

Knowledge Graph Syntax Validation and Visual Navigation for Developing

Intelligent Systems

by

Claude Asamoah

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Professional Studies

in Computing

at

School of Computer Science and Information Systems

 Pace University

May 2016

Abstract

Knowledge Graph Syntax Validation and Visual Navigation for

Developing Intelligent Systems

by

Claude Asamoah

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Professional Studies

in Computing

May 2016

Intelligent systems depend on effective knowledge representation and knowledge-based

decision-making. While OWL is the dominant industry standard for knowledge

representation, it has some limitations which include the lack of support for custom

relations, it’s reliance on the single “is-a” relation, and the emulation of other relations

via complex object and data properties. Pace University has extended OWL to support

knowledge graph as a replacement to better support knowledge representation and

decision-making. One of the challenges is how to better support domain experts to create

knowledge graphs and verify their correctness. Since a real-life knowledge graph can

easily contain hundreds or thousands of classes with complex inter-relations, it is a major

challenge for domain experts to review and validate their knowledge representation, and

hard for application developers to fully understand the complex relations among the

classes.

This research contributes a knowledge graph syntax validation algorithm and two

knowledge graph visualization tools. Use cases such as the Cyber Security

Communications Facilitator are used to verify the correctness and effectiveness of the

contributed solutions.

Acknowledgements

I will like to thank my wife Betty Asamoah for supporting me in my quest to reach the

apex of my educational aspiration. I also want to thank my children Brandon Asamoah,

Ama Asamoah, and Alex Smith for their continued support in this endeavor. My special

thanks to Dr. Lixin Tao, my academic advisor and Chairperson, Computer Science

Department, Westchester, Chair of Ph.D. in Computer Science Program, Chair of

Doctorate Professional Studies (DPS) in Computing Program for believing in me and

guiding me through the completion of this Dissertation. Finally, I thank the Almighty

God for giving me the strength to reach this great height of academic accomplishment.

