
0018-9162/01/$10.00 © 2001 IEEE2 Computer

Shifting
Paradigms with
the Application
Service Provider
Model

In the past four decades, several technological breakthroughs have made
it feasible to sell computing as a service rather than a product.
Supercomputers and clustering technologies have made huge amounts
of raw computing power available, while time-sharing operating systems
have made computing resources a divisible utility. Personal computers

have educated generations of home and office computing users, and they now
depend on such devices.

Meanwhile, the Internet has become the world’s largest data and computing-
service delivery infrastructure, offering a new platform for network-centric com-
puting. The World Wide Web has enabled the widespread growth of electronic
commerce, while Web browsers have become universal graphical user interfaces
for Internet-based services and thin clients. Component technologies have made
it possible to produce huge numbers of reliable distributed software applica-
tions that benefit from specialization and greater economies of scale.

Recently, application service providers (ASPs) have begun marketing the ASP
model, which uses the Internet or other wide area networks to provide online
application services on a rental basis—commercially delivering computing as a
service. Figure 1 shows projections that indicate the ASP market will grow to more
than $20 billion in 2003, yielding a compound annual growth in excess of 80 per-
cent.1 Yet for the ASP model to become the computing industry’s mainstream par-
adigm, ASPs must make significant breakthroughs in networking infrastructure,
computing technologies, and rental-based cost models and financial services.

If successful, the ASP model, combined with the effect of distributed compo-
nent technologies, will foster a new era of competitive network-based comput-
ing. Standardizing distributed components will make integration of applications
with distributed components a common practice. Standardizing common appli-
cation data formats or application programming interfaces will further break
the ASPs’ monopoly, thereby instilling new energy into the competitive network-
centric computing platform. A networked economy will be possible that can
easily integrate modular services from different providers.

To date, the ASP model has been limited to industry applications, with the
research community showing little interest in it. By surveying the relevant tech-
nologies that support ASPs, highlighting the technological challenges the ASP
model introduces, and studying the impact of the ASP model on the general com-
puting infrastructure, I hope to increase awareness of this important development.

Built upon
developments in
selective outsourcing,
application hosting,
and browser-based
computing, the ASP
model will shift the
purchase of computing
power from product to
rented-service form.

Lixin Tao
Concordia University

P E R S P E C T I V E S

ASP TRENDS
Three separate trends drive the emergence of

ASPs,1-3 providing the ASP model’s essential compo-
nents, as Figure 2 shows: selective outsourcing, appli-
cation hosting, and browser-based computing.

Selective outsourcing
Long a staple of the IT services industry, outsourc-

ing has, in recent years, evolved to provide increasing
levels of granularity in the choices the industry offers
its customers. Instead of handing over their complete
IT infrastructure to an outside provider, organizations
have selectively outsourced specific IT functions, rang-
ing from data networking to application management.
This development has combined with a trend toward
fixed and per-user pricing, often levied in the form of
a monthly subscription. ASP propositions emerging
from this development strand take several forms,
including subscription computing and outsourcing of
application, systems-management, infrastructure, and
whole-environment tasks.

Application hosting
Internet service providers have always been ASPs

to the extent that they provide hosted mail and Web
servers. Over time, the ISP industry has divided into
entities that provide access and connectivity services
and those that offer hosting services. The latter, par-
ticularly as they move into sophisticated e-commerce,
messaging, and other complex Web hosting services,
effectively become ASPs. A new class of application
software vendors, which uses the hosting model to
provide Internet-based applications and services, has
joined them, providing services that fall into several
distinct subcategories: Internet Web server hosting,
application server hosting, e-business services, and
Internet infrastructure services.

Browser-based computing
Web sites, once the home of static content, now host

live applications with increasing frequency. To gain
the stickiness that ensures return visits, information
sites have added applications that create dynamic and

interactive experiences. Meanwhile, a new generation
of software vendors markets their applications as
Web-based services, accessed directly over the
Internet.

These trends converge in serving either specialized
business needs or vertical industry markets, marking
the advent of browser-based computing, which pro-
vides sophisticated online applications alongside rel-
evant content from a Web site, catering to the specific
needs of a special-interest group. Significant browser-
based computing categories include network-based
application vendors, Internet business services, verti-
cal industry Web sites, Internet marketplaces, and
enterprise extranets.

