computers are at least ten times slower than a today’s
$400 PC in supporting interactive lab sessions, usually with
no Internet access and less than one GB of disk space).

The main advantages of client-side computer virtualization
for university computer labs include

Virtual Open-Source Labs for Web Security
Education

Lixin Tao, Li-Chiou Chen, and Chienting Lin

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

 There is no need of investment for a university to adopt

virtual computing labs, and there are no recurring costs.
 There is no significant cost for distributing the virtual

computers and lab modules to the faculty or students. The
virtual computer’s implementation folder can be
distributed through web downloading, USB flash disks, or
DVD disks. Typically a student can keep his/her virtual
computers for different courses on a single thumb-size
USB flash disk.

 If a person knows how to use a physical computer, he/she
knows how to use a virtual computer. There is minimal
learning curve for the users.

 New software can be installed on a virtual computer. If the
user messes up a virtual computer, he/she just gets a fresh
copy of the virtual computer’s implementation folder.

 Any computer, no matter whether it runs Windows, Linux,
or Mac OS, can install a free (around $70 for Mac OS)
computer emulator and run the virtual computers.
Therefore the students can work on a course lab anywhere.
The course work can be started on one computer, and later
resumed and completed on another. Therefore we could
support the concepts of “coursework can be conducted
anywhere on any computer” and “portable labs”.

 If an online student has difficulties in the hands-on course
work, the instructor can easily reproduce the problems and
help resolve the problems since they are using the same
working environment or virtual computer.

 The university has less pressure in updating its lab PCs and
it needs less staff to maintain them. Any PC that has 1-4
GB memory and 100 GB disk space can support virtual
computers in the coming years, and all university PCs of a
specific model can share a single configuration image. If a
PC has problems, just get it a fresh copy of the virtual
computer’s implementation folder (assuming important
data are on university network disks or owner’s disks).

For our web security virtual labs we choose VMware

virtualization over Microsoft Virtual PC because the former
can support virtual machines running any operating system
including all flavors of Linux.

III. UBUNTU SECURITY LAB PLATFORM

A complete lab module has been developed for students
and faculty who have no Linux background to develop a
Ubuntu v9.10 (the latest version) virtual machine (VM).
Instructions are also included to install and configure most
necessary IT servers and tools needed for supporting
network/web security and computing technologies. The
tutorial module includes (1) a detailed lab manual “A Tutorial
on Setting up Ubuntu Linux Virtual Machines” [3] detailing
step-by-step guidance to achieve the above tasks; (2) 7z
auto-extracting file for the completed basic Ubuntu v9.10
VM ready for software installation [4]; (3) 7z auto-extracting
file for the completed Ubuntu v9.10 VM ready for lab use or
distribution to the students [5]; and (4) a video tutorial for
those who need further visual help[6].

If users choose to use the preconfigured Ubuntu v9.10
VM, they just need to download the file “ubuntu10.exe” and
run it to extract VM folder “ubuntu10”; download and install
the free VMware Player [1] for their operating systems; and

double-click on file “ubuntu10/Ubuntu10.vmx” in a file
explorer to launch the VM as shown below.

After entering “user” or “root” as the user name and
“12345678” as the password, the users will see the following
Ubuntu user interface:

VM ubuntu10 has the installation of the following tools
and servers:

 Gnu C++/C compiler
 Java JDK v6.6
 Tomcat web server v6.0.20
 Apache web server v2.2 with support for Perl, PHP and

MySQL
 MySQL database server v5.1
 Eclipse IDE v1.2.1 (Galileo SR1)
 NetBeans IDE v6.7.1
 GlassFish application server v2.1 including Java EE web

server)
 Derby database server v10.4.2.1
 Drupal web contents management system v6.14
 Java Tutorial 2009-09-23
 Java EE 5 Tutorial v1.0_05
 First Cup tutorial for Java EE v2.1
 A dozen of pre-deployed web applications on Tomcat for

students to learn and experiment with web technologies.