v

Table of Contents

Abstract .. iii

List of Tables .. vii

List of Figures .. viii

Chapter 1 Introduction ... 1

1.1 Opportunities and Challenges in Knowledge-Based Decision-making 1

1.2 Knowledge Representation Alternatives .. 4

1.2.1 Rule Based Approach ... 4

1.2.2 Web Ontology Language – OWL ... 4

1.2.3 Knowledge Graph ... 7

1.3 Problem Statement ... 12

1.4 Dissertation Roadmap .. 13

1.5 Conclusion .. 14

Chapter 2 Literature Review.. 15

2.1 Knowledge Representation .. 15

2.1.1 Rule Based .. 15

2.1.2 Logic Based ... 17

2.1.3 Ontology Based .. 20

2.1.4 Knowledge Graph ... 22

2.2.1 RDF .. 24

2.2.2 RDFS.. 25

2.2.3 OWL .. 26

2.2.4 Inference Engines... 28

2.2.5 Apache Jena ... 29

2.2.6 Pace Jena .. 31

2.3 Conclusion .. 31

vi

Chapter 3 Knowledge Graph Syntax Validation ... 33

3.1 OWL Serialization Options... 33

3.2 Knowledge Graph Syntax Extension to RDF/XML ... 35

3.3 RDF/OWL Subset for Supporting Knowledge Graph Research 39

3.4 Knowledge Graph Syntax Validation Algorithm ... 44

3.5 Conclusion .. 55

Chapter 4 Visual Knowledge Graph Navigation ... 57

4.1 Generic API for Accessing Custom Relations .. 57

4.2 Web Based Knowledge Graph Navigation ... 59

4.3 Application-Based Graph Navigation ... 65

4.4 Conclusion .. 72

Chapter 5 Experimental Validation ... 73

5.1 A Sample Knowledge Graph for Cyber Security Communications 73

5.2 Syntax Validation.. 80

5.3 Web Based Knowledge Graph Navigation ... 82

5.4 Application Based Knowledge Graph Navigation .. 88

5.5 Conclusion .. 92

Chapter 6 Conclusion ... 94

6.1 Contributions Summary .. 94

6.2 Future Work ... 96

Pace Jena Methods .. 97

Appendix “A KG Syntax Validation”... 99

Appendix B “KG Documents used in This Dissertation” ... 104

References ... 114

vii

List of Tables

Table 1: Examples of the Triple .. 25

Table 2: Multiple Pass Syntax Validation Pseudo Code .. 50

viii

 List of Figures

Figure 1: Triple Example .. 6

Figure 2: Car Relations Using “is-a” Predicate .. 7

Figure 3: RDF/XML OWL Document Example .. 8

Figure 4: State Relation Using “partOf” Custom Relation ... 8

Figure 5: State Relations with More Custom Relation and Related Classes 9

Figure 6: Example of SWRL .. 16

Figure 7: Example of Jena Rule .. 17

Figure 8 : Semantic Network Edges ... 18

Figure 9: Representation of Individuals .. 20

Figure 10: Representation of Properties ... 21

Figure 11: Representation of Classes .. 21

Figure 12: Triple Example .. 22

Figure 13: Pet Relations Using “is-a” Predicate ... 22

Figure 14: Hand Relations Using “partOf” Relation .. 23

Figure 15: rdf:about Example ... 25

Figure 16: A KG Definition of Namespace .. 35

Figure 17: A KG Custom Relations Definition .. 36

Figure 18: A KG Classes Definition ... 36

Figure 19: xml.xsd Schema... 38

Figure 20: Pace Custom Schema .. 38

Figure 21: main.xsd Schema Part of Pace Schema ... 38

Figure 22: pace.xsd Schema with Imported Namespaces ... 39

file:///C:/ClaudeDissertationFinal/Submission/Latest/SendOut/ClaudeAsamoah_KG%20Validation-Visualization-Revision-05_30_2016.docx%23_Toc452401445

ix

Figure 23: Custom Relation Definition Example ... 40

Figure 24: Application Custom Relations to Classes Example depicting an Asymmetric

and Transitive Relations ... 40

Figure 25 Asymmetric and Symmetric Custom Relations Example 41

Figure 26: Asymmetric and Symmetric Class Custom Relations Example 41

Figure 27: Functional Class Custom Relations Example ... 42

Figure 28: Inverse Functional Class Custom Relations Example 42

Figure 29: Reflexive Class Custom Relations Example ... 42

Figure 30: Irreflexive Class Custom Relations Example .. 43

Figure 31: Namespaces in an RDF/XML Document Example .. 43

Figure 32: Class Element Example ... 44

Figure 33: XSD Document as Argument Example... 44

Figure 34: Create Local xml.xsd Example ... 44

Figure 35: KG Syntax Validation Flowchart .. 45

Figure 36: Process Flow Retrieving Custom Relations Using Function In Pace Jena 46

Figure 37: Algorithm to Syntax Validate Any KG on the Fly .. 47

Figure 38: Multiple Pass Syntax Validation Algorithm with DOM Parsing 50

Figure 39: “animal.owl” Knowledge Graph .. 54

Figure 40: Output for “animal.owl” Knowledge Graph Syntax Validation 55

Figure 41: OWLViz Display of Classes and Relations within The “animal.owl”

Knowledge Graph ... 58

Figure 42: Threat Types Relations .. 58

Figure 43: KG Visual Navigation Work Flow Web Model .. 60

Figure 44: Flow Chart KG Visual Navigation Implementation.. 61

Figure 45: Visual Navigation Web Design Process Flow .. 62

Figure 46: Output of HTML Version Visual Navigation for KG Launch 63

Figure 47: Class Page.. 64

Figure 48: Relations Page ... 64

file:///C:/ClaudeDissertationFinal/Submission/Latest/SendOut/ClaudeAsamoah_KG%20Validation-Visualization-Revision-05_30_2016.docx%23_Toc452401474
file:///C:/ClaudeDissertationFinal/Submission/Latest/SendOut/ClaudeAsamoah_KG%20Validation-Visualization-Revision-05_30_2016.docx%23_Toc452401475
file:///C:/ClaudeDissertationFinal/Submission/Latest/SendOut/ClaudeAsamoah_KG%20Validation-Visualization-Revision-05_30_2016.docx%23_Toc452401482