BENEFITS
The ASP model’s benefits derive from distributing

its software applications across multiple servers rather
than across multiple clients.1-3 A combination of a
rental commercial model, a component-based appli-
cation architecture, and a server-based thin-client com-
puting environment provides the greatest benefits.

Software vendor and service provider benefits
include the following.

• No distribution costs. The ASP model eliminates
the need to print manuals, press disks, order
thousands of colorful cardboard boxes, manage
stock, and operate a returns procedure.

• No user installation. Removal of an installation
procedure eliminates the expense of providing
user support for it.

• Reduced piracy. Because the bulk of the software
resides on the server, users cannot copy and dis-
tribute the full version.

• Instant upgrades. Suppliers can implement bug
fixes and new features automatically, without
waiting for users to discover, download, and
install the new code.

• Consistent user base. Automatically updated
software that resides on the host reduces or com-
pletely eliminates the proliferation of different
application versions and release levels.

• Usage monitoring. Suppliers can monitor usage
to gain a greater understanding of user interac-
tion with the product, discovering the most and

October 2001 3

0

5

10

15

20

25
A

SP
 m

ar
ke

t
(b

ill
io

n
s

o
f

U
S

d
o

lla
rs

)

1999 2000 2001 2002 2003

Figure 1. ASP market forecast. If it meets analyst projections
that it will reach $20 billion by 2003, the market will enjoy an
annual growth rate of more than 80 percent.

Selective
outsourcing

Application
hosting

ASP

Browser-based
computing

Figure 2. Essential ASP components, which derive from the
IT industry’s selective outsourcing practices, ISPs’ provision
of complex application hosting services, and the Web’s
browser-based interfaces.

4 Computer

least popular features, identifying which features
appear to cause the most problems, and deter-
mining which features must be streamlined to
improve productivity.

• Potentially constant revenue stream. A steady
stream of rental fees releases suppliers from the
need to create annual releases simply to generate
revenue.

The ASP model’s user benefits include the follow-
ing.

• Limitless choice. The Internet gives users access
to every rental application available online, cre-
ating a model as pervasive and persuasive as the
PC. The rental model gives users unbounded
potential to access and combine services at will.

• No installation hassle. ASP software can be used
immediately, bypassing the time-consuming and
potentially troublesome client installation.
Having the software configured to meet specific
requirements or allow for integration with other
systems might cause a slight delay, but it provides
extra value.

• No compatibility issues. Users don’t need to
worry about whether their system is powerful
enough to run online software or if the ASP soft-
ware will conflict with other applications already
installed, because they do not install the ASP
products—they simply access them online.

• No support overhead. Users don’t need to employ
expensive administration and support staff to
operate complex software installations and the
equipment required to run them. The service
provider takes care of these issues and builds the
cost of doing so into the application’s subscrip-
tion price.

• Reduced downtime. Most online service
providers do a better job of ensuring 24/7 appli-
cation availability than customers could because
they depend on their products’ reliability to stay
in business.

Figure 3 explains why current ASP customers are
adopting this new computing model.1

Although a powerful and enticing business model,
ASP software does have its downside. Current disad-

vantages—which technological solutions should over-
come eventually—include difficulty in securing client
data and limited performance because of the Internet’s
limited bandwidth.

ASP CHANNEL STRATIFICATION
ASPs have stratified the ASP channel into several

interlocking layers, each with its own areas of core
competence.2,3 Although an end user who purchases
an ASP solution will deal with only one provider, in
most cases that solution will consist of various com-
ponents from several different layers. Among those
hidden layers might be a company that, while a major
contributor to the overall solution, never enjoys a
direct ASP relationship with the end user. This strati-
fication results naturally from the ASP model’s multi-
tiered computing architecture.

With various elements of the solution performed on
separate, specialized servers, an obvious next step is to
have separate and specialized providers handle each of
those elements. Some ASPs continue to argue in favor
of a vertically integrated model in which they own and
control every element from top to bottom, while oth-
ers promote the merits of outsourcing to best-of-breed
providers. The former approach can deliver tighter
integration and more assured control, while the latter
normally offers greater economies of scale.

Every provider, however, outsources at least some
element of the solution. Providers who host a server
center rarely write their own software. Thus, providers
and their customers must weigh the risk of outsourc-
ing against the cost of in-house provision, then strike
the balance that best suits their particular require-
ments.