The server installations have been configured for IT server
production run. For example, the Tomcat and Apache web
servers have been properly integrated so the Tomcat servlet
container can run behind the Apache web server to generate
HTML responses for Apache with Java technologies.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Most of our web security lab modules are built on top of
this Ubuntu VM which is available for free distribution to the
public. We have also developed a similar Windows XP VM,
as shown below, with similar tools and servers plus the IIS
web server, MS Office and Microsoft Visual Studio 2008 for
students to study web security technologies on the .NET
platform.

IV. SECURITY LAB MODULE ON CRYPTOGRAPHY

Security lab module “Introduction to Cryptography” [7]
covers fundamental concepts of symmetric secret key
ciphers, public key ciphers, hash functions, digital signatures
and digital certificates. The lab has the following objectives:

a. Learn and practice how to use MD5 and SHA1 to
generate hash codes of strings or large files, and verify
whether a downloaded file is valid;

b. Learn and practice how to use GPG to encrypt/decrypt
files with symmetric algorithms;

c. Learn and practice how to use GPG to generate
public/private key pairs and certificates, distribute the
certificate with public key to a friend, let the friend
encrypt a document with the public key, and let the
key owner decrypt the document with the private key.

The lab starts with the installation of the GnuPG-Agent

installation on the Ubuntu VM. The following is sample lab
guide for practicing PGP concepts with GPG on the Ubuntu
VM.

1. Create Linux Accounts for Alice and Mike

 Launch your Ubuntu10 VM, and start a terminal window.
 Run command “sudo adduser alice” to create a Linux

account for Alice. Use 123456 as password.
 Run command “sudo adduser mike” to create a Linux

account for Mike. Use 123456 as password.
 Run command “sudo visudo” to launch file

“/etc/sudoers.tmp” in a text editor, insert the following two
lines at the end of the file, and then use Crtl+O to write out
the revised contents, and use Ctrl+X to exit the editor. This
step will enable Alice and Mike to use “sudo”.

alice ALL=(ALL) NOPASSWD: ALL
mike ALL=(ALL) NOPASSWD: ALL

2. Run as Alice and Mike in two terminal windows

 In the terminal window, run “sudo login”, and then login
as Alice.

 Start a new terminal window, run “sudo login”, and then
login as Mike.

3. Generate keys for Alice

 In Alice’s terminal window, run “gpg --gen-key” to
generate her public and private keys. Enter “DSA and
Elgamal” for key kind, 2048 for key size, “key does not
expire” for key expiration date, “Alice” for real name,
alice@pace.edu for email address, “Alice’s keys” as
comment, and “Alice’s passphrase” for passphrase. You
may need to type over 284 random keys to generate
enough entropy so the keys could be created.

4. Generate keys for Mike

 In Mike’s terminal window, run “gpg --gen-key” to
generate his public and private keys. Enter “DSA and
Elgamal” for key kind, 2048 for key size, “key does not
expire” for key expiration date, “Michael” for real name,
mike@pace.edu for email address, “Mike’s keys” as
comment, and “Mike’s passphrase” for passphrase. You
may need to type over 284 random keys to generate
enough entropy so the keys could be created.

5. Export Alice’s public key to Mike

 In Alice’s terminal window, run “gpg --armor --output
alice-pk --export alice@pace.edu” to dump Ali’s public
key in file “alice-pk”. You can run “more alice-pk” to
review the public key.

 Run “sudo cp alice-pk /home/mike” to copy Alice’s public
key file “alice-pk” to Mike’s home folder.

 In Mike’s terminal window, verify the existence of file
“/home/mike/alice-pk” by running “ls” in Mike’s home
folder ~ (/home/mike).

 In the same Mike’s terminal window, run “gpg --import
alice-pk” to import Alice’s public key into Mike’s key
store.