x

Figure 49: Class Lion Page ... 64

Figure 50: Relation “isHuntedBy” Page ... 65

Figure 51 : Work Flow of Application-based KG Navigation ... 67

Figure 52: Process Flow of “layout1.java” ... 68

Figure 53: Visual Navigation Application Design Process Flow 69

Figure 54: Launching the Java Application Model of the KG Visual Navigation 70

Figure 55: Selecting the “country.owl” KG as Input to the Application 70

Figure 56: KG Visual Navigation with Default "ALL" Selected for both Classes and

Relations ... 71

Figure 57: Application Model of the KG Visual Navigation GUI 71

Figure 58: Cyber Security Concepts Relations ... 74

Figure 59: Cyber Security Concepts to Threat Relations ... 74

Figure 60: Layman Term, Professional Term, and Cyber Security Terminology Relations

... 75

Figure 61: Networking Concept Relation to Cyber Security Concept 75

Figure 62: Threat Actor’s Entities within the Cyber Security Concept Hierarchy 75

Figure 63: Threat Actor’s Entities Relations .. 76

Figure 64: Threat Vector Entities within the Cyber Security Concept Hierarchy 76

Figure 65: Threat Vector’s KG Class Relations ... 77

Figure 66: Threat Type’s Entities within the Cyber Security Concept’s Hierarchy 77

Figure 67: Threat Type’s Class Relations ... 78

Figure 68: Threat Mitigation’s Entities within the Cyber Security Concept’s Hierarchy 78

Figure 69: Threat Mitigation’s Class Relations .. 79

Figure 70: “cyberSecurityCommunication.owl” KG Syntax Validation Input Arguments

... 80

Figure 71: “cyberSecurityCommunication.owl” KG Syntax Validation Output.............. 82

Figure 72: Launching the Application. Windows Command Prompt Example 83

Figure 73: Program Output Presenting a URL that the User can Paste in any Browser ... 84

file:///C:/ClaudeDissertationFinal/Submission/Latest/SendOut/ClaudeAsamoah_KG%20Validation-Visualization-Revision-05_30_2016.docx%23_Toc452401488
file:///C:/ClaudeDissertationFinal/Submission/Latest/SendOut/ClaudeAsamoah_KG%20Validation-Visualization-Revision-05_30_2016.docx%23_Toc452401489
file:///C:/ClaudeDissertationFinal/Submission/Latest/SendOut/ClaudeAsamoah_KG%20Validation-Visualization-Revision-05_30_2016.docx%23_Toc452401490

xi

Figure 74: Knowledge Graph Prototype Welcome Page .. 84

Figure 75: All Classes Page .. 85

Figure 76: “CyberSecurityConcept” Class Relations Display Page 86

Figure 77: Relations Page ... 86

Figure 78: “partOf” Relation Page .. 87

Figure 79: Clicking “KG_JavaSwing-model.jar” to launch the Application 88

Figure 80: Java Swing Knowledge Graph .. 88

Figure 81: Browsing for an OWL Document to input into the KG Visual Navigation

Application .. 89

Figure 82: Displaying All Classes Relations of Knowledge Graph 90

Figure 83: Displaying All Relations in Addition to All Classes 91

Figure 84: Threat Type Class Relations Display .. 91

Figure 85: “partOf” Relations ... 92

Figure 86: “getRelations” function ... 97

Figure 87: “getClassNames” function .. 97

Figure 88: “getClassRelClass” function ... 98

Figure 89 : “validateKGraph” function... 98

Figure 90: “main.xsd” Schema ... 99

Figure 91: “rdfs.xsd” Schema ... 99

Figure 92: “pace.xsd” Schema .. 100

Figure 93: “xml.xsd” Schema ... 100

Figure 94: “owl.xsd” Schema ... 101

Figure 95: “rel.xsd” Schema ... 103

Figure 96: “country.owl” KG ... 104

Figure 97:“cyberSecurityCommunications.owl” .. 112

Figure 98: “europe.owl” KG ... 113

1

Chapter 1

Introduction

1.1 Opportunities and Challenges in Knowledge-Based Decision-making

The Semantic Web has extended knowledge representation which was one of the goals of

Artificial Intelligence (AI). AI started with pioneers such as Alan Turing (1912-1954)

whose 1950 paper “Computing Machinery and Intelligence” is one of the most frequently

cited in modern philosophical literature. His work is regarded by many scholars as the

foundation of computer science and of the artificial intelligence program [3]. In the late

