

Fault Tolerant, Self-Healing and Vendor Neutral

Multi-Cloud Patterns and Framework

Focusing on Deployment and Management

by

Andrey Rybka

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Professional Studies

in Computing

at

School of Computer Science and Information Systems

Pace University

October 2017

Version 2.5

We hereby certify that this dissertation, submitted by Andrey Rybka, satisfies the
dissertation requirements for the degree of Doctor of Professional Studies in Computing
and has been approved.

___-________________

Dr. Lixin Tao Date

Chairperson of Dissertation Committee

___-________________

Dr. Charles Tappert Date

Dissertation Committee Member

___-________________

Dr. Ronald Frank Date

Dissertation Committee Member

School of Computer Science and Information Systems

Pace University 2017

Abstract

Fault Tolerant, Self-Healing and Vendor Neutral

Multi-Cloud Patterns and Framework

Focused on Deployment and Management

by

Andrey Rybka

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Professional Studies in Computing

October 2017

Many organizations are looking to migrate to the cloud and looking for the best way to do
it securely, reliably and without vendor lock in. Most organizations have to pick a cloud
provider that uses proprietary APIs and Software. Most vendors currently do not
implement any cloud API standards i.e. TOSCA or OASIS CAMP. Therefore, to date,
the standard approaches to cloud computing have not been successful. In addition, cloud
providers experience outages, frequently with serious business impact – so fault tolerance
in cloud environment still needs more research and clear and prescriptive guidance.
Variable performance is also an issue because most cloud providers overprovision their
virtualized infrastructure and it results in degradation of performance and quality of
service for customers depending on overprovisioning factor set by the cloud provider.

This study focuses on development of multi-cloud vendor neutral framework and patterns
that deliver non-proprietary APIs and Software above IaaS layer with the functionality
that will be on par with proprietary software or service offered by an individual cloud
provider. We demonstrate how to design Fault Tolerant, Self-Healing, Performant,
Secure and Cost Efficient Deployment using Patterns in the Multi-cloud environment
without vendor lock in. We detail and catalog the developed solutions to common multi-
cloud problems via patterns and multi-cloud framework using open source software
which ensures portability across cloud providers. Framework and patterns can be re-
produced by setup scripts, code and examples which are provided in the accompanying
code repository. All of the failure scenarios are validated and demonstrated clearly
showing the fault tolerance and limits of each solution.

Acknowledgements

First I would like to thank my advisor - Dr. Lixin Tao for all for all the help, patience,

support and guidance provided over the years. In addition, I am deeply grateful to my

family for their patience and support over all these years. I would also like to thank

dissertation committee members Dr. Ronald Frank and Dr. Charles Tappert as well as

DPS faculty who have helped me a great deal on this journey.

 v

Table of Contents

Abstract .. iii

Acknowledgements .. iv

List of Figures .. ix

Chapter 1 - Introduction .. 1

1.1 Multi-Cloud Deployment for Fault-Tolerance, Performance, Security and Cost
Efficiency .. 6

1.2 Current Solutions and Their Limitations .. 10

1.3 Problem Statement .. 16

1.4 Solution Methodology .. 19

1.5 Expected Contributions ... 21

1.6 Dissertation Roadmap/Outline .. 27

1.7 Conclusion .. 27

Chapter 2 – Survey of Relevant Research .. 28

2.1 Relevant Topics for Literature Review ... 28

2.2 Relevant Definitions and Examples .. 28

2.3 Existing Work around Cloud Design Patterns .. 35

2.4 Existing Work around Fault Tolerance within Distributed and Cloud Systems 39

2.5 Existing Work Around Multi-Cloud Deployments and Standards 41

2.6 Security Related Papers Focused on Cloud and Multi-Cloud Deployments 46

2.7 Self-Healing Cloud Research .. 49

2.8 Additional Relevant Distributed Systems and Multi-cloud Research 51

2.9 Cloud Cost Efficiency Related Research .. 52

2.10 Conclusion .. 53

Chapter 3 - Patterns and Open-Source Framework for Effective Multi-Cloud Deployment
... 55

3.1 Assumptions and Objectives for Supporting Open-Source Multi-Cloud
Deployment ... 55

3.1.1 Problem Statement ... 55

3.1.2 Key Assumptions ... 56

 vi

3.1.3 Objectives and Scope of the study ... 60

3.1.4 Solution Methodology - how do we approach addressing these objectives?... 61

3.1.5 Solution Limitations... 62

3.2 Key Challenges while Deploying Enterprise Computing in Multi-Cloud
Environment .. 64

3.1.1 Initial Multi-Cloud Deployment Challenges ... 64

3.2.1 Challenges related to Multi-Cloud Management after initial deployment and
dealing with failures .. 65

3.2.3 Cost Efficiency Multi-Cloud Challenges ... 65

3.2.4 Security Multi-Cloud Challenges .. 65

3.2.5 General Application Deployment Multi-Cloud Challenges 66

3.3 Open-Source Multi-Cloud Deployment Solution Framework 67

3.4 Solutions to Major Multi-Cloud Computing Challenges .. 70

3.4.1 Initial Multi-Cloud Deployment Solutions .. 70

3.4.2 Multi-Cloud Management after Initial Deployment and Dealing with Failures
... 80

3.4.3 Cost Efficiency Multi-Cloud Challenges ... 90

3.4.4 Security Challenges in Multi-Cloud Environment ... 94

3.4.5 General Multi-Cloud Application Deployment Challenges 97

3.5 Summary ... 101

Chapter 4 - Detailed Multi-Cloud Design Patterns and Multi-Cloud Based on Open-
Source Technologies ... 107

4.1 Multi-Cloud Foundation Patterns focused on Fault Tolerant Deployment Solutions
... 107

4.1.1 General Multi Availability Zone Fault Tolerant Pattern 107

4.1.2 General Multi-Cloud Fault Tolerant Routing Pattern................................... 116

4.1.3 Multi-Cloud Cloud Blueprint Pattern .. 122

4.1.4 Image Build Pipeline Pattern for Multi-Cloud Deployment 125

4.1.6 Multi-Cloud Service Registry and Discovery API ... 132

4.2 Multi-Cloud Management after Initial Deployment and Dealing with Failures in
Automated Way .. 138

4.2.1 Multi-Cloud Telemetry and Log Aggregation Pattern................................... 138

 vii

4.2.2 SLA Enforcer Rules Engine ... 141

4.2.3 Multi-Cloud Data Replication ... 146

4.2.4 Reactive Multi-Cloud Health Check and Load Balancing Pattern 148

4.2.5 Proactive Multi-Cloud SLA Policy Enforcement Pattern 150

4.2.6 Public Cloud Bursting Pattern... 155

4.2.7 Multi-Cloud Disaster Recovery Pattern ... 158

4.3 Cost Efficiency Patterns .. 162

4.3.1 Multi-cloud Aggregate Billing and Chargeback Pattern............................... 162

4.3.2 Cost Efficiency Discount Multi-Cloud Pattern .. 166

4.4 Security Related Patterns .. 171

4.4.1 Multi-Cloud Secret Storage and Retrieval – Secrets Vault Pattern 171

4.4.2 Multi-Cloud Auditor Pattern.. 173

4.5 Multi-Cloud Control Plane Framework .. 176

4.6 Combining Control Plane Framework with Additional Application Use Case
Patterns .. 179

4.6.1 Multi-Cloud Web Application / Service Pattern .. 179

4.6.2 Multi-Cloud Internet of Things Event Stream Ingesting Pattern and Big Data
Pipelines .. 182

4.6.3 Container Orchestration Pattern for Multi-Cloud Deployments................... 185

4.7 Conclusion and Pattern Mappings to the Particular Problem 190

Chapter 5 - Experimental Validation .. 198

5.1 Implementations for Key Components of the Multi Cloud Framework 198

5.2 General Approach to Validation ... 199

5.3 General Multi-Cloud Cloud Fault Tolerant Routing Pattern Validation 201

5.4 Multi-Cloud Cloud Blueprint and Multi-Cloud Deployer Pattern Validation 206

5.6 Image Build Pipeline Pattern Validation .. 212

5.7 Multi-Cloud Service Registry and Discovery ... 217

5.8 Multi-Cloud Container Orchestration Validation ... 220

5.9 Multi-Cloud Data Replication Pattern Validation .. 222

5.10 Conclusion .. 226

 viii

Chapter 6 - Summary of Contributions and Future Work .. 227

6.1 Summary of Main Contributions .. 227

6.2 Future Work .. 233

Appendix A – Major Cloud Provider Outages ... 234

References ... 241

Academia References.. 241

Industry and Web References ... 247

 ix

List of Figures

Figure 1 - Infrastructure as a Service vs. Platform as a Service ... 2

Figure 2 - Infrastructure Software... 5

Figure 3 - 2015 Major Cloud Provider Outage in Hours .. 7

Figure 4 - Multi-Cloud Hybrid Deployment Pattern .. 8

Figure 5 - Microsoft Azure Big Data Offerings Circa 2016 ... 11

Figure 6 - Google Proprietary Big Data Offerings ... 12

Figure 7 - Time Series AWS Specific Pattern .. 13

Figure 8 - Vendor Neutral Time Series Pattern .. 15

Figure 9 - Multi-Cloud Control Plane Framework ... 67

Figure 10 - Multi-Cloud Cloud Blueprint Pattern .. 71

Figure 11 - Multi-Cloud Image Builder Pattern ... 73

Figure 12 - Multi-Cloud Deployer Pattern.. 75

Figure 13 - Fault Tolerance in Multi-Cloud Environment.. 76

Figure 14 - Routing in Multi-Cloud Environment .. 78

Figure 15 - Multi-Cloud Registry and API Pattern ... 80

Figure 16 - Telemetry, Logs and Failure Detection in Multi-Cloud Environment 81

Figure 17 - Multi-Cloud SLA Enforcer Rules Engine .. 83

Figure 18 - Multi-Cloud Data Replication .. 84

Figure 19 - Reactive Multi-Cloud Health Check and Load Balancing Pattern 85

Figure 20 - Advanced Failover Based on SLA Telemetry ... 87

Figure 21 - Exhausted Capacity Failover.. 88

Figure 22 - Continuous Data Replication Needed for Multi-Cloud Disaster Recovery ... 89

Figure 23 - Multi-Cloud Disaster Recovery Pattern ... 90

Figure 24 - Aggregate Billing in Multi-Cloud Environment .. 92

Figure 25 - Taking Advantage of Cloud Provider Price Discounts Dynamically 93

Figure 26 - Multi-Cloud Secrets Storage and Retrieval ... 95

Figure 27 - Multi-Cloud Security Policy Auditor Pattern .. 96

 x

Figure 28 - Multi-Cloud Web Application / Service Pattern .. 98

Figure 29 - Multi-Cloud Internet of Things and Big Data Deployment 99

Figure 30 - Multi-Cloud Deployment and Orchestration with Containers 101

Figure 31 - Sequence Diagram of Obtaining Availability Zone Information and
Placement of Virtual Machines ... 109

Figure 32 - Multi Availability Zone Deployment with Health Checking 112

Figure 33 - Multi Availability Zone Deployment with Load Balancers and Health
Checking ... 113

Figure 34 - Same Geographical Region Deployment for Low Latency 114

Figure 35 - Multi-Cloud Deployment Example .. 115

Figure 36 - DNS Only Multi-Cloud Fault Tolerant Routing Pattern 117

Figure 37 - Multi-Cloud Fault Tolerant Routing Pattern with DNS and API Failover .. 118

Figure 38 - Multi-Cloud Routing API Failover Deployment ... 119

Figure 39 - Multi-Cloud DNS Implementation Example ... 120

Figure 40 - DNS and API Fail-over Implementation Example 121

Figure 41 - Multi-Cloud Cloud Blueprint Pattern .. 123

Figure 42 - Multi-Cloud Bootstrap Pattern Open Source Implementation Options 124

Figure 43 - Multi-Cloud Cloud Image Build Pattern .. 127

Figure 44 - Multi-Cloud Cloud Image Build Pattern Implementation with Open Source
Software .. 128

Figure 45 - Multi-Cloud Node Deployer - Orchestrator Pattern..................................... 130

Figure 46 - Multi-Cloud Node Deployer - Orchestrator Pattern with Multi Availability
Support .. 131

Figure 47 - Multi-Cloud Service Registry and Discovery API with Multi-Cloud Control
Plane .. 134

Figure 48 - Multi-cloud Registry and API High Availability Deployment 135

Figure 49 - Multi-cloud Registry and API Implementation Example 136

Figure 50 - Multi-Cloud Telemetry and Log Aggregation Pattern 139

Figure 51 - Multi-Cloud Telemetry and Log Aggregation Pattern with Remote Probes 140

Figure 52 - Multi-Cloud Telemetry and SLA Enforcer Rules Engine............................ 143

Figure 53 - Multi-Cloud Data Replication Deployment ... 147

 xi

Figure 54 - Reactive Multi-Cloud Health Check and Load Balancing Pattern 150

Figure 55 - Proactive Multi-Cloud Health Check and Load Balancing Pattern 152

Figure 56 - Proactive Multi-Cloud Health Check and Load Balancing Pattern with Multi-
Cloud Control Plane .. 152

Figure 57 - Public Cloud Bursting Pattern .. 156

Figure 58 - Multi-Cloud Disaster Recovery Pattern ... 159

Figure 59 - Multi-Cloud Disaster Recovery Pattern with Multi-Cloud Control Plane ... 160

Figure 60 - Multi-Cloud Disaster Recovery Pattern Detailed .. 161

Figure 61 - Multi-cloud Aggregate Billing and Chargeback Pattern 164

Figure 62 - Multi-cloud Aggregate Billing and Chargeback Pattern with SLA Enforcer
Rules Engine ... 165

Figure 63 - Cost Efficiency Discount Multi-Cloud Pattern .. 168

Figure 64 - Multi-Cloud Secret Storage and Retrieval – Secrets Vault Pattern 172

Figure 65 - Multi-Cloud Auditor Pattern .. 174

Figure 66 - Multi-Cloud Control Plane Framework ... 176

Figure 67 - Multi-Cloud Control Plane Framework Implemented with Open Source
Components .. 178

Figure 68 - Conceptual Multi-Cloud Web Application / Service Pattern 180

Figure 69 - Multi-Cloud Web Application / Service Pattern Implementation................ 181

Figure 70 - Conceptual Multi-Cloud Internet of Things Event Stream Ingesting Pattern
and Big Data Pipeline ... 183

Figure 71 - Multi-Cloud Internet of Things Event Stream Ingesting Pattern and Big Data
Pipeline Implementation ... 184

Figure 72 - Containers vs. Virtual Machines .. 186

Figure 73 - Conceptual View of Container Orchestration Pattern for Multi-Cloud
Deployments ... 187

Figure 74 - Container Orchestration Pattern for Multi-Cloud Deployments
Implementation View.. 188

Figure 75 - Multi-Cloud Control Plane Framework Conceptual View 190

Figure 76 - Multi-Cloud Control Plane Framework Implementation View 191

Figure 77 - Multi-Cloud Cloud Fault Tolerant Routing Pattern Validation 201

Figure 78 - General DNS Failover Approach ... 204

 xii

Figure 79 - Primary and Secondary DNS Failure – API End Points are Used for Failover
... 205

Figure 80 - Multi-Cloud Cloud Blueprint and Multi-Cloud Deployer Pattern Validation -
Conceptual .. 206

Figure 81 - Multi-Cloud Cloud Blueprint and Multi-Cloud Deployer Pattern Validation -
Implementation View.. 207

Figure 82 - Multi-Cloud Cloud Blueprint and Multi-Cloud Deployer Pattern Sequence
Diagram... 210

Figure 83 - Validation of Multi-Cloud Image Pipeline Pattern 213

Figure 84 - Validation of Multi-Cloud Image Pipeline Pattern - Implementation View 214

Figure 85 - Multi-Cloud Service Registry and Discovery .. 217

Figure 86 - Multi-Cloud Service Registry and Discovery - Implementation View 218

Figure 87 - Multi-Cloud Container Orchestration Validation .. 221

Figure 88 -Multi-Cloud Data Replication Pattern Validation... 223

Figure 89 - Multi-Cloud Deployment Framework Comprised of Multi-Cloud Patterns 227

Figure 90 - Multi-Cloud Deployment Framework Comprised of Multi-Cloud Patterns -
Implementation View.. 228

1

Chapter 1 - Introduction

Most organizations are moving to the cloud or planning to move to the cloud. However,

it quickly becomes clear that it’s usually not a simple lift and load process moving from

on-premises to the cloud.

So, what is one to do when they move to a cloud?

There are multiple stakeholders usually involved in this process:

- Developers just want to write code and deploy applications.

- Operations and Support professionals want to make sure that the solution is fault

tolerant, not brittle and everyone can sleep well at night.

- Security professionals want to make sure there are no breaches and data is

protected.

- Business users generally just want good SLA (Service Level Agreement) without

any downtime for the cheapest price possible.

Some initial challenges and questions that are usually asked:

Which cloud provider should I choose?

Should I move to Amazon AWS, Azure, Google or someone else?

Is it just about a price? Should I go with the cheapest option?

What about data safety and security certifications?

2

My application or process needs a software stack i.e. J2EE, .NET etc. – how do I set this

up in the cloud? How do I do it securely? How do I ensure there is no downtime/faults?

More importantly, most organizations ask: I would like to move application X or process

Y to the cloud – what is the best way of doing it?

Should I pick Infrastructure as a Service (IaaS) or Platform as a Service (PaaS)? Let’s

briefly illustrate the difference between the two:

Infrastructure as a Service vs. Platform as a Service

Figure 1 - Infrastructure as a Service vs. Platform as a Service

At this point, confused customers usually go to all cloud providers and every cloud

provider promises that all of these will be addressed and they have excellent tools to help.

However, the reality is pretty grim. Even if a customer gets all of the questions answered

and picks one cloud provider they end up locked in as most of these tools are proprietary

and most cloud providers do not have or support standardized APIs.

3

The more features, automation and abstractions vendor provides usually results in more

of lock-in for the customer. Here is high-level trend of vendor lock in of cloud offerings

from least to most:

Infrastructure as a Service (IaaS): customer gets to control Resources, Virtual

Machines/Compute, Networking, Storage. Example: AWS EC2, GCE.

Platform as a Service (PaaS): customer gets more features, but has less control than

IaaS and more lock in. Example: Heroku.com

Function as a Service (FaaS): customer gets more features than PaaS but even less

control than PaaS with even more lock in. Example: AWS Lambda, Azure Functions

Software as a Service (SaaS): customer gets more features and even less control than

FaaS with even more lock in. Example: Salesforce

Infrastructure as
a Service

Platform as a
Service

Function as a
Service

Software as a
Service

Vendor Lock In and Features
(from least to most)

4

So is there a better way? It’s usually very hard to quantify “better”. However, one can

argue the better way is to use a solution to a common problem which is generally defined

as a pattern. In this research, we will provide patterns for common problems that

organizations face when migrating to a cloud which ultimately will comprise multi-cloud

framework. In addition, we will focus on building on lowest lock in layer which will be

Infrastructure as a Service.

Originally most of the design patterns were software design patterns – i.e. Gang of Four

Design Patterns. In this study, we will focus on infrastructure software deployment and

design patterns.

What is a software infrastructure deployment pattern? It is a general reusable solution to

a commonly occurring problem within a given context in software deployment. By

infrastructure software we mean any software that is not application for example web

service, application server software, database etc. This is also sometime referred to as

software stack. Let us look at illustration of what Infrastructure Software or Stack is:

5

Figure 2 - Infrastructure Software

Applications need a specific software infrastructure stack to run on. Some of the

common stacks can be classified as: Dynamic Web Application Stack, Media Streaming,

Content Serving, Data Analytics Stack etc. These are examples of deployment stack

patterns.

6

1.1 Multi-Cloud Deployment for Fault-Tolerance, Performance, Security and Cost
Efficiency

What is Multi-cloud deployment? It is essentially the use of multiple cloud computing

resources/services seamlessly as one coherent architecture. This might include Public

and Private Cloud, as well as mix of SaaS, PaaS and IaaS computing resources.

Why does multi-cloud approach matter?

Fault Tolerance and High Availability

Every cloud provider experiences outages. These might be contained to one particular

location, but in many cases those locations serve a very large group of clients for example

U.S. Northeast or Europe. Many outages have demonstrated that high density

deployments in one region with one cloud result in high impact outages to many

customers. [Appendix A]. There are even services that track cloud outages in real time

https://cloudharmony.com/status. (Valid by July 31, 2017)

Here the summary of total hourly impact of outages in 2015 by major cloud

providers:

https://cloudharmony.com/status

7

Figure 3 - 2015 Major Cloud Provider Outage in Hours

This is just a one year example - please reference a more detailed list of major outages of

cloud providers for past 3 years:

Appendix A – Major Cloud Provider Outages

Performance

Performance generally has to do with how fast computer systems can perform a task X

but more precisely it has to do with following computer system quality attributes:

response time, throughput, latency and scalability.

One of the core issues is that not every provider has the same performance profile and at

any point of time it might change due to multi-tenant nature of the cloud and because

8

most of workloads and component are virtualized. For example, let’s take hypervisor

which runs multiple virtual machines. You will most likely be sharing a hypervisor with

multiple tenants and this results in a noisy neighbor problem – where one tenant might

negatively impact performance for another tenant sharing the hypervisor.

In addition will focus on ability to scale Up / Vertically within the same Virtual Machine

Instance and Out / Creating new instances / components.

Locality

Not every cloud provider has presence in all countries and in many cases there are

different regulations that might drive the need to be in specific country. Latency and

proximity matters to many use cases. In many cases you might want to run some

workloads on premises and some in the cloud which can be described as Hybrid

Private/Public Cloud deployment pattern.

Here is a high-level example of Multi-Cloud or Hybrid Deployment Pattern:

Figure 4 - Multi-Cloud Hybrid Deployment Pattern

Public Cloud C Public Cloud DPrivate Cloud Datacenter A Private Cloud Datacenter B

Geo Load Balancer

DNS

Cluster A1 Cluster A2 Cluster B1 Cluster B2 Cluster C1 Cluster C2 Cluster D1 Cluster D2

9

Security

Another extremely important factor in any cloud deployment needs to be security. Cloud

Providers have different services that solve this, but most of these are non-standard and

proprietary which result in cloud provider lock in and customer confusion. One of the

key areas we will focus on is how to protect secrets and data at rest. Security arguably

should be part of every cloud pattern.

Cost Efficiency

Cloud providers change their prices quite frequently and generally the trend is to lower

the price of services. In addition, there are discounted instances that cloud providers

offer due to idling capacity. Multi-cloud approach allows you to shift workloads to

leverage cheaper prices depending which cloud provider offers the better price.

Furthermore, this body of work will demonstrate how this can be dynamically.

10

1.2 Current Solutions and Their Limitations

There are multiple cloud providers and some provide their own specific deployment

patterns.

However, there are couple of problems with vendor provided patterns:

1). Patterns provided are usually vendor specific with specific APIs and software stacks

that lock in the customer. The vendor generally has no insensitive to support standards so

the customer can leave at will to another provider. Furthermore, some providers such

AWS have stated that they will not support any partner that offers solution that runs on

competitor's cloud platform. [36]

2). Generally, these proprietary services also cost more due to the fact that vendor can

charge more for proprietary technology and convenience.

3). These patterns do not always take in account important factors such as system

resilience properties i.e. fault tolerance.

4). Other patterns are very high level and theoretical and do not demonstrate the concrete

software technology implementation in vendor neutral way i.e. with open source software

which make these not very useful.

This leads to vendor lock in, poor deployment design and is prone to faults and poor

service availability ultimately resulting in poor end user experience and data loss.

Let’s take a look at Microsoft Azure Big Data offerings – all components with exception

of HortonWorks Data Platform and HBase are proprietary:

11

Figure 5 - Microsoft Azure Big Data Offerings Circa 2016

Source: https://msdn.microsoft.com/en-us/library/dn749804.aspx

https://msdn.microsoft.com/en-us/library/dn749804.aspx

12

We are not trying to pick on specific cloud provider - let’s take a look at Google Offering

for Big Data specifically for Mobile Gaming Analytics Platform.

Please note that all of the components provided are proprietary:

Figure 6 - Google Proprietary Big Data Offerings

Source: https://cloud.google.com/solutions/mobile/mobile-gaming-analysis-telemetry

Next let us illustrate the problem with one of the most popular cloud provider patterns –

Amazon Web Services for Time Series Processing:

https://cloud.google.com/solutions/mobile/mobile-gaming-analysis-telemetry

13

Figure 7 - Time Series AWS Specific Pattern

Source:

https://media.amazonwebservices.com/.../AWS_ac_ra_timeseriesprocessing_16.pdf

Note couple of issues with this:

1). Amazon only proprietary and non-standard components in this diagram are:

- Amazon SQS – proprietary and non-standard

- Dynamo DB – proprietary and non-standard

- AWS Pipeline – proprietary and non-standard

- Elastic MapReduce – proprietary and non-standard

- RedShift – proprietary and non-standard

https://media.amazonwebservices.com/.../AWS_ac_ra_timeseriesprocessing_16.pdf

14

- Amazon S3 – proprietary and non-standard

2). The diagram does not seem to factor in Security, Resilience and Fault Tolerance – i.e.

multi-availability/multi-data center deployment. Failures can occur at multiple levels:

hardware, virtual machine, network, availability zone and even data center. How do we

recover from these? Ideally this should be fully automated without any human

involvement.

3). The above diagram also does not factor in multi-cloud deployment mentioned before.

What would the Time Series/Internet of Things pattern look like improved over the AWS

diagram mentioned above?

Let’s start with decomposing the pattern with components that are Vendor Neutral and

next we will take a look at how to validate it with open source software.

15

Figure 8 - Vendor Neutral Time Series Pattern

Data Center 1

Availability Zone A

Messaging BUS1

Client
Applications

Send
Events

over HTTP Messaging BUS2

Redundant
Object Store

Send
Events

over HTTP

Load
Balancer 1

Load
Balancer

2..n

IaaS Layer

Map Reduce Cluster

In-Memory
Analytics Cluster

Availability Zone B

IaaS Layer

Same Pattern is replicated in Data Center 2..N

Send
Events

over HTTP

Messaging BUS1

Messaging BUS2

Redundant
Object Store

Load
Balancer 1

Load
Balancer

2..n

Map Reduce Cluster

In-Memory
Analytics Cluster

Database

Database

16

1.3 Problem Statement

Many organizations are looking to migrate to the cloud and looking for the best way to do

it securely, reliably and without vendor lock in. Most organizations have to pick a cloud

provider that uses proprietary APIs and Software. Most vendors currently do not

implement any cloud API standards i.e. TOSCA [39] or OASIS CAMP [41]. Therefore,

to date the standards approach to standardize cloud computing have not been successful.

In addition, cloud providers experience outages, frequently with serious business impact

– so fault tolerance in cloud environment still needs more research and clear and

prescriptive guidance. [Appendix A].

Variable performance is also an issue because most cloud providers overprovision their

virtualized infrastructure and it results in degradation of performance and quality of

service for customers depending on overprovisioning factor set by the cloud provider.

This has been well documented and various benchmark studies have been done. [42]

 This study will focus on framework and patterns that deliver non-proprietary APIs and

Software above IaaS layer with the functionality that will be on par with proprietary

software or service offered by individual cloud provider. This study aims to answer the

following questions:

How do we design Fault Tolerant, Performant, Secure and Cost Efficient Deployment

Patterns in Multi-cloud environment without vendor lock in?

What are the common patterns that can help to solve this problem?

This research will focus on a framework and clouds patterns for multi-cloud deployment

covering:

17

(a) Fault-tolerance – involving more than one cloud provider

(b) Vendor neutrality – ability to run on major cloud provider’s IaaS using open-source

solutions to avoid lock-in

(c) Performance - ability to shift workloads to another cloud provider if there is

performance degradation of quality of service on one or more of providers

(d) Security – we will cover security related patterns that we allow you to host mission-

critical components and data on premises

(e) Lastly Cost efficiency – ability to take advantage of lower priced compute resources

in multi-cloud environment

Open-source implementation of the platform neutral patterns will be developed to

validate patterns and guide adoptions. Using open source software to demonstrate how

the patterns can be implemented makes this study more useful than generic patterns that

are described here: http://www.cloudpatterns.org

Cloud provider costs vary and cost of switching could be very high if everything have to

be re-designed from scratch. Using these “vendor neutral” patterns the goal would be to

be able to change cloud providers at will or run the on premises without changing the

software stack.

Another major benefit of this study is emphasis on fault tolerant patterns which implies

that by the picking the pattern described there will be implied guarantee of system uptime

and adaptation to stress or failure. The central premise here is that system resilience

should be built by default.

http://www.cloudpatterns.org/

18

In addition, this study will focus first on more complex patterns that were not widely

studied yet - related to Big Data and Internet of Things first and will provide novel

patterns that have not been yet documented.

Lastly, we will make sure these patterns can run on premises in a private cloud, because

- long term cloud cost can be higher than on premises due to operating expenses in

the cloud eventually will cover the capital costs of servers and other equipment if

you bought these

- for security/regulatory reasons it might be necessary to keep some workloads on

premises

- performance with on premises can be better because you control the

oversubscription rate and workloads that get to run on the same virtualized

instance

19

1.4 Solution Methodology

We are going to identify and categorize the main challenges to achieve the main

objective.

Next we will identify the main desired attributes for quality cloud deployment patterns.

After that we will propose quality solution patterns for each of them.

All of the patterns will be unified into one cohesive multi-cloud framework.

Next we will validate the key patterns with experiments for feasibility of all cases of fault

tolerance and self-healing using open-source implementations patterns.

We will use the following standard template to be used for pattern documentation

• Pattern Name and Classification: A descriptive and unique name that helps in

identifying and referring to the pattern.

• Also Known As: Other names for the pattern.

• Problem – problem description and applicability

• Intent: A description of the goal behind the pattern and the reason for using it.

• Motivation (Forces): A scenario consisting of a problem and a context in which this

pattern can be used.

• Applicability: Situations in which this pattern is usable; the context for the pattern.

• Structure: A graphical representation of the pattern. (Component diagrams and

Interaction diagrams may be used for this purpose.)

20

• Participants: A listing of the Software and Infrastructure Components used in the

pattern and their roles in the design.

• Collaboration: A description of how component used in the pattern interact with

each other.

• Consequences: A description of the results, side effects, and trade-offs caused by

using the pattern.

• Implementation: A description of an implementation of the pattern; the solution part

of the pattern. Presents vendor independent logical pattern with specific technology

implementation

• Sample Template: An illustration of how the pattern can be used using a

deployment template.

• Known Uses: Examples of real usages of the pattern.

• Related Patterns: Other patterns that have some relationship with the pattern;

discussion of the differences between the pattern and similar patterns.

• Strength: every pattern might have different strength and applicability such as better

at performance, security, big data volume, fault-tolerance etc.

21

1.5 Expected Contributions

This study will contribute:

- Multi-cloud deployment framework that is comprised of multi-cloud infrastructure

patterns.

- Catalog of Multi-Cloud Patterns for various stacks and solutions using open source

software.

- Every pattern will account for fault-tolerance, performance and security by default.

- As an illustration some patterns will also provide vendor neutral initial deployment that

can be used for as-is deployment on private cloud or in the public cloud.

How do we prove that proposed patterns are realistic and competitive? The approach will

be to:

- First we will define a few desired attributes

- Next we will use open-source software if available to show feasibility

- Lastly we will use selected prototypes to show how the desired attributes were

satisfied

Next let’s take a look at more detailed illustration of what this means. How would the

pattern referenced in Figure 7 - Time Series AWS Specific Pattern above look if we map

this Open Source software and deploy in multi-cloud environment with basic fault

tolerance in mind?

22

Figure 10 - Vendor Neutral Time Series Pattern with Open Source Software

Note Open Source Component Replacing Proprietary Components:

• Amazon SQS replaced by Open Source HAProxy and Kafka

• Dynamo DB replaced by Open Source Apache HBase – Part of Apache

Hadoop Cluster

• Elastic MapReduce replaced by Apache Hadoop Map Reduce framework

• Amazon S3 – Replaced by Open Source CEPH with S3 RADOS Gateway

Data Center 1

Availability Zone A

KAFKA
Messaging BUS1

Client
Applications

Send
Events

over HTTP

KAFKA
Messaging BUS2

CEPH with S3
RADOS Gateway

3X Redundant

Send
Events

over HTTP

HAPROXY
Load

Balancer 1

HAPROXY
Load

Balancer 2

IaaS Layer (OpenStack, AWS, Azure, GCP)

Apache
HADOOP Map
Reduce Cluster

Spark Cluster
Reduce Cluster

Availability Zone B

KAFKA
Messaging BUS1

KAFKA
Messaging BUS2

CEPH with S3
RADOS Gateway

3X Redundant

HAPROXY
Load

Balancer 1

HAPROXY
Load

Balancer 2

IaaS Layer (OpenStack, AWS, Azure, GCP)

HADOOP Map
Reduce Cluster

Spark Cluster
Reduce Cluster

Same Pattern is replicated in Data Center 2..N

Send
Events

over HTTP

Apache
HBase

Apache
HBase

23

There is still more room for improvement, but this should give a good illustration of

where this research might be headed.

The result of the study will be a Fault Tolerant, Secure and Highly Performing Cloud

Pattern Catalog with mapping to open source software with examples of the deployment

templates that can be used to stand up full infrastructure stack that will be OASIS Cloud

Application Management for Platforms (CAMP) specification compatible.