The ASP channel has four primary subdivisions, as
Figure 4 shows. Each of those layers can contain many
different components. An ASP solution might consist
of contributions from a dozen or more different
providers, each responsible for just one component.
Alternatively, just one or two providers may provide
all the components, with provider’s activities strad-
dling several layers.

Network services
The providers of basic communications, server cen-

ter resources, and value-added Internet Protocol ser-
vices sit at the network layer. Communications include
the physical connections, the routers that handle IP
traffic, and the associated performance, reliability, and
security applications.

Server center resources typically embrace the pro-
vision of collocation space, protected electricity sup-
plies, and physical-security and maintenance services.
Value-added IP services include virtual private net-
working, network caching, streaming media, firewalls,
and directory services.

Lack of in-house expertise

Time to market

Cost

Reliable network connectivity

10 20 30 40
Percentage

50 60 70

Figure 3. Reasons
users adopt ASPs.
ASP software’s ability
to overcome the lack
of in-house expertise
proved more than
twice as important as
any other factor.

Infrastructure
The next layer contains a rapidly emerging space

with rich pickings for talented early entrants. Many
providers offer individual services such as utility stor-
age and server hosting, or operational resources such
as call centers, finance, technical support, and so on.
Some ASPs coordinate third-party services along with
their own in-house skills and resources, thereby pro-
viding a complete infrastructure that lets their clients
operate as ASPs.

This ASP infrastructure provider (AIP) role includes
the coordination of network and systems manage-
ment; the supply, operation, and management of sys-
tems hardware and software; and the management of
ASP subscriber accounts, billing, and customer sup-
port. A further important element comprises applica-
tion management, service-level monitoring, helpdesk
infrastructure, and the streamlined messaging of alerts
and support information between partners within the
ASP channel stack.

Many ASP pioneers have assumed this AIP role,
sensing the opportunity to turn their early experience
into a marketable commodity they can package and
sell to newcomers. They offer the service to indepen-
dent software vendors and systems integrators who
want to bring existing client-server applications to the
ASP environment. AIPs also give advice on the fine-
tuning and reengineering required to run applications
effectively from a shared, Internet-based server cen-
ter.

Software
Software providers add the vital ingredient that

enables the finished application service. The software
can be a ready-made, packaged application adapted
for ASP delivery or it can be specifically developed for
the purpose. Developers can use any of several appli-
cation server platforms to create ASP offerings,
although at present few offer a complete set of ser-
vices for functions such as service deployment, sub-
scriber management, support, service-level
management, and billing. Although independent soft-
ware vendors do most of the development in house, a
growing number of software companies and systems
integrators are developing specialized skills in build-
ing online application services to order.

Solution providers
Fulfilling the final step in the chain, solution providers

are the true ASPs. They package the software and infra-
structure ingredients with business and professional ser-
vices to create a complete service product.

SUPPORTING TECHNOLOGIES
Applications running on ASP servers need special

properties, such as separation of business logic from

presentation with Internet protocols, reentrant code,
scalability, efficient storage and retrieval of session
data, and lifetime management.

Most existing client-server applications are unsuit-
able for ASP hosting. For those developers who value
time-to-market more than quality of service, however,
some technologies—such as Microsoft Windows 2000
Terminal Services—support fast-track adaptation of
existing client-server applications for ASP hosting by
logically extending the connection between ASP
servers and client PCs’ I/O devices. WTS lets standard
Windows-based client-server applications run on the
server instead of on a client PC. Clients running
Windows terminal software can then use the
Microsoft Remote Display Protocol to access the ses-
sions.

Citrix, which developed the core technology under-
lying WTS, has its own independent computing archi-
tecture for delivering sessions to clients. It supports
non-Windows clients on platforms such as Java and
Unix, as well as the Windows clients that Microsoft
RDP supports. The company also offers a technology
called Application Launching and Embedding, which
allows access to Windows applications on the server
from any browser, without special Citrix or Microsoft
client software.