1950s and early 1960’s notables such as Alan Turing, Marvin Minsky, John McCarthy

and Allen Newell thought that computers that could “think” as humans do were just

around the corner [4]. As cited by Harry Haplin [18], the goal of AI as stated by John

McCarthy at the 1956 Dartmouth Conference is “the study to proceed on the basis of the

conjecture that every aspect of learning or any other feature of intelligence can in

principle be so precisely described that a machine can be made to simulate it” [50]. The

vision that machines could do practically anything humans can do did not materialize as

envisaged by AI pioneers. Although AI had done well in “tightly-constrained domains,”

extending this ability was not sustainable [18]. Knowledge transfer that AI was supposed

to address as creating a database for all the knowledge of the world did not materialize

and became increasingly evident that it was rather going to create a virtual Tower of

Babel of knowledge. Even within a specific knowledge representation domain such as

semantic networks, it was established that a principal element such as a ‘link’ was

interpreted in many different ways [18]. As such, Knowledge Representations were in-

2

accurate in determining the represented knowledge such as the use of first-order predicate

logic, which was analogous to most of the knowledge representation systems used during

that time [18]. Common-sense knowledge was formalized by researchers but their

approach never merged into a universal platform for representing all knowledge, as stated

by the influential Brachman-Smith survey [18].

Good decision-making and processing their results in an optimal manner is the

consequence of quality Knowledge Representation (KR). Intelligence is “defined as the

ability of a system to act appropriately in an uncertain environment, where appropriate

action is that which increases the probability of success, and success is the achievement

of behavioral sub goals that support the system’s ultimate goal” [23]. Countless

opportunities exist in knowledge based decision-making. For example, Web Mining is

the extraction of pertinent data from distributed websites across the Internet. The Internet

may be viewed as a huge database consisting of disparate and distributed data and at

times there may be a need to traverse these various website collecting and collating

pertinent data about a particular subject using agents or crawlers. Before the advent of

Knowledge Based decision-making mechanism such as the Semantic Web, documents on

the web contained a lot of information for computers to present them but were not

understood by them. Tremendous opportunities exist for computers to understand some

of the information embedded in the web documents and act upon them to the benefit of

web users. The Semantic Web as described by its inventor Tim Berners-Lee as “an

extension of the current Web in which information is given well-defined meaning, better

enabling computers and people to work in cooperation” [20]. The opportunity that

Semantic Web brings by enabling machines to understand data and make decisions on

3

them will increase the viability of the web as well as present a means of doing complex

and precision based activities to benefit mankind as we enter the age of Internet of Things

(IoT) whereby persons, appliances, gadgets, and computers can communicate in unison.

OWL (Web Ontology Language) is the industry standard language for knowledge

representation. There are tools that make it easier to build ontologies such as the Stanford

Protégé. Stanford Protégé is used to create the OWL document in an OWL/XML,

RDF/XML, and other formats. The RDF/XML based OWL document relates two classes

together using the “is-a” relation. The “is-a” relation is currently the only first class

relation used by OWL to relate two classes without user declaration. The use of this

single relation “is-a” limits the ability and flexibility to relate two classes in profound

ways by a subject domain expert who may want to express the relations between two

classes in specific ways using custom relations. Though you can link two individual

entities in a triple format via object properties and also link a data value to an individual

entity via data properties, this approach of defining the relations of two classes using

properties and their respective data properties if warranted via restrictions, is more

complex than using the parsimonious approach of custom relations of Knowledge Graphs.

Another challenge is how to use OWL to represent knowledge in visual knowledge

navigation and review. Although OWLViz, an add-on in Protégé, can graphically display

the relations diagrams between classes, if the ontology is large, it becomes cumbersome

to visualize all the relations in its entirety in the Knowledge Graph (KG) and therefore

there is need for a visual navigation mechanism whereby all the entities, classes and

relations, can be navigated easily.