(https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=camp) and possibly later on

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)

(https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca)

It would be another improvement to take this one step further by transforming the

diagram into TOSCA template in YAML format

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with predefined properties.

topology_template:

 node_templates:

 my_server:

 type: mytenancy.nodes.Compute

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=camp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

24

 capabilities:

 # Host container properties

 host:

 properties:

 num_cpus: 2

 disk_size: 8 GB

 mem_size: 8096 MB

 # Guest Operating System properties

 os:

 properties:

 # host Operating System image properties

 architecture: x86_64

 type: Linux

 distribution: ubuntu

 version: 14.04

….

So end to end flow will be:

25

1. Pattern

Diagram

Model

>>>

2. Deployment

Blueprint/Template

+ VM/Container

Image

>>>

3. Cloud

Deployment on

premises or public

cloud

Next all the patterns will be validated using Open Source Software

Most of cloud offerings will not be possible without open source software let’s just look

at one example: hypervisor core of virtualization – most cloud providers use either Xen

or KVM Linux based hypervisors.

Marc Andreessen the founder of Netscape has famously said: “Software is eating the

World.” Arguably it’s more like Open Source Software is eating the World! Why?

- Cost – free scales much better than commercial. It will be extremely costly to build a

cloud using only proprietary software.

- FREEdom - Ability to influence the features, roadmap, fix the bugs without waiting on

a vendor X

- Community – Strength in numbers – many contributors, many companies

- Continuity - Open Source survives any vendor

- Stronger security - independent research validate that open source code has fewer

defects per thousand lines of code than proprietary software code

26

- Happier developers – developers get to participate in the community and able to talk

about contributions.

How do we pick the right open source project? We will need to answer some of the

following questions:

- How Large and Active is Community?

- How many active committers?

- How many of contributors from different organizations or this is one company open

source project?

- Is This Read Only or Read/Write Open Source? Some companies open source software

but do not accept contributions from outsiders.

- Ideally should have a commercial company backer of the project so that you can pay for

bug fixes per incident if your company doesn’t have enough expertise or reputation.

27

1.6 Dissertation Roadmap/Outline

Now that we covered introduction let’s take a look at brief outline of what’s to come

2. Chapter 2 - Survey of Relevant Research

3. Chapter 3 – Patterns and Open-Source Framework for Effective Multi-Cloud

Deployment

4. Chapter 4 - Multi-Cloud Deployment Design Patterns Based on Open-Source

Technologies

5. Chapter 5 - Experimental Validation

6. Chapter 6 – Conclusion and Future Work

7. Reference list

1.7 Conclusion

In the introduction, we have briefly covered the following topics building foundation for

next chapters to come:

• Infrastructure as a Service vs. Platform as a Service

• Objectives of Multi-Cloud Deployments factoring in Fault-Tolerance,

Performance and Security

• Current Solutions and Their Limitations

• Problem Statement

• Solution Methodology and Standard Template to be used for Pattern

Documentation

28

Chapter 2 – Survey of Relevant Research

2.1 Relevant Topics for Literature Review

There has been a great deal of research done in Cloud Computing area for the purposes of

this particular study let’s take a look of some relevant research covering:

• Design and Cloud Patterns
• Multi-Cloud Deployment
• Cloud Fault Tolerance
• Cloud Standards
• Cloud and Multi-Cloud Security
• Distributed Systems
• Cloud Cost Efficiency

2.2 Relevant Definitions and Examples

To start with let’s review the key cloud computing concepts definitions.

Virtualization is one of the key technologies for cloud computing. Virtualization in the

cloud covers generally three key areas:

• Compute – this includes virtual machines and any other component that has a

CPU

• Networking – necessary for all components to communicate and usually has an

API (Application Programming Interface) around it

29

• Storage – covers virtualized storage attached to virtual machines / compute and

unattached storage exposed as API etc.

Cloud Computing is type of shared multi-tenant computing which usually provides

remote pool of computing resources via the internet. At high level it includes the

following resources: compute, networking and storage. Cloud computing enables rental

of these resources for a duration of time without a major upfront capital investment – pay

as you go model. Virtualization, Internet Technologies and World Wide Web are the key

foundations of cloud computing. Key Cloud Computing service offerings can be

generally categorized as: Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

Function as a Service (FaaS), Software as a Service (SaaS).

Multi-Cloud Computing is an extension of cloud computing when you use more than

one cloud system which can include public or private cloud or both/hybrid of public and

private. Some of the benefits of Multi-Cloud are better fault tolerance, resilience, vendor

agnosticism and better cost management.

Infrastructure as a Service (IaaS): virtualized datacenter as a service model which

allows you to provision Compute Resources (Physical or Virtual Machines), Networking,

Storage, Security Services from a service provider. IaaS is usually priced at time usage

increments. Examples include:

• AWS EC2 - https://aws.amazon.com/ec2/

• Google Compute Engine - https://cloud.google.com/compute/

https://aws.amazon.com/ec2/
https://cloud.google.com/compute/

30

• IBM Softlayer - https://www.ibm.com/cloud-computing/in-

en/infrastructure/softlayer/

• Microsoft Azure - https://azure.microsoft.com/en-us/services/virtual-machines/

Platform as a Service (PaaS): PaaS allows developers to run application or services

without the need to worry about managing IaaS layer, Operating System or Runtime

environment. PaaS is usually build on top of IaaS layer with managed Operating System

and Application Runtime predefined such as Java, .NET, Node.js etc. In PaaS model

customer gets more features, but has less control than IaaS and more lock in. PaaS is

usually priced at time based usage increments. Example:

• Google App Engine - https://appengine.google.com/

• IBM Bluemix - https://www.ibm.com/cloud-computing/bluemix/

• Heroku (runs on top of AWS EC2) - https://www.heroku.com

Function as a Service (FaaS): is a cloud offering that can be used to run cloud functions

without the need to write an application and everything is written usually as a function

that responds to certain events. FaaS can be thought of an abstraction on top of PaaS.

Another important difference is that FaaS is priced usually per function execution.

Customer usually gets more features than PaaS (i.e. including web based IDE with pre-

build code templates) but even less control than PaaS with even more lock in, because the

general FaaS offerings usually deal with vendor specific integrations via non-standard

APIs. Examples include:

https://www.ibm.com/cloud-computing/in-en/infrastructure/softlayer/
https://www.ibm.com/cloud-computing/in-en/infrastructure/softlayer/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://appengine.google.com/
https://www.ibm.com/cloud-computing/bluemix/
https://www.heroku.com/

31

• AWS Lambda - https://aws.amazon.com/lambda/

• Azure Functions - https://azure.microsoft.com/en-us/services/functions/

• Google Cloud Functions - https://cloud.google.com/functions/

Software as a Service (SaaS): in this model, everything in the stack including

application or service managed by the vendor and customer gets more turn-key features

than PaaS or FaaS without the need to program, but this results in even less control over

the stack or what’s running where than PaaS FaaS with even more SaaS provider lock in.

Examples:

• Google Apps (G Suite – Alternative to Microsoft Office):

https://gsuite.google.com

• Microsoft Office 365 (Microsoft Office in the Cloud): https://www.office.com

• Salesforce CRM (Customer Relationship Management) Platform

https://www.salesforce.com

• Workday (Human Resources Solutions) - https://www.workday.com

Fault tolerant system can be defined as the system that can continue operating even if

one or more component of the system fails. “If its operating quality decreases at all, the

decrease is proportional to the severity of the failure, as compared to a naively designed

system in which even a small failure can cause total breakdown.” Adaptive Fault

Tolerance and Graceful Degradation, Oscar González et al., 1997, University of

Massachusetts – Amherst

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://gsuite.google.com/
https://www.office.com/
https://www.salesforce.com/
https://www.workday.com/

32

A fault-tolerant design refers to an ability of “a system to continue its intended

operation, possibly at a reduced level, rather than failing completely, when some part of

the system fails.” Johnson, B. W. (1984). "Fault-Tolerant Microprocessor-Based

Systems", IEEE Micro, vol. 4, no. 6, pp. 6–21

Self-Healing System can be defined as system that can detect a fault and automatically adjust to

the desired/healthy state without human operator intervention. [37]

DNS – Domain Name System is core of the Internet, but also extremely important to

multi-cloud deployments as discovery and resolutions of routes to different cloud

provider instances will not be possible without it.

Horizontal Scaling and Auto Scaling

Other technologies of interests have to do with Horizontal Scaling which known as

Elastic Scaling or spinning up of compute instances as the load increases. Most cloud

solutions include this as part of an offering that usually labeled as Auto-Scaling or Auto-

Scaling Groups.

Availability Zones are isolated locations in data centers that generally have to guarantee

fault tolerance via redundant physical racks, its own power provider, network, storage

and telecommunications providers.

DevOps Automation – in order to make anything scalable beyond what humans can do

we need automation. DevOps is the overloaded term that implies greater communication

between developers and operations and approach to operations (hardware and software)

which will be similar to continuous building, testing, and releasing software frequently

33

and reliably. This includes continuous build, test and This approach is also generally

referred to as Infrastructure as Code which we will cover later on.

“Pets” vs “Cattle” Server Management Approach

Operators and System Admins before the cloud era were generally responsible for

operating servers one at time which was akin to treating it as special “Pets”. In this

analogy Pet (Servers) are special and If the pet is sick we take it to veterinarian and try to

figure what’s wrong with it. Another word if something goes wrong with server we need

to fix it.

In the cloud environment or even more so with multi-cloud environment with hundreds

of servers we cannot treat servers as Pets – it’s not scalable and cost efficient from human

capital point of view - so we need to treat them as heard of Cattle. Cattle (“Server”) is

not special and pretty much the same as other cattle and if one cattle dies or gets sick - we

don’t even try to fix it – have the rest of the heard and we simply replace with another

“cattle”. Another word if we automate everything and treat infrastructure as “cattle” we

don’t need to figure why the server died – we create a new one that replaces the

“diseased” one.

Infrastructure as Code is an approach to defining and configuring your infrastructure

via software configuration instead of user interfaces, interactive installers. This includes

all of compute infrastructure as well networking and storage. All of the infrastructure

configuration, scripts get stored in version control system and should include unit tests

following standard software practices. This is foundation of DevOps (Developer

34

Operations) where all of the processes are automated and human involvement is minimal

of non-existent to provision infrastructure and software running on it.

There are couple of key principles/practices that Infrastructure as Code practice

promotes:

- All of software configuration code and files need to be versioned in source control

system i.e. git and release tracked just like any software product.

- Elimination of Configuration Drift – which is when one server of the same

role/type is in different state which frequently occurs when infrastructure and

software is hand-crafted manually by a human.

- Reproducible infrastructure at scale – ability to reproduce exactly same

infrastructure and software using infrastructure as code scripts and configuration

to create large volume of infrastructure components without relying on

humans/operators.

- Immutable Infrastructure refers to a practice when you need to do an upgrade

of any part of the stack you do not update existing running component (i.e. virtual

machine), but create and a new version and replace it the old with it. The same

goes for a failed component / virtual machine – we do not try to repair it – we

replace it with a new version.

Open Source Software

Most of cloud offerings will not be possible without open source software - let’s just take

a look at one example: hypervisor core of virtualization – most cloud providers use either

Xen or KVM Linux based hypervisors.

35

Cloud-native is newly emerged concept of designing, deploying and running service or

applications that can leverage properties and interfaces offered by cloud computing

providers or frameworks. Its roots can be traced to The Twelve-Factor App manifesto

(https://12factor.net) which promotes concepts for optimal design and deployment in the

cloud environment such as declarative formats for setup automation, clean contract with

operating system / cloud provider, continuous build and deployment and minimum

difference between development and production environments. It also generally

promotes stateless application and services where state is stored not with the primary

execution environment.

Other notable mentions that helped cloud computing made possible that we don’t

have to define: Internet, Word Wide Web and Service Oriented Architecture,

Virtualization

2.3 Existing Work around Cloud Design Patterns

Cloud Design Patterns have been researched from multiple angles, however as we will

see not much research has been done in actual multi-cloud design patterns with the fault

tolerance, resilience and self-healing included.

Mapping design patterns to cloud patterns to support application portability: a

preliminary study

Utilization of Design Patterns to support application portability in the cloud is very

important topic. In software engineering concept of design patterns is well documented.

Can we apply the same approach to Cloud Patterns? Cloud Patterns can be seen as an

advancement of exemplary Design Patterns, since they give ideal answers for

https://12factor.net/

36

programming improvement specific for Cloud situations. By mapping Design and Cloud

Patterns components, authors think it is conceivable to build up a way to deal with

backing the porting of legacy applications to the Cloud, in this way facilitating the

modernization procedure and laying the premise for an interoperability and

transportability benevolent programming advancement. In this paper authors study if it’s

possible to map Design and Cloud Patterns with score-based methodology which matches

pattern categories to a solution. The comparison is accomplished via a semantic based

representation. [9]

Cloud Network Architecture Design Patterns

Cloud Network Architecture Design Patterns research focuses on low level networking

patterns on how to connect to public cloud and how public cloud should be designed with

network resiliency in mind. The focus of the paper is primarily on low level data center

design, network architecture patterns and how to build Infrastructure as a Service. This

paper does not cover patterns built on top of Infrastructure as a Service that will be

described later in this work. [16]

Moving to the cloud: patterns, integration challenges and opportunities

The focus of this research is on high level approach on how to migrate to the cloud and to

be able to leverage patterns to overcome common challenges. The general approach

presented here is focused on hybrid cloud. Specifically, it covers patterns around

application deployment and how to deal with hybrid cloud deployments. Overall this

paper provides a general high level overview but does not seem to provide the depth of

the patterns. [24]

37

An architectural pattern language of cloud-based applications

This paper gives a very good overview of key properties of cloud deployment and how to

do architecture design for a cloud with patterns. The goal of this research is to simplify

cloud application design and development via use patterns. More specifically authors

have developed a pattern language which seems to be icon based but with cloud context.

Some patterns seem to be vendor independent and some seems are vendor specific. The

patterns covered are not the same as in this current study and focus on higher abstract

concepts i.e. IaaS, PaaS, SaaS etc. [14]

Cloud Migration Patterns: A Multi-cloud Service Architecture Perspective

Focus of this work is on creation of a pattern catalogue of application cloud migration

patterns which serves as basis for the current paper. The authors offer steps for

organization on how to migrate existing applications to the cloud. Patterns have been

derived from empirical evidence and from a number of migration projects, best practices

for cloud architectures. The flow of the process is to select application migration pattern,

define a migration plan and possibly extend the pattern if this is a new context. Overall

this is an excellent body of work, however, it does not provide any guidance around

infrastructure software creation, fault tolerance, security and any kind of operational

concerns. [20]

Evolution of Design Patterns: a Replication Study

38

This is an interesting paper exploring evolution of design patterns. The authors explain

the role of design patterns in replication study. The goal of the study is to investigate and

validate design patterns via empirical study. The patterns are validated with open source

software. The authors have proven the significance of design patters and confirm that

“patterns change more frequently when they play a crucial role in the software and when

in newer releases they support more advanced features.” One of the important outcomes

of the study is the proof that theoretical design patterns matter in the real world. [30]

Semantic and Matchmaking Technologies for Discovering, Mapping and Aligning

Cloud Provider’s Services

This paper explores solutions to the problems with non-standard cloud provider

Application Programming Interfaces (APIs). As stated before most cloud provider APIs

are not standard and require specialized knowledge of interfaces and client

tools/frameworks. This results in major challenges to port applications from one provider

to another. Authors have taken an approach to solve this via vendor neutral API layer.

They have developer a prototype project available at http://www.mosaic-cloud.eu. In

addition, there is a dynamic discovery and mapping functionality to map specific cloud

provider API to the vendor neutral APIs. The approach in general seems sound, however

during validation and setup there seem to be quite a few gaps remaining. There does not

seem to be any updates to the project since 2013. However, overall this is very valuable

body of work. [7]

http://www.mosaic-cloud.eu/

39

2.4 Existing Work around Fault Tolerance within Distributed and Cloud Systems

There are quite a few papers covering fault tolerance within cloud and distributed

systems, but not much has been done in terms of multi-cloud computing and patterns.

Let’s review some of the relevant research and lessons learned.

Independent Faults in the Cloud

The research problem in this paper is focused on how can we categorize different failure

levels in the cloud environment? The authors have selected Byzantine fault tolerant

(BFT) protocols as a foundation to dealing with faults. BFT protocols are generally

replication based solutions with a focus on keeping faults independent. However, the

drawback of the solution is the cost associated with replication which includes replication

delays and decreased bandwidth consumption. Authors especially focus on concept of

availability zones in the cloud which we will cover extensively in some of the patterns.

[17]

Fault Tolerance – Case Study

Fault Tolerance has been studied in depth and this body of work outlines various

techniques of fault-tolerance in clustered compute environment treating every component

as point of failure. “Any of this vast number of components can fail at any time,

resulting in erroneous output.” The paper discusses various fault models: Byzantine

Faults, Fail-stop Faults, Fail-shutter Faults etc. The authors categorize and drill down in

every fault category and offer very useful guidance how to deal with each use case. [25]

Paxos for System Builders: an overview

40

Paxos is a set of algorithms that help to find consensus across multiple distributed

systems that are inherently unreliable. The general problem is how to figure out

agreement among distributed system’s participants. This process is sometimes referred to

as “leader election” where a group of system components votes to figure out which one

would be the leader when failure occurs and current leader has failed. The foundation of

this lies in concept referred to as state machines replication which helps to create an

algorithm for fault-tolerance in distributed systems. This paper focuses on making Paxos

more accessible to a wider audience as well as exploring Paxos replication protocol

implementation. The value of the work is also in providing performance benchmarks

safety and availability properties guaranteed by use of the specific Paxos implementation.

[23]

Raft Refloated: Do We Have Consensus?

In addition to Paxos there is another fault tolerance consensus algorithm – Raft that

claims to be even more accessible or reason about and easier to implement than Paxos.

Paxos is generally deemed as not easy to understand and even harder to implement. Raft

on the other hand seems easier to understand, implement and guarantees that there will be

no degradation in performance or correctness. The goal of this paper to explain raft and

also analyze its performance. The authors have built an event-driven simulation

framework for testing it on different distributed system topologies. In addition, authors

propose improvements to Raft. Overall authors achieve validation and proof of Raft

claims. [18]

41

2.5 Existing Work Around Multi-Cloud Deployments and Standards

There has been a great deal of research done in standardizing cloud APIs which vendors

generally ignore. However not enough has been done to show that multi-cloud

deployment patterns can be achieved via vendor neutral way with open source software.

Challenges in Achieving IaaS Cloud Interoperability across Multiple Cloud

Management Frameworks

The main focus of this paper is federation of IaaS cloud services. The specific approach

taken is via standards. One of the key contributions is the rOCCI standard Framework

implemented in Ruby programming language, which implements OCCI standards. OCCI

stands for Open Cloud Computing Interface, which is a standard, developed by the Open

Grid Forum (OGF).

In addition, authors discuss important concepts how to pick a standard approach or non-

standard approach that has a wide community adoption and backing. This is a great

illustration of how open source community might be producing non-standard solutions

but well implemented and ready to use. In my opinion the non-standard approach that

has a large community will always win over a standard that might not be even implement.

However, long term standards have shown to be the right choice especially if large

vendors back these. Other issues discussed include authentication, virtual machine life-

cycle management, object store management, monitoring and billing services. The

author lists all the issues with OCCI which generally boil down to vendor not

implementing standards, but also vendor might have offerings that there is no standard

42

for. As an example, the following are in AWS but OCCI doesn’t support these: VPC

(Virtual Private Cloud), availability zones and many others. [26]

CAMP: A Standard for Managing Applications on a PaaS Cloud

This is another paper focused on solving cloud via standardization specifically focusing

on Platform as a Service (PaaS) APIs. CAMP stands for Cloud Application Management

for Platforms. CAMP has been relatively successful because it was adopted by some

vendors and also by large community open source projects such as OpenStack Solum and

Apache Brooklyn. However, it has not been adopted by any of pubic cloud providers.

CAMP standard defines the artifacts and APIs that need to be offered by a PaaS to

manage building, running, administering, monitoring and patching of applications in the

cloud. The standard has been developed by OASIS standards consortium. The effort is

focused on allowing developers, users, and vendors to create tools and services that work

with any PaaS that implements the standard. An example of a tool could be Integrated

Development Environment (IDE) from where one could deploy to any PaaS that confirms

to the standard. [22]

Managing elasticity across multiple cloud providers

This paper is focused on cloud federation and cloud elasticity. Elasticity is very

important cloud computing concept that allows to scale computing resources up/increase

and down/decrease. The paper demonstrates an architecture that allows management of

elasticity across multiple cloud providers. “Currently, most Platforms as a Service (PaaS)

manage application elasticity within a single cloud provider. However, the not so

infrequent issue of cloud outages has become a concern that hinders the availability of

43

cloud-based applications. The most promising solutions to this issue are those based on

the federation of multiple clouds. In this paper, we present a Multi-Cloud-PaaS

architecture.” [27]

Meryn: open, SLA-driven, cloud bursting PaaS

Very interesting paper describing using Platform as a Service (PaaS) for cloud elasticity

and bursting pattern mixed with SLA Driven cloud controller system called Meryn. The

problem authors are trying to solve is how to provide good support for SLAs (Service

Level Agreements) on top of PaaS. Example of SLA could be response time of a

transaction should not be less than 1 second. The more interesting part of the research is

how to dynamically adjusting resource allocations to meet particular workload demands

while meeting different workloads and applications. Proposed system named Meryn is

open source framework that implements SLA guarantees and auto-manages resource

allocation via cloud bursting. Overall the framework is sounds and feasible. However,

the authors are making also claims of maximizing profit for providers which generally

sounds good, but was not able to find any source code to validate the results. [11]

Towards a Common Semantic Representation of Design and Cloud Patterns

This is an excellent research study to represent cloud design patterns using formal

language ODOL based on OWL ontology. The language described allows to represent

both structural and behavioral part of the patterns. The authors extend OWL methods to

describe behavior of a pattern as services. The approach taken would allow for

automated generation of implementation from the pattern as well as semantic

44

understanding of the pattern is composed out of. The language used seems flexible and

extensible especially within the cloud context. [8]

Workload Patterns for Quality-Driven Dynamic Cloud Service Configuration and

Auto-Scaling

This is another good study into cloud SLA (service level agreements) and how to use

these to auto-scale to maintain performance guarantees resulting in service workload

patterns. The study explores the service level agreement qualities provided by public

cloud providers. The problem is that availability part of the SLA is generally well

understood but the SLA qualities related to performance are not well publicized or

guaranteed. The authors use dynamic prediction techniques rooted in collaborative

filtering to find and predict patterns that match a particular required workload. While this

is an excellent research it does not take in account fault tolerance or multi-cloud

deployments. [33]

A QoS and profit aware cloud confederation model for IaaS service providers

Quality of Service is a big problem in cloud environment as most providers do not make

guarantees or provide very limited guarantees around availability, performance

guarantees etc.

This paper is focused on multi-cloud, multi-datacenter quality of service challenges and

introduces an “algorithm and a model for cost calculation, which enhances the decision-

making process over all the VM types (on-demand, reserved, spot) to increase resources

utilization and profit.” Specifically, the focus is on low cost, scalability, robustness and

availability. The main emphasis is on an algorithm and a model for cost calculation to

45

help decision making. Neither has it covered any recommendation on how to do

deployments in multi-cloud environment. The paper seems to be also targeted towards

AWS spot instances. [10]

46

2.6 Security Related Papers Focused on Cloud and Multi-Cloud Deployments

Security is extremely important topic in cloud computing, however as the follow review will

show not a great deal was done in terms of securing multi-cloud deployments.

Towards Secure Inter-Cloud Architectures

This study explores how to develop secure inter-cloud communications resulting in

secure inter-cloud communication architecture pattern. The work presented herein is

extremely important to secure implementation of cloud federation and multi-cloud

solutions. More importantly how do we share, federate and collaborate across multiple

clouds securely? Authors solve the problem via patterns were the trust is established

among all components. Patterns are important in this context as they help to

communicate concepts of “the functional aspects and can be complemented with security

patterns to achieve a Secure Inter-Cloud Architecture”. Each pattern has threat analysis

to better communicate the security context. [12]

Threat analysis and misuse patterns of federated inter-cloud systems

This is another good cloud security research study focused on misuse pattern and

federated, inter-cloud communications. This dissertation focuses on minimizing cloud

provider lock in therefore misuse pattern described here should be minimized. All of the

patterns are presented from the attacker’s misuse point of view. Next each pattern is

supplemented by providing application and forensic properties. Every threat is detailed

and helps to understand the design and how it relates to an attack surface. The misuse

patterns are specifically focused on inter-cloud systems. One of the use cases is to show

47

how a malicious provider can misuse and leak customer’s information. The paper

specifically addresses the following:

- Analysis of actors with use cases with how it applies to the federated inter-cloud

architecture

- Build a threat model based on the data collected.

- Create a catalog of misuse patterns

Ultimately the value patterns catalog can be used to improve the security of federated

cloud systems. Overall this is extremely valuable body of work which helps to frame

misuse of cloud systems in a security context and provides high level solutions and

recommendations. [13]

CPL: a core language for cloud computing

This is an interesting paper focused on distributed application/systems deployment in the

cloud using CPL - Cloud Platform Language. The objectives of the language at high

level are to reduce bugs with type-safety, composability and what they refer to as

“service combinators” which refers to composing of varies services together. CPL

language uses JSON format to describe domain-specific cloud deployments. The main

advantage of one language is to reduce number of bugs vs. multiple languages that are

used among different deployment frameworks and methods. The language can also be

used to validate the deployment before the runtime. CPL is statically typed and

appropriate for any distributed system or cloud deployment. CPL provides interfaces

that are also extensible and provides capability to extend custom cloud deployment

services provided by cloud providers. The body of work also includes extensible libraries

48

of service combinators that can be used to abstract away cloud provider specific

interfaces. [14]

Towards a pattern language for self-adaptation of cloud-based architectures

This study focuses on efficiency and elasticity of the cloud systems using IBM'S MAPE-

K model for self-adaptation. As a result, cloud self-adaption patterns are derived and

presented. Cloud computing helps to utilize resources as a per-per-use model. There is

significant interest in 'build-once, use-often' solutions that can be used to compose cloud

deployments. The product of this study is a pattern language that allows to compose

cloud-based software architectures. This allows to pick a pattern and re-use it “off-the

shelf”. All of the patterns have empirical grounding. Next authors explore how the

patterns can be used with the IBM'S MAPE-K model for self-adaptation. The resulting

work is reusable patterns and policies for self-adaptive cloud architectures. The patterns

also can be can be composed from other patterns to solve a specific problem. [1]

A catalog of security requirements patterns for the domain of cloud computing

systems

Primary purpose of this research is to catalog security requirement patterns focused on

security and privacy in the cloud environment. Most customers moving to cloud

computing are concerned with security and privacy and ultimately this leads to

fundamental question how to trust your data and core infrastructure to a 3rd party cloud

provider? This research highlights the importance of addressing security requirements

earlier in software development life-cycle which generally is an afterthought. The main

contribution is catalog of security and privacy requirement patterns that can help

49

developers to think about these patterns. The requirements are based on authors’

practical experience and the work of public organizations such as ENISA and the Cloud

Security Alliance. The goal is to be able to classify and re-use requirements for a

particular problem and map to solution patter to the requirements. The authors also

validated requirements patterns with industrial partners of the ClouDAT project. Overall

this is very useful and important research that will help to improve cloud security. [4]

2.7 Self-Healing Cloud Research

A Multi-Agent System Architecture for Self-Healing Cloud Infrastructure

The problem authors are trying to solve is related to mitigating resource faults in a cloud

environment. One should assume that anything can fail in the cloud environment, but for

the end user the fault should be as transparent as possible. To solve the problem authors,

propose to incorporate concepts of autonomic computing in the cloud environment.

Specifically, the solution is to leverage intelligent autonomous agents that interact with

IaaS provider interfaces and read resource state. If the resource is in failed state, the

agent executes Checkpoint/Replication strategy or runs migration script to move the

resource. [3]

Snooze: A Scalable and Autonomic Virtual Machine Management Framework for

Private Clouds

Many organizations are running private cloud IaaS (Infrastructure-as-a-Service). Quite a few

choose to use open-source IaaS cloud management frameworks such as Open Nebula, Nimbus,

50

Eucalyptus and Open Stack. The problem is that many of these systems have many weaknesses

in terms of fault tolerance. Specifically, most problems related to single master node and Single

Point of Failure (SPOF).

The solution authors present is scalable and autonomic (i.e. self-organizing and healing) virtual

machine (VM) management framework called Snooze. Self-organizing hierarchical architecture

is used in order to scale. Snooze manages Virtual Machines in scalable and fault tolerant manner

with fault tolerance provided at all levels of the hierarchy. Authors prove the framework with

tests running on top of 144 physical machines. Furthermore, the framework has no negative

impact to application performance. The framework itself has very low overhead and scales very

well. [15]

Utility Cloud a Novel Approach for Diagnosis and Self-Healing Based on the

Uncertainty in Anomalous Metrics

The key focus of this study is self-healing of workloads in the data center. The problem

is that failure anomalies are not always easy to diagnose. Since datacenters have large

amount of application, software and systems we need to be able to detect the anomaly

and heal automatically otherwise human operators cannot scale that well. Authors assert

that diagnosis needs to occur at different “abstraction such as hardware and software,

along with multiple time-series metrics for the use in environments like cloud

computing”. The normal approach is to focus on metric thresholds, but authors propose

to classify and analyze “metrics that are qualitative can offer new methods for anomaly

and fault diagnosis for their distribution”. The approach is to gather all the metrics into

one time-series database and then act on the derived symptoms. The analysis is

performed via multi-value decision diagram (MDD) method which is proven to work

well from analytical performance point of view. The approach also includes: “Naive

51

Bayes Classifier (NBC) with an influence diagram (ID) are used to create time-series

diagnosis technique to categorize and detect anomalies/faults during runtime to

approximate the influence of each self-healing system component as to systems

functioning and reliability.” The results are encouraging with about 0.89% improvement

in the accuracy of anomaly diagnosis. False alarms were around 0.04% rates. [2]

2.8 Additional Relevant Distributed Systems and Multi-cloud Research

Next let’s cover some research that will be pertinent to our multi-cloud framework and

patterns presented later on.

Borg, Omega, and Kubernetes

Google has been running software in containers for at least 10 years. This paper

discusses lessons learned from running orchestration and scheduling systems such as

Borg and Omega (non-open source). These systems were used as an inspiration for the

new open source project container orchestration system - Kubernetes. Borg was the

original job scheduler, then Omega was implemented with Paxos for storing state and

later on Kubernetes was built based on lessons learned from both. Authors also describe

benefits of containers which goes beyond just higher utilization, but also a concept called

Application Oriented Infrastructure (AOI). One of the biggest benefits of AOI is ability

to enclose the consistent environment in a container so that it does not matter if you run

on local machine on distributed system the environment is the same.

52

Building a replicated logging system with Apache Kafka

This paper is very much relevant to distributed systems and connecting things via

distributed log/queue system. KAFKA plays very important role in enabling Internet of

Things via scalable messaging system – Kafka. Kafka was originally open sourced by

LinkedIn and at this point widely adopted in the industry as scalable publish-subscribe

messaging/event logging system based on distributed commit log. “Over the past years

developing and operating Kafka, we extend its log-structured architecture as a replicated

logging backbone for much wider application scopes in the distributed environment. “The

authors share their engineering experience to replicate Kafka logs for various distributed

data-driven systems at LinkedIn. Some of the application use cases include source-of-

truth data storage and stream processing. [32]

2.9 Cloud Cost Efficiency Related Research

Cloud cost is a very important factor when selecting a cloud provider. Although, there

has not been a great deal of computing research done specifically in multi-cloud cost

area. There was some general cloud cost research done as it relates to running different

workloads so let’s take a look at some examples of existing research related to cloud cost

efficiency.

Cost Minimization and Load Balancing Issues to Compose Web Services in a Multi

Cloud Environment

The authors explore various options of cloud services deployment and load balancing in

multi-cloud environment. One of the secondary objectives is to minimize the cost. The

53

proposed approach is introduced via composer agent based algorithm to load balance

across multiple cloud providers. Generally it seem that load balancing is well covered in

this body of work but the cost factor does not seem be covered that well. [19]

Implementation of Costing Model for High Performance Computing as a Services

on the Cloud Environment

There are High Performance Computing (HPC) workloads that are moving to the cloud.

The authors propose a novel costing model with an algorithm to minimize the cost of

running in the cloud. The model provides an easy way to calculate the cost of execution

primarily based on specific processor architecture factoring the number of cores and

networking, human capital cost, software licensing etc. It helps to calculate TCO – total

cost of ownership and CapEx (Capital Expenditures) vs OpEx (Operating Expenditures).

The algorithms also help to calculate the profit for High Performance Computing as a

Service when running this in cloud environment.

2.10 Conclusion

There has been a great deal of interesting research covering cloud standards, various

patterns such as application cloud migration patterns, networking, SLA, distributed

systems, security, fault tolerance and cost efficiency. However, there has not been

enough research and guidance around self-healing multi-cloud infrastructure software

54

creation on top of IaaS and operations patterns with focus on fault tolerance, cloud

provider independence and cost efficiency among primary concerns.

