

A Modular Integrated Syntactic/Semantic XML Data Validation

Solution

By
Christian Martinez, B.A., M.S.

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies
in Computing

at

School of Computer Science and Information Systems

Pace University

May 2016

Abstract

A Modular Integrated Syntactic/Semantic XML Data Validation
Solution

by

Christian Martinez

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies
in Computing

May 2016

Data integration between disparate systems can be difficult when there are distinct data
formats and constraints from a syntactic and semantic perspective. Such differences can
be the source of miscommunication that can lead to incorrect data interpretations. What
we propose is to leverage XML as means to define not only syntactic constraints, but also
semantic constraints.

XML having been widely adopted across multiple industries, is heavily used as a data
protocol. However, commonly used XML parsers have only embedded syntactic
validation. In other words, if semantic constraints are needed, these come into play after
a parser has validated the XML message. Furthermore, semantic constraints tend to be
declared inside the client system, either in the code itself or in some other form of
persistent storage such as a database. Our solution to this problem is to integrate the
syntactic and semantic validation phases into a single parser. This way, all syntactic and
semantic rules can be configured outside the client system. For our purposes, semantic
rules are defined as co-constraints. Co-constraints are when the value, presence or
absence of an element or attribute is dependent on the value, presence or absence of
another element or attribute in the same XML message. Using this same concept, we
have also built a parser that, based on co-constraints, can express business constraints that
transcend the message definition. Our research provides a reusable modular middleware
solution that integrates syntactic and semantic validation. We also demonstrate how the
same semantic validating parser can be used to execute business rules triggered by
semantic rules.

Combining semantic and syntactic validation in the same XML parser or interpreter is a
powerful solution to quick integration between disparate systems. A key of our proposal
is also to have the syntax definition and semantic definitions separate, allowing them to
evolve independently. One can imagine how syntax might not change between systems,
but the semantic constraints can differ between message consumers.

Acknowledgements

First and foremost, I want to thank my wife and kids for putting up with my time spent on
this dissertation. I can still hear the complaints from them pointing out another weekend
thrown away (in their eyes). Secondly I want to thank Dr. Lixin Tao. His patience and
guidance were the light that shone my path. Also, all of my friends and family who kept
asking me when the day would come, well, it is finally here.

Trademarks

All terms mentioned in this dissertation that are known to be trademarks have been
appropriately capitalized. However, the author cannot guarantee the accuracy of this
information. A list of these trademarks is given below (It is not exhaustive):

W3C, XML, XPath, XSL, and XSLT are Registered Trademarks of World Wide Web
Consortium (W3C).

Apache, Maven, Xerces and Xalan are Registered Trademarks of Apache Software

Foundation.

Saxon is Registered Trademarks of Sourceforge.net.

 v

Table of Contents

Abstract	...	iii	

Trademarks	...	ii	

Listings	...	ix	

List	of	Figures	..	x	

Chapter		1	 Introduction	..	1	

1.1	 Importance	of	XML	Syntax	and	Semantic	Validation	..	2	

1.2	 Challenges	to	Current	XML	Validation	Methods	and	Techniques	3	

1.2.1	 Separated	Syntax	and	Semantic	Validation	...	5	

1.2.2	 Lack	of	Support	for	ISO	Version	of	Schematron	..	8	

1.2.3	 Complex	Non-Standardized	Processing	of	Schematron	Documents	10	

1.2.4	 Difficult	to	Run	as	Reusable	Middleware	...	10	

1.3	 Problem	Statement	..	11	

1.4	 Solution	Methodology	...	12	

1.4.1	 Macro-Expansions	...	12	

1.4.2	 Standardize	In-Memory	Representation	...	12	

1.4.3	 XPath	as	Our	Internal	Query	Language	..	12	

1.4.4	 Modular	Application	Programming	Interface	...	13	

1.5	 Research	Contributions	..	13	

1.6	 Dissertation	Road	Map	..	14	

1.7	 Conclusion	...	15	

Chapter		2	 Review	of	Current	XML	Validation	Approaches	16	

 vi

2.1	 XML	Syntax	Validation	..	16	

2.1.1	 W3C	XML	Schema	Language	...	17	

2.1.2	 Document	Type	Definitions	(DTD)	...	18	

2.1.3	 Relax	NG	...	19	

2.2	 XML	Semantic	Validation	...	20	

2.2.1	 W3C	Schema	1.1	And	SchemaPath	...	21	

2.2.2	 Schematron	...	24	

2.3	 Integrated	XML	Syntax/Semantic	Validation	..	26	

2.3.1	 Analysis	of	Existing	Integrated	Parser	..	27	

2.3.1.1	 Lack	of	Support	for	ISO	Features	..	28	

2.3.1.2	 Non-Standardized	Processing	of	Schematron	Documents	..	28	

2.3.1.3	 Difficult	Reusability	as	Middle-Ware	..	29	

2.4	 Other	Solutions	..	29	

2.4.1	 Limited	Expressiveness	of	Existing	Solutions	...	30	

2.4.2	 Focus	On	Integration	of	Co-Constraint	Definitions	with	Syntactic	Definitions	.	30	

2.5	 Chapter	Summary	...	31	

Chapter		3	 A	Simplified	Design	for	Integrating	Syntax/Semantic	Validation	

Using	Schematron	...	32	

3.1	 ISO	Schematron	New	Features	for	Semantic	Constraint	Specification	32	

3.1.1	 Support	for	Abstract	Patterns	..	33	

3.1.2	 Including	Schema	Fragments	Via	Include	...	34	

3.1.3	 Adding	Support	for	Dynamic	Variables	Using	Let	...	35	

3.1.4	 Abstract	Constraint	Definitions	...	36	

3.1.5	 Using	Abstractions	to	Simplify	Schematron	Documents	..	36	

3.1.6	 Defining	Reusable	Abstract	Patterns	and	Rules	...	37	

 vii

3.1.7	 Componentizing	Schematron	Documents	Via	the	Include	Element	38	

3.1.8	 Using	Schematron	Fragments	Containing	Abstractions	...	40	

3.1.9	 The	Use	of	Dynamic	Variables	..	40	

3.2	 Macro-Expansion	Based	Algorithm	..	40	

3.2.1	 Benefits	of	Using	Macro	Expansions	Versus	XML	Document	Transformations	41	

3.2.2	 Macro-Expansion	support	for	include	Schematron	elements	42	

3.2.3	 Macro-Expansion	support	of	abstract	elements	...	43	

3.3	 Using	XPath	as	the	mechanism	to	access	Schematron	values	44	

3.3.1	 Identify	the	Mapping	Rules	for	ISO	Schematron	New	Features	45	

3.3.2	 Access	the	In-Memory	Expanded	Schema	Using	XPath,	a	Standardized	XML	

Query	Language	..	46	

3.4	 Next	Generation	of	Integrated	Syntactic	and	Semantic	Parser	47	

3.4.1	 Clean	Modular	Design	of	an	Integrated	Parser	...	48	

3.4.2	 Extending	the	scope	of	new	features	in	ISO	Schematron	...	49	

3.5	 Advantages	of	Proposed	Solution	...	49	

3.5.1	 Separation	Of	Syntactic	And	Semantic	Definitions	..	50	

3.5.2	 New	ISO	Schematron	Features	And	Their	Applications	..	53	

3.5.3	 Designed	with	Reusability	In	Mind	..	54	

3.6	 Interacting	with	the	parser	...	54	

3.6.1	 Instance	Property	...	55	

3.6.2	 Syntax	Property	..	55	

3.6.3	 Semantic	Property	...	55	

3.6.4	 Baseuri	Property	..	56	

3.7	 Chapter	Summary	...	56	

Chapter		4	 Adding	Support	for	ISO	Schematron	Features	57	

 viii

4.1	 Parser	Design	Overview	...	57	

4.2	 Validator	Implementation	Details	On	the	Initialization	Phase	59	

4.2.1	 Identifying	Schema	Mappings	...	60	

4.3	 Validator	Implementation	Details	On	the	Pre-Processing	Phase	62	

4.3.1	 Building	modular	interpreters	based	on	the	schema	mappings	64	

4.4	 Provided	Implementation	...	65	

4.4.1	 Pre-Processing	Schema	Phase	(Macro	Expansions)	...	66	

4.4.2	 DefaultIncludePreProcessor	Implementation	...	66	

4.4.3	 DefaultAbstractPatternPreProcessor	Implementation	...	69	

4.4.4	 DefaultAbstractRulePreProcessor	Implementation	...	71	

4.4.5	 Maintaining	an	In-Memory	XML	Structure	...	72	

4.4.6	 Encapsulates	Features	Sets	Based	On	Mapping	Rules	...	73	

4.5	 Validator	Implementation	Overview	...	73	

4.5.1	 XPath	Mappings	..	74	

4.5.2	 Validation	Results	..	75	

4.6	 Chapter	Summary	...	75	

Chapter		5	 Experimental	Validation	..	76	

5.1	 Syntactic	Definition	and	Validation	..	76	

5.2	 Semantic	Co-Constraint	Definition	and	Validation	...	78	

5.3	 XML	Message	Syntactic	and	Semantic	Validation	..	79	

5.4	 Smart	Trade	Routing	Using	Semantic	Constraints	..	81	

5.5	 Explanation	of	Smart	Trade	Routing	Code	...	84	

5.6	 Conclusion	...	86	

Chapter		6	 Research	Conclusion	..	88	

 ix

6.1	 Major	Achievements	and	Research	Contributions	..	88	

6.2	 Future	Work	...	89	

References	..	90	

	:	Building	and	Installation	for	the	Schematron	Parser	95	

 Listings

Listing 1 Command Line Argument ... 55	

Listing 2 Creating SchematronFragmenReader Snippet .. 61	

 x

List of Figures

Figure 1 Example of W3C Schema Inventory .. 5	

Figure 2 Schematron excerpt ... 7	

Figure 3 Relax NG Excerpt .. 20	

Figure 4 SchemaPath Excerpt ... 22	

Figure 5 W3C Schema With SchemaPath Assertion Excerpt 23	

Figure 6 Co-Constraint Instance Examples ... 25	

Figure 7 Customer Validation Rules ... 26	

Figure 8 Date Validation Function .. 37	

Figure 9 Expanded Rules ... 39	

Figure 10 Include Elements .. 40	

Figure 11 Include feature examples before and after applying the pre-processor. .. 42	

Figure 12 DOM Macro-Expansion for insert elements ... 42	

Figure 13 Macro-Expansion of an abstract pattern ... 44	

Figure 14 Before and After Processing of an Schematron Fragment 47	

Figure 15 Modular Concept ... 48	

Figure 16 Sales Reports XML .. 51	

Figure 17 W3C Schema Definitions For The Sales Report ... 52	

Figure 18 Schematron Rule Definitions .. 53	

Figure 19 Object Diagram of the SchematronValidator ... 58	

Figure 20 Fragment Reader ... 59	

Figure 21 Validator Initialization Flow .. 60	

Figure 22 Logical view of SchemaDocumentFragmentReader 62	

Figure 23 Validator Macro-Expansion Phase .. 63	

Figure 24 XPath Mappings Snippet .. 65	

 xi

Figure 25 Method That Pre-Processes Include Elements ... 67	

Figure 26 Schematron Schema Excerpt With Includes ... 68	

Figure 27 Expanded Include Elements ... 69	

Figure 28 Abstract Pattern Elements .. 70	

Figure 29 Expanded Abstract Pattern Elements ... 71	

Figure 30 Simple abstract rule instances .. 71	

Figure 31 Post Abstract Rule Expansion Examples .. 72	

Figure 32 Validation Phase .. 74	

Figure 33 Trade Message Grammar Using W3C Schemas .. 77	

Figure 34 Trade Message Semantic Co-Constraint Definition 78	

Figure 35 A Correct Trade Message ... 80	

Figure 36 Semantically Incorrect Messages ... 81	

Figure 37 Validator Output As Printed By The System ... 81	

Figure 38 Co-Constraint Fragments ... 82	

Figure 39 Routing Rule Schematron Schema Definitions ... 83	

Figure 40 Default Implementation of the IMessageEventHandlerHandler Inteface 84	

Figure 41 Abstract Constructor Used By Implementations Of The
IMessageEventValidator Interface .. 85	

Figure 42 Snippet Showing How To Use The Validator ... 85	

Figure 43 Handling The Validation Results ... 86	

1

Chapter 1

Introduction

When thinking about messaging, we need to focus on a protocol and by extension on a

message grammar. In order to communicate between separate systems, a pre-defined

grammar has to be established. In addition to grammar, there is the need to define

application level rules. These rules we refer to as semantic constraints. In an effort to

simplify the development of messages between clients, we feel that the inclusion of

semantic constraints can further solidify the expected behavior in either side of the

transaction flow. A similar but broader scoped architecture has been introduced by

standard bodies such as the World Wide Web Consortium (W3C) [1][2][3]. In that

design, semantic constraints are managed and executed in the “Semantic Mediation”

phase. The objective is to analyze the messages and produce semantic validation results

for higher-level applications. In our solution, these rules can be defined and executed

during the message validation phase. The results of the validation are communicated

back to the user of the library.

Our research is an extension of an existing integrated parser [4] that focuses on

reusability, ease of use and integration. On testament to us having achieved goal is that,

prior to the defense of this research, our solution started to be used in other research

projects. In this chapter we compare different syntactic definition specifications that

have attempted to merge syntax and semantic expressions into a single definition. We

2

feel this is suboptimal and demonstrate that advantages of using our parser. This section

explains the constructs involved in defining an XML based grammar and semantic

constraints. One way to think about XML is as a meta language used to define business

or system specific protocols. These protocols are backed by a syntax defined in one of

the many syntax definition languages we will discuss later. To extend the power of the

protocol, we need to add semantic constraints that are easily validated as part of the

syntactic validation phase. We leverage Schematron as our grammar for semantic co-

constraint definitions. Our solution encapsulates both strong syntactic constraints and

very flexible expressive semantic constraints based on Schematron in a single parser.

This is our main contribution in this research.