 In the same Mike’s terminal window, run “gpg --edit-key
alice@pace.edu” to enter the editing session for Alice’s
public key. Type sub-command “fpr” to review the
fingerprint of Alice’s public key. Type sub-command
“sign” to sign this key with Mike’s key. You will be asked
to enter Mike’s passphrase, which is “Mike’s passphrase”.
Type sub-command “check” to review who is on the
signature list of Alice’s public key, and we will see Alice
(self-signature) and Mike on the list to confirm the validity
of the key. You type sub-command “quit” to exit the
editing session, and confirm to save the changes.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

6. Create and encrypt a message

 In Mike’s terminal window, run “cat > msg-to-alice”
followed by the ENTER key, type “Alice’s secret
message”, and then type key combination Ctrl+D to close
the file. You just created a new text file “msg-to-alice”
with contents “Alice’s secret message”.

 In Mike’s terminal window, run “gpg --recipient
alice@pace.edu --output secret-to-alice --encrypt
msg-to-alice” to generate a new file “secret-to-alice”
containing the encrypted version file “msg-to-alice”.

 In Mike’s terminal window, run “more secret-to-alice” to
review the encrypted version of the message.

 In Mike’s terminal window, run “sudo cp secret-to-alice
/home/alice” to copy file “secret-to-alice” to Alice’s home
folder “/home/alice”.

 In Alice’s terminal window, run “ls” in Alice’s home
folder ~ (/home/alice) to verify the existence of file
“secret-to-alice”.

7. Decrypt the message

 In Alice’s terminal window, run command “gpg --output
msg-from-mike --decrypt secret-to-alice” to decrypt the
contents of file “secret-to-alice” and save the result in a
new file “msg-from-mike”.

 In Alice’s terminal window, run “more msg-from-mike”
to review the decrypted message from Mike.

As our other lab modules, this module also has a rich set of

evaluation questions to check how well the students have
understood the essence of the lab module, and guide them to
creatively apply the learned concepts and skills in solving
related questions. The following are some sample review
questions for this lab module:

Question 1: Suggest some secure ways for distributing
symmetric or public keys.
Question 2: Is email a secure way for distributing symmetric
or public keys.
Question 3: Suppose Tom has the public key of Lisa. What is
the best way for Tom to send his public key to Lisa?
Question 4: Suppose Tom has the public key of Lisa. What is
the best way for Tom to send a secret message to Lisa?
Question 5: If a Word file is digitally signed, is the file also
normally encrypted so it cannot be eavesdropped?
Question 6: Can you totally trust a company if that company
has a digital certificate signed by VeriSign?
Question 7: Can technologies alone completely solve the
network or web security problems?

V. SECURITY LAB MODULE ON WEB

TECHNOLOGIES

Security lab module for introducing web technologies [8]
covers the web architecture, uniform resource locators,
HTML basics, the HTTP protocol, web session data
management (cookies, hidden fields, query strings and

server-side session objects). The lab has the following
objectives:

a. Compare HTTP GET and HTTP POST requests;
b. Observe HTTP communications with proxy server

Paros;
c. Experiment with cookies through web applications;
d. Compare web browser and web server interactions

with HTML forms and with hyperlinks;
e. Learn how to use JavaScript to validate form data in

the web browsers;
f. Learn how to create a static web site;
g. Learn how to create your first JSP web application on

Tomcat;
h. Learn how to create your first servlet web application

on Tomcat.

The tiered web architecture, as depicted below, shows the
students the full landscape of modern web applications,
justifies the separation of web servers and application
servers, and puts all kinds of web technologies in perspective.

The lab has the following sub-sessions:

1) Comparing HTTP GET and HTTP POST Requests
2) Observing HTTP Communications with Paros
3) Working with Cookies
4) Submitting Data with HTML Form and Hyperlink
5) Validating Form Data with JavaScript
6) Creating Your First JavaServer Page Web Application
7) Creating Your First Servlet Web Application

Sample Lab for Creating a Simple Servlet Web
Application

From the last exercise we know that the servelt is the
cornerstone of Java web technologies. In this exercise you
will develop a servlet web application with the same function
as the last welcomeJSP web application so you can better
compare the two technologies.

1. Launch the ubuntu10 VM with username “user” and

password 12345678.
2. In a file explorer, open “/home/user/tomcat/webapps”.

Right-click on any blank space in the explorer right pane
and choose “Create Folder” to create new folder
“/home/user/tomcat/webapps/welcomeServlet”.