Next we will cover:

Chapter 3 - Patterns and Open-Source Framework for Effective Multi-Cloud Deployment

Chapter 4 – Detailed Multi-Cloud Design Patterns and Multi-Cloud Based on Open-

Source Technologies

Chapter 5 - Experimental Validation

Chapter 6 - Conclusion and Future Work

55

Chapter 3 - Patterns and Open-Source Framework for Effective

Multi-Cloud Deployment

3.1 Assumptions and Objectives for Supporting Open-Source Multi-Cloud
Deployment

3.1.1 Problem Statement

Many organizations are looking to migrate to the cloud and looking for a best way to do

it securely, reliably and without vendor lock in. However, most organizations have to

pick a cloud provider that uses proprietary APIs and Software. Most vendors currently

do not implement any cloud API standards such as TOSCA or OASIS CAMP.

Therefore, to date the standard approaches to cloud computing have not be successful. In

addition, cloud providers experience outages, frequently with serious business impact –

so fault tolerance in cloud environment still needs more research and clear and

prescriptive guidance. [Appendix A]

Variable performance is also an issue because most cloud providers overprovision their

virtualized infrastructure and it results in degradation of performance and quality of

service for customers depending on overprovisioning factor set by the cloud provider.

This has been well documented and various benchmark studies have been done. [42]

56

This study focuses on framework and patterns that deliver non-proprietary APIs and

Software above IaaS layer with the functionality that will be on par with proprietary

software or service offered by individual provider.

This study aims to answer the following questions:

How do we design Fault Tolerant, Performant and Secure Deployment Patterns in Multi-

cloud environment without vendor lock in? What are the common patterns that can help

to solve this problem?

3.1.2 Key Assumptions

The key assumptions of this study include the baseline services and minimum set of APIs

that generally provided by most IaaS cloud frameworks and cloud providers.

Typical Cloud Applications need the following basic IaaS services:

- Compute

- Networking

- Storage

- Virtual Machines or Containers to run in with some sort of run time environment

such as Java, Node.js, Ruby Runtime, Python Runtime etc.

The study includes cloud service providers have a minimum of APIs that will be

applicable to majority of cloud providers:

- Basic Authentication and Authorization APIs

57

- Compute – Ability to create virtual machines on demand as a minimum set of

APIs Networking – Ability to add networking to Virtual Machines

elastically/dynamically with routing and internet access

- Basic DNS API services

- Basic Security Groups as software/configurable defined firewalls

- Storage – Ability to add storage elastically/dynamically

- Ability to dynamically support deployments to a different Availability Zones with

a minimum of hardware rack mapping to availability zone

- Basic Telemetry and Log Retrieval APIs

- Basic Billing APIs

Additional Multi-Cloud Assumptions

In our context the term Multi-Cloud covers any IaaS infrastructure private or public –

here are some examples of popular IaaS:

- Usually Used in Private Cloud Deployment (these can also be used to create

Public IaaS):

o Apache CloudStack – open source IaaS framework

https://github.com/apache/cloudstack

o OpenStack – open source IaaS framework

https://www.openstack.org/

o VMWare vCloud – commercial closed source IaaS suite

https://www.vmware.com/products/vcloud-suite.html

58

- Public Cloud Offering:

o Amazon Web Services EC2 – commercial closed source public IaaS

framework

https://aws.amazon.com/ec2/

o IBM BlueMix – commercial closed source IaaS framework

https://www.ibm.com/cloud-computing/bluemix/

o Google Compute Engine – commercial closed source IaaS framework

https://cloud.google.com/compute/

o Microsoft Azure – commercial closed source IaaS framework

https://azure.microsoft.com/en-us/

Key motivation factors to use multi-cloud deployments

- Hybrid Deployment: Most enterprises would have private on premises

deployment and will start exploring or augmenting workloads in public clouds, so

in this study we will cover ability to deploy on private or public IaaS

infrastructure. This is also might be referred to as hybrid private/public Multi-

Cloud deployment.

- Cost: The operating cost might be cheaper in public cloud especially if you look

at heavily discounted temporary Virtual Machine Instances

• AWS Spot VM Instances (https://aws.amazon.com/ec2/spot/)

• Google’s Preemtible VM instances

(https://cloud.google.com/compute/docs/instances/preemptible)

https://aws.amazon.com/ec2/spot/
https://cloud.google.com/compute/docs/instances/preemptible

59

• Microsoft Azure’s Low Priority Instances

http://blog.spotinst.com/2017/05/14/microsoft-azure-low-priority-vms/

• Everything is offered at a significant discount to a standard VM pricing.

- Exhausted Capacity: Capacity in private cloud might be exhausted and usually

you can’t just add new servers fast due to lead times of server procurements,

racking, cabling etc.

- Cloud Failures: Any cloud private or public has outages regularly [Appendix A]

Failures covers not just internal cloud faults, but also external denial of service

attacks that target specific cloud provider or site. Multi-Cloud approach will help

with that.

- Disaster Recover: one cloud provider might not be enough to manage the risk of

loss of service or data.

- Avoid Vendor Lock In: Since majority of the APIs and services are non-

standard and vary among IaaS tech stacks one would to do multi-cloud to avoid

single cloud provider lock in.

- Local Geographical Proximity Presence: some cloud providers do not have

locations that are close enough to your customers. For some location such as

China it might even be required from a regulatory perspective.

http://blog.spotinst.com/2017/05/14/microsoft-azure-low-priority-vms/

60

3.1.3 Objectives and Scope of the study

As stated in the problem statement this study focuses on framework and patterns that

deliver non-proprietary APIs and Software above IaaS layer with the functionality that

will be on par with proprietary software or service offered by individual provider. This

study aims to answer the following questions:

How do we deploy software in Fault Tolerant, Self-Healing, Performant, Cost Effective

and Secure manner in Multi-cloud environment without vendor lock in?

The study aims to identify what are the common patterns that can help to solve these

problems and provide concrete implementation examples using open source software if

available to an applicable pattern. Anyone should be able decide and pick any pattern for

deployment on most popular cloud IaaS simultaneously.

The scope of the study covers cloud patterns and framework for multi-cloud software

stack deployment covering:

Primary Objectives

(a) Fault-tolerance, resilience and ability to self-heal multi-cloud deployments without

human intervention

(b) Vendor-independence so that we can deploy the same software stack easily on any

cloud provider infrastructure as a service.

Secondary Objectives

61

(c) Performance - ability to shift workloads to another cloud provider if there is

performance degradation of quality of service on one or more of providers

(d) Security – we need to include patterns covering security as arguably we should not

promote any pattern that does not include security by default.

(e) Cost efficiency – public cloud provider costs give initial edge to the customer by not

requiring major capital expenditures (CAPEX) to buy real estate, servers etc. However

public cloud has ongoing operating expenditures costs (OPEX). [35] Each cloud

provider frequently changes the OPEX rate customer pays and these generally tend to be

getting cheaper over time. [47]. Multi-cloud approach should allow to leverage the

cheapest offering from any cloud provider that might be cheaper at that moment.

3.1.4 Solution Methodology - how do we approach addressing these objectives?

We have covered some of the solution strategy in chapter 1 – let’s quickly review the

approach.

What is a design pattern and how does it help us in this context? Design pattern is a

general solution to a frequently occurring problem within a particular context. In case of

this study we will focus on multi-cloud deployment challenges and general patterns to

solve them. Patterns help with effective knowledge sharing so that when someone

references a general pattern X other people familiar with a pattern can understand the

context quickly and efficiently.

62

In this chapter 3 we are going to identify and categorize the main challenges to achieve

multi-cloud deployments. We will introduce Multi-Cloud Deployment Framework that

addresses key challenges end to end. Next we will propose quality solution patterns for

each of challenges and give a brief description.

In Chapter 4 we will provide solution details for each multi-cloud pattern and all of the

patterns will be unified into one cohesive multi-cloud framework. All of the patterns will

confirm to one structured template and provide implementation details.

In in Chapter 5 we will validate the key patterns with experiments for multi-cloud

feasibility using open-source framework implementations, fault tolerance and any

additional criteria depending on applicability to the pattern context. All of the patterns

will have reference guide with code and scripts to implement it. Patterns will be

deployed on multiple cloud providers to prove the feasibility. Failure conditions will be

generated to illustrate the desired fault tolerance and self-healing properties.

3.1.5 Solution Limitations

This study focuses on automation and provisioning software components above the IaaS

with the needs for IaaS APIs.

Majority of use cases focus on running on top of Virtual Machines, but running

Containers is also possible using the same patterns.

Patterns covered in this study are applicable to most cloud providers. We will utilize 3

top public cloud providers AWS, Azure and Google Cloud and well as OpenStack

63

framework for private cloud provider deployment to demonstrate how we achieve the

objectives. The code examples illustrating pattern implementation provided have been

tested with the cloud frameworks listed above.

Next let’s cover key challenges with multi-cloud deployments.

64

3.2 Key Challenges while Deploying Enterprise Computing in Multi-Cloud
Environment

What are the major challenges with multi-cloud computing?

Let’s will look at categories at challenges starting with initial multi-cloud deployment

challenges.

3.1.1 Initial Multi-Cloud Deployment Challenges

• How do we deploy on multiple cloud providers if all of them have different APIs?

More importantly is there a way where you can define your infrastructure

requirements once and something will take care of translating this into the API

calls for the specific provider?

• Cloud providers require different virtual machine formats – how do create these

images in an automated way?

• Where do we source and store secrets?

• How do we route to multiple providers all at once?

• Finally, where do we store and keep track of information about everything we

deployed?

Now that we have everything deployed how do we manage it with proper fault tolerance

so that end users will not see and service disruption?

65

3.2.1 Challenges related to Multi-Cloud Management after initial deployment and
dealing with failures

• Once we deploy how do we find out the health of the instances?

• If the node virtual machine fail - can we recover them automatically?

• If availability zone fails – can we recover automatically?

• If the cloud provider fails, what do we do then? Can we route the requests and

workloads to another cloud provider?

• What if Domain Name System fails – how do we continue operating?

• What if our deployment infrastructure fails – how do we re-deploy?

• What about the data if database fails what do I do?

• How do we fail over gracefully when fault occurs?

• Is there more intelligent way of enforcing Service Level Agreement if we know

things are about to fail – before failure occurs?

• What if I want to deploy to public cloud only if private cloud capacity gets

exhausted?

• What if private cloud fails how can recover from this disaster using a public

cloud?

3.2.3 Cost Efficiency Multi-Cloud Challenges

• How do we actually aggregate billing and cost from all cloud deployments?

• How do we make sure that cost is not out of control and we know how much we

are spending as well as deploy workloads where it is cheaper?

3.2.4 Security Multi-Cloud Challenges

• Where do we store and retrieve secrets?

66

• How do we ensure that deployment does not have any known vulnerabilities and

gets patched if there is a vulnerability?

• How do we continuously audit the cloud and make sure there are no unauthorized

or unintended changes?

3.2.5 General Application Deployment Multi-Cloud Challenges

• How do we apply to real application patterns such as Web Application etc.?

More importantly - how do we deploy real applications in Multi-Cloud

environment so if something fails the user or service does not experience and

interruption?

• How do we apply to more complicated stack deployment i.e. Internet of Things or

Big Data processing pipelines?

• How do we run Applications or Services Packaged in Containers in Multi-Cloud

Environment?

67

3.3 Open-Source Multi-Cloud Deployment Solution Framework

Now that we have covered multi-cloud challenges - next let’s take a look at big picture -

key patterns that can help us with most of these challenges that combined into one Multi-

Cloud Control Plane framework.

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

Multi Cloud Security
Auditor

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

Audits
Cloud

Deployments

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

Multi Cloud
Telemetry &

Log Aggregation

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failures

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification
System

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Failure
Data

Multi-Cloud Control Plane Pattern

SLA Enforcer Rules Engine

Figure 9 - Multi-Cloud Control Plane Framework

To illustrate the initial Setup of the Multi-cloud deployment let's take a look at following:

Let’s say operator wants to create a deployment consisting of X Virtual machines,

Network, Storage and Security Groups

68

1) Operator (i.e. Systems Admin) picks IaaS Blueprint to deploy on multiple clouds

which is sourced from Code & Configuration Version Control System

IaaS Bootstrap Blueprint includes details and topology of Virtual Machines (with base

Image to be used), Network, Storage and Security Groups

2) Multi-Cloud Deployer uses Blueprint and Base images are built via Image Pipeline

and stored in binary repository to deploy on multiple clouds (Private Cloud A, Public

Cloud B and Public Cloud C)

All security sensitive information is sourced from the Secrets Vault

Multi-Cloud Deployer registers running services in Service Registry

Dealing with events after initial deployment

Dealing with Failures and Performance Degradation

We need to deal with failures which is done by SLA Enforcer Rules Engine which in

turn uses data provided by the Multi-Cloud Telemetry system: when a component fails,

alert/event is generated and forwarded to Telemetry System which SLA Enforcer Rules

Engine listens to and instructs Multi-Cloud Deployer to resurrect the failed component.

The more complex rules about SLA and quality of service is also handled by SLA

Enforcer Rules Engine.

Dealing with Security

Cloud Auditor – continuously runs reports against each cloud deployment comparing it

against baseline blueprint. If a new component is detected that violates the policy, Cloud

Auditor will send alerts and notifications, which in turn get picked up by SLA Enforcer

69

Rules Engine which will instruct the Multi-Cloud Deployer to delete the new

component that was not in the original blueprint.

Dealing with Cost

Multi-Cloud Billing Pattern aggregates usage cost and billing from multiple cloud

providers and allows to make better decision about where it would be more cost effective

to run. The more complex rules about cost is handled by SLA Enforcer Rules Engine.

Next let’s dive deeper into each one of deployment challenges mapped to the patterns.

70

3.4 Solutions to Major Multi-Cloud Computing Challenges

Now let’s dive into each multi-cloud challenge and provide high level solution via an

abstract pattern which will be further explored in depth in the next chapter.

3.4.1 Initial Multi-Cloud Deployment Solutions

3.4.1.1 Deployment Challenge #1 – Different Cloud APIs in Multi-Cloud Environment

Currently there is no standard cloud API or blueprint format and many cloud features are

not uniformly implemented in the same way across cloud providers. How do we describe

what desired deployment should be on multiple cloud providers if all of them have

different non-standard blueprint formats? More importantly, is there a way where you

can define your infrastructure requirements once and something will take care of

translating this into a blueprint format for the specific provider?

This way you don’t need to maintain IaaS definition for multiple cloud providers.

To solve this problem, we need to have a layer of abstraction independent from specific

cloud provider API. Ideally you would define your cloud blueprint once and automate

any cloud provider specific calls. In order to automate provisioning of multiple IaaS this

pattern helps to describe your cloud infrastructure as a blueprint and use that blueprint to

drive orchestrator to target specific IaaS provider and create all the resources necessary

for your application and services to run on any cloud provider (Public or Private).

The solution to this problem is Multi-Cloud Cloud Blueprint Pattern will be detailed in

the next chapter. In the meantime, here is the brief graphical preview of the pattern:

71

Compute
Requirements

Storage
Requirements

Networking
Requirements

Unified Cloud
Independent

Bootstrap
Blueprint

Cloud X
Blueprint

Implementation
Script

Cloud Y
Blueprint

Implementation
Script

Private Cloud Z
Blueprint

Implementation
Script

Cloud Dependent
API Transformer

Security
Requirements

Figure 10 - Multi-Cloud Cloud Blueprint Pattern

As you can see cloud provider independent Networking, Compute, Storage and Security

requirements are defined in one unified Blueprint and then translated into Script for each

cloud provider specific implementation script. Operator (i.e. Systems Admin) picks IaaS

Blueprint to deploy on multiple clouds which is sourced from Code & Configuration

Version Control System IaaS Bootstrap Blueprint includes details and topology of Virtual

Machines (with base Image to be used), Network, Storage and Security Groups

72

3.4.1.2 Deployment Challenge #2 – Different Image Formats in Multi-Cloud

Environment

Cloud providers require different virtual machine formats – how do create these images

in an automated way?

The proposed solution to this problem is Image Build Pipeline Pattern which is focused

on building ready to boot images that contain entire software stack and even can contain

application itself. (i.e. OS, Middleware, Application etc.) This is the concept referred to

in previous section as Immutable Image Infrastructure. It is very important to have ready

to boot image if you have a spike in load (via user requests, events etc.) and you need to

scale out and create new instances quick. During run-time, this pattern relies on

Resource Orchestrator Pattern. The build pipeline also might be tailored to produce

multiple images targeting multiple providers and formats in order to gain the most

efficiency and exploit any cloud provider format or API differences.  There is no

uniform API and it is not uniformly implemented in the same way across cloud providers.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the Multi-Cloud Image

Builder pattern:

73

Continuous
Build

System

Version
Control
System

(Image Templates)

Image Builder

1. Change To a
Template
Triggers

2. Executes a job

Multi-Cloud Image Build

Public Cloud X
Image(s)

Public Cloud Y
Image(s)

Private Cloud Z
Image(s)

4.3 Create image

4.1 Create image

4.2 Create image

Binary
Repository

- or -
Directly Save to the

Cloud

5. Images get stored into

3. Read Template

Figure 11 - Multi-Cloud Image Builder Pattern

Multi-Cloud Image Builder in combination with templates and continuous build system

produces virtual machine or container images that can target public or private cloud.

Images can be saved in local binary repository or directly saved to the cloud so they can

be easily referenced during deployment.

3.4.1.3 Deployment Challenge #3 – Actual Multi-Cloud Deployment

Cloud provider deployment APIs are all different and non-standard. How do we deploy

on top of multiple private/public cloud IaaS to make it fully available with any software

stack that is able to run applications or services?

The Multi-Cloud Deployer needs to know about specific cloud provider API. Now that

we covered image creation for multiple cloud providers we need a component that will do

74

the deployment to each cloud provider. Deployment is somewhat trivial and sometimes

we need to do more than deployment – we need orchestration. Orchestration can be

defined as deployment and coordination of the components to produce a desired or target

state. Desired or target state refers to what we have described in the cloud blueprint i.e. x

number of components describing Compute, Networking, Storage, Security. So

Deployer/Orchestrator will maintain desired state based on the cloud blueprint/manifest

as well as additional rules defined via a rules engine that come out of SLA Enforcer

Rules Engine pattern that will be described later on.

Here is a brief graphical preview of Multi-Cloud Node (VM) Deployer - Orchestrator

Pattern

75

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Code & Configuration
Version Control System

5.1 Deployment
5.2 Deployment

5.3 Deployment

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Figure 12 - Multi-Cloud Deployer Pattern

Deployer/Orchestrator uses versioned cloud blueprint/manifest combined with binary

node image (produced from image pipeline) to deploy to the target clouds (Public or

Private).

3.4.1.4 Deployment Challenge #4 – Fault Tolerance in Multi-Cloud Environment

How do we deploy in the most fault tolerant way in the multi-cloud environment?

Faults occur in the cloud all the time due to software, hardware or communications

failure. The fundamental way to deal with failures in the cloud is via Availability Zones.

Availability Zones are isolated locations in data centers that generally have to guarantee

76

fault tolerance via redundant physical racks, its own power provider, network, storage

and even telecommunications providers. Based on historical failures in Appendix A you

will see that availability zone failure is one of the most frequent failure causes.

So, the solution as we deploy to multiple clouds we need to query the availability zone

metadata APIs and distributed the nodes so that not all get deployed to the same

availability zones.

More details will be provided in the next chapter In the meantime, here is partial

illustration of a deployment where everything is deployed into individual availability

zones:

Cloud A Cloud CCloud B

Cluster A1 Cluster A2

Load Balancer
Health

Controller

Load Balancer
Health

Controller

Cluster B1 Cluster B2

Load Balancer
Health

Controller

Load Balancer
Health

Controller

Cluster C1 Cluster C2

Load Balancer
Health

Controller

Load Balancer
Health

Controller

Availability
Zone A1

Availability
Zone A2

Availability
Zone B1

Availability
Zone B2

Availability
Zone C1

Availability
Zone C2

Figure 13 - Fault Tolerance in Multi-Cloud Environment

As you can see in this deployment everything is deployed in individual unique

availability zone.

77

3.4.1.5 Deployment Challenge #5 – Routing in Multi-Cloud Environment

How do we route traffic to multiple cloud providers all at once in fault tolerant and

resilient way? Domain Name System comes to mind as simple proven solution, but what

happens when a DNS provider suffers outage or is under distributed denial of service

attack? We can certainly have another backup DNS provider, but is there a better way?

General Multi-Cloud Fault Tolerant Routing Pattern addresses these concerns.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern. In this

diagram after primary DNS fails we have failover DNS to rely on, but even if both DNS

providers fail we can always rely on direct IP API to continuer processing requests.

78

Public Provider C Public Provider DPrivate Cloud Datacenter A Private Cloud Datacenter B

Load Balancer Group A

Primary DNS

Cluster A1 Cluster A2 Cluster B1 Cluster B2 Cluster C1 Cluster C2 Cluster D1 Cluster D2

Availability
Zone A1

Availability
Zone A2

Availability
Zone B1

Availability
Zone B2

Availability
Zone C1

Availability
Zone C2

Availability
Zone D1

Availability
Zone D2

Internet

End User

Failover DNS

Load Balancer Group B Load Balancer Group C Load Balancer Group D

API Failover Primary

API Failover 2..N

Figure 14 - Routing in Multi-Cloud Environment

Let’s dive into a little more detail.

What happens if our DNS failover fails? If we are able to control TCP/IP/HTTP client on

the device, we can have an API with well-known public IPs that device can cache that

will be available to replace DNS. In this scenario, the device will have to periodically

download the list of known IP addresses of known API end points that can be used to

bypass DNS in case DNS providers fail or under DDoS attack.

79

3.4.1.6 Deployment Challenge #6 – Keeping Track of All Components

Finally, where do we store and keep track of information about everything we deployed

in the environment with multiple cloud providers? The proposed solution to this problem

is Multi-Cloud Service Registry and Discovery pattern which allows us to keep track of

everything that we deploy. Think of this as distributed registry and latest source of state

that has an API so that any components in multi-cloud control plan can use

create/read/update/delete operation. When a new component comes alive it can always

use lookup via DNS the Registry and the query for any component or meta-data service

that it needs to connect to.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

80

Public Cloud C

Primary DNS

Internet

End User

Failover DNS

Registry +
API

Registry +
API

Registry +
API

replication replication

Availability Zone Availability Zone

Availability Zone

Private Cloud A

Registry +
API

Registry +
API

Registry +
API

replication replication

Availability Zone Availability Zone

Availability Zone

Public Cloud B

Registry +
API

Registry +
API

Registry +
API

replication replication

Availability Zone Availability Zone

Availability Zone
replication

replication

Multi-cloud Control Plane VM 1..3 – AZ-1..3 Multi-cloud Control Plane VM 1..3 – AZ-1..3 Multi-cloud Control Plane VM 1..3 – AZ-1..3

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Figure 15 - Multi-Cloud Registry and API Pattern

Multi-Cloud Registry and API needs to be highly distributed, replicated and resilient as it

contains latest state of deployment and where to locate services.

3.4.2 Multi-Cloud Management after Initial Deployment and Dealing with Failures

81

3.4.2.1 Failure Challenge #1 – Telemetry, Logs and Failure Detection in Multi-Cloud
Environment

Once we deploy how do we find out the health of the node instances? It is difficult to

manage anything that you cannot measure especially in large multi-cloud deployment

hence we need Multi-Cloud Telemetry and Log Aggregation Pattern. This pattern helps

to aggregate all of the telemetry (CPU, Memory, Storage, IO, Network utilization) from

all cloud providers and all of components such Virtual Machines etc. It also aggregates

key logs and health information of all of the components (for example if component,

system or application is down).

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

SLA Rules

Public Cloud CPrivate Cloud A

IaaS Bootstrap +
App Stack

Deployment

Multi Cloud
Telemetry &

Log Aggregation

Multi Cloud Billing

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failure

Re-deploy
In case of

failure

Usage Metrics

Updates
Inventory

 Alerts Notification
System

Failure
Data

Figure 16 - Telemetry, Logs and Failure Detection in Multi-Cloud Environment

82

3.4.2.2 Failure Challenge #2 – Multi-Cloud Automated Recovery / Self - Healing

If the node or virtual machine fails or entire availability zone fails - can we recover

automatically? What if our entire cloud deployment infrastructure fails – how do we re-

deploy? So now that we know things failed or something is at high CPU/Memory/IO

utilization how do we heal the failure or breach of SLA so operator does not have to even

wake up i.e. at 3 a.m.?

Multi-Cloud SLA Enforcer Rules Engine pattern can automatically respond to failures

based on Telemetry and Log Aggregation and trigger rules the bring the cloud

deployment to the desired healthy state. Multi-cloud Telemetry and Log Aggregation

feeds information to SLA Enforcer Rules Engine to process, apply rules and decide on

action to be taken. In case of node failure (health check failed) SLA Enforcer Rules

Engine will trigger resurrection of another node using the desired virtual machine image

to match the lost node.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

83

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

IaaS Bootstrap +
App Stack

Deployment

Multi Cloud
Telemetry &

Log Aggregation

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failure

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification
SystemSend alerts

SLA Enforcer Rules Engine

Figure 17 - Multi-Cloud SLA Enforcer Rules Engine

3.4.2.3 Failure Challenge #3 – Data Resiliency in Multi-Cloud Environment

What happens to the data if multiple databases fail? It is necessary to replicate data and

state from one cloud provider to another so that in case of an outage we can continue

processing on a different availability zone or cloud provider. One of the key problems in

distributed systems is how to manage state and data? Specifically, one of the

fundamental problems is how to safeguard the data in case database fails and how can we

continue operating/processing without any downtime?

Multi-Cloud Data Replication is not as simple as it sounds because if we were to replicate

across cloud providers there is significant network latency as well as possible network

congestion. Hence the solution needs to include data storage solution that can tolerate

high latency connections, network congestion as well as fault tolerance in each of the

cloud deployments.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

84

Public Cloud C

Primary DNS

Internet

End User

Failover DNS

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone

Private Cloud A

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone

Public Cloud B

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone
replication

replication

Multi-cloud Control Plane VM 1..3 – AZ-1..3 Multi-cloud Control Plane VM 1..3 – AZ-1..3 Multi-cloud Control Plane VM 1..3 – AZ-1..3

Figure 18 - Multi-Cloud Data Replication

3.4.2.4 Failure Challenge #4 – Fail Over in Case of a Fault

How do we known when fault occurs and fail over gracefully to another set of node so

there is not impact to end users? There are multiple faults that can occur at multiple

levels of the stack for example Virtual Machine, Storage, Network and Application

Services layer. However ultimately you have a number of services that you need to

health check all at once for example: Web Server, App Server and Database which

impact end user experience.

85

The Reactive Multi-Cloud Health Check and Load Balancing Pattern consists of a

dynamic web page or API HTTP URL end point on a web server that attempt to connect

to app server health check, which in turn has a page to connect to the database. If any of

component page’s in the chain return a code that is NOT HTTP 200 then the component

is down and the whole path should be marked as down.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

Private Cloud Datacenter A Public Cloud CPublic Cloud Datacenter B

Geo Load Balancer
DNS

Cluster A1 Cluster A2

Load Balancer
Health

Controller

Multi-Cloud Healthcheck Load Balancing Pattern

Health-check Health-check

Load Balancer
Health

Controller

Cluster B1 Cluster B2

Load Balancer
Health

Controller

Load Balancer
Health

Controller

Cluster C1 Cluster C2

Load Balancer
Health

Controller

Load Balancer
Health

Controller

Figure 19 - Reactive Multi-Cloud Health Check and Load Balancing Pattern

3.4.2.5 Failure Challenge #5 – Advanced Failover based on SLA Telemetry

Is there more intelligent way of enforcing Service Level Agreement if we know things

are about to fail – before failure occurs? Proactive Multi-Cloud SLA Policy Enforcement

86

Pattern can help in this case. It builds on top of Multi-Cloud SLA Telemetry and based

on set of rules if a cloud provider breaches an SLA we can move workloads to another

cloud provider. This pattern allows us to apply rules/triggers against aggregated multi-

cloud telemetry data so we can be proactive about managing resources in case of

degradation of performance etc. An example of a SLA rule and enforcement could be:

If Cloud X Bandwidth > Desired State

stop routing to this cloud provider

direct load to another cloud providers

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

87

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Cloud
Healer /

Resurector

Public Cloud CPrivate Cloud A

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Telemetry/

SLA

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failure

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification
System

Send alerts

SLA Enforcer Rules Engine

Figure 20 - Advanced Failover Based on SLA Telemetry

3.4.2.6 Failure Challenge #6 – Exhausted Capacity

What if private cloud capacity gets exhausted and we want to deploy to public cloud to

increase capacity and migrate workloads?

Once you have close to or have exhausted your private cloud capacity and Public Cloud

Bursting Pattern allows to “burst” and use public cloud capacity to augment on premises

workloads. The entire software infrastructure stack, application or services and other

components needs to be ready to be replicated in public cloud and the need. Multi-cloud

control plane pattern enables cloud bursting and can be combined with Multi-Cloud SLA

Enforcer to automate rules on when to burst to the cloud. Using SLA Enforcer in this

pattern would allow to set a rule to state for example that at 80% utilization of private

datacenter - start deploying workloads only to public cloud.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

88

Public Cloud

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

3) Image Pipeline (VM/Container)

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Private Cloud

3 Uses Blueprint to deploy on multiple clouds

IaaS Bootstrap +
App Stack

Deployment

4 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault
(on premises)

5 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

Multi Cloud
Telemetry &

Log Aggregation

Multi Cloud Billing

6 Deployment

Service
Registry &
Discovery

1 telemetry / capacity
1.1 Private cloud at

80% capacity

2 deploy
To public cloud

Usage Metrics

Updates
Inventory,

DNS

 Alerts Notification
System

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Failure
Data

SLA Enforcer Rules
Engine

Figure 21 - Exhausted Capacity Failover

3.4.2.7 Failure Challenge #7 – Disaster Recovery

What if private cloud fails how can recover from this disaster using a public cloud?

Many organizations still run in private data centers for various reasons which might

include better security and control from physical location point of view. However, what

if private data/center/cloud fails? Can we recover from this disaster using a public

cloud?

89

Variation of a Data Resiliency and Public Cloud Bursting Pattern can help in this case.

During an outage in on premises data center cloud can be used to augment the private

data center to continue operations. Ideally this would be done in automated fashion with

advanced load balancing marking the path to the failed data center as down and

automatically routing to one or more cloud provider. Continued replication of data from

on premises to the cloud is needed to avoid disruption of service. This can be

accomplished via Public Cloud for Disaster Recovery pattern. The detailed solution to

this problem will be provided in the chapter 4 with validation in chapter 5. In the

meantime, here is the brief graphical preview of the pattern:

First we would need Continuous Data Replication

Public Cloud C

Database

Database

Database

replication replication

Availability Zone Availability Zone

Availability Zone

Private Cloud A

Database

Database

Database

replication replication

Availability Zone Availability Zone

Availability Zone

Public Cloud B

Database

Database

Database

replication replication

Availability Zone Availability Zone

Availability Zone
replication

replication

Figure 22 - Continuous Data Replication Needed for Multi-Cloud Disaster Recovery

In case of disaster Telemetry notifies SLA Enforcer that it did not receive a response

from the private cloud which in turn processing the rule/action for this event and notifies

SLA Enforcer Rules Engine to start deployment to public cloud.

90

Public Cloud

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

3) Image Pipeline (VM/Container)

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Private Cloud

3 Uses Blueprint to deploy on multiple clouds

IaaS Bootstrap +
App Stack

Deployment

4 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault
(on premises)

5 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

Multi Cloud
Telemetry &

Log Aggregation

6 Deployment / Activation

Service
Registry &
Discovery

1 telemetry / capacity

1.1 Private cloud
FAILURE

2 deploy / activate
Public cloud

Updates
Inventory,

DNS

 Alerts Notification
System

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Failure
Data

SLA Enforcer
Rules Engine

X
Public Cloud

IaaS Bootstrap +
App Stack

Deployment

Figure 23 - Multi-Cloud Disaster Recovery Pattern

3.4.3 Cost Efficiency Multi-Cloud Challenges

Cost is a big factor in moving to the cloud and the big attraction is that you don’t have to

spend on capital expenditures such as upfront real estate, hardware etc. However, cloud

costs can increase fast as operating expenditures, hence it is very important to figure out

how to gain better efficiency via use of multiple cloud providers.

3.4.3.1 Cost Challenge #1 – Aggregate Billing in Multi-Cloud Environment

How do we aggregate billing and cost from all multi-cloud deployments?

91

Multi-cloud Aggregate Billing and Chargeback Pattern can help with this challenge. In a

multi-cloud deployment scenario one needs to keep track and aggregate billing from

multiple cloud providers. The key motivations for the pattern are:

- Aggregate billing helps with chargeback to appropriate cost centers for each

application team or business unit running in multi-cloud environment.

- One might want to make sure that none of the cloud providers exceed billing

quotas.

- You might want to generate alerts based on cloud utilization.