1.1 Importance of XML Syntax and Semantic Validation

As a pre-requisite to any XML based message, the message needs to be syntactically

valid. A valid document implies a well-formed document. To briefly describe the

distinction, a well-formed document only needs to follow the basic constraints provided

by the XML specification. A valid document however, needs to not only abide to the

XML specification, but also needs to follow the grammar-based rules defined in the

syntactic constraint or grammar definition document [5]. As part of this research, a third

phase is introduced to the validation process, namely the semantic rule validation phase.

As far as this research is concerned, semantic rules are defined as co-occurrence

constraints (co-constraints). What this means is that the presence, sequence or value(s) of

certain elements are dependent on the presence, sequence or value(s) of other elements

[6][7]. Schematron has been used as the base for semantic rule definitions. One of our

3

goals was to implement an XML parser that can incorporate the use of XML Schema

with Schematron providing a single application-programming interface (API) that would

combine syntactic and semantic validation. Although there already exists such a parser

[4], our contribution has been focused on adding support for the Schematron ISO version.

In doing so, we have also redesigned the parser’s in-memory representation of

Schematron. With a middle-ware focus, the API for the parser produced by this research,

has been created to serve as a library dependency on a larger system. One of our goals

was to produce an easy to use reusable library that could easily be integrated with

existing enterprise services.

1.2 Challenges to Current XML Validation Methods and Techniques

When it comes to XML schema grammars, we have discussed DTD and W3C XML

Schema. These two grammars provide syntax to describe every element and attribute in

an XML document. RELAX NG another grammar, works by identifying patterns

between elements, text and attributes. Patterns allow for ambiguous element definitions.

There can be a child element with the same name as the parent but with different

attributes. In DTD and W3C Schema grammars, such ambiguity is not allowed as every

element and attribute combination must be defined. Finally, there is Schematron.

Schematron is a rule-based grammar. Validity is determined by the success or failure of

rules that help identify relationships between elements and attributes of an XML

document. Each grammar by itself seems to fall short of providing a complete solution to

syntactic and semantic validation [8]. What becomes apparent, and a driver of this

research, is that a combination of XML structure definition and rule based grammar

definition is ideal [9]. The result is a combined grammar that allows for broader

4

relationship definitions that can encapsulate the syntactic and semantic aspects of the

parser brought about by this research. The parser is a reusable middleware component

that can be combined with any XML schema language to create a complete syntactic and

semantic validating solution.

With the introduction of the Java XML Validation API [10] the ability to select any XML

grammar for syntactic validation has been built into the java validation API. Our focus

has been to allow a user the seamlessly integrate semantic validation into their syntactic

validating parser.

Research by Steven Golikov [4] rendered an integrated syntactic and semantic parser that

improved on the default Schematron parser implementation by providing an in-memory

representation of the Schematron tree structure. This parser does not however implement

features in the ISO version of Schematron. Our research aims to extend Steven’s

research and create an ISO compliant Schematron parser with syntactic validation. Our

goal is to focus on delivering reusable component that can be integrated into an existing

XML message producing and consuming system.

5

1.2.1 Separated Syntax and Semantic Validation

As mentioned above, current parsers tend to specialize on a particular aspect of XML

content validation. If we look at RELAX NG, DTD and W3C Schema parsers, it is clear

that the focus is mainly on syntactic validation. Although there has been research to

integrate syntactic and semantic validations, the suggested solutions have been to

combine the syntax and semantic rules into a single document. This is where we differ in

that we suggest separating the two as we feel the two can evolve at different rates.

For example, imagine a shipping system that would allow for free shipping if the total

order amount exceeded a specific number and the customer paid for premier membership.

If we take a W3C Schema, we would have to introduce a conditional element. Since we

cannot do this we can accomplish this task by defining an extension that could omit the

presence of a shipping cost element or attribute. Below is the actual schema excerpt.

Figure 1 Example of W3C Schema Inventory

6

In Figure 1, we see a W3C Schema definition for a purchase order coming out of a

warehouse. The rule determining which version of the shipping related element to use

lies within the application that processes the schema. In this scenario changes to the rule,

such as allowing all customers not just premier members access to free shipping would

require an application level change. That is not to say that there can be multiple ways of

implementing a rule validation system, but having the rule defined outside the markup

inevitably adds complexity to how such rules get managed. Below is a figure

demonstrating how such a rule can be implemented using Schematron. One thing to keep

in mind is that the syntactic and semantic rules will be fully separated in terms of their

definition, but from a transactional perspective, the semantics are treated as an extension

to the syntactic rules. Figure 2 is a representation of an Schematron schema excerpt that

would handle the co-constraint validation regarding shipping cost. The excerpt uses

some of the syntax introduced by the Schematron ISO version. In essence, two global

variables are defined and used during the rule evaluation. First is a threshold that can be

used to set a minimum amount constraint on whether the order qualifies for free shipping

or not. The second variable is a Boolean which checks if the user is a premier member

and if the total amount exceeds the minimum amount defined by the previous variable. If

and when the rules change, the expression in these two variables is what needs changing.

Besides the basic knowledge of XPath, the changes are very simple and isolated when

thinking about changing a more complex W3C Schema file. Also, the separation allows

for rules to be defined and executed while parsing. Rules like the ones defined in

Schematron are not possible using W3C Schema. Not only does separating the rules

from the syntax allow for greater flexibility and simplicity, it also simplifies the schema

7

definition. I think this is one important contribution, that by supporting the modularity

of the Schematron ISO version, we can simplify the management of Schematron rules,

and we can also simplify the XML’s grammar because element extensions denoting

special circumstances, like the NoShippingPurchaseOrder element above, are no longer

needed. Eliminating redundant markup will simplify the maintenance of the grammar as

well.

Figure 2 Schematron excerpt

There has been research proposing a merger of grammars [7]. Schemapath was proposed

as an extension to the existing W3C Schema grammar. As previously demonstrated, the

W3C Schema grammar lacks that ability to support co-constraint expressions.

Schemapath proposes adding a new element to the W3C Schema syntax that would allow

for co-constraint expression to be injected. Although this is an elegant solution that

combines syntactic and semantic validation, there are some limitations that our research

overcomes, most notably the co-location of syntactic and semantic grammar. For this

first part, a user of Schemapath would not be able to choose a different semantic grammar

as Schemapath is an extension of W3C Schema and as such every Schemapath document

8

must be a valid W3C Schema document. Second, it would seem counter intuitive to

have rules that can access a random document element. How would a rule know that an

element it depends on has passed the syntactic validation if the rule is executed prior to

validating the entire XML document? This limitation would make rules focus on

syntactic validity and not on overall semantic constraints.

As shown above, Schematron offers us the power of validating distinct parts of an XML

document. Rules can look at any part of a document. This is however a dangerous

feature. Looking into all parts of an XML document assumes the syntax of the document

is valid and that all element values and attribute values are accurate. Our research solves

this problem by allowing for the integration of syntactic validation. With the ISO version

of Schematron, showing in Figure 2, new powerful constructs have been introduced

which add even more flexibility to a Schematron definition document. In the coming

sections we will dive into further details on such extensions.

1.2.2 Lack of Support for ISO Version of Schematron

As mentioned, our research aims to create an Schematron middleware parser that

supports the changes and extension introduced in the ISO version of Schematron. The

research done by Steven Glikov [4] introduced a java parser for Schematron that

integrated syntactic and semantic validation. However, that parser supported Schematron

1.5. It lacked features that make creating complex Schematron documents today much

simpler. Below is a brief description of what these features are; Chapter 2 will dive into

more detail.

9

In the ISO version of Schematron, attention has been paid to the modularization of a

definition document. Fragments of Schematron grammar, or modules, can be created and

injected, reused as needed. An include element has been introduced which allows a user

to reference on of these fragments. This element can be nested in the schema,

diagnostics, phase, pattern and rule elements. This feature greatly improves the

structure of an Schematron document. In version 1.5, there was no way to reuse markup

using pure markup.

The next feature introduced is the let element. This element allows for the definition of

variables. Original Schematron parsers were XSL based parsers. An XSL transformation

would be done using the Schematron document as the source of the resulting markup.

The ability to inject variables using XSL made if very friendly to reporting user readable

output. In the ISO version, variables can now be expressed and reused in the Schematron

schema. Variables can be declared at different levels and contexts. The elements

schema, pattern, phase and rule can all contain variables. The scope of a variable

depends on where it was declared, more on this in Chapter 2.

Finally, there is the param element. This element is the result of allowing patterns to be

abstract. In version 1.5 of Schematron, only rules could be abstract. In the ISO version,

this ability has been extended to the pattern element. The best way to explain the

additional expressiveness added by this extension is the think of an abstract pattern as a

reusable function, much like a function in a programming language such as java. A

parameter is a variable passed in to a pattern. Only pattern elements that extend an

abstract pattern can have parameters. Chapter 2 will go into further detail on this topic.

10

1.2.3 Complex Non-Standardized Processing of Schematron Documents

Being based on Steven Glikov’s [4] research, we aim to extend and improve the parser

produced by that research. One of the complexities involving the existing parser is the

proprietary in-memory representation of an Schematorn document. The parser builds an

object hierarchy, which is a one to one mapping of the Schematron grammar. In our

approach, we did not want to duplicate the grammar in-memory. Instead, we wanted to

encapsulate access to the Schematron grammar. The parser is based on XPath based

expressions mapping to fragments of an Schematron document. The fragments are

encapsulated and accessed by fragment readers. Fragment readers have a root XPath

expression set which delimits the Schematron fragment they are responsible for

accessing. This way the parser’s implementation is greatly simplified. The complexity

of accessing and dealing with XPath is encapsulated in the Java XML API. In summary,

the in-memory representation of Schematron is the Document Object Model representing

the Schematron grammar.

1.2.4 Difficult to Run as Reusable Middleware

The existing parser was designed to run as a sub-system with integration capabilities at

different levels. The system can be interacted with either directly by a user or

automatically by peer systems. The difficulties come in when certain network or system

architectures do not allow for simple intra-system deployments and integrations. Our

proposed parser was developed as a library that can be customized by a development

team as they see fit. It can run inside an existing system exactly as an integrated library

would, or it can be exposed as a service in a service oriented architecture fashion inside

11

an enterprise [11]. By focusing on granular integration, we have maximized flexibility

for integration.

1.3 Problem Statement

The benefits of an integrated parser that can do syntactic and semantic validation speak

for themselves. Our integrated parser is based on a modular design allowing users to

inject their own syntactic validating technology into our single validation phase. By

default, we support the W3C XML Schema grammar for syntactic validation. To support

semantic rules, we have implemented the ISO version of Schematron. We have

leveraged the Document Object Model (DOM) in order to avoid creating customized data

structures to handle the semantic grammar during validation. We have also implemented

a semantic rules pre-processor using macro-expansions to inject external and/or abstract

content into a single DOM structure. The result is a very light weight module that can be

integrated into any type of system, from an enterprise wide system to a simple validation

service.

The proposed integrated parser enables users to separate syntactic grammar from

semantic grammar. The syntactic validation phase is optional, in certain scenarios, users

might want to improve on performance by only focusing on the semantic validation

phase. All of the Schematron ISO feature have been implemented and are fully

supported.

12

1.4 Solution Methodology

1.4.1 Macro-Expansions

With the new ISO features that allow the external injection of fragments through the

include element and the added support for abstract element inheritance, we decided to

introduce macro-expansion [11] so that the entire abstract and external markup was pre-

processed during initialization. This approach greatly simplifies how the parser validates.

Because the entire markup has been pre-processed and included in the state of the parser,

there is no need to fetch values and interpret abstraction while validation is taking place.

This greatly simplified our algorithm during validation.

1.4.2 Standardize In-Memory Representation

Another strong improvement done on top of the existing integrated parser is the use of

the Document Object Model (DOM) to represent the schema in memory [13]. We

decided to leverage a standardized, well-understood model to represent the schema. This

would simplify again how we interacted with the different elements of the schema while

validation is taking place. Macro-expansion was a definite pre-requisite for adding the

DOM.

1.4.3 XPath as Our Internal Query Language

Leveraging the DOM gave the ability to use XPath as the language of choice for our

querying engine. During validation, internally the parser is constantly accessing the

Schema to read-in and execute the assert or report expressions. In addition to the

expressions, the ISO has added support for variables declarations that have their values

loaded at runtime during validation. XPath has been very instrumental in our research.

13

1.4.4 Modular Application Programming Interface

To facilitate integration and adaptation, we focused on delivering an easy to use API that

can be treated as any other dependent library. The parser is meant to be used as part of a

larger system; it was not designed to run independently. This decision we feel made our

research architecture agnostic. We hope that the ease of integration will give us some

future proof benefits. As architectures evolve, we did not want to tied to a specific

implementation.

1.5 Research Contributions

Our research has yielded contributions in the architecture an integrated parser and in it

applicability of that parser. In addition, it is an integrated parser supporting the

Schematron ISO version. Below is a detailed list of all the contributions.

• Provides improvements on the design and integration from the previous parser.

Leveraging standardized XML based data structures coupled with a modular

architecture opens up the parser for extensions.

• The use of macro-expansions as an implementation solution to the integration of

the Schematron ISO features is also a contribution. Macro-expansions are a

clever solution to the injection of markup at runtime.

• The ability to selectively enable or disable syntactic validation. Syntactic

validation is somewhat expensive to execute on every XML message. Being this

the case, it is not very practical to always syntactically validate message that

might for the most part remain static in terms of their XML structure.

14

• Easy integration with existing systems. The parser can be treated as a separate

component that is mostly controlled by the XML and Schematron schemas.

• Can be thought of as an abstract architecture for a rules based processing API.

The functionality present in Schematron’s ISO version is very powerful.

Abstraction and insertions are just two features that allow for the maintainability

of enormous schemas. One can maintain the design and replace the rules and

syntax definition with other non-XML based protocols.

1.6 Dissertation Road Map

In this section we give an outlook as to what to expect in the rest of this dissertation.