To fully benefit from the ASP infrastructure, appli-
cations must be tailored specifically to meet the ASP’s
intended use. The complexity and cost of such appli-
cations mandate adoption of the component
approach. Even though different ASP applications can
provide different services, they share many functions,
such as user subscription and management, billing
and payment processing, service quality control, data
storage and management, and authentication and ver-
ification. The success of a small- or medium-sized
enterprise depends on the following rule of thumb:
Spend 90 percent of your investment optimizing 5 to
10 percent of the components in your expertise
domain, and adopt commercial-off-the-shelf compo-
nents for the rest of your applications. It may be bet-
ter to let other specialized ASPs host advanced
external components via service integration.

External component quality presents a common
concern when using the component approach because
the external source code is usually hidden from in-
house system integrators. I believe the component
approach’s advantages outweigh these concerns for
the following reasons:

• in-house code is usually inferior to components
implemented by specialists,

• market competition provides the major driving

October 2001 5

Network services

Infrastructure

Software

Solution providers

Figure 4. ASP channel
stratification. The
channel consists of
four primary
divisions, with a sin-
gle ASP handling all
four only rarely.

6 Computer

force for those who create components based
on publicly accepted standard APIs to perfect
their products, and
• public adoption of a commercial component

will lead to early discovery of its bugs and
deficiencies.

Distributed-components reference model
A component is a binary module of code—

usually implemented as an object with some
extra properties—that supports system integra-
tion. A distributed component further supports

interoperation and collaboration of components run-
ning on different processors across a network. A full-
fledged distributed component usually has the
following properties.

• Universal reference. Each instance of the com-
ponent must have a reference or ID that is unique
across the world, so that other component
instances can address it and call its methods
through the Internet. Such references should be
valid across various computing platforms, com-
ponent implementation languages, network pro-
tocols, and geographical distances.

• Network interoperability. Any two component
instances on the Internet should be able to inter-
act with each other without regard to computing
platforms, implementation languages, network
protocols, and geographical distances.

• Introspection. Without a component’s source
code, the computing environment or other com-
ponent instances should be able to dynamically
find the component’s API, including the types and
signatures of public attributes and methods. This
capability enables dynamic interaction between
two component instances unknown to each other.

• Customizability. A component’s attributes and
behavior should be customizable offline, usually
with an integrated-development-environment
tool that leaves the instantiating component’s
source or binary code untouched.

• Toolability. Customization, as well as component
integration, should be carried out in a visual tool
environment, enabling system integration and
management without coding.

Because the component instances will interact and col-
laborate across networks, a component-support sys-
tem must provide various services, either online or
offline. Typical services in this category include the
following.

• Naming. The system associates user-friendly
names with references to component instances,
using globally unique names.

• Trading. Like a yellow pages directory, the trad-
ing service enables publishing new components on
the Internet, listed according to service category.

• Life cycle. This service handles the instantiation,
migration, copying, and destruction of compo-
nent instances and provides key support for the
visual dynamic integration of applications and
services.

• Persistence. This service lets the system auto-
matically activate component instances upon
client invocation. It will automatically save the
component instance’s state during a server crash,
restore the saved state upon re-instantiation, and
support the illusion that component instances
and the references to them are persistent.

• Event. The key to supporting event-driven exe-
cution among components, this service is itself
usually a component. Event source and sink
components can register with an event service
component. A sink component can register itself
as either a push or pull client for a particular cat-
egory. Upon notification from the event source,
the component will broadcast the event to all its
registered push clients for a particular category.
The pull clients can check the events with the
event service component in their own time. The
event service also provides a convenient tool for
supporting the push and pull of information.

• Transaction. This service makes a sequence of
interactions among components atomic: either
all succeed, or none will commit any state change
for the relevant components. Because such trans-
actions are not specified in source code, the trans-
action service can support either dynamic or
integration-tool-based transaction specifications
or transactions among components the system
implements in different languages.

COMPONENT TECHNOLOGIES
The following three major distributed-component

models represent—according to my component-ref-
erence model—the latest industry technologies that
support ASP server applications.

Corba
Common Object Request Broker Architecture4

components support all my required component prop-
erties except customizability and toolability. Currently,
Netscape Web browsers have a built-in object request
broker to support Corba-based applications embed-
ded in Web contents. Corba components support all
the essential online and offline services a component
system requires—and much more.

Corba can easily wrap legacy code in wrapper com-
ponents to provide a fast-track approach to adapting
legacy code to the ASP model. To achieve its ultimate

Corba components
support all the

essential online and
offline services a

component system
requires—and

much more.

goal of system integration, Corba uses IDL to stan-
dardize the specification of vertical and horizontal
common facilities.