It also might make sense to process more using a cheaper cloud provider based on billing

metrics. Multi-Cloud Aggregate Billing gets pricing/billing APIs data from each cloud

instance (if available). In addition, Multi-Cloud Telemetry sends usage aggregate data to

supplement the billing data if we can’t get it reliably from the cloud provider. Once

aggregate cost is calculated – alerts can get send if we breached cost threshold via Alert

Notification System.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

92

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

IaaS Bootstrap +
App Stack

Deployment

Multi Cloud
Telemetry &

Log Aggregation

Multi Cloud Aggregate
Billing

Telemetry, usage & key logs
From each cloud

Usage Aggregates

 Alerts
Notification

System

Get pricing/billing APIs
data (if available)

Billing
Alerts

Figure 24 - Aggregate Billing in Multi-Cloud Environment

3.4.3.2 Cost Challenge #2 – Taking Advantage of Cloud Provider Price Discounts
Dynamically

How do we make sure that cost is not out of control and we know how much we are

spending as well as deploy workloads where it is cheaper?

In some cases, cloud providers are offering discount virtual machine instances due to

idling extra capacity allowing customers to save money. Usually cloud provider allows

to bid for spare capacity, however the instances can be taken away by an event notice

from cloud provider so the applicable use cases/workloads need to be able to scale on

demand and shut down as the cloud provider requests. Therefore, one needs to be able

provision instances in automated/dynamic nature and be able to tear down them down

when the cloud provider needs it back gracefully so that we don’t have a negative impact

to the cloud application workloads. So how do we dynamically take advantage of

discount prices without impacting the transactional SLA?

93

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

Public Cloud B

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Public Cloud A

IaaS Bootstrap +
App Stack

Deployment
Multi Cloud Telemetry

& Logs

Multi Cloud Billing

Deployment

Service
Registry &
Discovery

Move workload
To a cheaper cloud

Usage Metrics

Updates
Inventory,

DNS

 Alerts Notification
System

Failure
Data

Utilization metrics

SLA Enforcer Rules Engine

aggregate
cost

Get pricing/billing APIs
data (if available)

Get pricing/billing APIs
data (if available)

Figure 25 - Taking Advantage of Cloud Provider Price Discounts Dynamically

- Multi Cloud Billing gets lower change in price from cloud provider

- Multi Cloud Billing notifies SLA Enforcer Rules Engine

- SLA Enforcer Rules Engine evaluates the data and find the rule match to Move

workload to a cheaper cloud

94

- SLA Enforcer Rules Engine triggers action for SLA Enforcer Rules Engine Move

workload to a cheaper cloud

- SLA Enforcer Rules Engine starts deployment move workloads to a cheaper cloud

3.4.4 Security Challenges in Multi-Cloud Environment

3.4.4.1. Security Challenge #1 – Multi-Cloud Secrets Storage and Retrieval

Where do we securely store and retrieve secrets when we are dealing with multiple cloud

providers?

Secrets include authentication information such as user names and passwords,

certificates, private keys etc. Every cloud deployment needs secure secrets storage

involves user names, passwords, certificates and any other sensitive information that

needs to be protected. At some point create/update/delete and even read operations for

cloud APIs will require authentication and authorization. How do we this securely in

multi-cloud environment? More importantly we need to make sure this pattern works for

all cloud providers. Multi-Cloud Secret Storage and Retrieval – Secrets Vault Pattern

helps us to solve this problem. It permits secure access via API to secrets and can be

deployed on premises as well as with every cloud deployment. API is necessary for

automation and interaction in the orchestration flow of multi-cloud control plane

framework.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

95

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

3) Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault
(on premises)

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Updates
Inventory

Secrets Vault Secrets Vault Secrets Vault

Figure 26 - Multi-Cloud Secrets Storage and Retrieval

3.4.4.2 Security Challenge #2 – Multi-Cloud Security Policy Audit, Compliance and

Vulnerability Detection

How do we ensure that deployment does not have any known vulnerabilities and gets

patched if there is a vulnerability? How do we continuously audit the cloud and make

sure there are no unauthorized or unintended changes?

Multi-Cloud Security Policy Auditor Pattern helps us to assure that our multi-cloud

deployment has not be tempered with by malicious actors and patched frequently if there

is a vulnerability.

Motivation for this pattern is to be able to patch instances from known CVEs

(vulnerabilities) and protect from tempering by malicious users. Multi-Cloud Security

96

Policy Auditor Pattern helps us to assure that our multi-cloud deployment has not be

tempered with by malicious actors and patched frequently if there is a vulnerability.

Cloud Auditor continuously runs and checks all of the setting and configurations on all

clouds and validates against last known secure configuration manifests as well as

checking for possible vulnerabilities that might have occurred due to a new deployment /

application introduced into the cloud. After that findings are logged and alerts are sent

out if serious issue have been found.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer

Multi Cloud Security
Auditor (Scout2,
Cloud Custodian)

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

Audit
Cloud

Deployments

IaaS Bootstrap +
App Stack

Deployment

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Updates
Inventory

 Alerts Notification
System

Restore to
Desired State

Audit
Failure

Notification

Multi Cloud Security and Policy Auditor Pattern

Vulnerability

CVE Database

Get Latest Vulnerabilities from
CVE Database APIs

Vulnerability

CVE Database (s)

Policies and Rules

Figure 27 - Multi-Cloud Security Policy Auditor Pattern

97

3.4.5 General Multi-Cloud Application Deployment Challenges

3.4.5.1. Application Deployment Challenge #1 – Web Application / Service Deployment

Now that we have our Multi-Cloud IaaS and application runtime ready to run

applications or services how do we apply this to real application patterns such as Web

Application deployment? More importantly - how do we deploy real applications in

Multi-Cloud environment so if something fails the user or service does not experience

and interruption?

Multi-Cloud Web Application / Service Pattern helps to deploy web application or web

services in multi-cloud environment and keep healing the failed components. This

pattern will deploy general components you expect in most web applications in fault

tolerant manner. In addition, all of the components will be monitored and healed by

Multi-cloud control plane without for any involvement of a human operator.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

98

Data Center 1

Availability Zone A

WebServer1

Client
Applications

Send
Events

over HTTP WebServer2..N

Send
Events

over HTTP

Load
Balancer 1

Load
Balancer

2..n

IaaS Layer

Appserver1

Appserver2..N

Availability Zone B

IaaS Layer

Same Pattern is replicated in Data Center 2..N

Send
Events

over HTTP

WebServer1

WebServer2..N

Load
Balancer 1

Load
Balancer

2..n

Appserver1

Appserver2..N

Web Security Group App Security Group Data Security Group

Database

Database

replication

Database

Database

replication

replication

Availability Zone C

Multi-Cloud
Control Plane

Availability Zone D

Multi-Cloud
Control Plane

DNS,
Content
Delivery
Network

DNS,
Content
Delivery
Network

Database

Database

Figure 28 - Multi-Cloud Web Application / Service Pattern

3.4.5.2 Application Deployment Challenge #2 – Multi-Cloud Internet of Things and Big

Data Deployment

How do we apply what we have covered to a more complicated stack deployment i.e.

Internet of Things or Big Data processing pipelines?

Internet of Things (IoT) can be generally defined as any device or object around us that

are connected via Internet network this can be sensors, vehicles, buildings etc. All of

these devices are reporting extremely high volume of data events or streams of

99

information. This pattern can be characterized more specifically by high data volume,

high rate of concurrent connections from 100 of millions – billions of devices. We will

cover the detailed fault tolerant solution to this problem in Chapter 4.

The detailed solution to this problem will be provided in the chapter 4 with validation in

chapter 5. In the meantime, here is the brief graphical preview of the pattern:

Data Center 1

Availability Zone A

Messaging BUS1

Devices / Client
Applications

Send
Events

over HTTP Messaging BUS2

Redundant
Object Store

Send
Events

over HTTP

Load
Balancer 1

Load
Balancer

2..n

IaaS Layer

Batch
Map Reduce Cluster

In-Memory
Analytics Cluster

Availability Zone B

IaaS Layer

Same Pattern is replicated in Data Center 2..N

Send
Events

over HTTP

Messaging BUS1

Messaging BUS2

Redundant
Object Store

Load
Balancer 1

Load
Balancer

2..n

Batch
Map Reduce Cluster

In-Memory
Analytics Cluster

Database

Database

Availability Zone C

Availability Zone D

Multi-Cloud
Control Plane

Multi-Cloud
Control Plane

Figure 29 - Multi-Cloud Internet of Things and Big Data Deployment

100

3.4.5.3 Application Deployment Challenge #3 – Multi-Cloud Deployment and

Orchestration with Containers

How do we run Applications or Services Packaged in Containers in Multi-Cloud

Environment?

Container is kernel virtualization which focuses on CPU, Memory and Storage isolation.

Containers were originally introduced as a concept Solaris as Linux containers i.e. LXC,

Docker, Rkt. Once we have IaaS Virtual Machines created then we can deploy

containers to subdivide virtual machines. The benefit would be higher utilization and

higher multi-tenancy density.

Virtual Machines take from couple of seconds to tens of seconds or even minutes to

startup. Is there a faster way to startup and provide virtualization at the same time?

Furthermore, the deployment of an application on IaaS are done in virtual machines

usually leave the Virtual Machine frequently underutilized. Is there a way to subdivide

the Virtual Machine so we can pack more workloads in it vertically a.k.a. vertical

scalability?

The core problem is how do you deploy and manage containers in the multi-cloud

environment? Container Orchestration Pattern which extends Resource Orchestrator and

Resurrection Pattern focusing on deploying, coordinating and resurrecting containers.

We will cover the detailed fault tolerant solution to this problem in Chapter 4.

In the meantime, here is the brief graphical preview of the pattern:

101

Cloud A

Worker Node - VM

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

 Master Node - VM

 scheduler

controller-manager

API Server

State db

Worker Node - VM

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

Multicloud Control Plane VM A

Cloud B

Worker Node - VM

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

Master Node - VM

 scheduler

controller-manager

API Server

State db

Worker Node - VM

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

Multicloud Control Plane VM B

Cloud C

Same components
deployed….

Figure 30 - Multi-Cloud Deployment and Orchestration with Containers

3.5 Summary

In this chapter, we have covered assumptions and objectives for supporting open-source

multi-cloud deployment. Following with key challenges while deploying enterprise

computing in multi-cloud environment. We have introduced Open-Source Multi-Cloud

Deployment Solution Framework that can help us with most of these challenges. Next

we introduced solutions to major multi-cloud computing challenges and provided high

level solution via an abstract pattern.

102

Here are how the major challenges / problems we have covered map to the patterns

side by side

Multi-Cloud Challenges to the Patterns M 1

Major Problems / Challenges with

multi-cloud computing

Patterns Solution for Each Problem

Initial Multi-Cloud General Deployment

Fault Tolerance Challenges:

Initial Multi-Cloud Fault Tolerant

Deployment Patterns

• How to deploy with maximum fault

tolerance and isolation?

• General Multi Availability Zone

Fault Tolerant Pattern

• How do we route to multiple

providers all at once with maximum

fault tolerance in mind?

• If the cloud provider fails what do we

do? Can we route the requests and

workloads to another cloud provider?

• What if Domain Name System fails –

how do we continue operating?

• General Multi-Cloud Cloud Fault

Tolerant Routing Pattern

• How do we deploy on multiple cloud

providers if all of them have different

APIs?

• More importantly is there a way

where you can define your

infrastructure requirements once and

• Multi-Cloud Cloud Blueprint Pattern

103

something will take care of translating

this into the API calls for the specific

provider?

• Cloud providers require different

virtual machine formats – how do

create these images in an automated

way?

• Image Build Pipeline Pattern for

Multi-Cloud Deployment

• Finally, where do we store and keep

track of information about everything

we deployed?

• Multi-Cloud Service Registry and

Discovery API

Multi-Cloud Management after initial

deployment and dealing with failures:

Multi-Cloud Management after Initial

Deployment and Dealing With Failures

Patterns

• Once we deploy how do we find out

the health of the instances?

• Reactive Multi-Cloud Health check

and Load Balancing Pattern

• Multi-Cloud SLA Monitoring Pattern

• If the node virtual machine fail - can

we recover them automatically?

• If availability zone fails – can we

recover automatically?

• What if our deployment infrastructure

fails – how do we re-deploy?

• How do we fail over gracefully when

fault occurs?

• SLA Enforcer Rules Engine

104

• How do we make sure database is

always available even if one database

instance fails?

• Multi-Cloud Data Replication

• Multi-Cloud Disaster Recovery

Pattern

• Is there more intelligent way of

enforcing Service Level Agreement if

we know things are about to fail or

there is a degradation in performance

– before failure occurs?

• Proactive Multi-Cloud SLA Policy

Enforcement Pattern

• What if I want to deploy to public

cloud only if private cloud capacity

gets exhausted?

• What if private cloud fails how can

recover from this disaster using a

public cloud?

• Public Cloud Bursting Pattern

Cost Efficiency Problems Cost Efficiency Patterns

• How do we actually aggregate billing

and cost from all cloud deployments?

• Multi-cloud Aggregate Billing and

Chargeback Pattern

• How do we make sure that cost is not

out of control and we know how

much we are spending as well as

deploy workloads where it is cheaper?

• Cost Efficiency Discount Multi-Cloud

Pattern

Security Problems Security Related Patterns

105

• Where do we store and retrieve

secrets?

• Secret Storage and Retrieval – Secrets

Vault Pattern

• How do we ensure that deployment

does not have any known

vulnerabilities and gets patched if

there is a vulnerability?

• How do we continuously audit the

cloud and make sure there are no

unauthorized or unintended changes?

• Multi-Cloud Auditor Pattern

Application Deployment in Multi-Cloud

environment

Multi-Cloud Application Deployment

Patterns

• Virtual Machines are great, but what

if I want to run Applications in

Containers – how do I do this in

multi-cloud environment with proper

fault tolerance in mind?

• Container Orchestration Pattern

• How do we deploy real applications

in Multi-Cloud environment so if

something fails the user or service

does not experience and interruption?

• Multi-Cloud Web Application /

Service Pattern

• How to deploy internet of things

services in a multi-cloud

environment?

• Multi-Cloud Internet of Things Event

Stream Ingesting Pattern

106

In the next chapter let’s do a deep dive into each pattern to provide more details along

with reference implementation.

107

Chapter 4 - Detailed Multi-Cloud Design Patterns and Multi-Cloud

Based on Open-Source Technologies

In this chapter we will do a deep dive into each pattern to provide more implantation

details. We will start with basic foundational patterns that helps us with initial fault

tolerant deployment.

4.1 Multi-Cloud Foundation Patterns focused on Fault Tolerant Deployment
Solutions

4.1.1 General Multi Availability Zone Fault Tolerant Pattern

Faults occur in the cloud all the time due to software, hardware or communications

failure. The fundamental way to deal with failures in the cloud is via Availability Zones.

Availability Zones are isolated locations in data centers that generally have to guarantee

fault tolerance via redundant physical racks, its own power provider, network, storage

and even telecommunications providers.

How do we deploy in the cloud environment so that one availability zone failure does not

result in an outage? The primary solution is isolating faults via availability zones so that

all components are deployed in unique availability zones. Let’s review the pattern

details:

• Pattern Name and Classification: General Multi Availability Zone Fault Tolerant

Pattern

• Also Known As: Multi AZ Deployment Pattern

108

• Problem: Majority cloud provider outages occur at the Availability Zone level.

Availability Zone generally can be defined as physically independent location in data

center or geographical region that has its own separate hardware rack, independent

hypervisor, networking switch, independent power supply and independent network

connectivity provider. Deploying all of the virtual machines into single availability

zone represents a single point of failure dependency therefore every deployment

needs to take in account availability zone.

• Intent: To improve fault tolerance even within one cloud provider deployment

• Motivation (Forces): You would like to reduce points of cloud provider points of

failure and improve resilience of your deployment

• Applicability: any multi public/private cloud deployment

• Structure: A graphical representation of the pattern.

Sequence diagram of obtaining availability zone information and placement of

virtual machines.

109

Cloud Deployer Cloud Meta Data API

Get All Healthy Availability Zones

Cloud VM API

Create Node1 in the Next Unique Avaiability Zone 1

Create Node2 in Avaiability Zone 2

Availability Zones 1...n

Create Node n in Avaiability Zone n

Get All Healthy Availability Zones

Get All Healthy Availability Zones

Figure 31 - Sequence Diagram of Obtaining Availability Zone Information and Placement of Virtual

Machines

The key concept here is to get the list of all the healthy availability zones before we

create any nodes / virtual machines. Another important detail is to pick availability zone

that has not been picked before and keep iterating through the list.

So, the simple multi availability distribution algorithm would look something like this:

loop for each cloud_provider in the cloud provider list

loop for each for each virtual machine in the vm list

availability_Zone_List = cloud_provider.Get_All

Healthy_Availability_Zones()

110

availability_Zone_In_Use = availability_Zone_List.Item

If (last_Used_Availability_Zone != availability_Zone_In_Use)

 //only create in a unique AZ

Create Node1 in the availability_Zone_In_Use

 else

 //we don’t want to use previously used availability zone

print (“skiping AZ” + availability_Zone_In_Use)

last_Used_Availability_Zone = availability_Zone_In_Use

//keep Iterating through the list

Keep going down the list till we find AZ that has not been just picked. Eventually some

availability zones will have to be re-used, but we will have a good even distribution of

nodes in each.

Most major cloud providers support this API call although these are generally not

standard – for example in AWS the call via CLI will be

describe-availability-zones

returning JSON array as output

{

 "AvailabilityZones": [

 {

111

 "State": "available",

 "RegionName": "us-east-1",

 "Messages": [],

 "ZoneName": "us-east-1b"

 },

 {

 "State": "available",

 "RegionName": "us-east-1",

 "Messages": [],

 "ZoneName": "us-east-1c" }, …] }

Reference:

http://docs.aws.amazon.com/cli/latest/reference/ec2/describe-availability-zones.html

However even if availability zone is healthy we need to check health of virtual machines

and applications running on each one of the nodes. True health check pattern needs to

include the highest component in the stack and all of the dependencies such as database:

http://docs.aws.amazon.com/cli/latest/reference/ec2/describe-availability-zones.html

112

Multi Availability Zone Deployment with Health Checking

Availability Zone 1 Availability Zone 2

Load Balancer

Database 1

Worker Compute Node
1..n

(Web/App Server)

Health-check

Health-check

Health-check

Database 2

Worker Compute Node
2..n

(Web/App Server)

Health-check

replication

Load Balancer

Figure 32 - Multi Availability Zone Deployment with Health Checking

Please note since most application rely on a database for high availability and fault

tolerance the minimum we will need is replication so that even if one Availability Zone

deployment fails we can keep processing in another.

113

Load Balancers can be also deployed in same Availability Zones as depicted below.

Availability Zone 1 Availability Zone 2

Load Balancer

Database 1

Worker Compute Node
1..n

(Web/App Server)

Health-check

Health-check

Database 2

Worker Compute Node
2..n

(Web/App Server)

Health-check

replication

Load Balancer

Health-check

Figure 33 - Multi Availability Zone Deployment with Load Balancers and Health Checking

However, if there is negligible latency across availability zones it’s better to keep these in

separate availability zones in the geographical region/data-center if there is negligible

latency across availability zones.

114

Same Geographical Region (Low Latency)

Availability Zone 4Availability Zone 3

Availability Zone 1 Availability Zone 2

Load Balancer

Database 1

Worker Compute Node
1..n

(Web/App Server)

Health-check

Health-check

Database 2

Worker Compute Node
2..n

(Web/App Server)

Health-check

replication

Load Balancer

Health-check

Figure 34 - Same Geographical Region Deployment for Low Latency

Next let’s introduce how this pattern fits in the multi-cloud deployment context. As we

deploy to multiple clouds we need to query the availability zone metadata APIs and

distributed the nodes so that not all get deployed to the same availability zones.

115

Here is an example of multi-cloud deployment:

Cloud A Cloud CCloud B

Cluster A1 Cluster A2

Load Balancer
Health

Controller

Load Balancer
Health

Controller

Cluster B1 Cluster B2

Load Balancer
Health

Controller

Load Balancer
Health

Controller

Cluster C1 Cluster C2

Load Balancer
Health

Controller

Load Balancer
Health

Controller

Availability
Zone A1

Availability
Zone A2

Availability
Zone B1

Availability
Zone B2

Availability
Zone C1

Availability
Zone C2

Figure 35 - Multi-Cloud Deployment Example

Multi-Cloud and Multi-Availability Zone Deployment

• Participants: Multi-Cloud Deployer / Orchestrator, SLA Enforcer Rules Engine ,

IaaS Bootstrap Blueprint (VMs, Compute, Network, Storage, Security Groups),

Image Pipeline (VM/Container)

• Consequences: Virtual Machines, Storage, Networking, Security Groups, and Entire

software stack above Virtual Machine is deployed in independent availability zones

• Implementation: all major cloud providers (and frameworks) support availability

zones: AWS, Google, Azure, OpenStack etc. However, since all the APIs are

different we need an abstraction framework to keep it cloud neutral.

Some AZ aware deployment frameworks that will be covered later on include:

- Bosh (http://bosh.io/)

- Terraform (https://www.terraform.io/)

http://bosh.io/

116

However, these frameworks do not provide out of the box AZ proper fault

distribution and require additional specific configuration.

• Known Uses: most public cloud or private cloud IaaS support availability zones

• Related Patterns: SLA Enforcer Rules Engine . SLA Enforcer Rules Engine which

will be covered later on will compliment this pattern in cases when availability zone

failure occurs and we need to re-deploy to a different availability zone.

Next let’s take a look at how do we distribute traffic and route among different

cloud providers with fault tolerance in mind?

4.1.2 General Multi-Cloud Fault Tolerant Routing Pattern

Now that we have covered foundational availability zone pattern how do we apply this to

the multi-cloud deployment especially how do we route distribute traffic in a fault

tolerant way. Single cloud provider or private data center is not sufficient for fault

tolerance and geographical availability. How do we distribute traffic and route among

different cloud providers with fault tolerance in mind? Domain Name System is key to

discovery and routing. Single DNS provider can be a single point of failure especially if

undergoes outage or denial service attack how can we design and manage DNS in multi-

cloud environment?

• Pattern Name and Classification: General Multi-Cloud Routing Pattern

• Also Known As: Hybrid / Multi-Cloud Pattern DNS Routing Pattern

• Problem: Single cloud provider or private data center is not sufficient for fault
tolerance and geographical availability. How do we distribute traffic and route

117

among different cloud providers with fault tolerance in mind? Single DNS provider
can be a single point of failure especially if undergoes distributed denial service
attack (DDoS).

• Intent: To improve fault tolerance, geographical availability, reduce vendor lock-in
and mitigate distributed denial of service attack.

• Motivation (Forces): improve fault tolerance, geo availability, reduce vendor lock-
in

• Applicability: any multi public/private cloud deployment

• Structure: A graphical representation of the pattern.

Public Provider C Public Provider DPrivate Cloud Datacenter A Private Cloud Datacenter B

Load Balancer Group A

Primary DNS

Cluster A1 Cluster A2 Cluster B1 Cluster B2 Cluster C1 Cluster C2 Cluster D1 Cluster D2

Availability
Zone A1

Availability
Zone A2

Availability
Zone B1

Availability
Zone B2

Availability
Zone C1

Availability
Zone C2

Availability
Zone D1

Availability
Zone D2

Internet

End User

Failover DNS

Load Balancer Group B Load Balancer Group C Load Balancer Group D

Figure 36 - DNS Only Multi-Cloud Fault Tolerant Routing Pattern

What happens if our DNS failover fails? If we are able to control TCP/IP/HTTP client on

the device we can have an API with well-known public IPs that device can cache that will

be available to replace DNS. In this scenario, the device will have to periodically

download the list of known IP addresses of known API end points that can be used to

bypass DNS in case DNS providers fail or under DDoS attack.

118

Public Provider C Public Provider DPrivate Cloud Datacenter A Private Cloud Datacenter B

Load Balancer Group A

Primary DNS

Cluster A1 Cluster A2 Cluster B1 Cluster B2 Cluster C1 Cluster C2 Cluster D1 Cluster D2

Availability
Zone A1

Availability
Zone A2

Availability
Zone B1

Availability
Zone B2

Availability
Zone C1

Availability
Zone C2

Availability
Zone D1

Availability
Zone D2

Internet

End User

Failover DNS

Load Balancer Group B Load Balancer Group C Load Balancer Group D

API Failover Primary

API Failover 2..N

Figure 37 - Multi-Cloud Fault Tolerant Routing Pattern with DNS and API Failover

However, to make the API more Resilient we would want to deploy it across all
cloud instances

119

Public Provider C Public Provider DPrivate Cloud Datacenter A Private Cloud Datacenter B

Load Balancer Group A

Primary DNS

Cluster A1 Cluster A2 Cluster B1 Cluster B2 Cluster C1 Cluster C2 Cluster D1 Cluster D2

Availability
Zone A1

Availability
Zone A2

Availability
Zone B1

Availability
Zone B2

Availability
Zone C1

Availability
Zone C2

Availability
Zone D1

Availability
Zone D2

Internet

End User

Failover DNS

Load Balancer Group B Load Balancer Group C Load Balancer Group D

API Failover for DNS API Failover for DNS API Failover for DNS API Failover for DNS

DNS API Fail-over by-passDNS API Fail-over by-pass

Figure 38 - Multi-Cloud Routing API Failover Deployment

• Participants: Internet, Domain Name System, Geographic Load Balancers, Public
and Private Data Centers, Availability Zones (isolated physical racks, with its own
power provider, network, telecom providers)

• Consequences: Applications deployed in multi-cloud environment get the benefit of
better fault tolerance, disaster recovery, less vendor lock in and better geographical
availability and lower latency.

• Implementation: Cedexis, Akamai FastDNS

120

Multi-Cloud DNS Implementation Example

Amazon Web Services Google Cloud PlatformPrivate Cloud
(OpenStack) Microsoft Azure

Load Balancer Group A

Primary DNS - Cedexis

Cluster A1 Cluster A2 Cluster B1 Cluster B2 Cluster C1 Cluster C2 Cluster D1 Cluster D2

Availability
Zone A1

Availability
Zone A2

Availability
Zone B1

Availability
Zone B2

Availability
Zone C1

Availability
Zone C2

Availability
Zone D1

Availability
Zone D2

Internet

End User

Failover DNS – Akamai FastDNS

Load Balancer Group B Load Balancer Group C Load Balancer Group D

Figure 39 - Multi-Cloud DNS Implementation Example

121

DNS and API Fail-over Implementation Example

Amazon Web Services Google Cloud PlatformPrivate Cloud
(OpenStack) Microsoft Azure

Load Balancer Group A

Primary DNS - Cedexis

Cluster A1 Cluster A2 Cluster B1 Cluster B2 Cluster C1 Cluster C2 Cluster D1 Cluster D2

Availability
Zone A1

Availability
Zone A2

Availability
Zone B1

Availability
Zone B2

Availability
Zone C1

Availability
Zone C2

Availability
Zone D1

Availability
Zone D2

Internet

End User

Failover DNS – Akamai FastDNS

Load Balancer Group B Load Balancer Group C Load Balancer Group D
API Failover for DNS

(Consul)
API Failover for DNS API Failover for DNS API Failover for DNS

(Consul)

DNS API Fail-over by-passDNS API Fail-over by-pass

Figure 40 - DNS and API Fail-over Implementation Example

• Known Uses: Examples of real usages of the pattern.

Global DNS Highly Available providers:

Akamai FastDNS https://www.akamai.com/us/en/solutions/products/cloud-
security/fast-dns.jsp

Cedexis http://www.cedexis.com/products/openmix/

Nustar UltraDNS https://www.neustar.biz/services/dns-services

Multi-Cloud API - https://www.consul.io

• Related Patterns: Other patterns that have some relationship with the pattern;
discussion of the differences between the pattern and similar patterns.

https://www.akamai.com/us/en/solutions/products/cloud-security/fast-dns.jsp
https://www.akamai.com/us/en/solutions/products/cloud-security/fast-dns.jsp
http://www.cedexis.com/products/openmix/
https://www.neustar.biz/services/dns-services
https://www.consul.io/

122

Now that we have introduced the foundational fault tolerant patterns, let’s take a
look how we build up multi-cloud deployment with the Multi-Cloud Cloud
Blueprint Pattern on top of Infrastructure as a Service cloud provider.

4.1.3 Multi-Cloud Cloud Blueprint Pattern

How do we describe what desired deployment should be on multiple cloud providers if

all of them have different non-standard blueprint formats?

How do we define your infrastructure requirements once and something will take care of

translating this into cloud specific blueprint for a specific provider? This way you don’t

need to maintain IaaS definition for multiple cloud providers. In order to automate

provisioning of multiple IaaS this pattern helps to describe your cloud infrastructure as a

blueprint and use that blueprint to drive orchestrator to target specific IaaS provider and

create all the resources necessary for your application and services to run on any cloud

provider (Public or Private). Currently there is no uniform API and it is not uniformly

implemented in the same way across cloud providers

• Pattern Name and Classification: Cloud IaaS Tenancy Blueprint Bootstrap Pattern

• Also Known As: Cloud Infrastructure as a Service Blueprint Bootstrap Pattern

• Problem: Currently there is no uniform Cloud deployment format or API and it is

not uniformly implemented in the same way across cloud providers. Most cloud

provider’s APIs are different and non-standard. To solve this problem, we need to

have a layer of abstraction independent from specific cloud provider API. Ideally

you would define your cloud blueprint once and automate any cloud provider specific

calls. In order to automate provisioning of multiple IaaS this pattern helps to

123

describe your cloud infrastructure as a blueprint and use that blueprint to drive

orchestrator to target specific IaaS provider and create all the resources necessary for

your application and services to run on any cloud provider (Public or Private).

• Intent: Describe your IaaS as Cloud Independent Blueprint

• Motivation (Forces): Multi-cloud deployment blueprint that can be used on most

cloud providers

• Applicability: Any multi-cloud deployment including private and public IaaS

• Structure: A graphical representation of the pattern.

Compute
Requirements

Storage
Requirements

Networking
Requirements

Unified Cloud
Independent

Bootstrap
Blueprint

Cloud X
Blueprint

Implementation
Script

Cloud Y
Blueprint

Implementation
Script

Private Cloud Z
Blueprint

Implementation
Script

Cloud Dependent
API Transformer

Security
Requirements

Figure 41 - Multi-Cloud Cloud Blueprint Pattern

• Participants:
Networking Blueprint, Compute Blueprint, Storage Blueprint, Security Blueprint,

124

Unified Cloud Independent Bootstrap Blueprint, Cloud Dependent API

Transformer

Cloud Blueprint Implementation Script

• Consequences: Result of this pattern is the particular cloud stack you need is created

in multiple cloud providers and fully operational

• Implementation: A description of an implementation of the pattern; the solution part

of the pattern. Example Deployment Options that are somewhat similar to this

pattern with open source software are scripted and provided in the companion github

repository for this dissertation:

https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options

Compute
Requirements

Storage
Requirements

Networking
Requirements

Unified Cloud
Independent

Bootstrap
Blueprint

Cloud X
Blueprint

Implementation
Script

Cloud Y
Blueprint

Implementation
Script

Private Cloud Z
Blueprint

Implementation
Script

Cloud Dependent
API Transformer

Security
Requirements

Multi-Cloud Bootstrap Pattern Open Source Implementation Options

BOSH
Manifest

Terraform

Apache Brooklyn
Cloudify

- OR -

- OR -

Figure 42 - Multi-Cloud Bootstrap Pattern Open Source Implementation Options

• Known Uses:

https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options

125

 Not all projects listed here implement the pattern exactly as described, but generally

close.

• Apache Brooklyn https://brooklyn.apache.org

• Bosh (http://bosh.io)

• Terraform (https://www.terraform.io/)

• OpenStack Heat templates based on cloud CAMP standard

(https://wiki.openstack.org/wiki/Heat)

• Related Patterns: Image Build Pipeline pattern

Next let’s talk about how do we provide images that can run on any cloud provider?

4.1.4 Image Build Pipeline Pattern for Multi-Cloud Deployment

So now that we have a blue print describing how we creating a deployment on each IaaS

cloud provider – what specifically are we going to deploy? Cloud providers require

different virtual machine formats – so how do create these images in an automated way?

In addition, by having this IaaS specific virtual machine image this will help us to be able

to quickly reference this image if a failure occurs and re-build virtual machines. To make

it even more efficient the virtual machine image should contain:

• Operating System (i.e. Linux)

• Runtime Environment (i.e. Java Runtime, Tomcat, Apache etc.)

• Application

https://wiki.openstack.org/wiki/Heat

126

By having the above created in one image we achieve an immutable infrastructure where

components do not need to be changed but rather simply replaced with the entire image

that we know is in a good state.

• Pattern Name and Classification:

Image Build Pipeline Pattern for Multi-Cloud Deployment

• Also Known As: Cloud Image Pipeline

• Problem: How do we provide images that can run on any cloud provider? Image

Build Pipeline Pattern is focused on building ready to boot images that contain

entire software stack and even can contain application itself. (i.e. OS,

Middleware, Application etc.) It is very important to have ready to boot image if

you have a spike in load (via user requests, events etc.) and you need to scale out

and create new instances quick. During run-time, this pattern relies on Resource

Orchestrator Pattern. The build pipeline also might be tailored to produce

multiple images targeting multiple providers and formats in order to gain the most

efficiency and exploit any cloud provider format or API differences.  There is no

uniform API and it is not uniformly implemented in the same way across cloud

providers.