Chapter 2 entitled ‘Review of Current XML Validation Approached’ explains current
XML technologies from the syntactic validation and the semantic validation viewpoints.
In the chapter we begin by explaining alternative technologies that can help in defining
the grammar for an XML message. Our parser can leverage any of these technologies as
the syntactic and semantic validation phases can execute separately. Following the
syntactic introduction, we explain existing technologies that merge both syntactic and
semantic validation. We complete the chapter by comparing our solution versus the
existing solutions. We explain why our approach provides advantages over the existing
approaches.

Chapter 3 entitled ‘A Simplified Design for Integrating Syntax/Semantic Validation Using
Schematron’ In this chapter we begin explaining in detail how our validator works. We
explain the architecture behind the validator and how it supports the non-ISO Schematron
features. The validator maps each Schematron feature and is able to, at runtime, access
any part of the Schema by leveraging the standardized Document Object Model (DOM)
and XPath. The chapter ends with an explanation of how validation results are handled
and notified.

Chapter 4 entitled ‘Adding Support For ISO Schematron Features’ is an extension of the
previous Chapter. This chapter focuses on how we have implemented the new
Schematron ISO features in the validator. A main focus is to demonstrate the advantages
to schema maintenance and development the new features bring. The ISO allows schema
developers to componentize and modularize their schemas. A concept of inheritance at
multiple levels and the inclusion of external schema fragments are a clear advantage over
the pre-ISO Schematron features.

15

Chapter 5 entitled ‘Experimental Validation’ focuses on examples that demonstrate
how the validator works. We demonstrate via examples how to use the syntactic and
semantic capabilities of the validator. We explain in detail the grammar definition as
well as the Schematron schema used in every example. In this chapter we also
demonstrate how to use the validator in a stand-alone format.

1.7 Conclusion

In this chapter we explained the necessity for an integrated semantic and syntactic XML

parser. We also touched on the benefits of using Schematron as the syntax for semantic

validation. Our parser’s implementation introduces new approaches that leverage

standardized technologies to aid in the XML semantic and syntactic validation process.

Our parser also presents itself as a reusable middleware component. This allows it to be

suitable for a wider array of applications. The following chapter will deal begin to

further our approach at an integrated syntactic and semantic validating parser.

16

Chapter 2

Review of Current XML Validation Approaches

In this research, we will define XML validation as being composed of two phases. The

phases are organized in a waterfall manner, where the success of the first phase impacts

the execution of the second. We recognize that each phase can be executed

independently, but for clarity and integration of our validator, we choose to integrate

them.

The first phase has to do with syntactic validation. In our examples, XML is used to

encapsulate markup backed by a grammatical definition. The grammar identifies the

constructs of the markup, from typing, cardinality and ancestry, to default values for

optional content. The second phase is focused on co-constraint validation. The co-

constraints are defined as XPath rules. It is because of these rules that we prefer to

integrate the syntactic validation phase with the semantic one. The rules must have the

full grammar available to them; in addition, there must be a guarantee that the XML

instance abides to the grammar as well so that the rules can be executed.

In the sections below, we dive into more detail on each phase. At the end of this section,

we also explain our integrated phase solution and compare it with existing solutions.

2.1 XML Syntax Validation

Created as a solution for the representation of dynamic content on the web, the Extensible

Markup Language (XML) has grown beyond use on the web alone. Standards such as

FIXML, an XML representation of the FIX protocol, are heavily used in the financial

17

industry [14] as an inter-system data transfer format. XML has been able to survive

and adapt to different environment because of its flexibility when it comes to grammar

definition. XML makes a distinction between well-formed documents and valid

documents. By extension, a valid document must be well formed, but not the other way

around. For more information on the rules governing a well-formed XML document,

please refer to the website of the W3C [15]. They are the consortium responsible for the

maintenance and publication of the XML specification.

As mentioned, one of the key aspects of XML that have allowed surviving for so long, is

the flexibility in grammar definitions. Over the past couple of years, a number of

grammar defining specifications have been developed and adopted by the industry. Later

in this chapter we will dive into detail on some of the most popular ones. When it comes

to explaining syntax validation, it is very important to understand that an XML document

is said to be valid if it complies with the grammatical rules defined for that document.

Below we begin discussing the different specifications generally used to define

grammatical constraints on XML.

2.1.1 W3C XML Schema Language

A Schema definition contains the structure an XML document must adhere to in order to

be considered valid. It defines constraints on the composition of its elements, what data

types are supported by each element’s content and an attribute’s value as well as the

existence of default values used when attributes are left out of the instance document

[15]. The latest version of the W3C XML Schema has also incorporated the ability to

evaluate co-occurrence constraints. The constraints are defined under a new assert

element type. It stills holds that coupling the syntactic and semantic validation forces

18

both sets of validations to be executed at the same time. Maintainability of co-

occurrence constraints is more complex and might affect the validity of the schema

document.

2.1.2 Document Type Definitions (DTD)

When thinking about the W3C’s DTD specification, the first thing that comes to mind is,

why is it used instead of the W3C XML Schema (XSD) specification? One reason could

be complexity [16]. DTD’s do not provide the level of sophistication and complexity, as

do XSD’s. But, with complexity come features and extensions. One very important

feature is the ability to define data types, extensions and cardinality. With a DTD a user

cannot enforce that an element of type Price exist as the first child of an element named

Order. In an XSD, this would be rather simple since the concept of strongly typed

elements is built into the specification. In addition, when it comes to cardinality, DTD’s

are limited to zero or one, zero or more or one or more. With XSD’s, an element or

attribute can have maxOccurs and minOccurs attributes to define any cardinality

constraints [17].

However, DTD’s do allow for the definition of ENTITY’s. These constructs can be

thought of as variables to be referenced within the DTD definition. XSD’s do not replace

this construct. As becomes apparent, even when it comes to XML document grammar

definitions, there is no silver bullet. The use of DTD’s versus XSD’s comes down to

personal choice as well as complexity of the instance document. If the grammar is for a

document that defines a very simple syntax without the need to data types and complex

cardinality constraints, then DTD’s might prove to be very appropriate. Simplicity can

go a long way.

19

2.1.3 Relax NG

Designed by OASIS (Organization for the Advancement of Structured Information

Standards), a standards body similar to the W3C (World Wide Consortium), Relax NG

proves to be a simpler lighter weight solution to both DTD’s and XSD’s. When it comes

to grammar definitions, Relax NG supports a compact syntax that makes writing such a

grammar a bit more intuitive, as show in Figure 3. Being based on a concept of pattern

definition, grammars defined using Relax NG can consist of complex constraints without

a need for cumbersome syntax. For example, in Figure 3, we can see how an attribute

has been made optional while still enforcing that one of them be present. In the excerpt,

we can see two Relax NG features being used. The first, delimited by a parenthesis prior

to the declaration of the inventoryId attribute, is the group feature. Putting element or

attribute declarations within parenthesis creates a grouping to which specific constraints

can be applied [18]. In our example, we used the choice feature that enforces one but not

both attributes are present. This constraint would not be possible with DTD or XSD

because of the way in which they treat attributes. The only constraints that could be

applied would be to make each attribute optional. This would incorrectly validate an

inventoryItem element that did not have either the inventoryId or the externalId present.

Aside from its simplicity, Relax NG also adds more expressiveness to XML grammar

definitions.

20

Figure 3 Relax NG Excerpt

2.2 XML Semantic Validation

The idea of representing semantic information with XML has been around for a very long

time. It can be said that one of the primary incentives behind the invention of XML was

to allow various systems or businesses to exchange information with semantics [19]. In

1998 the ISO started the Basic Semantics Register (BSR), a registry of XML grammars

spanning different industries. The goal was to define the syntax and semantics for XML

message across various industries [20][21]. Today, there are numerous XML grammars

defined across various industries. Early in this dissertation we referenced FPML

(Financial Products Markup Language), a markup used by financial industries to

communicate data on swaps, derivatives and structured products. As is obviously

apparent, XML has been successfully used to communicate messages between distributed

business partners. However, since XML does not natively support semantic definitions it

has been very difficult for it to be universally accepted for certain forms of transactions

[22]. To address this limitation, as we have discussed, there have been multiple solutions

that integrate semantic rules and validation into a tradition XML processing system. In

its latest Schema specification, the W3C has added support for semantic rule definitions.

21

Below we go into further detail on existing XML semantic validating technologies

with a simple modification. Because the W3C specification defines co-constraint support

in the same way as SchemaPath, in this section we will discuss them together as a unit.

Following that discussion, I will introduce Schematron and explain its advantages and

disadvantages over the W3C Schema and SchemaPath. As an added note, RELAX NG

also supports semantic rules in the form of Schematron rules. For this writing, I will

focus on Schematron alone.

2.2.1 W3C Schema 1.1 And SchemaPath

SchemaPath is a simple extension to W3C Schema. What this means is that SchemaPath

supports the entire features of the W3C Schema 1.0. We specify the 1.0 version since in

version 1.1, the W3C has introduced a solution very similar to that introduced by

SchemaPath. Next we discuss the SchemaPath’s solution and use that as an introduction

to the W3C’s solution.

A valid SchemaPath document is by default a valid W3C Schema 1.0 document. To

support semantics, SchemaPath has introduced a new element <xsd:alt/> and a new type

<xsd:error> [23]. A schema author can use the alt element to control the type of an

element or an attribute. The type error is used to communicate the failure of an

alternative or alt condition. As seen in Figure 4 taken from the introduction to

SchemaPath paper [23] an alt element’s cond attribute holds an XPath expression that is

used to validate that alternative type. The type attribute defines what the type of the

element or attribute will be based on the validity of the cond expression. As can also be

seen, if a condition evaluates true when it should not have, the error type can be used to

notify the SchemaPath engine of an error.

22

Figure 4 SchemaPath Excerpt

In Figure 4 we also see the use of the priority attribute of the alt element. The attribute

gives priority in descending order to conditions when multiple conditions evaluate true at

the same time. To summarize the example in Figure 4, a description cannot have a print

attribute when a color attribute is present. The types of the print and color attribute are

also different. Next let’s discuss how the W3C Schema, a much more widely used XML

technology, has added co-constraint capabilities to its syntax. However, a major

difference is that the W3C’s support for co-constraints does not alter the type of the

encapsulating element. The focus is not a type validation or modification, but more on

type instance structure as defined by its syntactic definition.

The W3C’s Schema Definition Language (XSD) has gained enormous support and

popularity in recent years. Because of its popularity, the W3C began to work on

improving the usability and extensibility of the XSD. In 2005 they began working on the

1.1 version of the XSD that promised to eliminate some of the pain points expressed by

developers. Some of these pain points related to type inheritance, the use of wild cards

for complex types and the lack of support for co-constraints [15][19]. As mentioned, the

support added for co-constraint validation resembles a bit the solution provided by

SchemaPath. Built in to the language is now an assert element who’s test attribute holds

23

an XPath 2.0 expression which validates the co-constraint. In comparing it with

SchemaPath, an alt element was added with a cond attribute that encapsulated the rule

definition. Assert elements can be included in XSD complexType element and restriction

elements inside a simpleType element. As with SchemaPath, they don’t provide a way of

customizing error messages and are only ran against the encapsulating element [25].

That is, the element it is defined for provides the context for the rule. In Figure 5 we

look back at the SchemaPath example using the XSD syntax.

Figure 5 W3C Schema With SchemaPath Assertion Excerpt

When a schema author starts thinking about defining co-constraints using SchemaPath or

the XSD 1.1, he is forced to focus and couple the syntactic definition with the co-

constraint. This might be a limitation when semantically speaking, a rule spans across

multiple elements. In such a scenario, the thought process might be beyond that of a

syntactic nature and more about business rules or semantics. This is a significant

limitation when comparing these technologies with Schematron. In Schematron, the

schema author’s focus is much broader. By grouping rules into patterns, the authors

through process can be more global in nature. Looking at the data as a whole unit rather

than focusing on particular elements. In the next section, we discuss Schematron in more

detail.

24

2.2.2 Schematron

Schematron is a rule based schema definition language. The rules are organized into

patterns. A pattern can be thought of as a logical grouping of cohesive rules. With

Schematron the schema author is given the opportunity to think about what the data

relationships and semantics are within the XML message. For instance, in the example

below displayed in Figure 6, we show two distinct orders. The first order was done by a

customer who also happens to be a member of the website, the second order done by a

non-member customer. The structure of the order element is quite distinct. When

developing a grammar-based schema for this message, a schema author would have to

think about the optional elements that can be contained inside the customer element. It

would be impossible to express the required existence of the contact and payment child

elements of a customer when that customer is not a member, and the absolute prohibition

of them when the customer is a member. With a rule based schema definition language

like Schematron, a schema author can think about the fact that non-member customers do

not have pre-existing payment and contact details. This fact translates to the required

existence of the contact and payment elements. The semantics of what it means to be a

member translate into rules in the schema.

25

Figure 6 Co-Constraint Instance Examples

In Schematron, rules are defined inside pattern elements. A rule element’s context

attribute contains an XPath expression used to set the context for the different assertions

and reports to execute. Assertion and Report elements define their expressions in the test

attribute. When and assertion evaluates to false, then the rules fails. When a report

evaluates to true, then the report’s content is executed [26]. Below in Figure 7 is the

Schematron schema used to evaluate the order message in Figure 6. The Schematron

example in Figure 7 uses an abstract pattern to define validation rules for both conditions

where the customer is a member and when the customer is not a member. The ability to

support abstract patterns was introduced in the ISO version of Schematron. The rule with

the context variable name $nonMemberCustomerContext checks that all non-member

customers have contact and payment child elements. The use of an explicit variable

name that indicated a non-member validation rule was done for the convenience of

expressing the XPath constraints.

26

Figure 7 Customer Validation Rules

2.3 Integrated XML Syntax/Semantic Validation

With the exception of Schematron, in the previous section we described existing popular

technologies that have in their own ways integrated semantic and syntactic validation.

The major difference between those semantic validating technologies and Schematron is

the scope of semantic rules [27]. In other semantic validators, semantic rules have been

restricted to execute within the context of the element actively being syntactically

validated. This limits the expressiveness and breadth of a co-constraint definition. A

schema author will tend to define co-constraints within the context of a single entity

rather than co-constraints across entities in distinct parts of a document. With

Schematron, a schema author has the freedom to express co-constraints binding elements

that might not have syntactic constraints between them. An example of a shift in

approach when defining co-constraints using Schematron, is the use of the pattern

element. A pattern can be thought of as logically grouping of co-constraints and not one

27

based on syntactic constraints or limitations. Our goal is to bring the best of both

worlds to schema authors.