4

1.2 Knowledge Representation Alternatives

1.2.1 Rule Based Approach

Judgmental knowledge is allowed by Rule-based inference systems about a specific

problem domain to be represented as a collection of discrete rules. Each rule states that if

certain assumptions are understood, then certain conclusions can be inferred [27]. W3C

chartered the Rule Interchange Format (RIF) Working Group and tasked them to produce

extensions in addition to a core rule language which in combination, allow rules to be

translated between rule languages and subsequently between rule systems [34]. The RIF

Working Group is challenged to amalgamate the needs of a diverse community including

business rules and semantic web [34]. The Semantic Web Rule Language (SWRL)

includes a high-level abstract syntax for Horn-like rules in both the OWL DL and OWL

Lite sublanguages of OWL [35]. Rules are modes for representing knowledge and most

often goes beyond OWL1 and are typically conditional statements in the Semantic Web

for example the if then clauses [36]. In addition, rules expand the expressive power of

SWRL. Rules are straight forward and mainly correspond to traditional operations

available in major programming languages. Examples are Comparisons, Mathematical

transformations, and modifiers. One of the popular rules used in the semantic web is the

Jena Rule which includes a list of body terms or premises (the “if” clause) and a list of

head terms or conclusions (the “then” clause) [36].

1.2.2 Web Ontology Language – OWL

According to Tom Gruber, an “ontology is a specification of a conceptualization” [1].

Ontologies enable the structuring of data in a hierarchical form. Recent work in Artificial

5

Intelligence (AI) is exploring the use of formal ontologies as a way of specifying content-

specific agreements for the sharing and re-use of knowledge among software entities [11].

Web Ontology Language (OWL) is part of the Semantic Web which extends the current

Web by extending current semantics to it [12]. OWL is one of the most used languages

for creating ontologies which is the latest recommendation of W3C and is based on the

RDF schema.

OWL = RDF schema + new constructs for expressiveness [13].

RDF is the basic block for supporting the Semantic Web and is all about vocabulary or

metadata and supported by W3C. It is structured, machine readable, and capable of

describing any resource independent of any domain [13].

OWL has three sublanguages OWL Lite, OWL DL, and OWL Full.

OWL Lite supports those users primarily needing a classification hierarchy and simple

constraints [22].

OWL DL supports those users who want the maximum expressiveness while retaining

computational completeness [22].

OWL Full is meant for users who want maximum expressiveness and the syntactic

freedom of RDF with no computational guarantees [22].

Ontology is a vehicle to capture knowledge about a particular domain. It describes the

relations between the entities within that domain. Web Ontology Language, OWL, is one

of the most used languages for creating ontology which is the latest recommendation of

W3C. The OWL consists of individuals, properties, and Classes.

6

Individuals are instance of a class. For example, John is an individual or instance of a

Student class or USA is an individual or instance of a Country class.

Properties are links that relates two individuals together. For Example, John livesIn

Boston. Properties have many characteristics such as inverse, transitive, asymmetric, or

symmetric.

Classes: can be described as a set that has individuals as members. Examples of a class

are Country and Car.

OWL uses the Triple, as agreed by W3C, to describe the relations between two entities.

Figure 1 depicts this relation.

Figure 1: Triple Example

The most popular tool for creating OWL document is the Protégé. There are many

versions of Protégé such as the Stanford University Protégé. The Stanford University

Protégé supports only one first class relation, the “is-a” relation. For example, an Audi is-

a car. In this triple, “Audi” is the object, “is-a” is the predicate, and “car” is the subject.

With “is-a” as the only relation to link two classes, properties may have to be used to

7

capture a more vivid knowledge of the domain of interest. Figure 2 depicts an ontology

created with the “is-a” relation of a class “Car” and its subclasses.

Figure 2: Car Relations Using “is-a” Predicate

It is clear that if there is a way to use more types of predicates to relate two classes, the

capture of the knowledge of the domain class will be more vivid. This limitation

necessitated the design and development of the Pace University Extended Protégé that

has the ability to create custom relations to link two classes of a domain in question.

1.2.3 Knowledge Graph

Pace University Extended Protégé is a tool for extensible knowledge representation

supporting custom relations. It is a tool for domain experts to describe and validate

knowledge. Also, it is able to drive knowledge based decision-making and introduces

minimal syntax extension to OWL so it can benefit from existing tools for OWL. It has

the ability to relate two classes using various custom relations. Figure 3 depicts a KG

document.