• Applicability: Virtual Machine Images, Container Images (i.e. LXC, Docker) as well

as Non-Virtualized Images

• Intent: Build images (virtual machine or containers) that can run on any cloud or

virtualized infrastructure

127

• Motivation (Forces): you would like to use one process to target multiple IaaS layers

• Applicability: multi-cloud / hybrid deployment

• Structure: A graphical representation of the pattern.

Continuous
Build

System

Version
Control
System

(Image Templates)

Image Builder

1. Change To a
Template
Triggers

2. Executes a job

Multi-Cloud Image Build

Public Cloud X
Image(s)

Public Cloud Y
Image(s)

Private Cloud Z
Image(s)

4.3 Create image

4.1 Create image

4.2 Create image

Binary
Repository

- or -
Directly Save to the

Cloud

5. Images get stored into

3. Read Template

Figure 43 - Multi-Cloud Cloud Image Build Pattern

• Participants: Image Builder, Public/Private Cloud Providers, Binary Repository,

Version Control System

• Consequences: Using templates multiple images get produced to be used in any public

cloud or on premises/private cloud

• Implementation: A description of an implementation of the pattern; the solution part

of the pattern. Example Deployment Options that are somewhat similar to this

128

pattern with open source software are scripted and provided in the companion

github repository for this dissertation:

https://github.com/compscied/multi-cloud/tree/master/image-pipeline

Next let’s take a look how an example implementation of the pattern would look like

with Open Source Software and images appropriate for Multi-Cloud deployment:

Continuous
Build

System
(Jenkins, Spinnaker)

Version
Control
System

(Image Templates)
(Gitlab)

Image Builder
(Hashicorp Packer)

Change
Triggers

Executes a job

Multi-Cloud Image Build Pipeline Implementation

Public Cloud
Image(s)

(AWS)

Public Cloud
Image(s)

(Google Cloud)

Private Cloud
Image(s)

Create imageCreate image

Create image

Binary
Repository (VMRC)

- or -
Directly Save to the

Cloud

Images get stored into

Public Cloud
Image(s)
(Azure)

Create image

Figure 44 - Multi-Cloud Cloud Image Build Pattern Implementation with Open Source Software

• Known Uses: Spinnaker http://www.spinnaker.io, Packer http://www.packer.io

• Related Patterns: CI/CD (Continuous Integration/Continuous Build) pipeline

So now that we have blueprint and images to deploy – what does the actual
deployment?

https://github.com/compscied/multi-cloud/tree/master/image-pipeline
http://www.spinnaker.io/
http://www.packer.io/

129

4.1.5 Multi-Cloud Node Deployer - Orchestrator Pattern

Now that we covered image creation for multiple cloud providers we need a component

that will do the deployment to each cloud provider. Deployment is somewhat trivial and

sometimes we need to do more than deployment – we need orchestration. Orchestration

can be defined as deployment and coordination of the components to produce a desired or

target state. Desired or target state refers to what we have described in the cloud

blueprint i.e. x number of components describing Compute, Networking, Storage,

Security. So Deployer/Orchestrator will maintain desired state based on the cloud

blueprint/manifest as well as additional rules defined via a rules engine that come out of

SLA Enforcer Rules Engine pattern that will be described later on.

• Pattern Name and Classification: Multi-Cloud Node VM Deployer - Orchestrator

Pattern

• Also Known As: Multi-Cloud VM Orchestrator Pattern

• Problem: You need to deploy on top of multiple private/public cloud IaaS to make it

fully available with any software stack that is able to run applications or services.

The deployer needs to know about specific cloud provider API.

• Intent: Resource Deployer - Orchestrator Pattern is akin to the main builder of all

of architecture that was defined in patterns before. The orchestrator is able to

initially deploy full stack Virtual Machine images and spin them up as instances.

• Motivation (Forces): multi-cloud deployment of the same exactly software stack

• Applicability: private/public cloud IaaS multi-cloud deployment

• Structure: A graphical representation of the pattern.

130

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault
(on premises)

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Updates
Inventory

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Figure 45 - Multi-Cloud Node Deployer - Orchestrator Pattern

As mentioned before the key to fault tolerant deployment is availability zone

information and placement of virtual machines in each unique healthy availability

zone

131

Cloud Deployer Cloud Meta Data API

Get All Healthy Availability Zones

Cloud VM API

Create Node1 in the Next Unique Avaiability Zone 1

Create Node2 in Avaiability Zone 2

Availability Zones 1...n

Create Node n in Avaiability Zone n

Get All Healthy Availability Zones

Get All Healthy Availability Zones

Figure 46 - Multi-Cloud Node Deployer - Orchestrator Pattern with Multi Availability Support

• Participants: Multi-Cloud Deployer / Orchestrator, SLA Enforcer Rules Engine ,

IaaS Bootstrap Blueprint (VMs, Compute, Network, Storage, Security Groups),

Image Pipeline (VM/Container)

• Consequences: Virtual Machines, Storage, Networking, Security Groups, and Entire

software stack above Virtual Machine is deployed

• Implementation: A description of an implementation of the pattern; the solution part

of the pattern.

Example Deployment Options that are somewhat similar to this pattern with open

source software are scripted and provided in the companion github repository for this

dissertation:

132

https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-

options

• Known Uses: Terraform, Bosh (bosh.io), Apache Brooklyn

(https://brooklyn.apache.org), Cloudify (http://cloudify.co)

• Related Patterns: SLA Enforcer Rules Engine

So now that we have deployed on multiple cloud providers – where do we store and

keep track of information about everything we deployed? Where is our inventory of

what’s running where? How do we find X? Where do we register newly deployed

components?

4.1.6 Multi-Cloud Service Registry and Discovery API

Multi-Cloud Service Registry and Discovery API will enable us to store and keep track of

information about everything we deploy. It is our inventory of what’s running where. It

will help us to find/discover what’s running where. It will help us register newly

deployed components. All these use cases can be solved via Multi-Cloud Service

Registry and Discovery API Pattern.

• Pattern Name and Classification: Multi-Cloud Service Registry and Discovery API

• Also Known As: Distributed Service Registry and Discovery

• Problem: How do we keep track of everything that we have deployed in multi-cloud

environment? Multi-Cloud Service Registry and Discovery pattern allows us to

https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options
https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options
https://brooklyn.apache.org/
http://cloudify.co/

133

keep track of everything that we deploy. Think of this as distributed registry and

latest source of state that has an API so that any components in multi-cloud

control plan can use create/read/update/delete operation. When a new component

comes alive it can always use lookup via DNS the Registry and the query for any

component or meta-data service that it needs to connect to.

• Applicability: Any Distributed or Multi-Cloud deployment.

• Intent: Distributed Service Registry, Inventory and Discovery

• Motivation (Forces): you would like to keep track of your cloud and keep up to date

your distributed system inventory

• Applicability: multi-cloud / hybrid deployment

• Structure: A graphical representation of the pattern.

Now that we covered the fundamentals let’s take a look at how this pattern fits in the

entire multi-cloud control plane framework:

134

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Updates
Inventory

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Figure 47 - Multi-Cloud Service Registry and Discovery API with Multi-Cloud Control Plane

• Participants: Service Registry, HTTP API Server

• Consequences: Registry is deployed and is accessible via the HTTP API Server

• Implementation: Here is the multi-cloud deployment of the pattern

135

Public Cloud C

Primary DNS

Internet

End User

Failover DNS

Registry +
API

Registry +
API

Registry +
API

replication replication

Availability Zone Availability Zone

Availability Zone

Private Cloud A

Registry +
API

Registry +
API

Registry +
API

replication replication

Availability Zone Availability Zone

Availability Zone

Public Cloud B

Registry +
API

Registry +
API

Registry +
API

replication replication

Availability Zone Availability Zone

Availability Zone
replication

replication

Multi-cloud Control Plane VM 1..3 – AZ-1..3 Multi-cloud Control Plane VM 1..3 – AZ-1..3 Multi-cloud Control Plane VM 1..3 – AZ-1..3

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Figure 48 - Multi-cloud Registry and API High Availability Deployment

Multi-cloud Registry and API needs to be highly distributed, replicated and resilient as it
contains latest state of deployment and where to locate services.

Specific Technology Mapping to Consul

136

Public Cloud C

Primary DNS

Internet

End User

Failover DNS

Consul
Registry +

API

Consul
Registry +

API

Consul
Registry +

API

replication replication

Availability Zone Availability Zone

Availability Zone

Private Cloud A

Consul
Registry +

API

Consul
Registry +

API

Consul
Registry +

API

replication replication

Availability Zone Availability Zone

Availability Zone

Public Cloud B

Consul
Registry +

API

Consul
Registry +

API

Consul
Registry +

API

replication replication

Availability Zone Availability Zone

Availability Zone
replication

replication

Multi-cloud Control Plane VM 1..3 – AZ-1..3 Multi-cloud Control Plane VM 1..3 – AZ-1..3 Multi-cloud Control Plane VM 1..3 – AZ-1..3

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Figure 49 - Multi-cloud Registry and API Implementation Example

Example Deployment Options that are somewhat similar to this pattern with open source

software are scripted and provided in the companion github repository for this

dissertation:

https://github.com/compscied/multi-cloud/tree/master/service-registry-discovery

• Known Uses: Consul http://www.consul.io, Apache Zookeeper

https://zookeeper.apache.org

• Related Patterns: Multi-Cloud Data Replication

https://github.com/compscied/multi-cloud/tree/master/service-registry-discovery
http://www.consul.io/
https://zookeeper.apache.org/

137

So now that we have deployed everything what do we do when things fail? This is

what's sometimes referred to as "Day 2" problems. (“Day 2” as in the day after

initial deploy) Ideally we should not need humans involved in dealing with failures

after initial deployment.

138

4.2 Multi-Cloud Management after Initial Deployment and Dealing with Failures in
Automated Way

Now that we have our static deployment complete how do we Multi-Cloud Management

after Initial Deployment and Dealing with Failures in Automated Way? The key to

answer this question is telemetry of our systems. Let’s start first by figuring out once we

deploy how do we find out the health of the instances?

4.2.1 Multi-Cloud Telemetry and Log Aggregation Pattern

Multi-Cloud Telemetry and Log Aggregation Pattern helps to aggregate all of the

telemetry (CPU, Memory, Storage, IO, Network utilization) and key logs from all cloud

providers and all of components such Virtual Machines etc. It also aggregates health

information of all of the components (if component/system is up/down).

• Pattern Name and Classification: Multi-Cloud Telemetry and Log Aggregation

Pattern

• Also Known As: Multi-cloud SLA Monitoring Pattern

• Problem: It is difficult to manage anything that you cannot measure hence we need

Multi-cloud SLA Monitoring Pattern that aggregates all of the telemetry data (CPU,

Memory, Storage, IO, Network utilization) from all cloud providers as well as Health

(up/down) of all of the components.

• Intent: Multi-Cloud Telemetry and Log Aggregation Pattern allows to monitor and

aggregate multiple cloud provider IaaS data about health and utilization of

139

components i.e. Virtual Machine CPU, Memory, Storage and Network as well as

aggregate of key logs.

• Motivation (Forces): Multi-Cloud Telemetry and Log Aggregation Pattern is akin to

the central nervous it involves metrics collection agents to be installed on all nodes,

process metrics and send aggregate metrics to a central aggregator. Cloud Provider

experience outages, but more very frequently clients might experience degradation of

quality of service. This could be as simple as Noisy Neighbor problem where you

might be sharing a hypervisor (that runs virtual machines) with a neighbor that

consumes a great deal of resources. Multi-Cloud Telemetry and Log Aggregation

Pattern can be used to monitor the cloud provider performance. It will be more

useful in addition to Multi-Cloud Load Balancing Pattern.

• Applicability: multi cloud / hybrid deployments

• Structure: A graphical representation of the pattern.

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

SLA Rules
Engine

Public Cloud CPrivate Cloud A

IaaS Bootstrap +
App Stack

Deployment

Multi Cloud
Telemetry &

Log Aggregation

Multi Cloud Billing

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failure

Re-deploy
In case of

failure

Usage Metrics

Updates
Inventory

 Alerts Notification
System

Failure
Data

Figure 50 - Multi-Cloud Telemetry and Log Aggregation Pattern

140

Additionally this pattern can be extended to figure out the latency to a cloud provider

via remote distributed probes mimicking the end user experience as depicted here:

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

SLA Rules
Engine

Public Cloud CPrivate Cloud A

IaaS Bootstrap +
App Stack

Deployment

Multi Cloud
Telemetry &

Log Aggregation

Multi Cloud Billing

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failure
data

Re-deploy
In case of

failure

Usage Metrics

Updates
Inventory

 Alerts Notification
System

Failure
Data

Remote Probe
Public Cloud D

Remote Probe
Public Cloud E

Remote Probe
Public Cloud FLatency data

probe
probe

probe

Figure 51 - Multi-Cloud Telemetry and Log Aggregation Pattern with Remote Probes

Remote probes are geographically distributed components (deployed outside cloud

provider it is trying to monitory) and used to simulate end user experience with

network latency. These components can be as simple as headless browser that runs

on schedule doing HTTP get on the web page or service end point. Examples are

provided in the implementation section and accompanying github repository.

• Participants: each virtual machine has an agent that reports telemetry information as

well as forwards logs to centralized system

• Consequences: telemetry and logs get aggregated and operator gets to set rules based

on incoming data

141

• Implementation:

Example Deployment Options that are somewhat similar to this pattern with open

source software are scripted and provided in the companion github repository for this

dissertation:

https://github.com/compscied/multi-cloud/tree/master/telemetry-multi-cloud

• Known Uses: Telemetry open source choices: Icinga https://www.icinga.com,

Prometheous http://prometheous.io

Logging open source choices: EFK Stack: FluentD (http://www.fluentd.org) – log

forwarding, Elasticsearch – indexing / Kibana – log mining/visualizations

(https://www.elastic.co), Alternatively one can use Apache Solr – indexing

(http://lucene.apache.org/solr/) / FluentD / Banana (fork of Kibana)

Related Patterns: SLA and Health Check Patterns

Next let’s take a look at what we can do with the data gathered by this pattern.

4.2.2 SLA Enforcer Rules Engine

So now that we know things failed or something is at high CPU/Memory/IO utilization

how do we heal the failure or breach of SLA so operator does not have to even wake up

i.e. at 3 a.m.? SLA Enforcer Rules Engine pattern can automatically respond to failures

and bring the cloud deployment to the desired healthy state. SLA Monitoring Pattern

feeds information to SLA Enforcer Rules Engine to process, apply rules and decide on

action to be taken.

https://github.com/compscied/multi-cloud/tree/master/telemetry-multi-cloud
https://www.icinga.com/
http://prometheous.io/
http://www.fluentd.org/
https://www.elastic.co/
http://lucene.apache.org/solr/

142

Here is an example of a rule for when condition of CPU utilization more than 80%

invoke action - create new node:

When

 <Condition is true> CPU_Utilization_Percentage > 80

Then

 <Take desired Action> Invoke_Deployer_to_Create_New_Node()

• Pattern Name and Classification: SLA Enforcer Rules Engine Pattern

• Also Known As: Multi-Cloud SLA Rules Processor

• Problem: You have deployed X number of components on multiple private/public

cloud IaaS and you need to keep resurrect / heal the instances that fail. Additionally,

something might not be in failed state, but all of the symptoms are there that

something is about to fail or over utilized. For example, CPU or Memory is growing

and currently at 80% - in this case we can spin up a new instance to horizontally scale

and reduce the load on the current components.

• Intent: This pattern usually needs Multi-Cloud Telemetry and Log Aggregation

Pattern in order to understand when instance dies to be able to resurrect it.

• Motivation (Forces): multi-cloud deployment healing of failed components

• Applicability: private/public cloud IaaS multi-cloud deployment

• Structure: A graphical representation of the pattern.

143

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

IaaS Bootstrap +
App Stack

Deployment

Multi Cloud
Telemetry &

Log Aggregation

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failure

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification
SystemSend alerts

SLA Enforcer Rules Engine

Figure 52 - Multi-Cloud Telemetry and SLA Enforcer Rules Engine

• Participants: SLA Enforcer Rules Engine, Telemetry, Multi-Cloud Deployer,

Service Registry

• Consequences: In case of node failure (health check failed) SLA Enforcer Rules

Engine will decide to resurrect another node using the desired virtual machine image

to match the lost node. In case of breach of SLA or a particular rule met action is

applied.

• Implementation: A description of an implementation of the pattern; the solution part

of the pattern.

144

Here is simple algorithm SLA Enforcer Rules Engine implements for keeping the
desired state up to date

desired_state = deployment_blue_print

current_state = telemetry.get_current_state()

If desired_state != (not equals) current_state

 start_healing()

for each item in desired_state

 compare/diff(current_state, desired_state)

 // can compare line by line

get_Healthy_Availability_Zones_List

 resurrect/heal(desired_state.instance,
get_Healthy_Availability_Zones_List.Item)

For example, if we had X (4 instances) virtual machines (desired state) in cloud Y

and one of them failed resulting in 3 instances the SLA Enforcer Rules Engine will

spin up new 4th instance to bring back the count to the desired state.

Example Deployment Options that are somewhat similar to this pattern with open

source software are scripted and provided in the companion github repository for this

dissertation:

https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-

options

SLA Rules and Setup Instructions can be found here:

https://github.com/compscied/multi-cloud/tree/master/cloud-healer-sla-rules

Rules:

https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options
https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options
https://github.com/compscied/multi-cloud/tree/master/cloud-healer-sla-rules

145

//CPU Utilization higher than 80% - create new node

When

 <Condition is true> CPU_Utilization_Percentage > 80

Then

 <Take desired Action> Invoke_Deployer_to_Create_New_Node()

//RAM Utilization higher than 80% - create new node

When

 <Condition is true> RAM_Utilization_Percentage > 80

Then

 <Take desired Action> Invoke_Deployer_to_Create_New_Node()

• Known Uses: Bosh (http://bosh.io)

• Related Patterns: Health Checking, Multi Cloud Telemetry pattern

Next let’s address one of the key problems in distributed systems is how to manage

state and data?

146

4.2.3 Multi-Cloud Data Replication

One of the key problems in distributed systems is how to manage state and data?

Specifically, one of the fundamental problems is how to safeguard the data in case

database fails and how can we continue operating/processing without any downtime?

Multi-Cloud Data Replication is not as simple as it sounds because if we were to replicate

across cloud providers there is significant network latency as well as possible network

congestion. Hence the solution needs to include data storage solution that can tolerate

high latency connections, network congestion as well as fault tolerance in each of the

cloud deployments. Let's dive deeper into the pattern.

• Pattern Name and Classification: Multi-Cloud Data Replication

• Also Known As: Cross Cloud Provider Data and State Replication Pattern

• Problem: It is necessary to replicate data and state from one cloud provider to

another so that in case of an outage we can continue processing on a different

availability zone or cloud provider.

• Intent: Replicate data or state across multiple cloud provider.

• Motivation (Forces): A scenario consisting of a problem and a context in which this

pattern can be used.

• Applicability: multi-cloud, ability to read and continue transaction processing from

any cloud provider in any failure scenario

• Structure:

147

Public Cloud C

Primary DNS

Internet

End User

Failover DNS

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone

Private Cloud A

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone

Public Cloud B

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone
replication

replication

Figure 53 - Multi-Cloud Data Replication Deployment

Each cloud will have a leader that is based on Paxos or Raft consensus algorithm which

were described in chapter 2 as foundational components of reliable and resilient

distributed systems. If the leader crashes or becomes unresponsive other members will

vote and elect a new leader – election of the leader will require at least one more than

half of available votes.

• Participants: database with ability to replicate with high network latency.

• Consequences: data is replicated to all clouds, ability to read and continue

transaction processing from any cloud provider in any failure scenario

148

• Implementation: We need database with ability to replicate with high latency

network connectivity. Based on tests and benchmarks the following databases fit this

requirement.

https://github.com/compscied/multi-cloud/tree/master/databases-multi-cloud

• Known Uses: Apache Cassandra http://cassandra.apache.org/, CockroachDB

https://www.cockroachlabs.com, Apache Geode http://geode.apache.org/

• Related Patterns: Other patterns that have some relationship with the pattern;

discussion of the differences between the pattern and similar patterns.

Next let’s explore how do we fail over and manage load distribution?

4.2.4 Reactive Multi-Cloud Health Check and Load Balancing Pattern

You have a number of services that you need to health check all at once for example:

Web Server, App Server and Database. The pattern consists of a dynamic web page or

API end point on a web server that attempt to connect to app server health check, which

in turn has a page to connect to the database. If any of component page’s in the chain

return a code that is NOT HTTP 200 then the component is down and the whole path

should be marked as down.

• Pattern Name and Classification: Reactive Multi-Cloud Health check and Load

Balancing Pattern

• Also Known As: Simple Health check Pattern

https://github.com/compscied/multi-cloud/tree/master/databases-multi-cloud
http://cassandra.apache.org/
https://www.cockroachlabs.com/
http://geode.apache.org/

149

• Problem: You have a number of services that you need to check all at once for

example: Web Server, App Server and Database. The pattern consists of a dynamic

web page on a web server that attempt to connect to app server health check, which

in turn has a page to connect to the database. If any of component page’s in the chain

return a code that is NOT HTTP 200 then the component is down and the whole path

should be marked as down.

The pattern is necessary if we have a simple load balancer which can be in front of

the chain and if it receives non-HTTP 200 code it will send the load via another path.

This pattern does not have to be HTTP centric but could use other protocols that

might be built on top of TCP.

• Intent: Find out the health of particular path in the deployment

• Motivation (Forces): multi-cloud or any distributed deployment

• Applicability: multi-cloud, distributed deployment

• Structure:

150

Private Cloud Datacenter A Public Cloud CPublic Cloud Datacenter B

Geo Load Balancer
DNS

Cluster A1 Cluster A2

Load Balancer
Health

Controller

Multi-Cloud Healthcheck Load Balancing Pattern

Health-check Health-check

Load Balancer
Health

Controller

Cluster B1 Cluster B2

Load Balancer
Health

Controller

Load Balancer
Health

Controller

Cluster C1 Cluster C2

Load Balancer
Health

Controller

Load Balancer
Health

Controller

Figure 54 - Reactive Multi-Cloud Health Check and Load Balancing Pattern

• Participants: any component that supports http protocol

• Consequences: if you get response code which is anything other than HTTP 200 the

path is marked as failed

• Implementation: https://github.com/keen/pingpong,

https://github.com/flok99/httping

4.2.5 Proactive Multi-Cloud SLA Policy Enforcement Pattern

Is there more intelligent way of enforcing Service Level Agreement if we know things

are about to fail – before failure occurs?

https://github.com/keen/pingpong
https://github.com/flok99/httping

151

Proactive Multi-Cloud SLA Policy Enforcement Pattern can help in this case. It builds

on top of Multi-Cloud SLA Telemetry and based on set of rules if a cloud provider

breaches an SLA we can move workloads to another cloud provider. This pattern allows

us to apply rules/triggers against aggregated multi-cloud telemetry data so we can be

proactive about managing resources in case of degradation of performance etc.

• Pattern Name and Classification: Proactive Multi-Cloud Service Level Agreement

Enforcement Pattern

• Also Known As: Multi-Cloud SLA Management Pattern

• Problem: How do we enforce quality of services across multiple cloud providers?

Multi-cloud SLA Monitoring Pattern aggregates all of the telemetry (CPU, Memory,

Storage, IO, Network utilization) from all cloud providers. Proactive Multi-Cloud

SLA Policy Enforcement Pattern builds on top of Multi-Cloud SLA Telemetry and

based on set of rules if a cloud provider breaches an SLA we can move workloads to

another cloud provider.

• Intent: Apply rules/triggers against aggregated multi-cloud telemetry data so we can

be proactive about managing resources in case of degradation of performance etc.

• Motivation (Forces): Proactive management of SLA and quality of service in multi-

cloud environment

• Applicability: multi cloud / hybrid deployments

• Structure: A graphical representation of the pattern.

152

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

IaaS Bootstrap +
App Stack

Deployment

Multi Cloud
Telemetry &

Log Aggregation

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failure

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification
SystemSend alerts

SLA Enforcer Rules Engine

Figure 55 - Proactive Multi-Cloud Health Check and Load Balancing Pattern

Next let’s see how this pattern fits within entire Multi-Cloud Framework

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

3) Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

Multi Cloud Security
Auditor

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

Audits
Cloud

Deployments

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault
(on premises)

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

Multi Cloud
Telemetry &

Log Aggregation

Multi Cloud Billing

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failure

Re-deploy
In case of

failure

Usage Metrics

Updates
Inventory

 Alerts Notification
System

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Send alerts

SLA Enforcer Rules Engine

Figure 56 - Proactive Multi-Cloud Health Check and Load Balancing Pattern with Multi-Cloud

Control Plane

• Participants: each virtual machine has an agent that reports telemetry information as

well as forwards logs to centralized system. SLA Enforcer is essentially a rules

153

engine that processes the aggregated rules and triggers the desired action as an

outcome.

• Consequences: telemetry and logs get aggregated and operator gets to set rules based

on incoming data. Policy Enforcer will evaluate the telemetry data against the rules

and trigger an action for SLA Enforcer Rules Engine.

• Implementation:

Policy Enforcer will continuously get telemetry information and apply rules for example

here is some simple algorithms:

If Cloud X Bandwidth > Desired State (90%)

stop routing to this cloud provider

direct load to another cloud providers

Adaptive Intelligence algorithm can also be used to predict the load based on

previous history. This can also be done by pre-scheduling instance to run more

instance at pre-defined times.

For example, when stock market opens by 9:30 AM EST spin up 99 compute

instances to meet increasing load when trading starts. Ideally we should start this

earlier so there is enough time for machines to boot, warm up cache for data etc. so in

154

this example we will start 33 instances in each cloud provider at 9:15 AM EST so by

9:30 AM everything is routable and ready to go:

If Time == 9:15 AM EST

{

deploy 33 instances Cloud X

deploy 33 instances Cloud Y

 deploy 33 instances Cloud Z

}

Example Deployment Options that are somewhat similar to this pattern with open

source software are scripted and provided in the companion github repository for this

dissertation:

https://github.com/compscied/multi-cloud/tree/master/sla-rules-engine

There are three primary options illustrated:

• JSON Rules - the simplest option in JavaScript

• Easy Rules - Java – simple to setup and get started with

• Drools - Java - more complicated to setup and use, but has nice interface and

integration with Eclipse

• Known Uses:

https://github.com/compscied/multi-cloud/tree/master/sla-rules-engine

155

• Commercial: AWS CloudWatch, VM Turbo, ScienceLogic

• Open source: none known at this point

• Related Patterns: Multi-Cloud SLA Monitoring, SLA and Health Check Patterns

Next let’s explore a pattern that helps to solve a problem when private cloud

capacity gets exhausted.

4.2.6 Public Cloud Bursting Pattern

Once you have close to or have exhausted your private cloud capacity and Public Cloud

Bursting Pattern allows to “burst” and use public cloud capacity to augment on premises

workloads. The entire software infrastructure stack, application or services and other

components needs to be ready to be replicated in public cloud and the need. Multi-cloud

control plane pattern enables cloud bursting and can be combined with Multi-Cloud SLA

Enforcer to automate rules on when to burst to the cloud. Using SLA Enforcer in this

pattern would allow to set a rule to state for example that at 80% utilization of private

datacenter - start deploying workloads only to public cloud.

• Pattern Name and Classification: Public Cloud Bursting Pattern

• Also Known As: Multi-Cloud Bursting Pattern.

• Problem: In some cases organizations, might approach or exhaust on premises data

center capacity and this pattern allows to “burst” and use public cloud capacity to

augment on premises workloads.

156

• Intent: Public Cloud Bursting Pattern allows to start new workloads or move existing

workloads into the Public Cloud. This pattern is enabled by all of the components in

the composite of pattern that we call Multi-Cloud Control plane.

• Motivation (Forces): On premises capacity is exhausted and you would like to add

capacity from public cloud

• Applicability: private / public IaaS deployment

• Structure:

Public Cloud

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

3) Image Pipeline (VM/Container)

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Private Cloud

3 Uses Blueprint to deploy on multiple clouds

IaaS Bootstrap +
App Stack

Deployment

4 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault
(on premises)

5 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

Multi Cloud
Telemetry &

Log Aggregation

Multi Cloud Billing

6 Deployment

Service
Registry &
Discovery

1 telemetry / capacity
1.1 Private cloud at

80% capacity

2 deploy
To public cloud

Usage Metrics

Updates
Inventory,

DNS

 Alerts Notification
System

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Failure
Data

SLA Enforcer Rules
Engine

Figure 57 - Public Cloud Bursting Pattern

• Participants: Private Cloud, Public Cloud, Multi-Cloud Control Plane, SLA

Enforcer

• Collaboration:

157

1) Multi-Cloud Telemetry gets and aggregates the capacity data from private cloud

and passes it to the Multi-SLA Enforcer Rules Engine

2) SLA Enforcer determines that capacity is at 80% which meets the alert/trigger to

start deployment in public cloud to augment the capacity and invokes public cloud

deployment via Multi-Cloud Deployer

3) Multi-Cloud Deployer pattern uses Blueprint and Base images are built via

Image Pipeline pattern and stored in binary repository to deploy on public cloud

3) All security sensitive information is sourced from the Secrets Vault pattern

4) Multi-Cloud Deployer registers running services in Service Registry and updates

any DNS records to add routes to public cloud

• Consequences: public cloud deployment has been created and augmenting capacity

• Implementation: A description of an implementation of the pattern; the solution part

of the pattern. Presents vendor independent logical pattern with specific technology

implementation

• Known Uses: mostly proprietary solutions

• Related Patterns: Using Cloud for Disaster Recovery

Next let’s take a look at Multi-Cloud Disaster Recovery Pattern.

158

4.2.7 Multi-Cloud Disaster Recovery Pattern

Many organizations still run in private data centers for various reasons which might

include better security and control from physical location point of view. However, what

if private data/center/cloud fails? Can we recover from this disaster using a public

cloud?

During an outage in on premises data center cloud can be used to augment the private

data center to continue operations. Ideally this would be done in automated fashion with

advanced load balancing marking the path to the failed data center as down and

automatically routing to one or more cloud provider. Continued replication of data from

on premises to the cloud is needed to avoid disruption of service.

• Pattern Name and Classification: Using Public Cloud for Disaster Recovery

• Also Known As: Cloud DR

• Problem: An outage in private decenter requires a failover location that is

geographically dispersed.

• Intent: Creating disaster recovery in public cloud without the need of creating and

maintaining an actual data center.

• Motivation (Forces): During an outage in on premises data center cloud can be used

to augment the private data center to continue operations. Ideally this would be done

in automated fashion with advanced load balancing marking the path to the failed

data center as down and automatically routing to one or more cloud provider.

Continued replication of data from on premises to the cloud is needed to avoid

disruption of service.

159

• Applicability: Situations in which this pattern is usable; the context for the pattern.

• Structure:

This pattern at a minimum requires active data replication from on premises to the

cloud

Public Cloud C

Primary DNS

Internet

End User

Failover DNS

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone

Private Cloud A

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone

Public Cloud B

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone
replication

replication

Figure 58 - Multi-Cloud Disaster Recovery Pattern

Public Cloud can be continuously updated with latest deployments using the Multi-
Cloud Control Plane Pattern.

160

Here is the entire flow with Multi-Cloud Control Plane

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

Multi Cloud Security
Auditor

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

Audits
Cloud

Deployments

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

Multi Cloud
Telemetry &

Log Aggregation

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failures

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification
System

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Failure
Data

Multi-Cloud Control Plane Pattern

SLA Enforcer Rules Engine

Figure 59 - Multi-Cloud Disaster Recovery Pattern with Multi-Cloud Control Plane

161

In case of disaster Telemetry notifies SLA Enforcer that it did not receive a response

from the private cloud which in turn processing the rule/action for this event and notifies

Multi-Cloud Deployer/Orchestrator to start deployment to public cloud or activate

existing deployment.

Public Cloud

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

3) Image Pipeline (VM/Container)

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Private Cloud

3 Uses Blueprint to deploy on multiple clouds

IaaS Bootstrap +
App Stack

Deployment

4 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault
(on premises)

5 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

Multi Cloud
Telemetry &

Log Aggregation

6 Deployment / Activation

Service
Registry &
Discovery

1 telemetry / capacity

1.1 Private cloud
FAILURE

2 deploy / activate
Public cloud

Updates
Inventory,

DNS

 Alerts Notification
System

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Failure
Data

SLA Enforcer
Rules Engine

X
Public Cloud

IaaS Bootstrap +
App Stack

Deployment

Figure 60 - Multi-Cloud Disaster Recovery Pattern Detailed

• Participants: A listing of the Software and Infrastructure Components used in the

pattern and their roles in the design.

• Consequences: Public Cloud is continuously updated with latest data and

applications so if the failover is necessary public cloud is available.

162

• Implementation: A description of an implementation of the pattern; the solution part

of the pattern. Presents vendor independent logical pattern with specific technology

implementation

• Known Uses: Examples of real usages of the pattern.

• Related Patterns: Other patterns that have some relationship with the pattern;

discussion of the differences between the pattern and similar patterns.

4.3 Cost Efficiency Patterns

How do we make sure that cost is not out of control and we know how much we are

spending as well as deploy workloads where it is cheaper? Next let’s take a look at

Multi-Cloud Cost Efficiency Patterns.

First let’s take a look at Multi-cloud Aggregate Billing and Chargeback Pattern.