This research is an extension of the research done by Doctor Steven Golikov [4] that

defined an integrated syntactic and semantic XML validator. One key distinction is that

in this research we have made the semantic validation phase a pluggable component.

What this means is that executing the syntactic validation phase is optional. This ability

can prove useful when working in a highly automated environment where the XML

producer and consumer systems are very familiar. In this type of environment, limiting

the execution of the syntactic validation phase can prove to have significant performance

benefits. Below we go into detail on comparing and contrasting our solution to existing

approaches.

2.3.1 Analysis of Existing Integrated Parser

As discussed earlier, the existing parser was designed as a sub-component inside an

existing enterprise system. Integration can be done by inline or in process or via a web

server and a web services application programming interface (api). The parser

encapsulates syntactic and semantic validations. A custom syntactic validator has been

implemented which encapsulates the loading and validation of an XML instance

document. The semantic validator leverages the syntactic validation code to load its

XML instance document during validation and also has a separate instance that helps

construct its custom Schematron data-structure. Two clear obstacles for wide spread

reusability and integration are the custom syntactic validator and the customer

Schematron data-structure. Our point of view has been to use standardized popular XML

technologies as part of our foundational boilerplate code. Creating custom solutions for

28

common operations such as XML syntax validation can prove to be difficult to

propagate for wide spread use. A greater obstacle for wide spread use, in our opinion, is

the coupling of the semantic validator with the custom syntax validator. Below we go

into more detail on issues we feel limit the current parser’s integration and adoptability

potential.

2.3.1.1 Lack of Support for ISO Features

The existing parser aimed at partially supporting Schematron ISO features. The parser

does not offer support for variable declarations or the use of abstract patterns. These are

two of the most powerful additions to Schematron. Variables have an invaluable use case

as lookup or reference fields. By reusing the value, a rule or pattern can be simplified.

Referencing variables also has the side effect of allowing a rule to look at values beyond

its context. When it comes to abstract patterns, they provide an invaluable tool for

organizing and composing complex schemas. Adding support for the full ISO

specification can only improve the reusability and adaptability of a parser.

2.3.1.2 Non-Standardized Processing of Schematron Documents

An important aspect of our approach taken when coming up with the design for our

integrated parser was to leverage existing widely used technologies as much as possible.

This is another point of divergence between our approach and that taken in the existing

integrated parser. When it comes to representing an Schematron document in memory,

the existing parser has developed a custom data-structure. The data-structure is a tree-

based structure that follows the Schematron tree hierarchy. In essence, our approach

ends with the same representation, the main difference is that in our approach we did not

create a customized object hierarchy, what we did was leverage the DOM’s

29

representation of the a Schematron document. Instead of managing collections of

nodes, we manage XPath expressions that allow for the navigation of the Schematron

tree-based representation.

2.3.1.3 Difficult Reusability as Middle-Ware

When taking into account the customizations built around the existing syntactic and

semantic integrated parser, reusability might prove to be difficult. The parser constructs

and maintains its own version of the XML instance document. There is not a way to pass

in a pre-existing, pre-validated (syntactically) document for semantic validation.

Although the document created by the custom syntactic validator is available via a getter

method, assuming that other parts of a system might not have other uses for the DOM

structure is far fetched. Another distinction between our parser and that already

developed is the scope the solution is meant to fit in. To clarify, the current parser has a

broader scope it has been built as an end-to-end solution to parsing. In our parser, we

have taken a very granular approach. Our parser is meant to be used as a Schematron api

inside a system. We do not aim to replace syntactic validators or to provide an end-to-

end solution. We aim to be used as you would a DOM parser, as one more tool in your

arsenal.

2.4 Other Solutions

As we have already touched upon, there are other solutions that have provided integrated

parsers. However, the main distinctions between those solutions and the one we propose

are the ability to optimize the use of syntactic validation and the ability to support co-

constraints across all parts of an XML instance document. Other parsers allow for co-

30

constraint expression within the context of the element currently being syntactically

validated.

2.4.1 Limited Expressiveness of Existing Solutions

SchemaPath, W3C Schema and RelaxNG support co-constraint expressions. RelaxNG

even can integrate Schematron expressions into its schema definition. However, all of

these parsers put constraints on the scope of co-constraint expressions. A co-constraint

expression is limited by the context of the element being syntactically validated. Figure

4 and Figure 5 are examples of SchemaPath and W3C Schema co-constrain expressions.

All of the co-constraint expressions are within the context of the surrounding element

declaration. Schematron provides a liberated perspective at co-constraint rule definition.

With feature such as variable definitions and abstract patterns, schema authors are

liberated to seeing the document as a whole and not at an element-by-element basis.

2.4.2 Focus On Integration of Co-Constraint Definitions with Syntactic Definitions

Existing solutions tend to couple the syntactic definition with the semantic definition.

Although you can argue a case for this approach being simpler and self contained, when

it comes to scalability and change impact, having a single large document for both syntax

and semantics can prove to be a performance and maintenance issue. By separating

semantics from syntax, we allow schema authors to focus on the semantics of the

document, and to update only the semantic expressions without affecting the syntactic

definitions. Schematron ISO has provided tools to allow simpler document management

and maintainability. With our parser, you can use any of your desired syntactic

validators, with the added benefit of delegating all semantic co-constraint validations to

Schematron.

31

2.5 Chapter Summary

In this chapter we have compared existing syntactic and semantic integrated parsers

including one implemented by Steven Golikov [4] which is also an integrated validator

supporting Schematron 1.5 and parts of the ISO Schematron. We have expressed the

shortcomings of each of these validators. Other validators except for Steven’s have

combined syntactic definitions witch semantic ones. We have explained that by doing so,

limitations as to the semantic expressions have been introduced. In these parsers

semantic expressions are given the context of their parent elements. When it comes to

comparing with Steven’s parser, we have aimed at providing a validator that leveraged

standard technologies such as the DOM and that separated syntactic from semantic

validations. In the coming chapters we go into more detail on the workings the validator.

32

Chapter 3

A Simplified Design for Integrating Syntax/Semantic Validation

Using Schematron

In order to achieve a simple and easy to use syntactic and semantic parser, we felt that it

was imperative to add support for the new Schematron ISO feature set [28]. In order to

support the new ISO features, we took an approach of macro-expanding a Schematron

schema, giving us a complete flat structure. For example, when using the include

functionality, an Schematron schema declares an include element that points to the

document to include. Our validator will load this included file and append it to the

Schematron schema’s Document Object Model (DOM) representation. The contents of

the include element is replaced by the contents in the external file. As part of this

expansion, the validator makes sure that the contents of the external file is allowed to be

included in the section where it was declared to be included. Continuing with leveraging

the DOM representation of a schema, each component of an Schematron schema using

during validation is encapsulated in a document fragment reader that leverages XPath to

read and interpret the schema’s data during validation. This decision allows us to avoid

building custom data structures to represent the schema internally. In the coming

sections we will go into further detail on the design and implementation of the validator.

This section explains how the Schematron ISO features are supported.

3.1 ISO Schematron New Features for Semantic Constraint Specification

As previously mentioned, the ISO version of Schematron introduced very powerful

features into the Schematron grammar. Features that simplify the maintenance of the

33

grammar by introducing the ability to declare and reuse grammar fragments via the

include element. These fragments are complemented by the support for variable

declarations. As can be imagined, supporting fragments implies the support for

abstractions and inheritance. As such, prior to the ISO version, rule elements where the

only ones allowed being abstract. With the ISO, pattern elements also support

abstractions. Abstract patterns leverage a new element called param that is how concrete

instances have a context to execute upon. Another great new addition, something present

in the original Schematron XSTL based parser, the support for variables. The let element

was introduced to allow a parser to share state during the validation process by treating

all let declarations as variables. Below, I will go into further detail on each of these new

features.

3.1.1 Support for Abstract Patterns

Managing a set of complex rules can be very challenging. At its core, as stated on the

Schematron website, Schematron is “a language for making assertions about patterns

found in XML documents”[29]. Prior to the ISO version of Schematron, the only

element allowed to be abstract was the rule element. However, being that Schematron is

focused on asserting patterns in a document, having only rules be abstract meant

duplicating patterns or pattern definitions. With the ability to predefine a pattern,

organizing, maintaining and scaling Schematron rules is much simpler. It might help to

think about it as storing a function for later use. The function itself does not have any

state it only defines actions. Rules can be thought up of actions to be taken on an XML

pattern.

34

Having the ability to predefine patterns for later inclusion would not make much of an

impression if we could not extract those abstractions into separate files or modules. In

the next section we discuss the new include element. This element is the missing link to

making Schematron ISO fully modular.

3.1.2 Including Schema Fragments Via Include

Include elements are a powerful dynamic construct when it comes to traditional XML

validation. The idea of dynamically updating reusable semantic rule fragments during

validation is quite innovative and popular on the web [19]. Normally one can think of

XML validation as a very static process. From a traditional pure validation sense, static

syntax rules are what govern XML validation. Rules that focus on cardinality, default

value initialization, data type validation and markup sequence. From a semantic

perspective, we have dealt with abilities to define static co-constraints. These co-

constraints are pre-determined with hardcoded values. Prior to the ISO version of

Schematron, users did not have the ability to modularize their rule definitions and

executions. A parser had the ability to execute different patterns based on data values,

but the rules that were activated as part of a pattern had hardcoded values to interpret.

With include elements; this is no longer a limitation.

Include elements allow for the modularization of code (XML semantic rules) and

execution. A simple yet accurate analogy is that of a function or method in the Java

language, or any functional language that achieves a modular design for an application

[31]. Large complex programs benefit from modularity by having methods contain a

granular focused piece of code. When the methods are combined during execution, what

the program does becomes apparent as a result of its execution. In the same fashion,

35

include elements allow for the externalization of complex rules, rules that can evolve

separately without affecting the main file where the sequence of rule executions is

defined. Included fragments can contain patterns (abstract or not), phases, rules, report,

assert, let and diagnostic elements. In essence anything executable can be part of an

included fragment. The only rule is that the markup within the fragment follows the

syntactic rules set by the parent element owning the fragment.

Include elements are a significant improvement to how rule implementers think about

Schematron documents. The approach at organizing a document assimilates more

towards functions or methods. But, this is only half the picture. The other half is the

ability to allow the fragments to dynamically change the data values used during

validation. This is possible because of the let element introduced in the ISO version of

Schematron. Previous XSLT based parsers supported variables through XSLT

extensions, in the ISO version, variable use and declaration has been integrated into the

markup.

3.1.3 Adding Support for Dynamic Variables Using Let

As previously explained, let elements are used to declare variables used during co-

constraint validation. The let element was introduced in the ISO version of Schematron.

Using the let element, variables can be declared for different contexts. If declared as a

direct descendant of the Schematron root element, then the context of the variable is

global. As such, it can be referenced from any part of the document. Variable references

are identified by dollar sign prefixes. A variable can be referenced by itself or as part of

an XPath expression.

36

As mentioned, a variable can belong to different contexts. The contexts are, global, at

the pattern, phase and rule levels. The variable is visible and available for the

descendants of the root element in the context where the let element has been nested.

Later on we will dive into detail on how the resolution and visibility of a variable is

managed.

3.1.4 Abstract Constraint Definitions

As with modern object oriented programming (OOP) languages, Schematron has

introduced tools that allow developers to encapsulate, modularize and reuse common

functionality [32]. Unlike OOP, we feel that Schematron takes a more functional

perspective on what abstractions are. In Schematron, the focus is not on creating is-a

relationships, but more about can-do relationships. By can-do we mean that a schema

can validate or support actions defined by reusable rules. For instance, in our order

management system example, we can extract into a fragment the ability to validate order

state. Any schema that imports the fragment can be thought of as can-do order state

validation. Remember that a fragment declares abstractions that can be leveraged by

other concrete validation documents. Further on in this chapter we will look at this

example in more detail.

3.1.5 Using Abstractions to Simplify Schematron Documents

As discussed above, abstractions can encapsulate can-do relationships to be reused by

other validation documents. In this section we look at an example in detail as we explain

the different levels of reuse and abstraction that can be accomplished with Schematron.

At the end of this chapter, we will have explained how powerful the ability to modularize

37

can-do functions can be. They will become building blocks for more complex schema

definitions.

Figure 8 Date Validation Function

Figure 8 displays a document fragment of a reusable date range calculation. The

fragment is used by incorporating it into a Schematron schema using the include tag. To

put it in terms, a schema that includes the fragment can-do date validations. What it is

validating is that the time passed between a dated event marked by the $dateTime

parameter, and now is not greater than the value in parameter $hourMax. Taking the

ordering system example discussed in previous chapters, we would say that an order that

has not been processed for more than an amount of hours, should fail validation.

3.1.6 Defining Reusable Abstract Patterns and Rules

In the previous section we saw an example of a functional use of an abstract pattern. By

functional we mean a reusable somewhat generic piece of validation logic. In

comparison to any other schema definition language, this ability is unique to Schematron.

In Listing 4-1 we can see a clear example of the can-do relationship Schematron features

can take on. In contrast to W3C Schema or any other is-a relationship definition

language [33], any validation rule that needed to provide date time range validation could

38

do so by just calling the pattern. But, what is missing in Schematron would be a

simple way to guarantee that the data being validated by the abstract pattern is-a date-

time type. This is-a relationship needs to go hand in hand with the can-do relationship.

This is the whole idea behind the joined semantic and syntactic validator.

3.1.7 Componentizing Schematron Documents Via the Include Element

In the previous section we touched upon the ability to reuse abstract pattern and rule

definitions by leveraging the ability to include document fragments into an Schematron

schema definition. The ability to include fragments has been also leveraged by other

schema definition languages because of the benefit of simplifying and isolating instance

specific schemata. Figure 9 and Figure 10 are a comparison of the difference between

the markup needed to write rules that can be defined and included in a fragment with the

much simpler markup of including and using those rules.