8

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rel "http://www.pace.edu/rel-syntax-ns#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.pace.edu/body-73#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <owl:Ontology rdf:about="http://www.pace.edu/body"/>

 <!--

 // Relations

 -->

 <rel:NewRelation rdf:about="http://www.pace.edu/body#partOf"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/body#include"/>

 <!--

 //

 // Classes

 //

 -->

 <!-- http://www.pace.edu/body#finger -->

 <owl:Class rdf:about="http://www.pace.edu/body#finger">

 <rel:partOf rdf:resource="http://www.pace.edu/body#hand"/>

 </owl:Class>

 <!-- http://www.pace.edu/body#hand -->

 <owl:Class rdf:about="http://www.pace.edu/body#hand">

 <rel:include rdf:resource="http://www.pace.edu/body#finger"/>

 </owl:Class>

</rdf:RDF>

<!-- Generated by the OWL API (version 3.5.1) http://owlapi.sourceforge.net -->

Figure 3: RDF/XML OWL Document Example

Figure 4 below depicts a “State” knowledge graph with custom relations or predicates

viewed via OWLViz, a plugin for the Protégé tool.

Figure 4: State Relation Using “partOf” Custom Relation

9

It will be more evident that if we add more custom relations to the State class, a more

vivid knowledge description of the domain is presented as shown in Figure 5.

Figure 5: State Relations with More Custom Relation and Related Classes

Pace University knowledge graphs aid domain experts to design Knowledge

Representation for Intelligent Systems more effectively than OWL in that custom

relations can be created and used to relate classes of concepts in more vivid and

expressive ways. When the KG is large, it is difficult to check for the correctness and to

navigate each class relation in an efficient manner prompting the need of a visual

navigation system that is easy and flexible. Before the KG can be navigated it has to be

syntax validated to prevent unexpected eventualities and application system failure due to

the KG not been well-formed. It is therefore of paramount importance that a syntax

validation system be created to validate any KG created with customs relations. The

syntax validation is a method designed in Pace Jena which is used to validate the KG

before employing other methods designed in Pace Jena to parse the classes and relations

of the KG and present a visual navigation capability. Though Pace Jena can parse and

print out the class relations through its API, it was not intuitive as a tool in terms of

flexibility, repeatability, and portability. It was therefore necessary to design a visual

10

navigation application facilitated by methods created in Pace Jena to display any KG

currently. Pace Jena was developed by Pace University and it has the capability to parse

and print out entities such as classes, custom relations, object properties, data properties,

individual classes and other entities from KGs. It can also parse the KG into subject,

predicate, and object in the Triple format. The subject and objects are classes that are

related by customs relations or predicates. Before the Pace Jena parses the KG, it is

prudent that it must first validate the KG and confirm that it is well-formed and OWL

syntactically correct. The “DomParse.java” written by Dr Lixin Tao of Pace University

[21] as a XML Validator is slightly modified to accommodate the “.owl” extension

(which is the extension of the KG) in addition to the existing “.xml”, “xsd”, and “dtd”

extensions. The Dom Parser will be used to validate the KG in conjunction with a

designed Pace RDF/XML centric schema. Before the validation of the KG is realized,

some challenges have to be overcome before the validation is possible. Since the KG is in

RDF/XML format and includes custom relations, using the W3C XML OWL

Schema.xsd to validate the KG with “.owl” extension is a challenge in that the W3C

XML OWL Schema.xsd supports only owl documents serialized in OWL/XML format

and will not work with RDF/XML serialized “.owl” extension KG. Using other

RDF/XML Schemas from third parties on the web will not work either since the few

encountered via research will not recognize the namespace of Pace University custom

relations. The generated RDF/XML serialized KG has four distinct namespaces. They

are “rdf”, “rdfs”, “owl”, and “rel” namespaces respectively. Since an “.xsd” schema can

only have one target Namespace, a unique method needed to be devised for all four

namespaces to work together as a single schema. It was discovered that a separate

11

schema needs to be created for each namespace. The main schema will be the “rdf”

namespace called main.xsd and will import the rel.xsd, rdfs.xsd, and owl.xsd schemas.