4.3.1 Multi-cloud Aggregate Billing and Chargeback Pattern

How do we aggregate billing and cost from different multi-cloud deployments? In a

multi-cloud deployment scenario one needs to keep track and aggregate billing from

multiple cloud providers. The key motivations for the pattern are:

- Aggregate billing helps with chargeback to appropriate cost centers

- One might want to make sure that none of the cloud providers exceed billing

quotas

- You might want to generate alerts based on cloud utilization

163

- It also might make sense to process more using a cheaper cloud provider based on

billing metrics

• Pattern Name and Classification: Multi-cloud Aggregate Billing and Chargeback

Pattern

• Also Known As: Other names for the pattern.

• Problem: In a multi-cloud deployment scenario one needs to keep track and

aggregate billing from multiple cloud providers.

• Intent: A description of the goal behind the pattern and the reason for using it.

• Motivation (Forces):

- Aggregate billing helps with chargeback to appropriate cost centers

- One might want to make sure that none of the cloud providers exceed billing

quotas

- You might want to generate alerts based on cloud utilization

- It also might make sense to process more using a cheaper cloud provider based on

billing metrics

• Applicability: Anytime you need to aggregate utilization for billing and chargeback

from more than one cloud

• Structure: A graphical representation of the pattern. (Component diagrams and

Interaction diagrams may be used for this purpose.)

Multi-Cloud Aggregate Billing gets pricing/billing APIs data from each cloud

instance (if available). In addition, Multi-Cloud Telemetry sends usage aggregate

164

data to supplement the billing data if we can’t get it reliably from the cloud provider.

Once aggregate cost is calculated – alerts can get send if we breached cost threshold

via Alert Notification System.

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

IaaS Bootstrap +
App Stack

Deployment

Multi Cloud
Telemetry &

Log Aggregation

Multi Cloud Aggregate
Billing

Telemetry, usage & key logs
From each cloud

Usage Aggregates

 Alerts
Notification

System

Get pricing/billing APIs
data (if available)

Billing
Alerts

Figure 61 - Multi-cloud Aggregate Billing and Chargeback Pattern

165

However, better optimization of this pattern would be to use SLA Enforcer Rules

Engine to generate billing alerts based on the billing aggregate.

Multi-Cloud Aggregate Billing gets pricing/billing APIs data from each cloud

instance (if available). In addition Multi-Cloud Telemetry sends usage aggregate

data to supplement the billing data if we can’t get it reliably from the cloud provider.

Once aggregate cost is calculated the cost is send to the SLA Enforcer Rules Engine.

SLA Enforcer Rules Engine can send an alert if we breached cost threshold based on

Rules set by the operator via Alert Notification System.

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

IaaS Bootstrap +
App Stack

Deployment

Multi Cloud Telemetry &

Log Aggregation

Multi-Cloud Aggregate
Billing

Telemetry
From each cloud

Telemetry
Usage Aggregates

 Alerts
Notification

System

Get pricing/billing APIs
data (if available)

Billing
Alerts

SLA Enforcer Rules Engine

aggregate
cost

Figure 62 - Multi-cloud Aggregate Billing and Chargeback Pattern with SLA Enforcer Rules Engine

• Participants:

Multi-Cloud Aggregate Billing, Multi-Cloud Telemetry, SLA Enforcer Rules

Engine, Alert Notification System

• Consequences: we have aggregate cost from multiple cloud instances.

166

• Implementation: A description of an implementation of the pattern; the solution part

of the pattern.

Open Source Implementation Options for Multi-Cloud Billing Aggregation are

available at the companion repository for this dissertation:

https://github.com/compscied/multi-cloud/tree/master/multi-cloud-billing

• Known Uses: Examples of real usages of the pattern.

• Related Patterns: Other patterns that have some relationship with the pattern;

discussion of the differences between the pattern and similar patterns.

The operating cost might be cheaper in public cloud especially if you look at AWS Spot

VM Instances (https://aws.amazon.com/ec2/spot/) or Google’s Preemtible VM instances

(https://cloud.google.com/compute/docs/instances/preemptible) that are offered at a

significant discount to a standard VM pricing. So how do we make sure that cost is not

out of control and we know how much we are spending as well as deploy workloads

where it is cheaper?

4.3.2 Cost Efficiency Discount Multi-Cloud Pattern

In some cases cloud providers are offering discount virtual machine instances due to

idling extra capacity allowing customers to save money. Usually cloud provider allows

to bid for spare capacity, however the instances can be taken away by an event notice

from cloud provider so the applicable use cases/workloads need to be able to scale on

demand and shut down as the cloud provider requests. Therefore, one needs to be able

https://github.com/compscied/multi-cloud/tree/master/multi-cloud-billing

167

provision instances in automated/dynamic nature and be able to tear down them down

when the cloud provider needs it back gracefully so that we don’t have a negative impact

to the cloud application workloads. So how do we dynamically take advantage of

discount prices without impacting the transactional SLA?

• Pattern Name and Classification: Cost Efficiency Discount Multi-Cloud Pattern

• Also Known As: Cost Cloud Bursting Pattern

• Problem: In some cases cloud providers are offering discount virtual machine

instances due to idling or capacity allowing customers to save money. How do we

take advantage of discount prices without impacting the transactional SLA?

• Intent: save cloud compute operating costs

• Motivation (Forces): save money by using discounted instances, reduce operating

costs by 50-90% comparatively to regular priced compute, improve application

throughput for discounted price

• Applicability: usually cloud provider allows to bid for spare capacity, however the

instances can be taken away by an event notice from cloud provider so the applicable

use cases/workloads need to be able to scale on demand and shut down as the cloud

provider requests

• Structure:

168

Public Cloud B

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Cloud
Healer /

Resurector

Public Cloud A

IaaS Bootstrap +
App Stack

Deployment
Multi Cloud Telemetry

& Logs

Multi Cloud Billing

Deployment

Service
Registry &
Discovery

Move workload
To a cheaper cloud

deploy

Usage Metrics

Updates
Inventory,

DNS

 Alerts Notification
System

Failure
Data

Utilization metrics

SLA Enforcer Rules Engine

aggregate
cost

Get pricing/billing APIs
data (if available)

Get pricing/billing APIs
data (if available)

Figure 63 - Cost Efficiency Discount Multi-Cloud Pattern

- Multi Cloud Billing gets lower change in price from cloud provider

- Multi Cloud Billing notifies SLA Enforcer Rules Engine

- SLA Enforcer Rules Engine evaluates the data and find the rule match to Move

workload to a cheaper cloud

- SLA Enforcer Rules Engine triggers action for SLA Enforcer Rules Engine Move

workload to a cheaper cloud

- SLA Enforcer Rules Engine starts deployment move workloads to a cheaper cloud

• Participants: all of the components described in the multi-cloud control plane

pattern

• Consequences:

169

Reduction in operating costs by 50-90% comparatively to regular priced compute.

However, when the cloud provider issues notification to reclaim the instance the

multi-cloud control plane needs to be able to react to it and gracefully migrate

workloads etc.

Considerations and Limitations:

- Limitation is usually based on cloud providers reserving the right to shut down the

instance at any point. Some cloud providers give advance notice but some do not.

- Application or service running on these instances need to be able to shutdown at

any moment with notification from cloud provider implementing an interface for

shutdown notification.

• Implementation: A description of an implementation of the pattern; the solution part

of the pattern. Presents vendor independent logical pattern with specific technology

implementation.

This pattern can be implemented as extension of Multi-Cloud SLA Enforcement

pattern with SLA Rules Targeting Cost variables and thresholds.

Open Source Implementation Options for this pattern are available at the companion

repository for this dissertation:

https://github.com/compscied/multi-cloud/tree/master/multi-cloud-billing

https://github.com/compscied/multi-cloud/tree/master/cloud-healer-sla-rules

• Known Uses:

Some examples of these are:

https://github.com/compscied/multi-cloud/tree/master/multi-cloud-billing
https://github.com/compscied/multi-cloud/tree/master/cloud-healer-sla-rules

170

Spot instances in AWS:

https://aws.amazon.com/ec2/spot/

and Preemptible instances in Google Cloud Platform:

https://cloud.google.com/compute/docs/instances/preemptible#preemption_process

The primary difference between AWS and Google discount instances is that in AWS

you have to participate in auction to get the instances. In case of Google you get

preemptive instances at a fixed discount price.

• Related Patterns: Other patterns that have some relationship with the pattern;

discussion of the differences between the pattern and similar patterns.

https://aws.amazon.com/ec2/spot/
https://cloud.google.com/compute/docs/instances/preemptible#preemption_process

171

4.4 Security Related Patterns

Every cloud solution needs to factor in security. Next let’s take a look at the minimum

we need to provide security patterns that are generally not provided by many cloud

providers.

First let’s begin with where do we store and retrieve secrets?

4.4.1 Multi-Cloud Secret Storage and Retrieval – Secrets Vault Pattern

Every cloud deployment needs secure secrets storage involves user names, passwords,

certificates and any other sensitive information that needs to be protected. At some point

create/update/delete and even read operations for cloud APIs will require authentication

and authorization. How do we this securely in multi-cloud environment? More

importantly we need to make sure this pattern works for all cloud providers.

• Pattern Name and Classification: Multi-Cloud Secrets Vault Pattern

• Also Known As: Secret Storage and Retrieval

• Problem: Every cloud deployment needs secure secrets storage involves user names,

passwords, certificates and any other sensitive information that needs to be protected.

• Intent: Secure storage and retrieval of secrets

• Motivation (Forces): At some point create/update/delete and even read operations

for cloud APIs will require authentication and authorization. How do we this

securely in multi cloud environment?

• Applicability: Situations in which this pattern is usable; the context for the pattern.

172

• Structure: A graphical representation of the pattern.

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

3) Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault
(on premises)

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Updates
Inventory

Secrets Vault Secrets Vault Secrets Vault

Figure 64 - Multi-Cloud Secret Storage and Retrieval – Secrets Vault Pattern

• Participants: Secrets Vault; can be used with Hardware HSM (Hardware Secure

Module if offered by cloud provider – example: https://aws.amazon.com/cloudhsm/)

• Consequences: Ability to securely retrieve secrets i.e. passwords, certificates.

• Implementation: The pattern permits secure access via API to secrets and can be

deployed on premises as well as with every cloud deployment. API is necessary for

automation and interaction in the orchestration flow of multi-cloud control plane

framework. The open source implementation options are provided in this repository:

• https://github.com/compscied/multi-cloud/tree/master/secret-management

• Known Uses: Open Source: HashiCorp Vault https://www.vaultproject.io

• Related Patterns: Other patterns that have some relationship with the pattern;

https://aws.amazon.com/cloudhsm/
https://github.com/compscied/multi-cloud/tree/master/secret-management

173

Next let’s cover how we can assure that our deployment has not be tempered with by

malicious actors and patched frequently if there is a vulnerability.

4.4.2 Multi-Cloud Auditor Pattern

How do we ensure that deployment does not have any known vulnerabilities and gets

patched if there is a vulnerability? How do we continuously audit the cloud and make

sure there are no unauthorized or unintended changes?

• Pattern Name and Classification: Multi-Cloud Auditor Pattern

• Also Known As: Multi-Cloud Security Policy Auditor Pattern

• Problem: How do we ensure that all of our cloud deployments are secure and have

not been tempered with? Multi-Cloud Security Policy Auditor Pattern helps us to

assure that our multi-cloud deployment has not be tempered with by malicious actors

and patched frequently if there is a vulnerability.

• Intent: Make sure every multi-cloud deployment is secure and without known

vulnerabilities as well as it has not been tampered by a malicious actor.

• Motivation (Forces): Motivation for this pattern is to be able to patch instances from

known CVEs (vulnerabilities) and protect from tempering by malicious users. Multi-

Cloud Security Policy Auditor Pattern helps us to assure that our multi-cloud

deployment has not be tempered with by malicious actors and patched frequently if

there is a vulnerability.

174

• Applicability: Multi-cloud public and private deployment

• Structure: A graphical representation of the pattern.

Public Cloud B

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer

Multi Cloud Security
Auditor (Scout2,
Cloud Custodian)

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

Audit
Cloud

Deployments

IaaS Bootstrap +
App Stack

Deployment

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Updates
Inventory

 Alerts Notification
System

Restore to
Desired State

Audit
Failure

Notification

Multi Cloud Security and Policy Auditor Pattern

Vulnerability

CVE Database

Get Latest Vulnerabilities from
CVE Database APIs

Vulnerability

CVE Database (s)

Policies and Rules

Figure 65 - Multi-Cloud Auditor Pattern

• Participants: A listing of the Software and Infrastructure Components used in the

pattern and their roles in the design.

• Collaboration: Cloud Auditor continuously runs and checks all of the setting and

configurations on all clouds and validates against last known secure configuration

manifests as well as checking for possible vulnerabilities that might have occurred

175

due to a new deployment / application introduced into the cloud. After that findings

are logged and alerts are sent out if serious issue have been found.

• Consequences: A description of the results, side effects, and trade-offs caused by

using the pattern.

• Implementation:

Cloud Auditor Algorithm Flow:

Repeat in a loop triggered by continuous scheduler

For each cloud in cloud list

Pick cloud X

Validate deployment against latest cloud blueprint – raise alert if issue was found

Scan for policy rule compliance

Scan for known configuration vulnerabilities – raise alert if issue was found

Scan and keep track of software version and compare against known list of

vulnerable software components – raise alert if issue was found

End loop

• Known Uses: Examples of real usages of the pattern.

• Related Patterns: Other patterns that have some relationship with the pattern;

discussion of the differences between the pattern and similar patterns.

176

4.5 Multi-Cloud Control Plane Framework

Now let’s re-cap what we have learned so far in one picture depicting Multi-Cloud

Control Plane Framework:

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

Multi Cloud Security
Auditor

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

Audits
Cloud

Deployments

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

Multi Cloud
Telemetry &

Log Aggregation

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failures

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification
System

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Failure
Data

Multi-Cloud Control Plane Pattern

SLA Enforcer Rules Engine

Figure 66 - Multi-Cloud Control Plane Framework

Operator wants to create a deployment consisting of X Virtual machines, Network,

Storage and Security Groups

1) Operator (System Admin) picks IaaS Blueprint pattern to deploy on multiple clouds

which is sourced from Code & Configuration Version Control System

IaaS Bootstrap Blueprint includes details and topology of Virtual Machines (with base

Image to be used), Network, Storage and Security Groups

177

2) Multi-Cloud Deployer pattern uses Blueprint and Base images are built via Image

Pipeline pattern and stored in binary repository to deploy on multiple clouds (Private

Cloud A, Public Cloud B and Public Cloud C)

All security sensitive information is sourced from the Secrets Vault pattern

Multi-Cloud Deployer registers running services in Service Registry

Dealing with events after initial deployment

Dealing with Failures

We need to deal with failures which is done by SLA Enforcer Rules Engine pattern

which uses data provided by the Multi-Cloud Telemetry system pattern: when a

component fails, alert/event is generated and forwarded to Telemetry System which

SLA Enforcer Rules Engine listens to and resurrects the failed component.

Dealing with Security

Cloud Auditor – continuously runs reports against each cloud deployment comparing it

against baseline blueprint

If new component is detected, cloud auditor will send alerts and notifications, which in

turn get picked up by SLA Enforcer Rules Engine which will instruct the Multi-Cloud

Deployer to delete the new component that was not in the original blueprint.

Dealing with Cost

Multi-Cloud Billing Pattern aggregates usage cost and billing from multiple cloud

providers and allows to make better decision about where it would be more cost effective

to run.

178

Here is the mapping of open source software options and cloud frameworks

Public Cloud B
(AWS)

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

(Terraform, Bosh Manifest)

Image Pipeline (VM/Container)
(Spinnaker/Packer)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer / Orchestrator

(Bosh, Terraform, Brooklyn)

Multi Cloud Security
Auditor

Scout2, gcp-audit

IaaS Bootstrap +
App Stack

Deployment

DPublic Cloud C
(Google Cloud)

Private Cloud A
(OpenStack)

2 Uses Blueprint to deploy on multiple clouds

Audits
Cloud

Deployments

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault
(HashicorpVault)

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

(Gitlab etc.)

Multi Cloud Telemetry & Log Aggregation
(Prometheus, Icinga, Grafana, EFK, TSDB)

5.1 Deployment

5.2 Deployment

5.3 Deployment

Service Registry &
Discovery
(Consul)

Telemetry
From each cloud

Failure

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification System
(OpenDuty)

All configurations sourced /
stored in

Image Repository & Catalog
(VRMC, Nexus)

All images sourced /
stored in

Failure
Data

Multi-Cloud Control Plane Framework with Open Source Components

SLA Enforcer Rules Engine
(easyrules, json-rules) IaaS Bootstrap +

App Stack
Deployment

Public Cloud C
(Azure)

5.4 Deployment

Figure 67 - Multi-Cloud Control Plane Framework Implemented with Open Source Components

179

4.6 Combining Control Plane Framework with Additional Application Use Case
Patterns

So far we have covered patterns and framework, but we have not shown how the multi-

cloud framework can be leveraged to deploy real world applications. Next let’s go over

illustrations of specific application use case deployments where the multi-cloud patterns

help.

4.6.1 Multi-Cloud Web Application / Service Pattern

Multi-Cloud Web Application / Service Pattern helps to deploy web application or web

services in multi-cloud environment and keep healing the failed components. This

pattern will deploy general components you expect in most web applications in fault

tolerant manner. In addition all of the components will be monitored and healed by

Multi-cloud control plane without for any involvement of a human operator.

• Pattern Name and Classification: Multi-Cloud Web Application / Web Service

Pattern

• Also Known As: Other names for the pattern.

• Problem: How do we deploy web application or web services in multi-cloud

environment and keep healing the failed components. All of the components you see

below are deployed, monitored and healed by Multi-cloud control plane without for

any involvement of a human operator.

• Intent: Multi-cloud deployment

180

• Motivation (Forces): Higher resilience, fault tolerance in multi-cloud deployment

• Applicability: Multi-cloud or hybrid deployments

• Structure: A graphical representation of the pattern.

Data Center 1

Availability Zone A

WebServer1

Client
Applications

Send
Events

over HTTP WebServer2..N

Send
Events

over HTTP

Load
Balancer 1

Load
Balancer

2..n

IaaS Layer

Appserver1

Appserver2..N

Availability Zone B

IaaS Layer

Same Pattern is replicated in Data Center 2..N

Send
Events

over HTTP

WebServer1

WebServer2..N

Load
Balancer 1

Load
Balancer

2..n

Appserver1

Appserver2..N

Web Security Group App Security Group Data Security Group

Database

Database

replication

Database

Database

replication

replication

Availability Zone C

Multi-Cloud
Control Plane

Availability Zone D

Multi-Cloud
Control Plane

DNS,
Content
Delivery
Network

DNS,
Content
Delivery
Network

Database

Database

Figure 68 - Conceptual Multi-Cloud Web Application / Service Pattern

• Participants: Multi-cloud control plane, Load balancers, web servers, application

servers, databases, multi-cloud control plane

• Implementation: A description of an implementation of the pattern; the solution part

of the pattern. Presents vendor independent logical pattern with specific technology

implementation

181

Data Center 1

Availability Zone A

WebServer1

Client
Applications

Send
Events

over HTTP
WebServer2..N

Send
Events

over HTTP

HAProxy
Load

Balancer 1

HAProxy
Load

Balancer
2..n

IaaS Layer

Appserver1

Appserver2..N

Availability Zone B

IaaS Layer

Same Pattern is replicated in Data Center 2..N

Send
Events

over HTTP

WebServer1

WebServer2..N

HAProxy
Load

Balancer 1

HAProxy
Load

Balancer
2..n

Appserver1

Appserver2..N

Web Security Group App Security Group Data Security Group

Cassandra/
CockroachDB

Cassandra/
CockroachDB

replication

Cassandra/
CockroachDB

Cassandra/
CockroachDB

replication

replication

Cassandra/
CockroachD

B

replication

replication

Cassandra/
CockroachD

B

replication

replication

Availability Zone C

Multi-Cloud
Control Plane

Availability Zone D

Multi-Cloud
Control Plane

DNS,
Content
Delivery
Network

DNS,
Content
Delivery
Network

Figure 69 - Multi-Cloud Web Application / Service Pattern Implementation

• Known Uses: Examples of real usages of the pattern.

• Related Patterns: Other patterns that have some relationship with the pattern;

discussion of the differences between the pattern and similar patterns.

Next let’s see how everything we covered would help us with a more complicated High

Volume Distributed Data Ingestion and Processing use case such as with Internet of

Things use case

182

4.6.2 Multi-Cloud Internet of Things Event Stream Ingesting Pattern and Big Data

Pipelines

• Pattern Name and Classification: Multi-Cloud Internet of Things Event Ingesting

Pattern

• Also Known As: High Volume Distributed Data Injection and Processing

• Problem: Internet of Things (IoT) can be generally defined as any device or object

around us that are connected via Internet network this can be sensors, vehicles,

buildings etc. All of these devices are reporting extremely high volume of data

events or streams of information. How do we process it in the way that we can scale

easily using multi-cloud environment?

• Intent: deploy in multi-cloud environment

• Motivation (Forces): ability to scale beyond one cloud provider

• Applicability: High data volume, high rate of concurrent connections from 100 of

millions – billions of devices

• Structure: A graphical representation of the pattern.

183

Data Center 1

Availability Zone A

Messaging BUS1

Devices / Client
Applications

Send
Events

over HTTP Messaging BUS2

Redundant
Object Store

Send
Events

over HTTP

Load
Balancer 1

Load
Balancer

2..n

IaaS Layer

Batch
Map Reduce Cluster

In-Memory
Analytics Cluster

Availability Zone B

IaaS Layer

Same Pattern is replicated in Data Center 2..N

Send
Events

over HTTP

Messaging BUS1

Messaging BUS2

Redundant
Object Store

Load
Balancer 1

Load
Balancer

2..n

Batch
Map Reduce Cluster

In-Memory
Analytics Cluster

Database

Database

Availability Zone C

Availability Zone D

Multi-Cloud
Control Plane

Multi-Cloud
Control Plane

Figure 70 - Conceptual Multi-Cloud Internet of Things Event Stream Ingesting Pattern and Big Data

Pipeline

• Participants: A listing of the Software and Infrastructure Components used in the

pattern and their roles in the design.

• Consequences: A description of the results, side effects, and trade-offs caused by

using the pattern.

• Implementation: A description of an implementation of the pattern; the solution part

of the pattern. Presents vendor independent logical pattern with specific technology

implementation

184

Data Center 1

Availability Zone A

KAFKA
Messaging BUS1

Devices / Client
Applications

Send
Events

over HTTP

KAFKA
Messaging BUS2

CEPH with S3
RADOS Gateway

3X Redundant

Send
Events

over HTTP

HAPROXY
Load

Balancer 1

HAPROXY
Load

Balancer 2

IaaS Layer (OpenStack, AWS, Azure, GCP)

Apache
HADOOP Map
Reduce Cluster

Spark Streaming
Cluster

Availability Zone B

KAFKA
Messaging BUS1

KAFKA
Messaging BUS2

CEPH with S3
RADOS Gateway

3X Redundant

HAPROXY
Load

Balancer 1

HAPROXY
Load

Balancer 2

IaaS Layer (OpenStack, AWS, Azure, GCP)

HADOOP Map
Reduce Cluster

Spark Streaming
Cluster

Same Pattern is replicated in Data Center 2..N

Send
Events

over HTTP

Apache
Cassandra
Cluster x3

Apache
Cassandra
Cluster x3

Dashboards

Dashboards

Availability Zone C

Multi-Cloud
Control Plane

Availability Zone D

Multi-Cloud
Control Plane

Figure 71 - Multi-Cloud Internet of Things Event Stream Ingesting Pattern and Big Data Pipeline

Implementation

• Known Uses: Examples of real usages of the pattern.

• Related Patterns: Other patterns that have some relationship with the pattern;

discussion of the differences between the pattern and similar patterns.

185

Linux Containers have been traction recently for multiple reasons, some of them are:

- Faster start up than Virtual Machines

- Uniform application environment from development to production

- Better ability to scale up and increase utilization density

So, what if we want to run my Application or Service in Containers – how do we do this

in multi-cloud environment with proper fault tolerance and self-healing in mind?

4.6.3 Container Orchestration Pattern for Multi-Cloud Deployments

Once we have IaaS Virtual Machines created then we can deploy containers to subdivide

virtual machines. The benefit would be higher utilization and higher multi-tenancy

density [6] here is an example:

• Pattern Name and Classification: Container Orchestration Pattern

• Also Known As: Container cluster manager / master

• Problem: Virtual Machines take from couple of seconds to tens of seconds or even

minutes to startup. Is there a faster way to startup and provide virtualization at the

same time? Furthermore, the deployment of an application on IaaS are done in

virtual machines usually leave the Virtual Machine frequently underutilized. Is there

a way to subdivide the Virtual Machine so we can pack more workloads in it

vertically a.k.a. vertical scalability?

186

Container is kernel virtualization which focuses on CPU, Memory and Storage

isolation. Containers were originally introduced as a concept Solaris as Linux

containers i.e. LXC, Docker, Rkt.

The core problem is how do you deploy and manage containers? Enter Container

Orchestration Pattern which extends Resource Orchestrator and Resurrection Pattern

focusing on deploying, coordinating and resurrecting containers.

Containers Allow Vertical Scalability/Density of Applications vs. Virtual

Machines

Virtual Machine 1 (30% Utilized)

Infrastructure as a Service

Application 1

Virtual Machine 2 (90% Utilized)

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

Figure 72 - Containers vs. Virtual Machines

• Intent: light weight virtualization, provide more efficient utilization of virtual

machines of IaaS provider, faster startup

• Motivation (Forces): light weight virtualization, provide more efficient utilization of

virtual machines of IaaS provider, faster startup

187

• Applicability: any IaaS deployment or bare metal deployment, Linux containers,

Docker etc.

• Structure:

Multi Cloud Container Orchestration with Multi Cloud Control Plane

Cloud A

Worker Node - VM

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

 Master Node - VM

 scheduler

controller-manager

API Server

State db

Worker Node - VM

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

Multicloud Control Plane VM A

Cloud B

Worker Node - VM

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

Master Node - VM

 scheduler

controller-manager

API Server

State db

Worker Node - VM

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

Multicloud Control Plane VM B

Cloud C

Same components
deployed….

Figure 73 - Conceptual View of Container Orchestration Pattern for Multi-Cloud Deployments

• Participants:

• Master Node VM

• Container Node VM

188

• Consequences: light weight virtualization, faster startup of container vs. virtual

machines, provides more efficient utilization of virtual machines of IaaS provider.

Self-Healing of containers and better fault tolerant distribution

• Implementation:

Pattern Implementation Illustration with Kubernetes

Cloud A

Worker Node – VM – AZ-2

kubernetes pod

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

Kubernetes Master Node – VM – AZ-1..3

 scheduler

kublet kubeproxy

controller-manager

API Server

etcd

Worker Node – VM – AZ-3

kubernetes pod

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

kublet kubeproxy

Multi-cloud Control Plane VM 1..3 – AZ-4..7

Cloud B

Worker Node – VM - AZ-2

kubernetes pod

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

Kubernetes Master Node – VM AZ-1..3

 scheduler

kublet kubeproxy

controller-manager

API Server

etcd

Worker Node – VM - AZ-3

kubernetes pod

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

kublet kubeproxy

Multi-cloud Control Plane VM 1..3– AZ-4..7

Cloud C

Same components
deployed….

Figure 74 - Container Orchestration Pattern for Multi-Cloud Deployments Implementation View

• Known Uses: Kubernetes (https://kubernetes.io), Docker Swarm

(https://docs.docker.com/engine/swarm/), marathon (on top of Apache Mesos -

http://mesos.apache.org, https://mesosphere.github.io/marathon/)

Docker (http://docker.io)

189

• Related Patterns: Virtual Machine Orchestrator

190

4.7 Conclusion and Pattern Mappings to the Particular Problem

In this chapter, we have covered the key patterns that compose Multi-Cloud Control

Plane framework that will allow any organization to deploy to multiple clouds with open

source software and minimum cloud provider lock in as well as better resilience and self-

healing capabilities.

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

Multi Cloud Security
Auditor

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

Audits
Cloud

Deployments

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

Multi Cloud
Telemetry &

Log Aggregation

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failures

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification
System

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Failure
Data

Multi-Cloud Control Plane Pattern

SLA Enforcer Rules Engine

Figure 75 - Multi-Cloud Control Plane Framework Conceptual View

Next let’s see how the Open Source frameworks implementation for majority of

components maps on top of this framework:

191

Public Cloud B
(AWS)

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

(Terraform, Bosh Manifest)

Image Pipeline (VM/Container)
(Spinnaker/Packer)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer / Orchestrator

(Bosh, Terraform, Brooklyn)

Multi Cloud Security
Auditor

Scout2, gcp-audit

IaaS Bootstrap +
App Stack

Deployment

DPublic Cloud C
(Google Cloud)

Private Cloud A
(OpenStack)

2 Uses Blueprint to deploy on multiple clouds

Audits
Cloud

Deployments

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault
(HashicorpVault)

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

(Gitlab etc.)

Multi Cloud Telemetry & Log Aggregation
(Prometheus, Icinga, Grafana, EFK, TSDB)

5.1 Deployment

5.2 Deployment

5.3 Deployment

Service Registry &
Discovery
(Consul)

Telemetry
From each cloud

Failure

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification System
(OpenDuty)

All configurations sourced /
stored in

Image Repository & Catalog
(VRMC, Nexus)

All images sourced /
stored in

Failure
Data

Multi-Cloud Control Plane Framework with Open Source Components

SLA Enforcer Rules Engine
(easyrules, json-rules) IaaS Bootstrap +

App Stack
Deployment

Public Cloud C
(Azure)

5.4 Deployment

Figure 76 - Multi-Cloud Control Plane Framework Implementation View

Here is Key References to Implementation Code and Scripts for Each Pattern:

Multi-Cloud Blueprint Bootstrap Options

https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options

Multi-Cloud Auditor Pattern Implementation Options:

https://github.com/compscied/multi-cloud/tree/master/cloud-auditor

Multi-Cloud Software Stack Bootstrap on any major IaaS Provider

https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options

Multi-Cloud SLA Enforcer Rules Engine

https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options
https://github.com/compscied/multi-cloud/tree/master/cloud-auditor
https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options

192

https://github.com/compscied/multi-cloud/tree/master/sla-rules-engine

Database options appropriate for Multi-Cloud deployment or Multi-Datacenter

Deployment with tolerance to high network latency

https://github.com/compscied/multi-cloud/tree/master/databases-multi-cloud

Multi-Cloud Image Pipeline

https://github.com/compscied/multi-cloud/tree/master/image-pipeline

Multi-Cloud Cost and Billing

https://github.com/compscied/multi-cloud/tree/master/multi-cloud-billing

Implementation Options for Multi-Cloud Virtual Machine Registry/Catalog/Repository

https://github.com/compscied/multi-cloud/tree/master/multi-cloud-vm-image-repository

Secret Management

https://github.com/compscied/multi-cloud/tree/master/secret-management

Options that can work in multi-cloud environment to help with service registry /

discovery

https://github.com/compscied/multi-cloud/tree/master/service-registry-discovery

Multi-Cloud Telemetry

https://github.com/compscied/multi-cloud/tree/master/telemetry-multi-cloud

Multi-Cloud IOT

https://github.com/compscied/multi-cloud/tree/master/iot-multi-cloud

https://github.com/compscied/multi-cloud/tree/master/sla-rules-engine
https://github.com/compscied/multi-cloud/tree/master/databases-multi-cloud
https://github.com/compscied/multi-cloud/tree/master/image-pipeline
https://github.com/compscied/multi-cloud/tree/master/multi-cloud-billing
https://github.com/compscied/multi-cloud/tree/master/multi-cloud-vm-image-repository
https://github.com/compscied/multi-cloud/tree/master/secret-management
https://github.com/compscied/multi-cloud/tree/master/service-registry-discovery
https://github.com/compscied/multi-cloud/tree/master/telemetry-multi-cloud
https://github.com/compscied/multi-cloud/tree/master/iot-multi-cloud

193

Multi-Cloud Container Orchestration

https://github.com/compscied/multi-cloud/tree/master/container-management-multi-cloud

Finally here is how the major challenges / problems we have covered map to the

patterns side by side

Major Problems / Challenges with

multi-cloud computing

Patterns Solution for Each Problem

Initial Multi-Cloud General Deployment

Fault Tolerance Challenges:

Initial Multi-Cloud Fault Tolerant

Deployment Patterns

• How to deploy with maximum fault

tolerance and isolation?

• General Multi Availability Zone

Fault Tolerant Pattern

• How do we route to multiple

providers all at once with maximum

fault tolerance in mind?

• If the cloud provider fails what do we

do? Can we route the requests and

workloads to another cloud provider?

• What if Domain Name System fails –

how do we continue operating?

• General Multi-Cloud Cloud Fault

Tolerant Routing Pattern

https://github.com/compscied/multi-cloud/tree/master/container-management-multi-cloud

194

• How do we deploy on multiple cloud

providers if all of them have different

APIs?

• More importantly is there a way

where you can define your

infrastructure requirements once and

something will take care of translating

this into the API calls for the specific

provider?

• Multi-Cloud Cloud Blueprint Pattern

• Cloud providers require different

virtual machine formats – how do

create these images in an automated

way?

• Image Build Pipeline Pattern for

Multi-Cloud Deployment

• Finally, where do we store and keep

track of information about everything

we deployed?