39

Figure 9 Expanded Rules

Below is a much simpler and concise form at expressing the same set of rules but

leveraging the include element. It is very clear that the contents of Figure 10 is preferred

when reusing the same rule definitions than having to repeat what is in Figure 9 every

time these rules need to be reused.

40

Figure 10 Include Elements

3.1.8 Using Schematron Fragments Containing Abstractions

As shown above, there is a huge benefit in terms of code maintainability and simplicity

when using fragments. The idea of can-do relationships can be extended to document

fragments. Schema authors can organize executable, reusable behavior into document

fragments that can serve as building blocks for more complex schema definitions. Ideally

a schema definition should focus on rules that are too specific to the structure of the XML

message being validated to be reusable.

3.1.9 The Use of Dynamic Variables

Something that was only possible via the XSLT processor has now been added to the

Schematron syntax. The let declaration allows the processor to read in dynamically

assigned variables [23]. In listing 3-4 we can see a great use of this ability. In order for

the time window validation to take place, the rule needs to know the current date-time.

By leveraging the let element, the rule asserting the time window will always grab a

snapshot of the current date-time. This is in contrast to a default declaration in W3C

Schema definitions where default values can be assigned to attributes making them

always available unless overridden. Dynamic variables give rules the needed context to

stay relevant across different XML instances of the same messages.

3.2 Macro-Expansion Based Algorithm

The parser leverages the Document Object Model (DOM) as its data structure to

represent a Schematron schema. To simplify and optimize the validation stage, we have

used a macro-expansion algorithm that include into the original DOM structure the

41

concrete values for abstract patterns, rules and also the externally defined contents of

an include element.

To optimize the pre-processing phase where we use macro-expansion, the parser

incorporates all of the reference data pointed to by abstractions, variables and includes

during the initial startup phase. Once incorporated, the DOM will contain the entire

necessary markup needed for validation.

The following sections go into further detail on the implementation of the parser. The

goal is to identify the parts of the parser that have made it successful in the parsing and

validation of Schematron schemas conforming to the ISO version of Schematron.

3.2.1 Benefits of Using Macro Expansions Versus XML Document Transformations

With macro-expansion, the parser is able to pre-populate schema elements by including

referenced markup. For instance, in the case of and include element, the macro

expansion phase will pre-load the included fragment into the active document. During

validation, the parser will not have to reference an external file to read in an external

fragment; instead the fragment is added to the active DOM tree representing the full

Schematron schema. As shown in Figure 11, the include fragment is entirely

incorporated into the Schematron in-memory representation. From the parser’s

perspective, the DOM always was a single document.

42

Figure 11 Include feature examples before and after applying the pre-processor.

3.2.2 Macro-Expansion support for include Schematron elements

As demonstrated in Figure 11, the macro-expanded DOM contains the content of the

externally defined Schematron grammar. In Figure 12 we see a basic tree diagram

showing what happens when we pre-process the contents of an include element.

 Figure 12 DOM Macro-Expansion for insert elements

43

The initial document contains the declaration of the include element. The pre-

processor reads the location of the DOM fragment from the element’s href attribute and

loads it into a separate DOM tree instance. The next step is the macro-expansion step.

The pre-processor will get a handle to the include element and insert the pattern element

found in the content to include as its child. In Figure 12, the right part is what the new

Schematron DOM looks like.

3.2.3 Macro-Expansion support of abstract elements

Abstractions are key when it comes to maintainability and reusability of Schematron

grammar. Pattern and rule abstraction declarations can be found in the original

Schematron schema or in a fragment loaded into the processor via an include declaration.

What the pre-processor does when it finds an abstract declaration is to look for all

variable pointers, recognizable by a dollar sign ($) that precedes its name. Once these

variables have been found, it searches for extending elements and replaces the $ value

with the value declared as a parameter by the extending child. In Figure 13 we can see

the macro-expansion process of an abstract pattern.

44

Figure 13 Macro-Expansion of an abstract pattern

In the image above, the abstract pattern declares a parameter for its only rule named

$data. The extending pattern declares a parameter with the value fx-trade. After the

macro-expansion process, the original pattern element has its parameter value replaced

by fx-trade. The post pre-processing phase DOM tree no longer has an extending

element and the abstract element has been expanded to include the parameter value.

For all of the parser’s interaction with the DOM, specially during the pre-processing

phase, we use an XPath based querying mechanism that simplifies and standardizes how

we interact with Schematron during the parser’s lifetime. As is apparent, the parser does

numerous DOM manipulations that require us to quickly and efficiently find the node

that needs to be pre-processed. As will be explained later, the parser uses and utility class

that further simplifies the interaction between XPath and the DOM.

3.3 Using XPath as the mechanism to access Schematron values

After the pre-processing phase, the parser creates a series of XPath based accessors to the

different parts of the Schematron schema. These accessors or readers encapsulate XPath

expressions and a context node from which the expressions are mapped. The role of a

reader is to expose access to XPath querying capabilities. The context node is the

Schematron element the parser holds a reference to. The query’s passed in are all relative

XPath queries, relative to the context node of the reader. In addition, there us an XPath

expression factory class that encapsulates the building of these XPath queries. This

factory takes in the values used in the query and returns the XPath query. The classes

are, the reader is the SchemaDocumentFragmentReader class and the factory is the

45

SchematronISOXPathSupport class. These classes are the heart of the parser as they

are used to navigate the Schematron schema during validation.

3.3.1 Identify the Mapping Rules for ISO Schematron New Features

As mentioned above, at its core, the parser leverages an XPath expression builder that

allows for the access of Schematron elements during validation. The base class for a

builder is the SchematronXPathSupport class. By default, the class provides methods for

building XPath expressions used for mapping Schematron core elements. A core element

is defined as any element that remained unchanged since Schematron 1.5. Although not a

goal, this parser should be backwards compatible with Schematron 1.5. For future

expansion, the class defines four abstract methods, getNsResolver, getNamespaceURI,

getNamespacePrefix and getNodeNameToInterpreter. The first three methods provide

access to Schematron’s namespace associated with the given implementation version.

The last method provides a mapping to an interface that can be used to encapsulate any

custom behavior defined by Schematron elements. An example would be the optional

value-of attribute for the name element. A name element’s value-of attribute is optional;

the presence of the attributes will eventually change the behavior of the name element.

When extending the parser to a new version of Schematron, the base

SchematronXPathSupport needs to be extended to support not only the new namespace

definitions, but also any new elements introduced into the Schematron syntax. For the

ISO compliant version, we have created a class SchematronISOXPathSupport that

defines the ISO specific XPath expressions and namespace definitions. In addition to the

base Schematron elements, the ISO version introduces two new methods that build the

expressions mapping the new Schematron elements introduced in the ISO version. The

46

methods are getAbsoluteIncludeNodesOffTheRootSchemaNode and

getRelativeLetElementNodesXPath. The first method provides an XPath expression used

access include elements while the second provides a relative expression used to access let

elements. In the following chapters, we will detail how these expressions are used during

validation.

3.3.2 Access the In-Memory Expanded Schema Using XPath, a Standardized XML

Query Language

Prior to the start of the validation phase for the parser, there is a normalization stage that

prepares the Schematron instance document. This phase will pre-process any include,

abstract pattern and abstract rule elements by expanding them into the in-memory DOM

representation of the Schematron document. After the macro expansion, XPath

expressions can now be used to access the normalized expanded version of the

Schematron document. The macro expansion phase will insert the included or abstract

XML fragment into the main DOM tree as show in Figure 14.

47

Figure 14 Before and After Processing of an Schematron Fragment

3.4 Next Generation of Integrated Syntactic and Semantic Parser

By leveraging a modular design [35] and popular standardized technologies we have

implemented a very lightweight semantic validating parser. Figure 15 is conceptual

diagram of the different high-level modules in the parser. The parser is packaged into a

library that is easily integrated into a pre-existing semantic validating parser. What we

have done is to separate the syntactic from the semantic phases of validation. Our goal is

not to replace existing battle tested syntactic validators; instead we aim to integrate with

such validators. This decouples us from a user’s XML schema definition of choice. The

integration is as simple as passing a post-syntactic validation reference of the document

node to the semantic validator. The only constraint at this moment is the use of a DOM

implementation for as the wrappers around the XML tree. The semantic validator

leverages the DOM for its navigation and modification capabilities. The queries are

incorporated into the Schematron document itself in the form of XPath queries.

As discussed, the parser makes heavy use of the DOM and XPath expressions. Avoiding

custom in-memory representations of Schematron was possible by the use of the DOM.

Also, using the DOM allowed us to avoid building a custom solution to access

Schematron elements during validation. XPath and the parser’s expression builder

module handle all of this access.

Previous syntactic and semantic parsers have integrated the two steps into a single point

of entry. An important differentiating factor that distinguishes us from other integrated

parsers is the decoupling of XML grammar definition language from the parser’s

48

syntactic phase. For instance, SchemPath, an integrated parser, and by integrated I

mean a parser that does both syntactic and semantic validations, is based on an extension

to the W3C Schema grammar. The extension is based on an element to add conditional

constraints or expressions and a new type to identify exception states [23]. The element

is the alt element and the type is xsd:error. This integrated parser adds its semantic

support by extending the W3C Schema and hence coupling the semantic portion of a

validation to the syntactic grammar definition. Another integrated parser is Steven

Golikov’s [4] implementation. This parser encapsulated the syntactic phase resulting in a

coupled syntactic parser that forces the user to abide by the version of the grammar

supported by the parser. Our implementation adds flexibility and scalability by focusing

on semantic validation leaving hooks for syntactic validation process integration. As our

research is based off of Steven’s, we will mainly focus on describing improvements to

that research introduced by our implementation of an integrated parser, starting with the

fact that our parser has a potential for integration rather than coupled to a specific

syntactic validation implementation.

Figure 15 Modular Concept

3.4.1 Clean Modular Design of an Integrated Parser

Our parser is composed on a set of collaborating modules that facilitate integration with

pre-existing syntactic parsers and also allows for extensibility by adding support for

49

future versions of Schematron. Modules represent different parts of the application

programming interface (API) that each deal with granular behavior. They are classes that

work together to provide behavior specific to a function of the parser. The granular

functions are macro-expansion and XPath expression support.

Although not explicit, integration of the semantic validation workflow with a syntactic

workflow is very simple. The parser provides a validate method which takes as a

parameter a DOM document representing the XML instance being validated. When

supporting syntactic validation, the implementer should syntactically validate the XML

instance prior to passing it to the semantic parser.

3.4.2 Extending the scope of new features in ISO Schematron

Adding support for the ISO features in an integrated parser broadens the usability of the

parser. The include capabilities allow for the separation of business specific rules or

fragments from a base document validating set of rules. In addition, because of its ease

of integration, this parser can easily become part of an existing mature XML based

messaging system. The use of standards and macro-expansion also has a positive

performance impact which enables the possibility of this parser to be used in a real-time

dynamic system. Further in this document we will dive into details on the

implementation.

3.5 Advantages of Proposed Solution

Our proposed solution has a number of advantages over the existing solution. We have

focused on providing modularity around co-constraint validations hence allowing users to

control the selection of syntactic parsers. With modularity in mind, full support for the

50

ISO Schematron standard has been implemented. With the ISO version, Schematron

now supports inheritance, a feature that maximizes reusability and maintainability. Our

parser has also been built with integration into existing systems in mind. A call to our

parser takes an existing DOM representation of the document to validate. We do not

reload the document for validation. Also, this new parser supports multiple validations

on the same instance of the Schematron parser. Below we go into more details on each of

our advantages.

3.5.1 Separation Of Syntactic And Semantic Definitions

Syntactic definitions can at times, for good reasons, get complex and extensive. As with

computer programming, complex large pieces of code written in a procedural manner can

be extremely difficult to update and maintain. We can think of a syntactic XML

definitions as following procedural style of programming because both have a waterfall

approach. In procedural programming style a programmer defines functionality in a set

of procedures that carry out some behavior. In syntactic definitions, we define XML

metadata that has a single purpose of describing the contents of an XML element. The

parser then interprets the metadata and validates the XML document following the same

order of steps defined in the metadata. With procedural programming languages, it is

highly recommended to keep modularity in mind as to avoid coding complex rigid

procedures. Following this mindset, we felt it would give syntax authors more flexibility

if we separated the semantic declarations from semantic ones. In the end, both do

provide metadata definitions, but for completely different purposes. To further stress the

importance of separating syntax from semantics, we will look at an example where co-

constraints that can be expressed in Schematron cannot be expressed in the other

51

integrated XML definition languages such as the W3C Schema, Schemapath or

RelaxNG. Figure 16 depicts a hypothetical sales report containing the orders and

customers that made those orders. For the sake of not duplicating customer information,

the order definitions and customer definitions have been separated in to sibling elements.

Orders have a customerId attribute that links the order to the customer definition.

Figure 16 Sales Reports XML

To follow previous examples, we want the ability to simply introduce rules that

semantically change the report. We want to validate that if a customer is a member and

has an order total cost at one hundred or more dollars, then the sipping costs should be

zero. With other integrated validators, expressing this rule is not possible. For other

integrated validators, co-occurrence expressions are defined within the context of a parent

element. In our example depicted in Figure 16, the customer element is a sibling of the

order element. Because of the context constraint, we cannot skip forward in our

document to check the validity of the shippingCost attribute. In Figure 17 we can see a

Schema for the document above. As you can see, the definition is a little verbose. We do

52

not argue the necessity or usefulness of a Schema, what we argue is the need to add co-

constraints to them. With Schematron, expression the co-constraint that validates the

shipping cost of members is trivial.

Figure 17 W3C Schema Definitions For The Sales Report

Although the schema is somewhat simple, it still has details necessary to ensure the

syntactic validity of a sales report. In Figure 18 we can see a Schematron document

expressing the rule checking shipping costs. I would like to point out how simple and

53

focused the Schematron document is. This modularity and simplicity is key for our

version of an integrated parser.