Enterprise JavaBeans
EJB5 by itself can support only the integration of

Java components. But because EJB and Corba com-
plement each other so well, Corba has become the
favored implementation technique of EJB Remote
Method Invocations, while EJB provides Corba with
a friendlier user interface. EJB augments Corba with
declarative transactions, a server-side component
framework, and tool-oriented deployment and secu-
rity descriptors. Corba augments EJB with a distrib-
uted object framework, multilingual client support,
and Internet-Inter-ORB Protocol interoperability.

To integrate an existing Corba component into an
EJB framework, we can use the IDL-generated
JavaBean proxy to represent the original Corba com-
ponent, easily taking advantage of both these com-
ponent models.

Microsoft’s Web solution platform
Microsoft’s Web Solution Platform, formerly

known as DNA,6 provides a framework for fitting
Windows and the PC into the 3-tier application con-
cept. The platform represents Microsoft’s vision of
networked computing: an application architecture
that fully embraces and integrates the Internet, client-
server, and PC computing models to support the devel-
opment of scalable, multitier business applications
that can be delivered over any network.

At the Web Solution Platform’s core is COM+,
whose strengths include its position as a mature, core
supporting technology for Windows applications,
close integration with those applications, and a user-
friendly development environment. Native to
Windows, COM+ also has some disadvantages,
including its limited services for distributed comput-
ing and limited scalability relative to Corba. It also
lacks the serious competition that could drive
Microsoft to perfect this technology.

Microsoft has made great efforts to port COM to
other platforms. But COM’s supporting environment,
MTS, suffers from such extreme platform dependency
that it was too great an obstacle for this effort. In
recent years, Microsoft tried to use interoperability to
compensate for COM’s platform dependency. With
DCOM–Corba bridges, COM component instances
running on Windows can interact with Corba or EJB
component instances running on other platforms.
Microsoft does support Java, but only as a language,
not as a platform.

ASP CHALLENGES
To truly benefit from the ASP computing model, the

industry must overcome several technological
challenges.

ASP server scalability
Application hosting servers must support tens

of thousands of concurrent service sessions with
high availability and short response times.
Unlike Web servers used mainly to support
stateless HTTP connections that request Web
contents, ASP application servers must support
connection sessions during which they must
keep some session data on the servers. Such ses-
sions may last hours or days, and servers can-
not predict the connection patterns.

For Web servers, current techniques for improving
server performance include RAID disk arrays, server
farms based on dozens of processors interconnected
by buses or shared memories, and extensive caching.
For example, the Yahoo Web site uses an array of
around 50 high-performance server processors.
Nonpreemptive scheduling algorithms balance the
workload among the processors. Some ASPs also sup-
port external caching as a generic approach to boost-
ing Web server performance. Today’s Web server
market, based mainly on proprietary ad hoc tech-
niques, cannot support the level of service quality
most ASPs need.

Given that it must support session data, caching is
less effective for ASP servers. Dozens of processors
may be insufficient to support a full-fledged ASP
server’s data processing power. Further, current bus
or shared-memory architectures introduce server per-
formance bottlenecks.

Preemptive process or object scheduling techniques7

can help to achieve the scalability that ASP servers
require. A server consists of one or more master
processors and a cluster of client processors. The mas-
ter processors maintain the client processors’ dynamic
load information. The client service request first
reaches a master processor, which becomes the gate-
way for further communication between this client
and the master’s client processors.

The master processor starts a server process on a
client processor based on the processor’s current
load distribution, the level of service quality the
client requires, and the server’s scheduling policies.
Because clients use the ASP servers in unpredictable
patterns, a lightly loaded client processor can
become heavily loaded. With preemptive schedul-
ing, a process can migrate from one processor to
another to rebalance the workload. Major chal-
lenges include how to minimize process-migration
overhead, share and maintain session data, and
reroute the communications between the gateway
and the client processors while leaving a minimal
footprint in the client processors.

October 2001 7

Application hosting
servers must support
tens of thousands of
concurrent service
sessions with high

availability and
short response

times.

8 Computer

Internet infrastructure
Distributed components and services mainly

use URL addresses to identify each other.
Currently, the Internet uses the 32-bit Internet
protocol addresses that IPv4 specifies, but pro-
jections show we will run out of IPv4 address
space by 2005. IPv6, which must be in place by
then, uses 128 bits to represent a URL address
and thus allows ample expansion space for
future component-based ASP services. Win-
dows 2000 already supports IPv6.