• Multi-Cloud Service Registry and

Discovery API

Multi-Cloud Management after initial

deployment and dealing with failures:

Multi-Cloud Management after Initial

Deployment and Dealing With Failures

Patterns

• Once we deploy how do we find out

the health of the instances?

• Reactive Multi-Cloud Health check and

Load Balancing Pattern

• Multi-Cloud SLA Monitoring Pattern

• If the node virtual machine fail - can

we recover them automatically?

• SLA Enforcer Rules Engine

195

• If availability zone fails – can we

recover automatically?

• What if our deployment infrastructure

fails – how do we re-deploy?

• How do we fail over gracefully when

fault occurs?

• How do we make sure database is

always available even if one database

instance fails?

• Multi-Cloud Data Replication

• Multi-Cloud Disaster Recovery Pattern

• Is there more intelligent way of

enforcing Service Level Agreement if

we know there is a degradation in

performance or things are about to fail

– before failure occurs?

• Proactive Multi-Cloud SLA Policy

Enforcement Pattern

• What if I want to deploy to public

cloud only if private cloud capacity

gets exhausted?

• What if private cloud fails how can

recover from this disaster using a

public cloud?

• Public Cloud Bursting Pattern

Cost Efficiency Problems Cost Efficiency Patterns

• How do we actually aggregate billing

and cost from all cloud deployments?

• Multi-cloud Aggregate Billing and

Chargeback Pattern

196

• How do we make sure that cost is not

out of control and we know how

much we are spending as well as

deploy workloads where it is cheaper?

• Cost Efficiency Discount Multi-Cloud

Pattern

Security Problems Security Related Patterns

• Where do we store and retrieve

secrets?

• Secret Storage and Retrieval – Secrets

Vault Pattern

• How do we ensure that deployment

does not have any known

vulnerabilities and gets patched if

there is a vulnerability?

• How do we continuously audit the

cloud and make sure there are no

unauthorized or unintended changes?

• Multi-Cloud Auditor Pattern

Application Deployment in Multi-Cloud

environment

Multi-Cloud Application Deployment

Patterns

• What if I want to run Applications in

Containers – how do I do this in

multi-cloud environment with proper

fault tolerance in mind?

• Container Orchestration Pattern

• How do we deploy real applications

in Multi-Cloud environment so if

something fails the user or service

does not experience and interruption?

• Multi-Cloud Web Application /

Service Pattern

197

• How to deploy internet of things

services in a multi-cloud

environment?

• Multi-Cloud Internet of Things Event

Stream Ingesting Pattern

198

Chapter 5 - Experimental Validation

5.1 Implementations for Key Components of the Multi Cloud Framework

In this chapter, we will cover the following:

• First we will start with General Multi-Cloud Cloud Deployment Pattern that we

need for high level understanding and putting everything together

• After that we will cover Multi-Cloud Cloud Blueprint Pattern which we will

help us with planning and “bootstrapping” of IaaS layer.

• In order to complete bootstrapping, we will need to use Image Build Pipeline

Pattern

• Once everything is deployed we will demonstrate which Multi-Cloud Service

Registry and Discovery

• At the end of the all these steps we have fully functional and automated

deployment on all cloud providers

• Additionally, we will cover Multi-Cloud Container Orchestration and Multi-

Cloud Data Replication

Cloud Providers

We will use 3 leading cloud providers to validate selected patterns and multi-cloud

framework.

- Amazon Web Services - EC2

- Google Cloud Platform – GCP

- Microsoft Azure

199

- OpenStack for on premises cloud deployments

5.2 General Approach to Validation

Validation Criteria #1 – Multi-cloud

All of the frameworks and components composing the patterns need to work on all major

IaaS cloud provider’s platforms such as Public Cloud AWS, Azure Google Cloud and

well as Private VMWare ESX and OpenStack. All patterns will have a reference to

actual scripts that will help you to install the product on all these providers.

Validation Criteria #2 - All Components need to be Free and Open Source:

All of the frameworks and components composing the patterns must be free and open

source. Patterns will have a reference to actual scripts that will help you to install the

product.

Validation Criteria #3 - Validating Fault Tolerance:

Manual Validation is accomplished by shutting down and deleting virtual

machines and other components.

Automated Validation is with open source Netflix Simian Army framework

that include:

- Chaos Monkey – framework to simulate random outages with Virtual Machines,

Security Groups etc.

- Chaos Gorilla - framework to simulate random outages with Availability Zones

- Latency Monkey – framework to introduce network artificial delays

200

https://github.com/Netflix/SimianArmy

Chaos Monkey: “is a resiliency framework that randomly terminates virtual

machine instances and containers that run inside of your cloud environment.

Chaos Monkey is fully integrated with Spinnaker (Image Pipeline Pattern), the

continuous delivery platform that we use at Netflix. Chaos Monkey works with

any backend that Spinnaker supports (AWS, GCP, Azure, Kubernetes, Cloud

Foundry). It has been tested with AWS and Kubernetes.” Further reference:

https://github.com/Netflix/chaosmonkey

Latency Monkey: “induces artificial delays in our RESTful client-server

communication layer to simulate service degradation and measures if upstream

services respond appropriately. In addition, by making very large delays, we can

simulate a node or even an entire service downtime (and test our ability to survive

it) without physically bringing these instances down. This can be particularly

useful when testing the fault-tolerance of a new service by simulating the failure

of its dependencies, without making these dependencies unavailable to the rest of

the system.”

Chaos Gorilla helps to automate simulation of failure of entire availability zone –

another words multiple virtual machines corresponding to that availability zone

will down during simulation. Once that occurs the expectation is that SLA

Enforcer Rules Engine pattern will resurrect those instances in the new

availability zone.

Additional Reference:

https://github.com/Netflix/SimianArmy
https://github.com/Netflix/chaosmonkey

201

http://techblog.netflix.com/2011/07/netflix-simian-army.html

Next let’s proceed with validation of key patterns.

5.3 General Multi-Cloud Cloud Fault Tolerant Routing Pattern Validation

Amazon Web Services Google Cloud PlatformPrivate Cloud Datacenter A Microsoft Azure

Load Balancer Group A

Primary DNS - Cedexis

Cluster A1 Cluster A2 Cluster B1 Cluster B2 Cluster C1 Cluster C2 Cluster D1 Cluster D2

Availability
Zone A1

Availability
Zone A2

Availability
Zone B1

Availability
Zone B2

Availability
Zone C1

Availability
Zone C2

Availability
Zone D1

Availability
Zone D2

Internet

End User

Failover DNS – Akamai FastDNS

Load Balancer Group B Load Balancer Group C Load Balancer Group D

Figure 77 - Multi-Cloud Cloud Fault Tolerant Routing Pattern Validation

Problem: Single cloud provider or private data center is not sufficient for fault tolerance

and geographical availability. Single cloud provider leads to vendor lock in. How do we

distribute traffic and route among different cloud providers?

http://techblog.netflix.com/2011/07/netflix-simian-army.html

202

Solution:

We will use multiple global DNS providers that use anycast protocol

We will use redundancy to make external DNS disaster proof.

We want to avoid unicast servers, because that usually means two DNS

nameservers in different locations. A better alternative is an anycast DNS cloud to

provide redundancy. If a DNS nameserver in an anycast cloud goes down, it is

automatically removed from the routing tables. In this way, anycast adds

redundancy and fault tolerance.

With anycast, the highest level of redundancy is achieved with two or more

separate clouds. When compared to unicast redundancy, it is like replacing two

unicast nameservers with two anycast clouds. Make sure the clouds use

independent hardware and transit providers. This protects against a routing

problem or transit network outage from bringing down your DNS.

DNS

- Global DNS Highly Available providers:

- Akamai FastDNS https://www.akamai.com/us/en/solutions/products/cloud-

security/fast-dns.jsp

- Cedexis http://www.cedexis.com/products/openmix/

- Nustar UltraDNS https://www.neustar.biz/services/dns-services

Validation:

https://www.akamai.com/us/en/solutions/products/cloud-security/fast-dns.jsp
https://www.akamai.com/us/en/solutions/products/cloud-security/fast-dns.jsp
http://www.cedexis.com/products/openmix/
https://www.neustar.biz/services/dns-services

203

Key Validation Failure Scenario Result

1 DNS provider outage or distributed

denial of service attack

Failure detected, automated failover runs, 2nd DNS

provider takes over

http://www.dnsmadeeasy.com/services/dnsfailover/

DNS was not designed for failover - but it was

designed with TTLs that work amazingly for failover

needs when combined with a solid monitoring system.

TTLs can be set very short. I have effectively used

TTLs of 5 seconds in production for lightning fast

DNS failover based solutions. You have to have DNS

servers capable of handling the extra load - and named

won't cut it. However, powerdns fits the bill when

backed with a mysql replicated databases on redundant

name servers. You also need a solid distributed

monitoring system that you can trust for the automated

failover integration. Zabbix works for me - I can verify

outages from multiple distributed Zabbix systems

almost instantly - update mysql records used by

powerdns on the fly - and provide nearly instant

failover during outages and traffic spikes.

Any Cloud Provider Failure Traffic routed to another Cloud Provider, no downtime

All DNS Providers Failure API is used to look up and route to well know IPs of

cloud components

http://www.dnsmadeeasy.com/services/dnsfailover/

204

Failure Illustrations

General DNS Failover Approach

When primary DNS fails, secondary provider takes over.

Amazon Web Services Google Cloud PlatformPrivate Cloud
(OpenStack) Microsoft Azure

Primary DNS - Cedexis

Internet

End User

Failover DNS – Akamai FastDNS

1

2

Figure 78 - General DNS Failover Approach

Next Primary and Secondary DNS Failure – API end points are used for failover

205

Amazon Web Services Google Cloud PlatformPrivate Cloud
(OpenStack) Microsoft Azure

Load Balancer Group A

Primary DNS - Cedexis

Cluster A1 Cluster A2 Cluster B1 Cluster B2 Cluster C1 Cluster C2 Cluster D1 Cluster D2

Availability
Zone A1

Availability
Zone A2

Availability
Zone B1

Availability
Zone B2

Availability
Zone C1

Availability
Zone C2

Availability
Zone D1

Availability
Zone D2

Internet

End User

Failover DNS – Akamai FastDNS

Load Balancer Group B Load Balancer Group C Load Balancer Group D
API Failover for DNS

(Consul)
API Failover for DNS API Failover for DNS API Failover for DNS

(Consul)

DNS API Fail-over by-passDNS API Fail-over by-pass

1
2

3

Figure 79 - Primary and Secondary DNS Failure – API End Points are Used for Failover

Further reference:

http://www.dnsmadeeasy.com/services/dnsfailover/

https://support.dnsimple.com/articles/differences-a-cname-records/

https://blog.serverdensity.com/multi-data-center-redundancy-sysadmin-considerations/

http://www.dnsmadeeasy.com/services/dnsfailover/
https://support.dnsimple.com/articles/differences-a-cname-records/
https://blog.serverdensity.com/multi-data-center-redundancy-sysadmin-considerations/

206

5.4 Multi-Cloud Cloud Blueprint and Multi-Cloud Deployer Pattern
Validation

In chapter 4 we have discussed that original problem was that currently there is no

uniform API and it is not uniformly implemented in the same way across cloud providers.

In order to automate provisioning of multiple IaaS this pattern helps to describe your

cloud infrastructure as a blueprint and use that blueprint to drive orchestrator to target

specific IaaS provider and create all the resources necessary for your application and

services to run on any cloud provider (Public or Private).

Pattern without implementation

Compute
Requirements

Storage
Requirements

Networking
Requirements

Unified Cloud
Independent

Bootstrap
Blueprint

Cloud X
Blueprint

Implementation
Script

Cloud Y
Blueprint

Implementation
Script

Private Cloud Z
Blueprint

Implementation
Script

Cloud Dependent
API Transformer

Security
Requirements

Figure 80 - Multi-Cloud Cloud Blueprint and Multi-Cloud Deployer Pattern Validation - Conceptual

207

The Multi-Cloud Deployer will then take the deployment and create all desired

components in every target cloud environments:

Next let’s take a look at Open source solution options:

Compute
Requirements

Storage
Requirements

Networking
Requirements

Unified Cloud
Independent

Bootstrap
Blueprint

Cloud X
Blueprint

Implementation
Script

Cloud Y
Blueprint

Implementation
Script

Private Cloud Z
Blueprint

Implementation
Script

Cloud Dependent
API Transformer

Security
Requirements

Multi-Cloud Bootstrap Pattern

BOSH
Manifest

Terraform

Apache Brooklyn
Cloudify

- OR -

- OR -

Figure 81 - Multi-Cloud Cloud Blueprint and Multi-Cloud Deployer Pattern Validation -

Implementation View

Although none of these fully support all desired properties and functions for the basic

foundation these will work. However, these options are fully free an open sourced with

large community of contributors and support all major public/private cloud IaaS

deployment options.

There are two major standards in this area: OASIS CAMP (Cloud Application

Management for Platforms) and TOSCA (Topology and Orchestration Specification for

208

Cloud Applications) both define YAML application models. CAMP focuses on the REST

API for interacting with such a management layer, and TOSCA focuses on declarative

support for more sophisticated orchestration.

Let’s start with standards based options that were researched and prototyped for this

pattern:

Apache Brooklyn allows to Model, Deploy and Manage infrastructure blueprints and

configuration using multiple public cloud providers and on premises. Apache Brooklyn

strives to support standards – it uses a YAML which complies with CAMP’s syntax and

exposes many of the CAMP REST API endpoints

https://brooklyn.apache.org/

Cloudify is built on top of Apache Brooklyn and uses standards based TOSCA YAML to

describe infrastructure blueprints and supports

www.getcloudify.org

https://github.com/cloudify-examples

http://cloudify.co/examples/home.html

Non-standard’s (but very popular) based options include:

Terraform is an open source framework for planning, building, changing, and versioning

infrastructure safely and efficiently. Terraform can manage existing and popular service

providers as well as custom in-house solutions. https://www.terraform.io/

Bosh - BOSH is an open source tool for release engineering, deployment, lifecycle

management, and monitoring of distributed systems. It allows to write blueprint in

https://brooklyn.apache.org/
http://www.getcloudify.org/
https://github.com/cloudify-examples
http://cloudify.co/examples/home.html
https://www.terraform.io/

209

YAML once and deploy to many cloud public providers and supports private on premises

deployment as well.

When an operator initiates a new deployment using the CLI, the Bosh Director receives a

version of the deployment manifest and creates a new deployment using this manifest. It

utilizes cloud provider specific CPI (cloud provider interface) – Additional Reference:

http://bosh.io

Other frameworks considered include Chef, Puppet, Ansible but it takes much effort to

make these work across cloud providers for IaaS bootstrap and these do not support

standards.

Example Deployment Options with open source software are scripted and provided

in the companion github repository for this dissertation:

https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options

The key to the right implementation of this pattern is to make sure that all key

components get implemented and distributed to all different availability zones for

maximum resilience.

http://bosh.io/
https://github.com/compscied/multi-cloud/tree/master/cloud-blueprint-bootstrap-options

210

Cloud Deployer Cloud Meta Data API

Get All Healthy Availability Zones

Cloud VM API

Create Node1 in the Next Unique Avaiability Zone 1

Create Node2 in Avaiability Zone 2

Availability Zones 1...n

Create Node n in Avaiability Zone n

Get All Healthy Availability Zones

Get All Healthy Availability Zones

Figure 82 - Multi-Cloud Cloud Blueprint and Multi-Cloud Deployer Pattern Sequence Diagram

Validation of Fault Tolerant Multi-AZ Deployment – Illustration:

Cloud A

Virtual Machine Availability Zone

node1 AZ A1-1

node2 AZ A2-1

node3 AZ A3-1

…. …

Cloud B

Virtual Machine Availability Zone

node1 AZ B1-1

node2 AZ B2-1

node3 AZ B3-1

211

…. …

Validation - Failure Testing Scenarios

In order to validate the multi-cloud framework and framework let’s review the following

failure scenarios and results:

Key Failure Scenario Expected Result

Virtual Machine Failure in 1 cloud provider, 1

availability zone

Traffic routed to other virtual machines, no

downtime

Availability Zone Failure in 1 cloud provider Traffic routed to other Availability Zone, no

downtime

Cloud Provider Failure Traffic routed to other Cloud Provider, no

downtime

DNS Provider Failure or Distributed Denial of

Service

Traffic routed via another DNS provider, no

downtime

Control Plane Failure in 1 cloud instance Since all control planes are deployed in every

cloud provider. Leader election happens and

another instance takes over.

212

5.6 Image Build Pipeline Pattern Validation

Let’s recap the original problem:

How do we provide images that can run on any cloud? IaaS Image Build Pipeline

Pattern is focused on building ready to boot images that contain entire software stack and

even can contain application itself. (i.e. OS, Middleware, Application etc.) It is very

important to have ready to boot image if you have a spike in load (via user requests,

events etc.) and you need to scale out and create new instances quick. During run-time

this pattern relies on Resource Orchestrator Pattern. The build pipeline also might be

tailored to produce multiple images targeting multiple providers and formats in order to

gain the most efficiency and exploit any cloud provider format or API

differences.  There is no uniform API and it is not uniformly implemented in the same

way across cloud providers.

Validation of Multi-Cloud Image Pipeline Pattern

213

Continuous
Build

System

Version
Control
System

(Image Templates)

Image Builder

Change
Triggers

Executes a job

Multi-Cloud Image Build

Public Cloud X
Image(s)

Public Cloud Y
Image(s)

Private Cloud Z
Image(s)

Create imageCreate image

Create image

Binary
Repository

Images get stored into

Figure 83 - Validation of Multi-Cloud Image Pipeline Pattern

Objective: provide images that can run on any cloud IaaS

Solution:

Multi-Cloud Image Pipeline can be achieved with the following great open source

products

Spinnaker is an open source, multi-cloud continuous delivery platform for releasing

software changes with high velocity. (Reference: http://www.spinnaker.io/)

To install spinnaker for every cloud provider mentioned here follow this guide:

https://github.com/compscied/multi-cloud/tree/master/image-pipeline/spinnaker

http://www.spinnaker.io/
https://github.com/compscied/multi-cloud/tree/master/image-pipeline/spinnaker

214

 Packer is fundamental open source framework to be able to produce multiple images in

formats that are appropriate for major public and private clouds. (Reference:

https://www.packer.io)

Packer can be used with any continues build systems such as Jenkins (https://jenkins.io)

Installation instructions for Jenkins for multi-cloud deployments can be found here:

https://github.com/compscied/multi-cloud/tree/master/image-pipeline/jenkins-ansible-

role

The final deployment will look as following:

Continuous
Build

System
(Jenkins, Spinnaker)

Version
Control
System

(Image Templates)
(Gitlab)

Image Builder
(Hashicorp Packer)

Change
Triggers

Executes a job

Multi-Cloud Image Build

Public Cloud
Image(s)

(AWS)

Public Cloud
Image(s)

(Google Cloud)

Private Cloud
Image(s)

Create imageCreate image

Create image

Binary
Repository (VMRC)

- or -
Directly Save to the

Cloud

Images get stored into

Figure 84 - Validation of Multi-Cloud Image Pipeline Pattern - Implementation View

Validation

https://www.packer.io/
https://jenkins.io)/
https://github.com/compscied/multi-cloud/tree/master/image-pipeline/jenkins-ansible-role
https://github.com/compscied/multi-cloud/tree/master/image-pipeline/jenkins-ansible-role

215

In order to validate the Multi-Cloud Image Pipeline we need to use one of these tools to

validation different images produced to target multiple cloud environments.

 First we need to install packer

https://github.com/compscied/multi-cloud/tree/master/image-pipeline/packer

Next we need to create a JSON template – in this case we will be using Ubuntu:

Next we need to validate the template

$./packer validate image.json

it should result in output:

$ Template validated successfully.

Next we can just run

$./packer build image.json

Which produces the final binary image. The image can be uploaded in the cloud provider

binary store or stored in a Multi-Cloud Virtual Machine Registry/Catalog/Repository.

Scripts to set it up can be found in the dissertation code repository:

https://github.com/compscied/multi-cloud/tree/master/multi-cloud-vm-image-repository

Multi-Cloud Virtual Machine Registry/Catalog/Repository is useful as a catalog of VMIs

that can stored on the VMI repository systems of the different Cloud Management

https://github.com/compscied/multi-cloud/tree/master/image-pipeline/packer
https://github.com/compscied/multi-cloud/tree/master/multi-cloud-vm-image-repository

216

Platforms (such as VMWare ESX or OpenStack) or on public Clouds (such as AWS,

Azure, Google Cloud). Customized VMIs are indexed in VMRC and applications can

query, as an example, for a VMI based on Ubuntu 16.04 LTS with Java already installed.

217

5.7 Multi-Cloud Service Registry and Discovery

Once we create IaaS deployment and our software stack is ready we need to keep track of

this somewhere – this is where Multi-Cloud Service Registry and Discovery pattern

comes into play.

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Updates
Inventory

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Figure 85 - Multi-Cloud Service Registry and Discovery

As an illustration of the pattern we will use an open source product HashiCorp
Consul - https://www.consul.io

https://www.consul.io/

218

Public Cloud C

Primary DNS

Internet

End User

Failover DNS

Consul
Registry +

API

Consul
Registry +

API

Consul
Registry +

API

replication replication

Availability Zone Availability Zone

Availability Zone

Private Cloud A

Consul
Registry +

API

Consul
Registry +

API

Consul
Registry +

API

replication replication

Availability Zone Availability Zone

Availability Zone

Public Cloud B

Consul
Registry +

API

Consul
Registry +

API

Consul
Registry +

API

replication replication

Availability Zone Availability Zone

Availability Zone
replication

replication

Multi-cloud Control Plane VM 1..3 – AZ-1..3 Multi-cloud Control Plane VM 1..3 – AZ-1..3 Multi-cloud Control Plane VM 1..3 – AZ-1..3

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Other Control
Plane

Components

Figure 86 - Multi-Cloud Service Registry and Discovery - Implementation View

Consul has the following key features that make it appropriate for this use case:

• Multi-Cloud / Multi Datacenter: Consul scales to multiple datacenters out of the

box with no complicated configuration. Look up services in other datacenters, or

keep the request local.

• Service Discovery: Consul makes it simple for services to register themselves and

to discover other services via a DNS or HTTP interface. Register external services

such as SaaS providers as well.

219

• Failure Detection: Consul uses gossip protocol pairing service discovery with

health checking prevents routing requests to unhealthy hosts and enables services

to easily provide circuit breakers.

• Key Value Storage: Consul is also a flexible key/value store for dynamic

configuration, feature flagging, coordination, leader election and more. Long poll

for near-instant notification of configuration changes.

Example Deployment Options with open source software are scripted and provided

in the companion github repository for this dissertation:

https://github.com/compscied/multi-cloud/tree/master/service-registry-discovery/consul

Key Failure Scenario Result

Control Plane Virtual Machine Failure in 1

cloud provider, 1 availability zone

Traffic routed to other virtual machines, no

downtime, consul marks other nodes as down

and does new leader election

Availability Zone Failure in 1 cloud provider Traffic routed to other Availability Zone, no

downtime, consul marks other nodes as down

and does new leader election

Cloud Provider Failure Traffic routed to another Cloud Provider, no

downtime, consul marks other nodes as down

and does new leader election

https://github.com/compscied/multi-cloud/tree/master/service-registry-discovery/consul

220

DNS Provider Failure Traffic routed via another DNS provider, no

downtime

Control Plane Failure in 1 cloud instance Since all control planes are deployed in every

cloud provider another instance takes over,

consul marks other nodes as down and does

new leader election

5.8 Multi-Cloud Container Orchestration Validation

Let’s start with illustration of how this pattern can be implemented with Kubernetes for

container deployment and validation deployed and Managed by Multi-Cloud Control

Plane for creation and in different availability zones in 2 cloud providers

221

Cloud A

Worker Node – VM – AZ-2

kubernetes pod

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

Kubernetes Master Node – VM – AZ-1..3

 scheduler

kublet kubeproxy

controller-manager

API Server

etcd

Worker Node – VM – AZ-3

kubernetes pod

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

kublet kubeproxy

Multi-cloud Control Plane VM 1..3 – AZ-4..7

Cloud B

Worker Node – VM - AZ-2

kubernetes pod

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

Kubernetes Master Node – VM AZ-1..3

 scheduler

kublet kubeproxy

controller-manager

API Server

etcd

Worker Node – VM - AZ-3

kubernetes pod

Container 1

Application 1

Container 2

Application 2

Container 3

Application 3

kublet kubeproxy

Multi-cloud Control Plane VM 1..3– AZ-4..7

Cloud C

Same components
deployed….

Figure 87 - Multi-Cloud Container Orchestration Validation

Example of Deployment – note all key Kubernetes components are in each availability
zone:

Component Availability Zone

Kubernetes master 1, etcd 1, worker-node1 AZ-1

Kubernetes master 2, etcd 2, worker-node2 AZ-2

Kubernetes master 3, etcd 3, worker-node3 AZ-3

…. …

Kubernetes master 5, etcd 5, worker-node5 AZ-5

Failure Scenarios

Key Failure Scenario Result

222

Container Failure (1 or more) Kubernetes deploys a new one on another
node

Kubernetes Master/Etcd VM failure Another master takes over, SLA Enforcer
Rules Engine detects failure and creates a new
Kubernetes master/etcd VM, etcd restored
from backup and it joins the cluster

Kubernetes Worker Node/ VM failure Traffic routed to other virtual machines, no
downtime, SLA Enforcer Rules Engine starts
resurrecting replacement VM

Any Virtual Machine Failure in 1 cloud
provider, 1 availability zone

Traffic routed to other virtual machines, no
downtime, SLA Enforcer Rules Engine starts
resurrecting replacement VM

Availability Zone Failure in 1 cloud provider Traffic routed to other Availability Zone, no
downtime, SLA Enforcer Rules Engine starts
resurrecting replacement VMs in new
availability zone

Cloud Provider Failure Traffic routed to other Cloud Provider, no
downtime

DNS Provider Failure Traffic routed via another DNS provider, no
downtime

Control Plane Failure in 1 cloud instance Since all control planes are deployed in every
cloud provider another instance takes over

Example Deployment Options with open source software are scripted and provided

in the companion github repository for this dissertation:

https://github.com/compscied/multi-cloud/tree/master/container-management-multi-cloud

5.9 Multi-Cloud Data Replication Pattern Validation

Multi-cloud replication is one of the more difficult problems to solve. The latency

among cloud providers can be high and generally not predictable. So the one of the main

https://github.com/compscied/multi-cloud/tree/master/container-management-multi-cloud

223

criteria’s for good data replication needs to be ability to tolerate high latency during

replication among cloud providers.

Public Cloud C

Primary DNS

Internet

End User

Failover DNS

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone

Private Cloud A

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone

Public Cloud B

Load
balancer

Database

Load
balancer

Database

Database

replication replication

Web/
Application

Server

Web/
Application

Server

Availability Zone Availability Zone

Availability Zone
replication

replication

s OR
Figure 88 -Multi-Cloud Data Replication Pattern Validation

For this experimental validation we have selected 2 open source databases with that were

designed with tolerance for high latency: Apache Cassandra and CockroachDB.

Apache Cassandra is columnar database and CockroachDB is closer to SQL Relational

data stores.

224

Since majority of application use cases would probably be SQL Relational we will use

CockroachDB.

To better understand this choice and compare CockroachDB please reference:

https://www.cockroachlabs.com/docs/cockroachdb-in-comparison.html

Additional Architecture Reference:

https://github.com/cockroachdb/cockroach/blob/master/docs/design.md

Example Deployment Options with open source software are scripted and provided

in the companion github repository for this dissertation:

CockroachDB deployment:

https://github.com/compscied/multi-cloud/tree/master/databases-multi-

cloud/cockroachdb

Apache Cassandra deployment:

https://github.com/compscied/multi-cloud/tree/master/databases-multi-cloud/cassandra

Apache Geode:

https://github.com/compscied/multi-cloud/blob/master/databases-multi-cloud/apache-

geode/

Failure

Key Failure Scenario Result

https://www.cockroachlabs.com/docs/cockroachdb-in-comparison.html
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
https://github.com/compscied/multi-cloud/tree/master/databases-multi-cloud/cockroachdb
https://github.com/compscied/multi-cloud/tree/master/databases-multi-cloud/cockroachdb
https://github.com/compscied/multi-cloud/tree/master/databases-multi-cloud/cassandra
https://github.com/compscied/multi-cloud/blob/master/databases-multi-cloud/apache-geode/
https://github.com/compscied/multi-cloud/blob/master/databases-multi-cloud/apache-geode/

225

Virtual Machine Failure in 1 cloud provider, 1

availability zone

Traffic routed to other virtual machines, no

downtime; SLA Enforcer Rules Engine starts

resurrecting replacement VM

Availability Zone Failure in 1 cloud provider Traffic routed to other Availability Zone, no

downtime; SLA Enforcer Rules Engine starts

resurrecting replacement VMs in the new

availability zone

Cloud Provider Failure Traffic routed to another Cloud Provider, no

downtime

DNS Provider Failure Traffic routed via another DNS provider, no

downtime

Control Plane Failure in 1 cloud instance Since all control planes are deployed in every

cloud provider another instance takes over

226

5.10 Conclusion

In this chapter we have covered validation for the selected key patterns that compose

Multi-Cloud Control Plane framework that will allow any organization to deploy to

multiple clouds with open source software and minimum cloud provider lock in as well

as better resilience and self-healing capabilities.

The key patterns covered were:

Multi-Cloud Foundation Patterns:

- General Multi Availability Zone Fault Tolerant Pattern

- General Multi-Cloud Cloud Fault Tolerant Routing Pattern

- Multi-Cloud Cloud Blueprint and Deployer Pattern

- Image Build Pipeline Pattern for Multi-Cloud Deployment

- Multi-Cloud Service Registry and Discovery API

Fault Tolerance and Availability Multi-Cloud Patterns:

- Container Orchestration Pattern for Multi-Cloud Deployments

- Multi-Cloud Data Replication

227

Chapter 6 - Summary of Contributions and Future Work

6.1 Summary of Main Contributions

In this research, we have demonstrated the following:

- Multi-cloud deployment framework that is comprised of multi-cloud patterns.

Public Cloud B

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

Image Pipeline (VM/Container)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer /

Orchestrator

Multi Cloud Security
Auditor

IaaS Bootstrap +
App Stack

Deployment

Public Cloud CPrivate Cloud A

2 Uses Blueprint to deploy on multiple clouds

Audits
Cloud

Deployments

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

Multi Cloud
Telemetry &

Log Aggregation

5.1 Deployment
5.2 Deployment

5.3 Deployment

Service
Registry &
Discovery

Telemetry
From each cloud

Failures

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification
System

All configurations sourced /
stored in

Binary Image Repository

All images sourced /
stored in

Failure
Data

Multi-Cloud Control Plane Pattern

SLA Enforcer Rules Engine

Figure 89 - Multi-Cloud Deployment Framework Comprised of Multi-Cloud Patterns

- The repository with code and scripts to deploy and reproduce the framework and

patterns: https://github.com/compscied/multi-cloud/

https://github.com/compscied/multi-cloud/

228

Public Cloud B
(AWS)

IaaS Bootstrap Blueprint (VMs, Compute, Network,
Storage, Security Groups)

(Terraform, Bosh Manifest)

Image Pipeline (VM/Container)
(Spinnaker/Packer)

IaaS Bootstrap +
App Stack

Deployment

Multi-Cloud
Deployer / Orchestrator

(Bosh, Terraform, Brooklyn)

Multi Cloud Security
Auditor

Scout2, gcp-audit

IaaS Bootstrap +
App Stack

Deployment

DPublic Cloud C
(Google Cloud)

Private Cloud A
(OpenStack)

2 Uses Blueprint to deploy on multiple clouds

Audits
Cloud

Deployments

IaaS Bootstrap +
App Stack

Deployment

1) User picks Blueprint
to deploy on multiple clouds

3 Uses Image Pipeline to deploy on multiple clouds

Secrets Vault
(HashicorpVault)

4 Uses Secrets Vault to Read Secrets Necessary for Authentication/Authorization

Code & Configuration
Version Control System

(Gitlab etc.)

Multi Cloud Telemetry & Log Aggregation
(Prometheus, Icinga, Grafana, EFK, TSDB)

5.1 Deployment

5.2 Deployment

5.3 Deployment

Service Registry &
Discovery
(Consul)

Telemetry
From each cloud

Failure

Re-deploy
In case of

failure

Updates
Inventory

 Alerts Notification System
(OpenDuty)

All configurations sourced /
stored in

Image Repository & Catalog
(VRMC, Nexus)

All images sourced /
stored in

Failure
Data

Multi-Cloud Control Plane Framework with Open Source Components

SLA Enforcer Rules Engine
(easyrules, json-rules) IaaS Bootstrap +

App Stack
Deployment

Public Cloud C
(Azure)

5.4 Deployment

Figure 90 - Multi-Cloud Deployment Framework Comprised of Multi-Cloud Patterns -

Implementation View

- Catalog of Multi-Cloud Patterns with open source reference implementation for

various stacks and solutions using open source software.

Major Problems / Challenges with multi-
cloud computing

Patterns Solution for Each Problem

229

Initial Multi-Cloud Deployment:
• How do we deploy on multiple

cloud providers if all of them have
different APIs?