Figure 18 Schematron Rule Definitions

A single XPath expression spanning across siblings can check for the shipping cost

constraint for members. The concise small Schematron document is also a great example

of modularity. If this rule changes, there is not need to scan the whole syntax Schema but

only the smaller Schematron definition. The figure also demonstrates the use of

variables, an ISO Schematron feature. Variables are a straightforward way to encapsulate

dynamic values. As a contrast to the existing integrated Schematron validator, this new

validator adds full ISO support and also decouples from syntactic validation giving users

the freedom to choose the definition language of choice.

3.5.2 New ISO Schematron Features And Their Applications

As touched upon in the last section, our validator fully supports Schematron’s ISO

feature set. We have implemented these new features following a standardized approach.

We have leveraged the Document Object Model (DOM) and XML Namespaces to

support variable declarations and element abstractions. In chapter three, we will detail

the design approach of our parser.

54

As we have previously mentioned but would like to stress, the ISO Schematron

features enable users to divide and conquer complex Schemas. The use of variables as

parameters to abstract patterns helps eliminate boilerplate code that might need to be

duplicated had there not been a way to natively support dynamic content. Adding the

include feature, Schematron segments can be physically separated and logically

organized. Our parser uses the concept of micro-expansion to pre-parse and create the

necessary data structures prior to beginning validation.

3.5.3 Designed with Reusability In Mind

By focusing on the lowest level of granularity, our parser can be used in various

environments. We have developed components that can be instantiated and used within

different parts of a system. When it comes designing the core parts of the parser, we

have encapsulated the base behavior of each component in an effort to maximize

customization, reusability and scalability. In chapter three we explain the strengths of

our design and implementation.

3.6 Interacting with the parser

We have provided a series of unit tests that can be executed to see how the different

stages of the parser are executed. The parser has been configured as an Apache Maven

project. In the test resources folder, you will a large number of Schematron and XML

documents that can be used to test the parser. For specific ISO test cases, you can look at

the test files under the ISOVersion folder. In order to run external files against the

parser’s default main edu.pace.PaceValidator, from the command line, you need to pass

55

four program properties, instance, syntax, semantic and baseuri. Below is an example

of the command to execute.

 java -cp dps-parser-0.9-SchematronParser.jar edu.pace.PaceValidator \
 -instance FXTradesBad.xml \
 -syntax FXTradeSchema.xsd \
 -semantic SmartTradeRouter.sch \
 -baseuri <Parser Home Directory>/ISOVersion/includenode/

Listing 1 Command Line Argument

Building the parser using Maven allows us to include all necessary dependencies within

the final artifact dp-parser-0.9-SchematronParser.jar. The main class to call is the

edu.pace.PaceValidator.

3.6.1 Instance Property

This parameter points to the XML message file. This is the data that needs to be

validated against a syntactic definition and a Schematron schema. Validating the

instance document syntactically is optional.

3.6.2 Syntax Property

An optional property that points the parser to the syntactic definition document. For this

implementation of the parser, it needs to be a W3C schema document.

3.6.3 Semantic Property

A required property that points to the Schematron schema location. As will be explained

in the next section, any include elements need to have either relative or absolute

56

Universal Resource Identifiers (URI). The absence or presence of the baseuri property

determines if the URI is absolute or relative.

3.6.4 Baseuri Property

This parameter determines whether the paths to the previous properties are absolute or

relative. It also extends to the location of a fragment declared inside the Schematron

schema. For the parser to be able to load all files, it is preferably to keep all files in the

same directory and configure that directory’s absolute path using the baseuri property.

This way all other properties, including any include elements in the Schematron schema,

can be in a relative path to the baseuri.

3.7 Chapter Summary

In this chapter we put together the ISO features that make Schematron extremely

powerful. Supporting abstractions of rules and patterns through document fragments is a

huge benefit when it comes to schema simplification and scalability. On the same note,

let elements allow schema definitions to declare real-time variable pointers. These

features begin to morph Schematron into a sort of meta-programming language where

you have dynamically assigned content and reusable function calls. We feel these

features are stepping stone into rethinking how XML semantics are used and defined.

57

Chapter 4

Adding Support for ISO Schematron Features

As previously mentioned, an important contribution of our parser implementation is the

support for new Schematron ISO features. In our opinion, the most important addition

presented by the ISO version of Schematron is the ability to support abstractions and

modularity at different levels. A close second is the ability to dynamically assign values

to variables. This allows semantic rules to be fully dynamic, something that was only

accomplished by the use of XSLT variables in previous versions. In this chapter we go

into detail on the design and implementation of the parser.

4.1 Parser Design Overview

In Figure 19 we can see an overview of the core components used during initialization.

The initial stages of the parser are focused around the pre-processor stage. The

SchematronPreProcessor is responsible for the macro-expansion phase prior to beginning

validation. Further in this chapter we go into further details on the pre-processor. For

now, we just need to understand that the pre-processor leverages the

SchematronXPathSupport object, an object that encapsulates XPath queries specific to

the Schematron document. These queries allow the pre-processor to get access to the

relevant DOM nodes for expansion. Once the expansion phase is complete, a list of

SchematronFragementReader classes get instantiated. Each reader represents the entry

point into an active pattern. The design principle behind the multiple

SchematronFragmentReader classes comes from the delegation pattern. It is an

58

alternative to inheritance as the validator delegates the searching of the DOM to each

reader [36].

Figure 19 Object Diagram of the SchematronValidator

When validation begins, the parser starts iterating through its collection of fragment

readers. A reader provides access to the Schematron nodes where the rules are, defined.

The parser interprets the rules defined and uses its XPath compiler to execute the rules

against the incoming XML message. In Figure 20 we see the relationship between the

validator and the reader. The validator delegates access to the Schematron rules and

expressions to the fragment reader.

59

Figure 20 Fragment Reader

4.2 Validator Implementation Details On the Initialization Phase

A key component of the parser is how it leverages the DOM during the validation phase.

During initialization, mappings are created and maintained that serve as pointers to

sections of the DOM that contain the relevant schema definitions fragments. While

validation is in progress, these mappings are leveraged to retrieve the relevant semantic

expressions so that they can be evaluated against the active XML instance document.

This chapter begins with an explanation of the validator initialization flow. The

construction of the parser creates pointers to the active patterns that need to be validated.

Once these pointers to the active patterns have been created, then the parser is capable of

executing any pre-processing steps. The sections below go into further detail o the flow

described in Figure 21.

60

Figure 21 Validator Initialization Flow

4.2.1 Identifying Schema Mappings

Each Schematron element used during validation is mapped to an instance of

SchemaDocumentFragmentReader (fragment reader). Figure 21 shows a flow diagram

[37] of the initialization phase, this is where the fragment readers for the active patterns

are created. All of the necessary XPath and Namespace support object instances are

leveraged by the fragment reader. In the diagram, we also see the initialization of a pre-

processor needed to support the let Schematron ISO feature. The fragment readers that

get instantiated are pointers to the patterns defined in the Schematron schema the

validator will use. The patterns can be identified by either the configuration of an active

61

phase element or by just the definition of said elements. The purpose of the fragment

readers is to encapsulate access to Schematron elements during validation. Instead of

having a custom class instance and interaction for each Schematron element, a fragment

reader can expose the necessary dependencies of particular node using a common

interface. For instance, if we are validating a pattern element, the pattern’s fragment

reader provides access to the pattern’s children by exposing an executeQuery method that

takes in an XPath expression in string format. This expression is executed returning a list

of rule nodes that can be wrapped to new fragment reader instances. What this gives us a

common interface to access any element of the Schematron schema. Listing 2 is a code

snippet of how rule fragment readers are dynamically created from the active pattern

node during validation.

Listing 2 Creating SchematronFragmenReader Snippet

// Create a fragment reader for a child rule element of the active pattern
final SchemaDocumentFragmentReader ruleElement = new SchemaDocumentFragmentReader(
activePatternNode,
 xpathSupport.getNsResolver(),
 xpathSupport.getRelativeRuleElemXPath());
NodeList rules = ruleElement.getContextNodes();
for (int ruleIndex = 0; ruleIndex < rules.getLength(); ruleIndex++) {
 final Node ruleNode = rules.item(ruleIndex);
 if (letPreProcessor != null) {
 if (hasLoadedLetElementsForRules.compareAndSet(false, true)) {
 LOG.info("Loading let variable declarations for rule nodes.");
 letPreProcessor.registerVariables(ruleNode);
 }
 }
// final Node ruleNode = rules.item(0);
 // Load the rule's assert elements using the fragment
 final NodeList assertElements = (NodeList) ruleElement.executeQuery(
xpathSupport.getRelativeAssertElemXPath(ruleIndex + 1), NODESET);
 final String contextValue = ruleNode.getAttributes().getNamedItem(
SchematronConstants.RULE_CONTEXT_ATT).getNodeValue();
 if (assertElements.getLength() > 0) {
 failedAsserts.addAll(validateAssertElements(xmlInstance, assertElements,
xpathEvaluator, contextValue));
 }
 // Load sibling report elements using the fragment reader
 final NodeList reportElements = (NodeList) ruleElement.executeQuery(
xpathSupport.getRelativeReportElemXPath(), NODESET);
 if (reportElements.getLength() > 0) {
 passedReports.addAll(validateReportElements(xmlInstance, reportElements,
xpathEvaluator, contextValue));
 }
}

62

Figure 22 Logical view of SchemaDocumentFragmentReader

In the snippet we see how we use the SchematronDocumentFragmentReader (reader)

instance to load all of the assert and report elements for the given rule. Figure 22

represents a logical view of the reader. A reader uses an instance of an XPath compiler to

access the context node it was given. In the snippet, we give the rule reader a reference

to the active pattern’s DOM node, it then uses this node to load all associated rules and

by extension their assert and report elements. We can also see in the snippet how we

handle let nodes. The letPreProcessor is leveraged to map the variables to their relative

locations, this way we can easily access the variable’s expressions during validaiton. To

give the full picture, prior to the snippet, the parser is iterating through all of its active

patterns. Each active pattern in itself is an instance of a reader which we use to access

the pattern’s DOM node.

4.3 Validator Implementation Details On the Pre-Processing Phase

As has been previously mentioned, our research leverages macro-expansions to

normalize the representation of a Schematron schema during validation. In order to

63

continue to support the use of the DOM as a means to representing the schema in

memory, we pre-process each Schematron element that leverages inheritance or an

element that gets included via the ISO include element.

Figure 23 Validator Macro-Expansion Phase

In the pre-processing phase, the Schematron schema is loaded and passed through each of

the pre-processors. A pre-processor will read in its referenced XML content and modify

the original schema DOM. The result is a DOM representation of a fully expanded

Schematron schema, as can bee seen in Figure 23. Include element and any abstractions

are replaced by the content they referenced. Further in this chapter we provide examples

of how the input document compares to the macro-expanded version.

64

4.3.1 Building modular interpreters based on the schema mappings

At the heart of our Schematron schema (schema) interpreter are XPath based mappings to

the various schema elements needed during the pre-processing phase as well as the

validation phase. In extrapolating the mappings, we have isolated the dynamic parts of

interpreting a schema. Once we boil it down, the behavior needed to access and interpret

the contents of the schema should be the same across the interpreter’s implementation.

What we were looking for was a simple pluggable approach at accessing and interpreting

different parts of the schema. This goal is what leads to the creation of the pre-

processing phase handlers.

At the core of the expression mappings is the SchematronXPathSupport class. It provides

an encapsulation of the base schema elements. This makes it simpler to add pre-ISO

schema support; the SchematronISOXPathSupport class, a descendant of the

SchematronXPathSupport class, handles current ISO support. The support class provides

access to two types of XPath expressions, absolute or relative. Absolute expressions are

heavily used during the pre-processing phase. During this phase the interpreter is

flattening the document by expanding nodes with references to other markup, such as

include nodes. Relative expressions are heavily used during validation. When accessing

the rules of an active pattern, we can use dynamic relative mappings to load of the rule or

assert elements for that pattern. Figure 24 is a snippet of the

SchematronISOXPathSupport. The image points out the use of access methods for

absolute and relative XPath expressions. In the figure, we can also see how the different

schema element names are handled. All relevant schema element names are declared as

constants in the SchematronConstants class. Although pulling the names of the elements

65

to a constant does not provide any additional functionality, it does however facilitate

the maintenance and readability of the code.

Figure 24 XPath Mappings Snippet

4.4 Provided Implementation

As previously mentioned, we wanted to provide a default implement of the Schematron

parser that leveraged standard and widely used application programming interfaces

(api’s) and data structures. The parser needed to create a standardized reusable data

structure that could be easily accessed during validation. We wanted to validate multiple

documents using the same Schematron in-memory structure. Our approach was to

support macro expansions so that the entire schema was available in-memory as a DOM

data structure. Having the entire schema as a DOM structure in-memory allowed us to

simplify access to the schema during validation. As touched upon in the previous

section, the schema access is encapsulated in instances of the

SchemaDocumentFragmentReader class. The fragment reader instance holds a reference

to a node in the DOM. This node is then used as the basis for relative expressions giving

better performance than if we started access from the root every time. Results from the

validation are returned to the user as instances of ValidationResult classes. Schema

validation messages and results are communicated via this object. The following sections

66

will go into more detail on the implementation of this design as demonstrated in

Figure 23.

4.4.1 Pre-Processing Schema Phase (Macro Expansions)

The ISO version of Schematron provides features that allow schema authors to reference

external reusable content. The contents can be categorized into two main categories.

First is the modularized schema content that can include other referential contents, and

second is the inheritance focused schema contents where abstractions can be defined.

The include element is the only element that falls into the modularized schema content

category. It allows any valid Schematron markup to be inserted as long as the excerpt is

allowed and valid to be inserted where the element is declared. The pattern and rule

elements both have an abstract attribute which if set to true means they are abstract.

Abstract elements can define reusable markup by allowing input as to what the context

will be. Each type of referential contents has an associated pre-processor that

understands how to expand and insert the markup into the schema. For include elements,

the pre-processor also validates that the included markup is valid with the Schematron

ISO syntax. The SchematronPreProcessor class coordinates all of the pre-processing.