The rel.xsd schema will import the main.xsd, the rdfs.xsd, and the owl.xsd schemas, the

owl.xsd schema will import the main.xsd, rdfs.xsd, and rel.xsd schemas, and

subsequently, the rdfs.xsd will import the rel.xsd, main.xsd, and owl.xsd schemas. By this

configuration, all four namespaces persist in each individual schema even though only

one target Namespace is permitted in a schema. Once the four namespaces are created

and working together as one unit via the main schema, the next challenge is how to make

the schema generic enough that it can validate any KG with custom relations. It is worthy

to note that for future KGs created with custom relations by outside parties to be syntax

validated successfully, they must use the “rel” namespace created by Pace University for

their custom relation elements names. The validation of any KG will require that its

relation elements be declared in the Pace KG schema. To solve this problem, a custom

Pace Knowledge Graph Syntax Validator (KGSV) was designed to validate any inputted

KG with custom relations before it is parsed by Pace Jena to facilitate visual navigation

capabilities to the Pace KG. The designed Pace KGSV will first determine if the relation

element in the KG have been declared in the Pace KG schema. If they are declared, the

algorithm moves to validate the KG. If there are new elements that are yet to be validated,

it employs the Multiple Pass algorithm to update the Pace KG schema by declaring the

new relations elements in Pace KG schema before validating the KG. During the research

to find a solution to syntax validate KGs, it was deemed that the designed Pace

University’s Syntax Validator should be able to syntax validate a subset of RDF/XML

serialized documents with or without custom relations since there is no suitable

12

RDF/XML centric syntax validator. This effort led to the addition of two more

namespaces, the “pace.xsd”, and the “xml.xsd” schemas to facilitate the syntax validation

of RDF/XML serialized documents inclusive with object and data properties. Three

functions were created in Pace Jena to facilitate visual navigation capabilities for the KG.

The first function will load and return an array list with all unique classes in the KG. The

second function will load and return all unique relations in the KG, and the third function

takes a class name and a relation name as arguments and returns all instances of the triple

namely a class instance as the subject, the custom relation as the predicate, and the

related class instance as the object. The Pace Jena has been extended to provide visual

navigation capabilities for the knowledge graph that can display all Classes and Relations

of the KG and provide navigation in Web and Application models based on any inputted

custom relation laden KG.

1.3 Problem Statement

Pace University knowledge graphs enable domain experts to codify their domain

knowledge more effectively for driving knowledge-based decision-making. Since the

authors can freely introduce new custom relations with various mathematical properties

and use them in the same document, knowledge graph breaks the limitation of XML

syntax so the standard XML syntax validator cannot validate knowledge graphs. Since a

real-life knowledge graph can easily contain hundreds or thousands of classes with

complex inter-relations, it is a major challenge for domain experts to review and validate

their knowledge representation, and hard for application developers to fully understand

the complex relations among the classes.

13

This research contributes firstly, a syntax validation algorithm for knowledge graphs with

custom relation declarations and usage in the same document, and secondly, a knowledge

graph visualization solutions based on an extension to the Pace Jena application and a

web based approach.

1.4 Dissertation Roadmap

Chapter 2 will review different types of Knowledge Representation. It will discuss

Knowledge Graph which is the result of extending OWL with custom relations. In this

chapter the Semantic Web, RDF, RDFS, OWL, Inference Engines, Apache Jena, and

Pace Jena will be discussed.

Chapter 3 will discuss Knowledge Graph Syntax Validation, Knowledge Graph Syntax

Extension, challenges in Syntax Validation, The Multiple Pass Syntax Validation

Algorithm with DOM Parsing, Knowledge Graph Syntax Validation Implementation, and

small knowledge graph validation examples.

Chapter 4 will discuss Visual Knowledge Graph Navigation that will encompass the

Generic API for Accessing Custom Relations, Web Based Knowledge Graph Navigation

– Design and Implementation, and the Application-Based Graph Navigation – Design and

Implementation.

Chapter 5 will focus on Experimental Validation using a sample Knowledge Graph for

Cyber Security Communications. This chapter will demonstrate the Syntax Validation for

the Cyber Security Communications sample as well as provide a visual navigation

14

capability to the Cyber Security Communications using the Web Based Knowledge

Graph Navigation, and the Application Based Knowledge Graph Navigation models.