• More importantly is there a way
where you can define your
infrastructure requirements once
and something will take care of
translating this into the API calls
for the specific provider?

• Cloud providers require different
virtual machine formats – how do
create these images in an
automated way?

• Where do we source and store
secrets?

• How do we route to multiple
providers all at once?

• Finally where do we store and
keep track of information about
everything we deployed?

Initial Multi-Cloud Fault Tolerant
Deployment Patterns

• General Multi Availability Zone
Fault Tolerant Pattern with Multi
AZ distribution algorithm

• General Multi-Cloud Fault
Tolerant Routing Pattern

• Multi-Cloud Cloud Blueprint
Pattern

• Image Build Pipeline Pattern for
Multi-Cloud Deployment

• Multi-Cloud Service Registry and
Discovery API

Multi-Cloud Management after initial
deployment and dealing with failures:

• Once we deploy how do we find
out the health of the instances?

• If the node virtual machine fail -
can we recover them
automatically?

• If availability zone fails – can we
recover automatically?

• If the cloud provider fails what do
we do? Can we route the
requests and workloads to
another cloud provider?

• What if Domain Name System fails
– how do we continue operating?

• What if our deployment
infrastructure fails – how do we
re-deploy?

• What about the data if database
fails what do I do?

Multi-Cloud Management after Initial
Deployment and Dealing With Failures
Patterns

• Multi-Cloud VM Deployer -
Orchestrator Pattern

• SLA Enforcer Rules Engine

• Basic cloud healing algorithm

• Container Orchestration Pattern
for Multi-Cloud Deployments

• Multi-Cloud Data Replication
• Multi-Cloud SLA Monitoring

Pattern
• Reactive Multi-Cloud Health check

and Load Balancing Pattern
• Proactive Multi-Cloud SLA Policy

Enforcement Pattern
• Public Cloud Bursting Pattern

230

• How do we fail over gracefully
when fault occurs?

• Is there more intelligent way of
enforcing Service Level Agreement
if we know things are about to fail
– before failure occurs?

• What if I want to deploy to public
cloud only if private cloud capacity
gets exhausted?

• What if private cloud fails how can
recover from this disaster using a
public cloud?

• Multi-Cloud Disaster Recovery
Pattern

Cost Efficiency

• How do we actually aggregate
billing and cost from all cloud
deployments?

• How do we make sure that cost is
not out of control and we know
how much we are spending as
well as deploy workloads where it
is cheaper?

Cost Efficiency Patterns

• Multi-cloud Aggregate Billing and
Chargeback Pattern

• Cost Efficiency Discount Multi-Cloud
Pattern

Security

• Where do we store and retrieve
secrets?

• How do we ensure that
deployment does not have any
known vulnerabilities and gets
patched if there is a vulnerability?

• How do we continuously audit the
cloud and make sure there are no
unauthorized or unintended
changes?

Security Related Patterns

• Multi-Cloud Auditor Pattern
• Cloud Auditor Algorithm
• Secret Storage and Retrieval –

Secrets Vault Pattern

Application Deployment in Multi-Cloud
environment

• How do we deploy real
applications in Multi-Cloud
environment so if something fails

Application Deployment in Multi-Cloud
environment

• Multi-Cloud Web Application /
Service Pattern

• Multi-Cloud Internet of Things
Event Stream Ingesting Pattern

231

the user or service does not
experience and interruption?

• What if we want to run my

Application or Service in

Containers – how do we do this in

multi-cloud environment with

proper fault tolerance and self-

healing in mind?

• Container Orchestration Pattern
for Multi-Cloud Deployments

- Every pattern factors in: fault-tolerance, performance and security by default.

- Some patterns are focused as well as on cost efficiency

- Pattern also provide free and open source vendor neutral initial deployment that can be

used for as-is deployment on private cloud or in the public cloud.

- All of the reference open source solutions for each pattern available in accompanying

code repository: https://github.com/compscied/multi-cloud/

- Next we addressed how do we prove that proposed patterns are realistic and

competitive? The approach was:

- define a few desired attributes

- use open-source software if available to show feasibility

- lastly we used selected prototypes to show how the desired attributes were

satisfied

https://github.com/compscied/multi-cloud/

232

- the repository to deploy and reproduce the patterns referenced can be found here:

https://github.com/compscied/multi-cloud/

https://github.com/compscied/multi-cloud/

233

6.2 Future Work

Potential future research work can include the following:

- One might want to consider to research Machine Learning techniques so that

Cloud Control Plane framework can learn, predict and react in more intelligent

way to failures and changes in the environment or quality of service.

- There always going to be new patterns as cloud computing evolves so potential

research opportunity would be to research new patterns to problems not covered

in this body of work.

- There is also an opportunity of different implementations of the patterns that were

covered in this paper and provided in the accompanying github repository:

https://github.com/compscied/multi-cloud

- Linux Containers have been gaining traction so much so that even Microsoft

decided to natively implement container semantics in Windows. Additional

patterns using Linux Containers should be further explored.

https://github.com/compscied/multi-cloud

234

Appendix A – Major Cloud Provider Outages

Major Cloud Provider outages

Cloud Provider Date of Outage Outage Impact and Cause

 2014

Dropbox Jan. 10, 2014, 6 p.m. to 8
p.m. PT

Due to an upgrade all
services were down.
Hacher’s claimed
responsibility, but the
company claimed that it
was internal software
update.

No-IP.com Seizure June 30, 2014 “Microsoft, citing
cybercrime perpetrated
against its users, seized 23
domains from No-IP.com, a
Reno, Nev.-based provider
of free dynamic DNS
services. In so doing, the
software giant also took
out service for 1.8 million
legitimate No-IP.com
customers for more than
two days.”

Microsoft Azure Aug. 18, 2014 “Microsoft reported Azure
services, such as Virtual
Machines Websites,
Automation, Backup, and
Site Recovery were down
in multiple regions.” No
postmortem was offered.

Microsoft Azure Nov. 18, 2014 “The Nov. 18 outage that
affected customers around
the world using a variety of
Azure services was caused
by a glitch in a
performance update to its
cloud storage service.

235

Microsoft ultimately
determined human error
was the culprit.”

Amazon Web Services Nov. 26, 2014 Outage with CloudFront
CDN DNS server.

“DNS server went down for
two hours, starting at 7:15
p.m. EST. The DNS server
was back up just after 9
p.m.

Some websites and cloud
services were knocked
offline as the content
delivery network failed to
fulfill DNS requests during
the outage.”

AWS, Rackspace, IBM
SoftLayer

November 2014 Due to Xen Hypervisor
vulnerability all cloud
providers running Xen had
to reboot all customer
virtual machines to
complete patches

 2015

Verizon Cloud Jan 10 and 11, 2015 Cloud was offline for some
40 hours. Root cause:
maintenance.

Google Compute Engine

Feb 18 and 19, 2015

Multiple zones of Google's
IaaS offering were down.
Some connectivity issues
lasted almost three hours,
there were roughly 40
minutes during which most
outbound data packets

236

being sent by Google
Compute Engine virtual
machines were lost.

About three weeks later, in
a similar event, another
network error brought
down Google's IaaS cloud
by clamping off outbound
traffic. Some users lost
service for up to 45
minutes

Apple iCloud March 11, 2015 12 hours of downtime.
Root cause: internal DNS
issues.

Microsoft Azure March 16, 2015 Two of Microsoft's Azure
public cloud services went
down for more than two
hours for customers in the
central U.S., due to what
the software giant
described as a "network
infrastructure issue."

Microsoft Azure March 17, 2015 Virtual machine outage
effecting east coast
customers.

Root Cause: problem with
storage systems

Apple iCloud May 20, 2015 Eleven Apple services,
including email, suffered a
seven-hour outage. Some
went down entirely, others
were just working really,
really slow.

According to Apple's
system status page, some
40 percent of the world's
500 million iCloud users
were affected.

237

Amazon Web Services August 10, 2015 Outage at an AWS Data
Center in northern Virginia.

Amazon reported
"increased error rates" for
its Elastic Compute Cloud,
EC2, and "elevated errors"
for its Simple Storage
Service, known as S3,
between 12:08 and 3:40
a.m. PDT.

Google Compute Engine August 13 to August 17,
2015

Belgian Data Center outage
due to lighting.

Data loss on persistent
disks serving Google
Compute Engine instances.

Amazon Web Services 2:13 AM and 7:10 AM PDT
September 20, 2015

Outage impacted 34
services out of 117 -
everything from Elastic
Compute Cloud (EC2)
virtual machines to the
Glacier storage service to
its Relational Database
Service were impacted.

Google Compute Engine

November 23, 2015

Engineer caused a
networking error by
activating an additional link
to a European carrier.

The line quickly saturated
and the connecting
network dropped most of
the packets routed to
Eastern Europe and the
Middle East from the
affected Western
European data center.

238

Compute Engine couldn't
communicate with those
regions of the world for 70
minutes, between 11:55
am and 1:05 pm PST.

Microsoft Azure, Office
365

December 6, 2015

Office 365 in Western
Europe was down for the
afternoon. Cause: Active
Directory configuration
error caused the outage.

 2016

Verizon Jan. 14, 2016

Verizon data center outage
impacted JetBlue Airways
delaying flights and
sending many passengers
scrambling to rebook.
Cause: a power outage

Microsoft Azure, Office
365

Jan. 18, 2016 Many Office 365 users
were unable to login into
cloud-based email
accounts for many days,
starting on Jan. 18.

Cause: buggy software
update

Microsoft Azure, Office
365

Feb 22, 2016 Many European users
could not login. Cause:
heavy demand for cloud
resources.

Salesforce March 3, 2016 CRM disruption for up to
10 hours.

Cause: storage problem
across an instance on that
continent.

Symantec Cloud April 11, 2016 24 hours outage

Cause: database outage

239

Google Cloud Platform April 11, 2016 18 minutes outage
impacting Compute
Instances and VPN

Cause: networking

Salesforce May 10, 2016 4 hours of customer data
wiped

Cause: database outage

Apple Cloud June 2, 2016 Multiple services down
customers couldn’t access
data

Amazon Web Services June 4, 2016 All Amazon Web Services
in the Australia region
were down, number of EC2
instances and EBS volumes
hosting critical workloads
for name-brand companies
subsequently failed.

Cause: Storms, power
failure

Delta Data Warehouse
Outage

August 8-10, 2016 4 days of outages, flights
canceled

Data center power failure,
unable to switch over to
another data center

http://www.networkworld.com/article/3020235/cloud-computing/and-the-cloud-provider-
with-the-best-uptime-in-2015-is.html

(Valid by July 7, 2017)

Outages References

http://www.networkworld.com/article/3020235/cloud-computing/and-the-cloud-provider-with-the-best-uptime-in-2015-is.html
http://www.networkworld.com/article/3020235/cloud-computing/and-the-cloud-provider-with-the-best-uptime-in-2015-is.html

240

10 Biggest Outages 2014

http://www.crn.com/slide-shows/cloud/300075204/the-10-biggest-cloud-outages-of-
2014.htm

(Valid by July 7, 2017)

10 Biggest Outages 2015

http://www.crn.com/slide-shows/cloud/300079195/the-10-biggest-cloud-outages-of-
2015.htm/

(Valid by July 7, 2017)

The 10 Biggest Cloud Outages of 2016 (So Far)

http://www.crn.com/slide-shows/cloud/300081477/the-10-biggest-cloud-outages-of-
2016-so-far.htm/

(Valid by July 7, 2017)

Top Cloud Outages and IT Issues of 2016

https://www.ajubeo.com/blog/top-cloud-outages-issues-2016/

(Valid by July 7, 2017)

Delta system outage: Here's what went wrong

http://www.zdnet.com/article/delta-system-outage-heres-what-went-wrong/

(Valid by July 7, 2017)

Current Cloud Uptime Status across Multiple Major Cloud Providers

https://cloudharmony.com/status

(Valid by July 7, 2017)

http://www.crn.com/slide-shows/cloud/300075204/the-10-biggest-cloud-outages-of-2014.htm
http://www.crn.com/slide-shows/cloud/300075204/the-10-biggest-cloud-outages-of-2014.htm
http://www.crn.com/slide-shows/cloud/300079195/the-10-biggest-cloud-outages-of-2015.htm/
http://www.crn.com/slide-shows/cloud/300079195/the-10-biggest-cloud-outages-of-2015.htm/
http://www.crn.com/slide-shows/cloud/300081477/the-10-biggest-cloud-outages-of-2016-so-far.htm/
http://www.crn.com/slide-shows/cloud/300081477/the-10-biggest-cloud-outages-of-2016-so-far.htm/
https://www.ajubeo.com/blog/top-cloud-outages-issues-2016/
http://www.zdnet.com/article/delta-system-outage-heres-what-went-wrong/
https://cloudharmony.com/status

241

References

Academia References

[1] Aakash Ahmad and Muhammad Ali Babar. “Towards a pattern language for self-

adaptation of cloud-based architectures.” In Proceedings of the WICSA 2014 Companion

Volume (WICSA '14 Companion). ACM, New York, NY, USA, 2014.

[2] Ameen Alkasem, Hongwei Liu, and Decheng Zuo. “Utility Cloud: A Novel Approach

for Diagnosis and Self-healing Based on the Uncertainty in Anomalous Metrics.” In

Proceedings of the 2017 International Conference on Management Engineering,

Software Engineering and Service Sciences (ICMSS '17), Yulin Wang (Ed.). ACM, New

York, NY, USA, 2017.

[3] Meriem Azaiez and Walid Chainbi. 2016. “A Multi-agent System Architecture for

Self-Healing Cloud Infrastructure.” In Proceedings of the International Conference on

Internet of things and Cloud Computing (ICC '16), Djallel Eddine Boubiche, Faouzi

Hidoussi, Lyamine Guezouli, Ahcène Bounceur, and Homero Toral Cruz (Eds.). ACM,

New York, NY, USA, 2016.

[4] Kristian Beckers, Isabelle Côté, and Ludger Goeke. “A catalog of security

requirements patterns for the domain of cloud computing systems.” In Proceedings of

the 29th Annual ACM Symposium on Applied Computing (SAC '14). ACM, New York,

NY, USA, 2014.

242

[14] Oliver Bračevac, Sebastian Erdweg, Guido Salvaneschi, and Mira Mezini. “CPL: a

core language for cloud computing.” In Proceedings of the 15th International

Conference on Modularity (MODULARITY 2016). ACM, New York, NY, USA, 2016.

[6] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.

“Borg, Omega, and Kubernetes.” Commun. ACM 59, 5 (April 2016), 50-57.

[7] Giuseppina Cretella and Beniamino Di Martino. “Semantic and Matchmaking

Technologies for Discovering, Mapping and Aligning Cloud Providers's Services.” In

Proceedings of International Conference on Information Integration and Web-based

Applications & Services (IIWAS '13). ACM, New York, NY, USA, 2013.

[8] Beniamino Di Martino and Antonio Esposito. “Towards a Common Semantic

Representation of Design and Cloud Patterns.” In Proceedings of International

Conference on Information Integration and Web-based Applications & Services (IIWAS

'13). ACM, New York, NY, USA, 2013.

[9] Beniamino Di Martino, Giuseppina Cretella, and Antonio Esposito. “Mapping design

patterns to cloud patterns to support application portability: a preliminary study.” In

Proceedings of the 12th ACM International Conference on Computing Frontiers (CF

'15). ACM, New York, NY, USA, 2015.

[10] Amit Kumar Das, Tamal Adhikary, Md. Abdur Razzaque, Eung Jun Cho, and

Choong Seon Hong. “A QoS and profit aware cloud confederation model for IaaS service

providers.” In Proceedings of the 8th International Conference on Ubiquitous

Information Management and Communication (ICUIMC '14). ACM, New York, NY,

USA, 2014.

243

[11] Djawida Dib, Nikos Parlavantzas, and Christine Morin. “Meryn: open, SLA-driven,

cloud bursting PaaS.” In Proceedings of the first ACM workshop on Optimization

techniques for resources management in clouds (ORMaCloud '13). ACM, New York,

NY, USA, 2013.

[12] Oscar Encina C, Eduardo B. Fernandez, and Raúl Monge A. “Towards Secure Inter-

Cloud Architectures.” In Proceedings of the 8th Nordic Conference on Pattern

Languages of Programs (VikingPLoP) (VikingPLoP 2014). ACM, New York, NY, USA,

2014.

[13] Oscar Encina C, Eduardo B. Fernandez, and A. Raúl Monge. “Threat analysis and

misuse patterns of federated inter-cloud systems.” In Proceedings of the 19th European

Conference on Pattern Languages of Programs (EuroPLoP '14). ACM, New York, NY,

USA, 2014.

[14] Christoph Fehling, Frank Leymann, Ralph Retter, David Schumm, and Walter

Schupeck. “An architectural pattern language of cloud-based applications.” In

Proceedings of the 18th Conference on Pattern Languages of Programs (PLoP '11).

ACM, New York, NY, USA, 2011.

[15] Eugen Feller, Louis Rilling, and Christine Morin. “Snooze: A Scalable and

Autonomic Virtual Machine Management Framework for Private Clouds.” In

Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (ccgrid 2012) (CCGRID '12). IEEE Computer Society, Washington,

DC, USA, 2012.

[16] Vassil Gourov and Elissaveta Gourova. “Cloud network architecture design

244

patterns.” In Proceedings of the 20th European Conference on Pattern Languages of

Programs (EuroPLoP '15). ACM, New York, NY, USA, 2015.

[17] Rachid Guerraoui and Maysam Yabandeh. “Independent faults in the cloud.” In

Proceedings of the 4th International Workshop on Large Scale Distributed Systems and

Middleware (LADIS '10). ACM, New York, NY, USA, 2010.

[18] Heidi Howard, Malte Schwarzkopf, Anil Madhavapeddy, and Jon Crowcroft. “Raft

Refloated: Do We Have Consensus?.” SIGOPS Oper. Syst. Rev. 49, 1, 2015.

Bart Vanbrabant and Wouter Joosen. “Configuration management as a multi-cloud

enabler.” In Proceedings of the 2nd International Workshop on CrossCloud Systems

(CCB '14). ACM, New York, NY, USA, 2014.

[19] Ouassila Hioual and Sofiane Mounine Hemam. “Cost Minimization and Load

Balancing Issues to Compose Web Services in a Multi Cloud Environment.” In

Proceedings of the International Conference on Intelligent Information Processing,

Security and Advanced Communication (IPAC '15), Djallel Eddine Boubiche, Faouzi

Hidoussi, and Homero Toral Cruz (Eds.). ACM, New York, NY, USA, 2015.

[20] Pooyan Jamshidi, Claus Pahl1, Samuel Chinenyeze, and Xiaodong Liu. “Cloud

Migration Patterns: A Multi-cloud Service Architecture Perspective.” IC4 – the Irish

Centre for Cloud Computing and Commerce, Dublin City University, Dublin, Ireland.

Centre for Information and Software Systems, School of Computing, Edinburgh Napier

University, Edinburgh, UK 2014.

245

[21] Foued Jrad, Jie Tao, and Achim Streit. “A broker-based framework for multi-cloud

workflows.” In Proceedings of the 2013 international workshop on Multi-cloud

applications and federated clouds (MultiCloud '13). ACM, New York, NY, USA, 2013.

[22] Anish Karmarkar. “CAMP: a standard for managing applications on a PaaS cloud.”

In Proceedings of the 2014 Workshop on Eclipse Technology eXchange (ETX '14). ACM,

New York, NY, USA, 2014.

[23] Jonathan Kirsch and Yair Amir. “Paxos for System Builders: an overview.” In

Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware

(LADIS '08). ACM, New York, NY, USA, 2008.

[24] Dzaharudin Mansor. “Moving to the cloud: patterns, integration challenges and

opportunities.” In Proceedings of the 7th International Conference on Advances in

Mobile Computing and Multimedia (MoMM '09). ACM, New York, NY, USA, 2009.

[25] Abbas Mohammed, Roshan Kavuri, and Niraj Upadhyaya. “Fault tolerance: case

study.” In Proceedings of the Second International Conference on Computational

Science, Engineering and Information Technology (CCSEIT '12). ACM, New York, NY,

USA, 2012.

[26] Boris Parák and Zdenek Šustr. “Challenges in Achieving IaaS Cloud

Interoperability across Multiple Cloud Management Frameworks.” In Proceedings of the

2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC

'14). IEEE Computer Society, Washington, DC, USA, 2014.

[27] Fawaz Paraiso, Philippe Merle, and Lionel Seinturier. “Managing elasticity across

multiple cloud providers.” In Proceedings of the 2013 international workshop on Multi-

246

cloud applications and federated clouds (MultiCloud '13). ACM, New York, NY, USA,

2013.

[28] Dana Petcu. “Multi-Cloud: expectations and current approaches.” In Proceedings of

the 2013 international workshop on Multi-cloud applications and federated clouds

(MultiCloud '13). ACM, New York, NY, USA, 20., 1-6. 2013.

[29] Manojkumar H. Radadiya and Vandana Rohokale. Implementation of Costing

Model for High Performance Computing as a Services on the Cloud Environment. In

Proceedings of the International Conference on Advances in Information Communication

Technology & Computing (AICTC '16), S. K. Bishnoi, Manoj Kuri, and Vishal Goar

(Eds.). ACM, New York, NY, USA 2016

[30] Bruno Rossi and Barbara Russo. “Evolution of design patterns: a replication study”.

In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM '14). ACM, New York, NY, USA, 2014.

[31] Paul Stack, Huanhuan Xiong, Dali Mersel, Maxime Makhloufi, Guillaume Terpend,

and Dapeng Dong. “Self-Healing in a Decentralised Cloud Management System.” In

Proceedings of the 1st International Workshop on Next generation of Cloud

Architectures (CloudNG:17), John P. Morrison and Gabriel González-Castañé (Eds.).

ACM, New York, NY, USA, 2017.

[32] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad

Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. “Building a replicated logging

system with Apache Kafka.” Proc. VLDB Endow. 8, 12 (August 2015)

247

[33] Li Zhang, Yichuan Zhang, Pooyan Jamshidi, Lei Xu, and Claus Pahl. “Workload

Patterns for Quality-Driven Dynamic Cloud Service Configuration and Auto-Scaling.”

In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and

Cloud Computing (UCC '14). IEEE Computer Society, Washington, DC, USA, 2014.

Industry and Web References

[34] Gupta and Jeff Shute, “Google Research High-Availability at Massive Scale:

Building Google's Data Infrastructure for Ads”, 2015

https://research.google.com/pubs/archive/44686.pdf

(Valid by July 7, 2017)

[35] J.B. Maverick, “CAPEX vs OPEX”, March 29, 2017

http://www.investopedia.com/ask/answers/020915/what-difference-between-capex-and-

opex.asp (Valid by July 7, 2017)

[36] Asha McLean and Stephanie Condon, “Andy Jassy warns AWS has no time for

uncommitted partners”, ZDnet, November 29, 2016

http://www.zdnet.com/article/andy-jassy-warns-aws-has-no-time-for-uncommitted-

partners/ (Valid by July 7, 2017)

[37] Margaret Rouse, “Self-healing”, 2005, Techtarget,

http://whatis.techtarget.com/definition/self-healing (Valid by July 7, 2017)

[38] AWS Reference Architectures

https://research.google.com/pubs/archive/44686.pdf
http://www.investopedia.com/ask/answers/020915/what-difference-between-capex-and-opex.asp
http://www.investopedia.com/ask/answers/020915/what-difference-between-capex-and-opex.asp
http://www.zdnet.com/article/andy-jassy-warns-aws-has-no-time-for-uncommitted-partners/
http://www.zdnet.com/article/andy-jassy-warns-aws-has-no-time-for-uncommitted-partners/
http://whatis.techtarget.com/definition/self-healing

248

https://aws.amazon.com/architecture/ (Valid by July 7, 2017)

[39] OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

(Valid by July 7, 2017)

[40] Microsoft Cloud Design Patterns: Prescriptive Architecture Guidance for Cloud

Applications https://msdn.microsoft.com/en-us/library/dn568099.aspx

(Valid by July 7, 2017)

[41] OASIS Cloud Application Management for Platforms (CAMP) Specification version

1.1, http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html

[42] Cloud Spectator, “TOP 10 CLOUD IaaS Providers Benchmark, NORTH

AMERICAN REPORT, Price-Performance Analysis of the Top 10 Public IaaS

Providers”, 2017

https://cloudspectator.com/reports/2017-cloud-iaas-providers-benchmark-pdf-

download.pdf?hsCtaTracking=df4242ab-26c3-46ff-ba4f-4e83a2002dd0%7C5faa2e06-

fe0a-4fce-8666-17ed976b2646

[43] CloudHarmony, Real-Time Cloud Availability Status for multiple cloud providers

https://cloudharmony.com/status

(Valid by July 7, 2017)

[44] Object Oriented Design Patterns

http://www.oodesign.com/

https://msdn.microsoft.com/en-us/library/dn568099.aspx
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
https://cloudspectator.com/reports/2017-cloud-iaas-providers-benchmark-pdf-download.pdf?hsCtaTracking=df4242ab-26c3-46ff-ba4f-4e83a2002dd0%7C5faa2e06-fe0a-4fce-8666-17ed976b2646
https://cloudspectator.com/reports/2017-cloud-iaas-providers-benchmark-pdf-download.pdf?hsCtaTracking=df4242ab-26c3-46ff-ba4f-4e83a2002dd0%7C5faa2e06-fe0a-4fce-8666-17ed976b2646
https://cloudspectator.com/reports/2017-cloud-iaas-providers-benchmark-pdf-download.pdf?hsCtaTracking=df4242ab-26c3-46ff-ba4f-4e83a2002dd0%7C5faa2e06-fe0a-4fce-8666-17ed976b2646
https://cloudharmony.com/status
http://www.oodesign.com/

249

(Valid by July 7, 2017)

[45] Microsoft Cloud Design Patterns

https://msdn.microsoft.com/en-us/library/dn568099.aspx

(Valid by July 7, 2017)

[46] Cloud Patterns by Arcitura™ Education

http://cloudpatterns.org/

(Valid by July 10, 2017)

[47] Liang Zhang, “Price trends for cloud computing services”, Wellesley College, 2016

URL: http://repository.wellesley.edu/thesiscollection/386/ (Valid by July 7, 2017)

https://msdn.microsoft.com/en-us/library/dn568099.aspx
http://cloudpatterns.org/
http://repository.wellesley.edu/thesiscollection/386/

	Abstract
	Acknowledgements
	List of Figures
	Chapter 1 - Introduction
	1.1 Multi-Cloud Deployment for Fault-Tolerance, Performance, Security and Cost Efficiency
	1.2 Current Solutions and Their Limitations
	1.3 Problem Statement
	1.4 Solution Methodology
	1.5 Expected Contributions
	1.6 Dissertation Roadmap/Outline
	1.7 Conclusion

	Chapter 2 – Survey of Relevant Research
	2.1 Relevant Topics for Literature Review
	2.2 Relevant Definitions and Examples
	2.3 Existing Work around Cloud Design Patterns
	2.4 Existing Work around Fault Tolerance within Distributed and Cloud Systems
	2.5 Existing Work Around Multi-Cloud Deployments and Standards
	2.6 Security Related Papers Focused on Cloud and Multi-Cloud Deployments
	2.7 Self-Healing Cloud Research
	2.8 Additional Relevant Distributed Systems and Multi-cloud Research
	2.9 Cloud Cost Efficiency Related Research
	2.10 Conclusion

	Chapter 3 - Patterns and Open-Source Framework for Effective Multi-Cloud Deployment
	3.1 Assumptions and Objectives for Supporting Open-Source Multi-Cloud Deployment
	3.1.1 Problem Statement
	3.1.2 Key Assumptions
	3.1.3 Objectives and Scope of the study
	3.1.4 Solution Methodology - how do we approach addressing these objectives?
	3.1.5 Solution Limitations

	3.2 Key Challenges while Deploying Enterprise Computing in Multi-Cloud Environment
	3.1.1 Initial Multi-Cloud Deployment Challenges
	3.2.1 Challenges related to Multi-Cloud Management after initial deployment and dealing with failures
	3.2.3 Cost Efficiency Multi-Cloud Challenges
	3.2.4 Security Multi-Cloud Challenges
	3.2.5 General Application Deployment Multi-Cloud Challenges

	3.3 Open-Source Multi-Cloud Deployment Solution Framework
	3.4 Solutions to Major Multi-Cloud Computing Challenges
	3.4.1 Initial Multi-Cloud Deployment Solutions
	3.4.1.1 Deployment Challenge #1 – Different Cloud APIs in Multi-Cloud Environment
	3.4.1.2 Deployment Challenge #2 – Different Image Formats in Multi-Cloud Environment
	3.4.1.3 Deployment Challenge #3 – Actual Multi-Cloud Deployment
	3.4.1.4 Deployment Challenge #4 – Fault Tolerance in Multi-Cloud Environment
	3.4.1.5 Deployment Challenge #5 – Routing in Multi-Cloud Environment
	3.4.1.6 Deployment Challenge #6 – Keeping Track of All Components

	3.4.2 Multi-Cloud Management after Initial Deployment and Dealing with Failures
	3.4.2.1 Failure Challenge #1 – Telemetry, Logs and Failure Detection in Multi-Cloud Environment
	3.4.2.2 Failure Challenge #2 – Multi-Cloud Automated Recovery / Self - Healing
	3.4.2.3 Failure Challenge #3 – Data Resiliency in Multi-Cloud Environment
	3.4.2.4 Failure Challenge #4 – Fail Over in Case of a Fault
	3.4.2.5 Failure Challenge #5 – Advanced Failover based on SLA Telemetry
	3.4.2.6 Failure Challenge #6 – Exhausted Capacity
	3.4.2.7 Failure Challenge #7 – Disaster Recovery

	3.4.3 Cost Efficiency Multi-Cloud Challenges
	3.4.3.1 Cost Challenge #1 – Aggregate Billing in Multi-Cloud Environment
	3.4.3.2 Cost Challenge #2 – Taking Advantage of Cloud Provider Price Discounts Dynamically

	3.4.4 Security Challenges in Multi-Cloud Environment
	3.4.4.1. Security Challenge #1 – Multi-Cloud Secrets Storage and Retrieval
	3.4.4.2 Security Challenge #2 – Multi-Cloud Security Policy Audit, Compliance and Vulnerability Detection

	3.4.5 General Multi-Cloud Application Deployment Challenges
	3.4.5.1. Application Deployment Challenge #1 – Web Application / Service Deployment
	3.4.5.2 Application Deployment Challenge #2 – Multi-Cloud Internet of Things and Big Data Deployment
	3.4.5.3 Application Deployment Challenge #3 – Multi-Cloud Deployment and Orchestration with Containers

	3.5 Summary

	Chapter 4 - Detailed Multi-Cloud Design Patterns and Multi-Cloud Based on Open-Source Technologies
	4.1 Multi-Cloud Foundation Patterns focused on Fault Tolerant Deployment Solutions
	4.1.1 General Multi Availability Zone Fault Tolerant Pattern
	4.1.2 General Multi-Cloud Fault Tolerant Routing Pattern
	4.1.3 Multi-Cloud Cloud Blueprint Pattern
	4.1.4 Image Build Pipeline Pattern for Multi-Cloud Deployment
	4.1.6 Multi-Cloud Service Registry and Discovery API

	4.2 Multi-Cloud Management after Initial Deployment and Dealing with Failures in Automated Way
	4.2.1 Multi-Cloud Telemetry and Log Aggregation Pattern
	4.2.2 SLA Enforcer Rules Engine
	4.2.3 Multi-Cloud Data Replication
	4.2.4 Reactive Multi-Cloud Health Check and Load Balancing Pattern
	4.2.5 Proactive Multi-Cloud SLA Policy Enforcement Pattern
	4.2.6 Public Cloud Bursting Pattern
	4.2.7 Multi-Cloud Disaster Recovery Pattern

	4.3 Cost Efficiency Patterns
	4.3.1 Multi-cloud Aggregate Billing and Chargeback Pattern
	4.3.2 Cost Efficiency Discount Multi-Cloud Pattern

	4.4 Security Related Patterns
	4.4.1 Multi-Cloud Secret Storage and Retrieval – Secrets Vault Pattern
	4.4.2 Multi-Cloud Auditor Pattern

	4.5 Multi-Cloud Control Plane Framework
	4.6 Combining Control Plane Framework with Additional Application Use Case Patterns
	4.6.1 Multi-Cloud Web Application / Service Pattern
	4.6.2 Multi-Cloud Internet of Things Event Stream Ingesting Pattern and Big Data Pipelines
	4.6.3 Container Orchestration Pattern for Multi-Cloud Deployments

	4.7 Conclusion and Pattern Mappings to the Particular Problem

	Chapter 5 - Experimental Validation
	5.1 Implementations for Key Components of the Multi Cloud Framework
	5.2 General Approach to Validation
	5.3 General Multi-Cloud Cloud Fault Tolerant Routing Pattern Validation
	5.4 Multi-Cloud Cloud Blueprint and Multi-Cloud Deployer Pattern Validation
	5.6 Image Build Pipeline Pattern Validation
	5.7 Multi-Cloud Service Registry and Discovery
	5.8 Multi-Cloud Container Orchestration Validation
	5.9 Multi-Cloud Data Replication Pattern Validation
	5.10 Conclusion

	Chapter 6 - Summary of Contributions and Future Work
	6.1 Summary of Main Contributions
	6.2 Future Work

	Appendix A – Major Cloud Provider Outages
	References
	Academia References
	Industry and Web References