The use of the class only happens once while the parser is building its representation of

the schema. Below we dive into more detail on each one of the pre-processors.

4.4.2 DefaultIncludePreProcessor Implementation

The DefaultIncludePreProcessor is responsible for replacing any include elements with

the fragment being included. In addition to the manipulation of the schema DOM

structure, the pre-processor is also responsible of validating the fragment can be included

in the location of the include element. The first step is to leverage the

67

SchematronISOXPathSupport object to retrieve pointers to all of the include elements

in the schema. If there are none, then we continue and the pre-processing phase is done.

Figure 25 is a snippet showing the method that is called to check for include elements

and expand them.

Figure 25 Method That Pre-Processes Include Elements

As shown in the snippet, the pre-processor searches the whole schema for any include

elements. The search is guided by an SchematronISOXPathSupport instance. As

discussed above, objects of type SchematronXPathSupport encapsulate all access to the

schema. If include elements are found, we then proceed to search and merge the

fragments reference by the include element. The mergeIncludeFragment method is

responsible for modifying the schema referenced passed in at construction time. Figure

26 is an example of a schema with includes elements. Figure 27 is an example of the

expanded schema.

68

Figure 26 Schematron Schema Excerpt With Includes

In Figure 26 we have two include elements nested under different parent elements. What

we are trying to show here is that during the pre-processing phase, we have to validate

that any elements added by the first include are valid elements under a pattern element.

For instance, adding a phase element to the fragment would cause a validation error to be

thrown. Phase elements cannot be nested inside a pattern element. Such an error would

impede the parser from continuing, as it would be treated as a syntactic error. Figure 27

is the output of the pre-processing phase.

69

Figure 27 Expanded Include Elements

The fragments are surrounded by comments pointing to the file names in the href

attribute of the include element in Figure 26. The pre-processor is capable of reading in

include fragments either via http or local disk. Handling include fragments is as

complicated as pre-processing gets. The reason is not because we merge two

independent DOM trees, but around the validation of the DOM fragment and how that

validation changes based on where the include element is declared.

4.4.3 DefaultAbstractPatternPreProcessor Implementation

In Schematron ISO, support for pattern abstractions has empowered schema authors with

the ability to modularize and reuse schema markup by writing pluggable excerpts.

Similar pattern validations can be grouped and used by schemas for distinct XML

documents. In keeping with the approach of expanding an in-memory schema, the

70

contents of a references abstract pattern have replaced the contents of the descendant

pattern. Figure 28 represents an abstract pattern element and the descendant pattern.

The pattern with the id LAYERED_TABLE extends the layered_table pattern and passes

the parameters that corresponding to variables declared by the abstraction. What the pre-

processor will do is take a copy of the abstract pattern’s child elements and include them

in the descendant pattern. As explained above, during validation this expansion

simplifies the XPath expressions needed during validation in order to access the parent’s

content.

Figure 28 Abstract Pattern Elements

In Figure 29 we can see what the expanded pattern element looks like. As you can

notice, access to the abstraction has been greatly simplified. Instead of have XPath

expressions to two different elements, we can now just have a single expression to access

to the contents.

71

Figure 29 Expanded Abstract Pattern Elements

4.4.4 DefaultAbstractRulePreProcessor Implementation

Processing abstract rules is done in the same way as abstract patterns. The inputs and

outputs are the same with the only difference that when processing abstract rules, the pre-

processor search for rule elements with the value of the abstract attribute set to true. In

the example we are about to show in Figure 30, you will see the declaration of the

abstract rule and then what the expansion looks like after passing through the pre-

processor. The motivation is the same, to simplify and standardize access to all part of

the schema during validation. Rule extensions in Schematron can be defined within the

pattern where the abstract rule is defined. In our example you will see a short excerpt

defining the implementing rule, and then a larger excerpt showing the abstract definition

as well as the implementation.

Figure 30 Simple abstract rule instances

72

The extends element inside this rule is how an abstract rule can be extended. Since

abstract rules do not define a context, the context is taken from the extending rule. As

with other pre-processors, the abstract rule pre-processor will replace the extends element

with the contents of the abstract rule it is referencing or extending. In Figure 31we can

see more details on the results of the pre-processor.

Figure 31 Post Abstract Rule Expansion Examples

In Figure 31 notice how the extends elements have been replaced by the actual content of

the abstract rule. The ability to replace markup with the intended markup is what makes

this parser unique when compared against its predecessor. Having a consolidated DOM

structure during validation simplifies and optimizes the function of the parser by allowing

a single DOM structure to represent the entire schema.

4.4.5 Maintaining an In-Memory XML Structure

As mentioned above, an important feature of this parser is to maintain a single XML

structure of the entire schema. To accomplish this, we leveraged macro-expansions to

eliminate any externally referenced or co-located semantic markup. The benefits of this

approach extend to the real-time access to schema elements needed during validation. By

simplifying and standardizing the XML representation of the schema, we are able to

standardize how we access all elements of the schema prior to or during validation. The

73

SchematronXPathSupport class is how we have leveraged the XPath api in

combination with the DOM to access markup at all stages of validation or pre-validation.

4.4.6 Encapsulates Features Sets Based On Mapping Rules

As touched upon in previous sections, all of the Schematron features including the new

ISO extensions are accessible via instances of SchematronDocumentFragmentReader.

This class encapsulates access to the single DOM structure. A context node is used to

determine the starting point of the queries. After a reader has been created for a given

context, associated mapping rules are used to traverse the DOM and retrieve the data on

request. This is how we can avoid retaining custom data structures to access the schema

during validation.

4.5 Validator Implementation Overview

Having a consolidated approach for our schema management is the basis for our implicit

support for the different Schematron ISO and pre-ISO features. The parser, after the

macro-expansion phase is complete, begins by processing all variables for the top-level

elements. These are the schema, phase or pattern elements. Global variables can be

declared as children of the schema element. Variables that have a narrower scope can be

declared in the phase or pattern elements. After the variables have been processed, the

parser looks for the active pattern or phase element. If none, then it means that the parser

will process all top-level elements. When interpreting a pattern, the processor will create

a fragment reader for all rule elements inside a given pattern. With this reader, the parser

will load all of the rules and assertions needed for validation. When validation is

74

complete, ValidationResults are returned informing the caller of success or failure.

Figure 32 is a flowchart of the explained validation process.

Figure 32 Validation Phase

4.5.1 XPath Mappings

The first thing the parser interprets is the version of Schematron it will deal with. This

enables different XPath expressions to be supported if a newer version of Schematron is

produced. The Schematron version syntax is encapsulated by an instance of a

SchematronXPathSupport class. This class represents an implentation of the factory

pattern [38].

75

4.5.2 Validation Results

Validation results are captured in list containing instances of ValidationResult. The

ValidationResult class encapsulates the message if any reported by Schematron, the

expression or XPath used during the validation, the id of the node that was being

validated and finally the result. At the lowest level, the nodes that will evaluate to a pass

or fail result are either assert elements or report elements. A major difference between

these two elements is that assert elements always have to evaluate to true, if not, the

contents of the element gets processed. For report elements however, the opposite is

true. In the SchematronValidator, you will see a method for each type of element that

sets the correct value need to pass or fail the rule.

4.6 Chapter Summary

In this chapter we saw an overview of the benefits of our version of the Schematron

parser. The leveraging of micro-expansions and standardized data-structures really gives

this parser a flexible and scalable architecture. We have also introduced the default

implementation of the Schematron features within the parser. In the following chapter

we go into more detail on the benefits around supporting the new Schematron ISO

features.

76

Chapter 5

Experimental Validation

In this chapter we demonstrate different use cases our parser can be used for. We begin

with very basic examples that focus on particular feature of Schematron and finally end

with a more complex use case that takes advantages of the new Schematorn ISO feature

set. The example we will introduce exploits the fact that Schematron can also be thought

of as a rule-validating engine. We have build a smart trade router using Schematron as

the routing rule definition language. We hope to show that our parser, because of its ease

of integration, can be used as an integral part of a robust rules engine.

5.1 Syntactic Definition and Validation

To begin, we focus on basic syntactic and semantic validation. We are building a service

or system that understands how to validate and process three types of foreign exchange

(FX) trade messages [39]. In the schema definition you can see we have spot trades,

forward trades and swap trades. For the scope of this example, the main difference

between these types of trades is that swap trades encompass two legs rather than a single

leg. A leg element holds the details of the trade. Those details are the currency pair, the

side of the trade and the amount traded. Figure 33 describes the grammar for a trade

message. As defined in the schema, a trade message can have multiple trade entries.

Depending on the type of trade, the leg child elements changes. Going back to a point we

made earlier, expressing the co-constraint of a trade containing two legs when the type of

the trade is FX_SWAP is not possible by using only a W3C Schema definition. For that

we need Schematron’s expressive rule based schema.

77

Figure 33 Trade Message Grammar Using W3C Schemas

Having the full expressiveness of a grammar defining language such as W3C Schema

combined with a rule based co-constraint definition language such as Schematron

78

provides the best of both worlds. In the following sections we dive into the

Schematron portion of the example.

5.2 Semantic Co-Constraint Definition and Validation

The semantic rules revolve around checking the number of legs in a trade. According to

the grammatical syntax, a trade can have 1 or more leg elements nested under a single

legs parent element. What we cannot explain using the grammar is that FX_SWAP

trades have to contain two legs while other types of trades can only contain a single leg.

However, we have also used the semantic definition syntax to check that a trade can only

contain 1 or 2 legs maximum. This type of syntactic constraint is much clearer if defined

using the W3C Schema syntax. In figure Figure 33 we can see the minOccurs and

maxOccurs constraint on the leg element definition. In our opinion such a definition

reads much better than the Schematron syntax.

Figure 34 Trade Message Semantic Co-Constraint Definition

79

In Figure 34 we see the Schematron schema used to semantically validate a trade

message. The first pattern named Trade Type defines a single rule discussed above. This

rule ensures that a trade can have between 1 and 2 legs. As discussed, such syntactic

constraints can be more efficiently defined using a syntactic language such as the W3C

Schema. The second pattern defined Swap Trade Type is where we can see the semantic

constraints that cannot be defined using just a grammar definition document. The first

rule in the pattern checks that all trades of type FX_SWAP contain only two legs. The

second ensures that all non-swap trades contain only a single leg. Such semantic

constraints create an ability to capture business specific constraints and automate their

validation. In the next section we take a look at two XML messages received. Both are

syntactically correct, something verified by the XML Schema using standardized XML

application programming interfaces, but the second message, although syntactically

correct, is semantically incorrect.

5.3 XML Message Syntactic and Semantic Validation

As explained, our example use of our semantic validator focuses on the validation of

trade messages. These messages are sent to our system each containing a collection of

trades for processing. According to the syntactic definition, each trade is required to have

at least one and at most two legs. A leg defines the financial details of the trade. Trades

tend to be much more complex than this, but to maintain clarity and simplicity in this

example, we have chosen to only focus on some of the financial details regarding trade

data. As mentioned above, in our first message example we have a total of three trades.

Each type is syntactically and semantically correct. When passed through the validator,

80

we don’t see any of the assertion error messages seen in the Schematron schema. We

can see this message in Figure 35.

Figure 35 A Correct Trade Message

If we go back and look at the syntactic and semantic rules, we can see that the message

above is perfectly acceptable. However, the next message has an incorrect entry. The

FX_SWAP trade has a single leg and the FX_SPOT trade has two legs on the same side.

From a syntactic perspective, this message is acceptable. However, according to our

semantic constraints, the message in Figure 36 is semantically incorrect because it

violates the trade type and leg count constraints. The validator’s output can be seen in

Figure 37. The validation message prints the assertion failures for the assertion with

identifier swapTradeLegCount and the assertion with identifier nonSwapTradeLegCount.

This completes an example of the pre-existing Schematron features. Our next example

extends the functionality of our validator by enabling smart trade routing functionality.

The goal is to route trades based on their semantic categorization. In this extension we

will demonstrate the use of some of the Schematron ISO features that demonstrate the

81

clear advantages in terms of schema evolution and maintenance over the previous

Schematron versions.

Figure 36 Semantically Incorrect Messages

Figure 37 Validator Output As Printed By The System

5.4 Smart Trade Routing Using Semantic Constraints

To show the versatility of the parser, this next example uses features introduced in the

ISO version of Schematron to extend the previous semantic co-constraints with business

specific rules. In our example, if a trade has passed all co-constraint validation, then it is

routed according to its type. To begin, let’s take a look at the co-constraint fragment that

is to be included into the document that defines the rules that have to do with message

routing. The point to take from how we have used the include element is that we were

82

able to separate business routing rules from co-constraints. This allows for the

reusability of the co-constraints and also allows for easy extensibility of the either the

trade co-constraints or the routing rules. Figure 38 depicts the fragment to be included in

the business routing rules schema. As before, if any of the co-constraints fail, we get to

see an exception that explains the semantic constraints that failed. Later on in this section

we will have another figure to show the error message.

Figure 38 Co-Constraint Fragments

As can be imagined, the fragment above can be inserted into any schema. In our next

figure, we see how the include element is used. One thing to keep in mind is that the

elements included, have to fit in the correct section of the parent schema. As see in

Figure 38, the element to include is a pattern. As is visible in Figure 39, the routing

schema uses the defaultPhase attribute in the schema element. To integrate the included

element, we added an active element in our default phase that points to the

83

“TradeTypeCoConstraints” pattern. A small extension we did to the include handler

was to support a classpath URL prefix. This feature enables the parser to look for the file

to include in its system classpath.

Figure 39 Routing Rule Schematron Schema Definitions

In the next section we explain the example code in detail. When the routing rules fire, it

selects the correct function that would route the trade to the correct subscriber. As an

added benefit of the report element, we have included a Java Script Object Notation

(JSON) message as the body of the report [40]. What that allows the code to do is

transform the text to a map with an id entry and a type entry. The value of the type is

how the router understands where to route the message. With the id field, we can access

the full trade from the accessible DOM structure.