With the ever-increasing communications vol-
ume on the Internet, ASP services’ response time
depends on the speed at which the information
flows between clients’ Web browsers and ASP
server centers. Today, packet switching provides
the main Internet support for data communica-

tions. With an achievable bandwidth of 1 terabyte per
second per optical fiber, the Internet’s communications
delay will be dominated mainly by the number of hops
from source to destination, not by an individual carrier’s
bandwidth. When a packet arrives, the router must
buffer it, extract its header for the destination address,
and use a routing table or algorithm to determine its
outgoing channel. The router will cut a typical message
into many small, fixed-size packets, incurring significant
overhead in routers along the way to the destination.

One solution to router processing delay adapts the
wormhole routing8 of parallel computing to the
Internet. This approach cuts a message into packets,
then further cuts each packet into smaller units named
flits—flow control digits—the bits of which can tra-
verse the communications carrier in parallel. For each
packet, the first flit contains the destination address
and the last flit signifies the packet’s end.

When the first flit arrives at a router, the router hard-
ware sets up a passage based on the destination
address and routing algorithm. The following flits then
just bypass the router without being buffered or
processed. The last flit’s arrival breaks the hardware
passage between the incoming and outgoing channels
and recycles the router resources.

With this approach, if the network is not congested,
and the number of a packet’s flits is much larger than
the number of hops the packet needs to traverse, the
packet’s delay will be roughly proportional to the
packet size, not the hop number. Cisco has imple-
mented a variant of this approach in some of its
switches.9 Based on today’s Internet infrastructure, a
packet can move around the world in 14 hops or less.

Micropayments
To fully benefit from their new operations model,

ASPs require smooth, secure, and efficient online
billing and payment mechanisms. These mechanisms
should support both very large and very small trans-

actions, the latter possibly involving only a few dol-
lars. The major challenge is to design mechanisms that
support the collection of very small sums, or micro-
payments, so that clients can pay as they go without
being deterred by complicated payment overheads.
Current approaches under investigation include smart
cards and electronic, virtual, or digital money.10

Micropayment becomes much more complicated
when used with an ASP service implemented through
integration of distributed components from several
ASP providers. Client sites may download such com-
ponents only during use to ensure better performance
or security. In this situation, the system needs to dis-
tribute client payments transparently to multiple
involved service providers based on accurate usage
statistics and service contracts. Handling the situation
will be easier if all commercial distributed components
support standard APIs and microaccounting mecha-
nisms that record and maintain usage statistics.

Security
ASP security addresses both client data and server

availability. Today’s virtual private network technol-
ogy can make any Internet connection highly secure
against outside interference. Similarly, encryption can
easily make either dial-up or leased-line direct access
secure. At the server centers, firewall technology fur-
ther guards against unauthorized access.

Establishing internal staff procedures sufficiently
robust to protect against security breaches presents a
greater challenge. The vast majority of security lapses
involving information technology today stem from care-
less or malicious acts by employees. ASPs must estab-
lish stringent procedures to avoid compromising the
integrity of customer data while it is under their care.

For extremely sensitive data, ASPs must let clients
download the necessary subset of components to
process data on the clients’ desktops. Further, ASP
server centers must guard against malicious attacks
that monopolize communications and server
resources. Currently, most Web servers—including
Microsoft Internet Information Server and Apache—
will crash, taking down their underlying operating sys-
tems as well, if their concurrent client connections
exceed the servers’ capacity to scale.

Dynamic configuration
In the ASP environment, multiple clients with dif-

ferent configuration requirements can use the same
application and run it concurrently. Therefore, an ASP
application must support separate configurations for
each independent user group. This capability contrasts
starkly with current practice, where the norm is to
enforce a common standard throughout the enterprise
to ease systems management complexity. ASPs do not
have the option of mandating consistency across the

To fully benefit from
their new operations
model, ASPs require

smooth, secure,
and efficient online
billing and payment

mechanisms that
support very large

and very small
transactions.

user population, but instead must embrace and man-
age complexity. Neither conventional client-server nor
next-generation e-commerce application architectures
currently provide satisfactory answers to this challenge.