3. In the file explorer, open folder
“~/tomcat/webapps/welcomeServlet”. Right-click on any
blank space in the explorer and choose “Create
Document|Empty File” and create a new file with name
“main.html”.

4. Right-click on file “main.html” and choose menu item
“Open With|gedit” to open file “main.html” in the gedit
editor.

Internet
TCP/IP

Web
App server

Extension

Tier 1
Web

Tier 2
Web server

Tier 3
App Server

Tier 4
Database

DBMS

HTTP

HTTP

HTTP

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

5. Type the following text into the file, and save the file.

<html>
<body>
<h2>My First Servlet Application</h2>
<form method="post" action="welcome">
Please enter your name: <input type="text"
name="name"/>

<input type="submit" value="OK"/>
</form>
</body>
</html>

6. Create in folder “~/tomcat/webapps/welcomeServlet” a

new folder “WEB-INF”. All servlet based web
applications have this folder for holding those files not
directly accessible from web browsers.

7. Create in folder “~/tomcat/webapps/welcomeServlet/
WEB-INF” a new folder “classes”. All Java classes to be
run on the web server must be under this folder.

8. Create in folder “~/tomcat/webapps/welcomeServlet/
WEB-INF/classes” a new file “Welcome.java”. Copy the
following contents in this file and save the file. If a servlet
needs to process HTTP POST requests, it needs to have a
doPost(request, response) method. If a servlet needs to
process HTTP GET requests, it needs to have a
doGET(request, response) method. We put all logics in the
doPost(request, response) method and call this method
inside the doGet(request, response) method to avoid
redundant code. Both of the two methods have two
parameters: request representing all data submitted
through the HTTP request, including data in the HTTP
request entity body and query string; and response
representing the data to be sent back to the remote web
browser through an HTTP response. Method
request.getParameter("name") is first called to retrieve
the value that the user has typed in the name text field.
After setting the output data type and retrieving the output
object of response, the remainder of the code just prints
out an HTML file piece by piece. This section of code
must remind you of the similar code we reviewed for the
Java code produced from file “Welcome.jsp” in the last
exercise.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class Welcome extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 String name = request.getParameter("name");
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<body>");
 out.println("<h2>Welcome, " + name + "</h2>");
 out.println("</body>");
 out.println("</html>");
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 doPost(request, response);
 }
}

9. Create in folder “~/tomcat/webapps/welcomeServlet/
WEB-INF” a new file “web.xml” and copy the following
contents into it. Each servlet web application needs this

configuration file. You first declare that file “main.html” is
the web application’s welcome file: if a web browser visits
this web application but not specifying which file to
retrieve, the welcome file will be sent back by default. You
then assign a name “welcome” to the servlet class
“Welcome”. In the last “servlet-mapping” element, you
declare that if the URL of an HTTP request contains
“/welcome”, the request will be sent to the servlet named
“welcome” for processing, which is “Welcome” in this
case.

<web-app>
 <servlet>
 <servlet-name>welcome</servlet-name>
 <servlet-class>Welcome</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>welcome</servlet-name>
 <url-pattern>/welcome</url-pattern>
 </servlet-mapping>

 <welcome-file-list>
 <welcome-file>main.html</welcome-file>
 </welcome-file-list>
</web-app>

10. Now you need to compile the servlet into a bytecode file

“Welcome.class”. Use the file browser to open folder
“~/tomcat/webapps/welcomeServlet/WEB-INF/classes”.
Right-click on any blank space in the right pane, and
choose menu item “Open in Terminal”. A new terminal
window will start with “~/tomcat/webapps/
welcomeServlet/WEB-INF/classes” as its working folder.
Run command “javac Welcome.java” to compile Java
source file “Welcome.java” into “Welcome.class”.

11. You have completed your first servlet web application.
Use a web browser to visit http://localhost:8080/
welcomeServlet and you will see a web browser view
similar to the following one. [Sometimes Tomcat could get
confused when you are developing web applications.
Restart the VM may resolve some of these problems.]