84

5.5 Explanation of Smart Trade Routing Code

The routing application is based on event-based programming. All messages are handled

by implementation of the IMessageEventHandler interface. Figure 40 depicts a snippet

from the TradeMessageEvent (event handler) class. This class is the default

implementation of the IMessageEventHandler interface. Being a modular design, the

programmer can inject an instance of IMessageEventValidator. The event handler’s role

is to normalize the external form of the incoming message so that the validator can

consume it. Notice the implementation of the handleMessage method below. In it we

can see how a generic stream is converted into an XML document along with the syntax

definition for the incoming message. The schemaInstance variable is a byte buffer

holding the schema in memory for later use.

Figure 40 Default Implementation of the IMessageEventHandlerHandler Inteface

As mentioned, an instance of IMessageEventValidator can be injected using the

withEventValidator method. Implementations of this interface are responsible to

encapsulate the syntactic and semantic validators. These implementations will execute

the validation and also whatever behavior is required post validation. Figure 41 depicts

how we initialize the SchematronValidator. The important thing to notice is that the

validator loads the ISO version of Schematron’s schema. Not only do we syntactically

85

validate the incoming XML message, but we also validate that the Schematron schema

we are about to use for our semantic rules also abides by the syntax defined by

Schematron’s ISO version.

Figure 41 Abstract Constructor Used By Implementations Of The

IMessageEventValidator Interface

When validating, all that is needed is to call the validate method of our

SchematronValidator instance. This in turn returns the validation results. One thing to

note about this use of the validator is the reusability of the validator instance. Once wired

up, we can reuse the instance for multiple messages events.

Figure 42 Snippet Showing How To Use The Validator

86

In Figure 42 we can see how simple the validator is to use. The resulting map

contains all of the results from all of the assertions executed. If you notice, in Figure 42,

there is a check for assertion errors that might have occurred. If the result contains a

value “assertion_results”, this means that some of the co-constraints failed. At that point,

this application only logs the error and returns without routing any trades. Figure 43

depicts how we can use the contents of a Schematron report to help route the trade

messages. Here we see the use of an ObjectReader class to parse the JSON message into

a Map. We can then see how we extract the trade’s id from the map and also from the

current document being validated. The type attribute found in the map determines the

route the trade takes.

Figure 43 Handling The Validation Results

5.6 Conclusion

In this chapter we have successfully used the SchematronValidator in different contexts.

We have demonstrated how we can build rule engines by leveraging Schematron’s

expressiveness. In addition, we have also show a potential extension for this research.

JSON is become more and more popular. We can implement a JSON version of

87

Schematron. JSON schemas can be used to define syntactic constraints for JSON

messages, by the same extension, we can use JSON schema’s to then handle the assertion

and report definitions.

88

Chapter 6

Research Conclusion

6.1 Major Achievements and Research Contributions

In this research we have implemented a Schematron ISO parser in Java. In addition to

semantic validation, the parser has the ability to execute syntactic validation in the same

pass. The combination of both types of validation cover a wide spectrum of validation

requirements making the parser a versatile research or business instrument.

Contributions can also be seen in the form in which the Schematorn ISO features were

implemented. Below is a bulleted list of these contributions:

• Leveraged standardized data structures, namely the Document Object Model

(DOM). The DOM is used to represent the various Schematron components in

memory.

• Use of macro-expansions to pre-process some of the Schematron ISO features.

With the introduction of inheritance and script fragmentation, the parser optimizes

by unraveling all of the necessary markup into a single DOM representation.

During validation, there is not need to insert fragments or inherited elements as

this phase happens during initialization of the parser.

• Built as a fully independent and reusable library that can easily get integrated into

a wider application. The ease of use of the API facilitates integration. A single

parser instance can be used numerous times.

89

• Demonstrated the parser can be used beyond syntactic and semantic validation.

By injecting business rules in reports, the parser can be used to tie business rules

with semantic constraints.

6.2 Future Work

The parser can still be improved to allow it to stay relevant with the changing technology

trends. Below is a list of potential future work examples.

• Replacement of XML Schema with JSON Schema.

• Integration with technologies that can provide support for ontologies. This would

extend the parser to support not just co-constraint validations but also natural

language rules.

• Add the support to handle multiple Schematron documents at the same time.

90

References

[1] A. Duke, “Use Case: B2B Integration with Semantic Mediation,”
Semantic Web Use Cases and Case Studies, Mar-2007. [Online].
Available: http://www.w3.org/2001/sw/sweo/public/UseCases/BT/.
[Accessed: 03-Oct-2015].

[2] T. Berners-Lee, “Axioms of Web architecture,” 27-Aug-2009. [Online].
Available: https://www.w3.org/DesignIssues/XML-Semantics.html.
[Accessed: 03-Apr-2016].

[3] “A Gentle Introduction to XML - The TEI Guidelines.” [Online].
Available: http://www.tei-c.org/release/doc/tei-p5-doc/en/html/SG.html.
[Accessed: 08-Apr-2016].

[4] S. Golikov, “Integrated Syntactic/Semantic XML Data Validation with
a Reusable Software Component,” Doctorate, Pace University, 2012.

[5] J. Cleary, “XML & DTDs :: Jacob Cleary.” [Online]. Available:
https://www.ischool.utexas.edu/technology/tutorials/webdev/xml_dtds/0
4_xml.html. [Accessed: 06-Apr-2016].

[6] “Co-occurrence constraints - W3C Wiki.” [Online]. Available:
https://www.w3.org/wiki/Co-occurrence_constraints. [Accessed: 06-
Apr-2016].

[7] E. Van der Vlist, RELAX NG, 1st ed. Sebastopol, CA: O’Reilly, 2004.

[8] D. Lee and W. W. Chu, “Comparative Analysis of Six XML Schema
Languages,” Dep. Comput. Sci. Univ. Calif. Los Angel., no. ACM
SIGMOD Record, 29(3), Sep. 2000.

[9] “XML Schemas: Best Practices.” [Online]. Available:
http://www.xfront.com/ExtendingSchemas.html. [Accessed: 06-Apr-
2016].

[10] E. R. Harold, “The Java XML Validation API,” 10-Feb-2010. [Online].
Available: http://www.ibm.com/developerworks/library/x-
javaxmlvalidapi/. [Accessed: 27-Jul-2014].

[11] D. Kaye, Loosely coupled: the missing pieces of Web services. Marin
County, Calif: RDS Press, 2003.

91

[12] “Macro Expansion - The GNU C Preprocessor Internals.” [Online].
Available: https://gcc.gnu.org/onlinedocs/cppinternals/Macro-
Expansion.html. [Accessed: 06-Apr-2016].

[13] “What is the Document Object Model?” [Online]. Available:
https://www.w3.org/TR/DOM-Level-2-Core/introduction.html.
[Accessed: 11-Apr-2016].

[14] “XML - Usage of XML in Developing Forex and Finance
Applications.” [Online]. Available:
http://www.totalxml.net/forex_xml.php. [Accessed: 06-Apr-2016].

[15] W3C, “W3C XML Schema Definition Language (XSD) 1.1 Part 1:
Structures.” [Online]. Available: http://www.w3.org/TR/xmlschema11-
1/#intro. [Accessed: 19-Jul-2014].

[16] W. Martens, F. Neven, T. Schwentick, and G. J. Bex, “Expressiveness
and complexity of XML Schema,” ACM Trans Database Syst, vol. 31,
pp. 770–813, 2006.

[17] R. A. Wyke and A. Watt, XML Schema Essentials. New York: John
Wiley, 2002.

[18] “RELAX NG Tutorial.” [Online]. Available: http://relaxng.org/tutorial-
20011203.html. [Accessed: 11-Apr-2016].

[19] “RDF vs. XML | Cambridge Semantics.” [Online]. Available:
http://www.cambridgesemantics.com/semantic-university/rdf-vs-xml.
[Accessed: 11-Apr-2016].

[20] U. Ogbuji, “Thinking XML: XML meets semantics, Part 1,” 01-Feb-
2001. [Online]. Available:
http://www.ibm.com/developerworks/library/x-think1.html. [Accessed:
02-Aug-2014].

[21] “ebXML - Wikipedia, the free encyclopedia.” [Online]. Available:
https://en.wikipedia.org/wiki/EbXML. [Accessed: 08-Apr-2016].

[22] C. Vergara-Niedermayr, F. Wang, T. Pan, T. Kurc, and J. Saltz,
“SEMANTICALLY INTEROPERABLE XML DATA,” Int. J.
Semantic Comput., vol. 07, no. 03, pp. 237–255, Sep. 2013.

[23] C. S. Coen, P. Marinelli, and F. Vitali, “Schemapath, a minimal
extension to XML Schema for conditional constraints,” in Proceedings

92

of the 13th international conference on World Wide Web, 2004, pp.
164–174.

[24] “Schema - W3C.” [Online]. Available:
https://www.w3.org/standards/xml/schema. [Accessed: 08-Apr-2016].

[25] N. Delima, S. Gao, M. Glavassevich, and K. Noaman, “XML Schema
1.1, Part 2: An introduction to XML Schema 1.1,” 13-Jan-2009.
[Online]. Available:
http://www.ibm.com/developerworks/xml/library/x-
xml11pt2/index.html. [Accessed: 31-Aug-2014].

[26] “Schematron tutorial.” [Online]. Available:
http://dh.obdurodon.org/schematron-intro.xhtml. [Accessed: 11-Apr-
2016].

[27] “XML.com: Schemarama.” [Online]. Available:
http://www.xml.com/lpt/a/727. [Accessed: 11-Apr-2016].

[28] E. Van der Vlist, Schematron. Sebastopol, Calif.: O’Reilly, 2007.

[29] Ri. Jeliffe, “The top three mistakes in Schematron - O’Reilly
Broadcast,” 07-Jun-2009. [Online]. Available:
http://broadcast.oreilly.com/2009/06/the-top-three-mistakes-in-
sche.html. [Accessed: 01-May-2014].

[30] “Analyzing critical rendering path performance | Web Fundamentals -
Google Developers.” [Online]. Available:
https://developers.google.com/web/fundamentals/performance/critical-
rendering-path/analyzing-crp?hl=en. [Accessed: 06-Apr-2016].

[31] “4.1 Modular Design Review.” [Online]. Available:
https://www.mcs.anl.gov/~itf/dbpp/text/node40.html. [Accessed: 06-
Apr-2016].

[32] B. Meyer, Object-oriented software construction, 2nd ed. Upper Saddle
River, N.J: Prentice Hall PTR, 1997.

[33] D. Taniar and J. W. Rahayu, Eds., Web information systems. Hershey:
Idea Group Pub, 2004.

[34] “XML.com: An Introduction to Schematron.” [Online]. Available:
http://www.xml.com/lpt/a/1318. [Accessed: 08-Apr-2016].

93

[35] “Modular programming - Wikipedia, the free encyclopedia.”
[Online]. Available:
https://en.wikipedia.org/wiki/Modular_programming. [Accessed: 08-
Apr-2016].

[36] “Delegation Pattern,” in Learn Objective-C for Java Developers,
Berkeley, CA: Apress, 2009, pp. 315–323.

[37] “What is a Process Flowchart? Process Flow Diagrams | ASQ.”
[Online]. Available: http://asq.org/learn-about-quality/process-analysis-
tools/overview/flowchart.html. [Accessed: 08-Apr-2016].

[38] “Design Pattern: factory patterns - Coding Geek.” [Online]. Available:
http://coding-geek.com/design-pattern-factory-patterns/. [Accessed: 08-
Apr-2016].

[39] “Foreign exchange market - Wikipedia, the free encyclopedia.”
[Online]. Available:
https://en.wikipedia.org/wiki/Foreign_exchange_market. [Accessed: 08-
Apr-2016].

[40] B. Smith, Beginning JSON. Berkeley, CA: Apress, 2015.

94

Glossary

B2B Business to business

DOM Document Object Model

DTD Document Type Definition

ISO International Organization for Standards

RELAX NG REgular LAnguage for XML Next Generation

W3C World Wide Web Consortium

XML eXtensible Markup Langauge

XPATH XML Path Language

XSD W3C XML Schema

XSL Extensible style sheet language formatting

XSLT eXtensible Stylesheet Language Transformations

95

 : Building and Installation for the Schematron Parser

Here we describe how to get the parser up and running in your development environment.

The steps will be described as a sequence; any assumptions will be explained.

1 Setting up your environment. First off, the parser has been developed using Java 7.

Installing Java is very straight forward, instructions can be followed here

https://www.java.com/en/download/help/download_options.xml.

2 Next, Apache Maven is required to build the parser. Maven is used to manage the

parser’s dependencies as well as for building the parser. Maven is a widely used

technology, installation instructions can be found here

https://maven.apache.org/install.html.

3 During development we used IntelliJ IDEA Community Edition. This was our editor

of choice. The community edition is free and can be downloaded from the JetBrains

website. Instructions for downloading and installation can be found here

https://www.jetbrains.com/idea/help/installing-and-launching.html.

4 To install the code attached with this dissertation, you must unzip the tar file into

your directory of choice. Assuming you have installed Java, Maven and IntelliJ, you

can open the project into IntelliJ by opening the pom.xml file contained in the root of

the directory where you unzipped the project tar. So, if my tar is called

parser_project.tar.gz and I unzip it into a directory called dps-parser, the pom.xml

will be found in the dps-parser folder. After launching IntelliJ, click in the Open link

as show in the image below.

96

In the following dialog, navigate the pom.xml file and click open. IntelliJ will

automatically configure Maven and will setup the project for you.

5 Once the project is loaded, your project navigation area in IntelliJ will look like the

image below.

97

6 The project is a standard Maven project. All the source files are found under

src/main/java, and all the tests are found under src/test/java. You can use IntelliJ

to view the code and execute all tests. To build a copy of the jar, you can open a

command line, go to the root directory where the pom.xml was opened from and

execute mvn clean install. Alternatively, you can call on the install life cycle link

on the Maven plugin section of your IntelliJ editor. Below is an image.

98

7 After the build is complete, the final build artifact can be found under target in the

root directory where the pom.xml is found. The final build is called dps-parser-

0.9.1-SchematronParser.jar. This file will contain all of the necessary classes needed

to use the parser as a dependency within your project.