ASP service integration
For several reasons, an enterprise may not want to

entrust all its computing needs to a single service
provider. First, it may have a significant amount of
proprietary or legacy systems and applications to run.
Second, it may have sensitive data to protect. Third,
it may want to benefit from competition among its
service providers to offer better service quality and
lower costs.

On the other hand, few service providers can afford
to be fully self-contained. For example, many ASPs
will opt to let professional financial institutions run
their credit card payment services, thereby reducing
operating costs and increasing their clients’ confidence
level. This option implies a strong need for easy inte-
gration of existing ASP services to create new services.
Thus, ASP applications should support integrating ser-
vices from different ASP providers and the integration
of ASP services with client applications. The industry
can achieve these goals by standardizing either the
common applications’ data formats or their APIs.

ASP IN PERSPECTIVE
The ASP model can easily lead to a service monop-

oly. The current ASP market consists mainly of ser-
vice providers for existing stand-alone or client-server
applications. Applications in the same category usu-
ally have similar functionalities, but different data
formats or user interfaces. While possible in some sim-
pler cases, changing the user data format poses prob-
lems, especially when a proprietary data format is
involved. Clients of such service providers will soon
find it almost impossible to switch to other providers
that offer similar services with a different application.
Although many ASPs cite the “high cost of switch-
ing” as a major factor in retaining customers,1 such
switching costs will keep many new clients from
adopting ASPs, thereby impeding competitive inno-
vation across the computing industry.

Promoting competition in the ASP market and
expanding the market with noncommitted free trials
requires accelerated public standardization of services
on two levels. At the lower level, we must standard-
ize the data formats of major applications. At the
higher level, we must standardize major application
user interfaces. Customers can easily adopt services
based on new applications that comply with such stan-
dards. Innovative companies can then improve the
performance of existing applications and use higher-
quality service to seduce customers away from less-
competitive service providers.

I f it can overcome the challenges facing it, the
ASP model will foster a new generation of dis-
tributed, component-based computing services

characterized by finer computing granularity, global
cooperation and specialization, multimedia data
handling, binary integration, mobile computing, and
pervasiveness across a full spectrum of electrical and
electronic devices. Applying generic network-cen-
tric computing will lead to a networked economy
characterized by service integration. ✸

References
1. ASP Island, “ASPs: The Net’s Next Killer App,” Jan.

2000; http://www.aspisland.com/trends/jcbradford/
(current Sept. 2001).

2. P. Wainewright, “Anatomy of an ASP: Computing’s New
Genus,” ASP News Rev., Jan. 2000; http://www.asp-
news.com/premium/article/0,,4221_375621,00.html
(current Sept. 2001).

3. P. Wainewright, “Packaged Software Rental: The Net’s
Killer App,” ASP News Rev., Jan. 2000; http://allnetre-
search.internet.com/item/1,3008,45601,00.html (cur-
rent Sept. 2001).

4. T. Mowbray and R. Zahavi, The Essential Corba: Sys-
tems Integration Using Distributed Objects, John Wiley
& Sons, New York, 1995.

5. J. Gosling et al., Java Programming Language, 2nd ed.,
Addison Wesley Longman, Reading, Mass., 1998.

6. D.S. Platt, Understanding COM+, Microsoft Press, Red-
mond, Wash., 2000.

7. A. Goscinski, Distributed Operating Systems: The Log-
ical Design, Addison-Wesley, Reading, Mass., 1991.

8. L.M. Ni and P.K. McKinley, “A Survey of Wormhole
Routing Techniques in Direct Networks,” Computer,
Feb. 1993, pp. 62-76.

9. Cisco Product Documentation, “Bridging and Switch-
ing Basics,” June 1999; http://www.cisco.com/uni-
vercd/cc/td/doc/cisintwk/ito_doc/bridging.htm (current
Sept. 2001).

10. M.H. Sherif, Protocols for Secure Electronic Commerce,
CRC Press, Boca Raton, Fla., 2000.

Lixin Tao is an associate professor of computer sci-
ence at Concordia University, Canada. His research
interests include distributed component technologies,
Internet computing, parallel computing, and opera-
tions research. He received a PhD in computer sci-
ence from the University of Pennsylvania. He is a
member of the ACM and the IEEE. Contact him at
taol@acm.org.

October 2001 9