12. JSP and servlet web applications are normally deployed

as Web Archive (WAR) files. To make a WAR file
“welcomeServlet.war” for the current web application,
start a terminal window in folder
“~/tomcat/webapps/welcomeServlet, and run command
“jar cvf welcomeServlet.war *”. To deploy this web
application in a different Tomcat web server, you only
need to drop file “welcomeServlet.war” in that Tomcat
installation’s “webapps” folder, and this WAR file will be
automatically extracted into web application folder
“welcomeServlet” and the web application will start to
work right away, assuming that Tomcat is running.

13. By now you have successfully completed your first
servlet web application. Congratulations!

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Question 1: Where should Java servlet files be located in a
servlet web application?
Question 2: Appletes are Java classes to be downloaded to
web browsers and run in web browser sandboxes. Should
applet files be put under folder “WEB-INF”?
Question 3: What is the main function of servlet methods
doGet() and doPost()?
Question 4: What is the main function of configuration file
“WEB-INF/web.xml”?
Question 5: What is URL pattern of a servlet?
Question 6: What is the relationship between a JSP page and
a servlet class?

VI. WEB SECURITY LABS ADOPTION EXPERIENCE

Most of our web security lab modules have been
successfully incorporated in the undergraduate course
“Overview of Computer Security” and graduate courses
“Web and Internet Security” and “Concepts and Structures of
Internet Computing”. We collected students’ feedback on the
SWEET modules adopted in two classes of “Overview of
Computer Security” and “Web and Internet Security” offered
in Fall 2009. A web-based survey using 5-point Likert scale
was conducted at the end of the semester. The survey
included questions to elicit their feedback on the lecture
materials, laboratory exercises, the mapping between the
lecture and the lab and the overall impact of these modules on
their learning. Our results show that the students had invested
significant amount of time (2-4 hours per week on average)
in completing hands-on exercises. However, they generally
agreed that the course materials were planned well (average
4.1 for lecture category), the exercises had drawn their
interests (average 4.1 for lab exercise category), the exercises
had helped them in learning the course materials (average 4.1
for the mapping between labs and lecture), and they would be
interested in pursuing further in the Information Assurance
area (average 3.9 for overall category).

VII. CONCLUSION

This paper describes selected web security lab modules of
our NSF SWEET and Department of Defense Information
Assurance Scholarship projects. These modules are available
for free sharing with our colleagues in other universities. The
adoption of the virtualization technology by these modules
makes them effective in improving hands-on
exercises/projects and online delivery of web
security/technology courses.

ACKNOWLEDGMENT

This material is based upon work supported in part by the
National Science Foundation under Grant No. 0837549 and
the Department of Defense under the Information Assurance
Scholarship Program. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation, the Department of
Defense, or the US government.

REFERENCES
[1] VMware Inc., “VMware Player”, available http://www.vmware.com/

products/player.
[2] Microsoft Inc., “Microsoft Virtual PC”, available

http:// www.microsoft.com/windows/downloads/virtualpc.
[3] L. Tao, “A Tutorial on Setting up Ubuntu Linux Virtual Machines”,

available http://csis.pace.edu/lixin/ubuntu/LinuxTutorial.pdf, 2010.
[4] L. Tao, “ubuntu10basic.exe”, available http://csis.pace.edu/lixin/

ubuntu/ubuntu10basic.exe, 2010.
[5] L. Tao, “ubuntu10.exe”, available

http://csis.pace.edu/lixin/ubuntu/ubuntu10.exe, 2010.
[6] L. Tao, “A Video Tutorial on Setting up Ubuntu Linux Virtual

machines”, http://csis.pace.edu/lixin/ubuntu904, 2009.
[7] L. Tao, “Introduction to Cryptography”, available

http://csis.pace.edu/lixin/download/lab-cryptography.pdf, 2010.
[8] L. Tao, “Introduction to Web Technologies”, available

http://csis.pace.edu/lixin/download/lab-introduce-web.pdf, 2010.
[9] L. Chen, “Secure Web Development Teaching Modules”, SWEET

project web site, available http://csis.pace.edu/~lchen/sweet.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