Chapter 6 will give the conclusion of the dissertation highlighting the key contributions

and potential future works.

1.5 Conclusion

There is great anticipation for the Semantic Web to revolutionize the Internet but before

its full potential is realized, more research is needed to explore and advance existing

methods to create, validate, and visualize knowledge representation. For KG to be very

useful to domain experts seeking to build effective knowledge representation and

knowledge-based decision-making systems on the Web, challenges such as syntax

validation of custom relation laden KGs needs to be resolved and supported. The Pace

KG Syntax Validation provides a solution to this challenge. KGs, especially very large

ones, need a medium whereby they can be navigated to ascertain the correctness of the

KG and view the class relations embedded in it. Providing navigational ability to KGs

necessitated the design and implementation of the Pace Knowledge Graph Visual

Navigation applications. The extension of OWL to KG, the implementation of syntax

validation of KGs, and the provision of visual navigation capabilities to KGs will

contribute in facilitating the progression of the implementation of machine and human

synthesis on the World Wide Web.

15

Chapter 2

Literature Review

2.1 Knowledge Representation

2.1.1 Rule Based

Rule-based judgmental knowledge is allowed by rule-based inference systems about a

specific problem domain to be represented as a collection of discrete rules. Each rule

states that if certain assumptions are acknowledged, then certain conclusions can be

inferred [27]. W3C chartered the Rule Interchange Format (RIF) Working Group and

tasked them to produce extensions in addition to a core rule language which in

combination, allow rules to be translated between rule languages and subsequently

between rule systems [34]. The RIF Working Group is challenged to amalgamate the

needs of a diverse community including business rules and semantic web [34]. The

Semantic Web Rule Language (SWRL) includes a high-level abstract syntax for Horn-

like rules in both the OWL DL and OWL Lite sublanguages of OWL [35]. Rules are

modes for representing knowledge and most often goes beyond OWL1 and are typically

conditional statements in the Semantic Web for example the if then clauses [36]. Rules

are straight forward and are used for ontological mediation whereby resources are

mapped between different ontologies. Another reason for rules is that resources are

limited in that literals cannot be transformed such as concatenating a new string to a

newly discovered string and also complex translations are difficult to express. Rules can

16

be used to limit OWL’s open world assumption using a technique known as “Negation

As Failure” (NAF). SWRL is based on OWL1 DL and OWL Lite species and uses a

combination of Web Ontology Language (OWL) and Rule MarkUP Language (RuleML)

modeled on Horn clauses. The Horn clause is a representation of the “if-then” conditional

clauses also referred to as implications. An implication is the synthesis of an antecedent

and a consequent. Antecedents and consequents consist of zero and more atoms. An

atom is made up of any unary predicate (class inclusions such as “John belongs to class

Person”), binary predicate, equality, inequality or built-ins [36]. The main goal of SWRL

is to provide expressivity not permitted by OWL [36].

Below in Figure 6 is an example of SWRL

Figure 6: Example of SWRL

A Jena rule, another example of Rule based Knowledge Representation (KR) contains

a list of body terms or premises (the if clause) and a list of head terms or conclusions

(the then clause) [36]. Optionally, and for convenience, each rule may have a name

17

and a direction for hybrid rules. A Jena rule is bounded to a rule reasoner which in turn

is bounded to a schema and fires based on its configuration [36].

Figure 7 below is an example of Jena Rule [28].

Figure 7: Example of Jena Rule

Although there is no standard rule format for the Semantic Web currently, some of the

rule languages and engines that have been used include F-Logic, Prolog, and Jess. Even

though the W3C initiated the RIF Working Group in 2005 to produce a single rule for the

Semantic Web, it is unlikely that the establishment of a single rule for the Semantic Web

will materialize any time soon due to the fact that research and development in areas of

rules and rule-based system is ongoing and is yet to be completed [36].

2.1.2 Logic Based

Logic based KR formalism include Descriptive Logic, Modal Logic, and Non-monotonic

Logic. As stated by Franz Baader, “a knowledge representation formalism should allow

for the symbolic representation of all the knowledge relevant in a given application

domain” [29]. Knowledge representation formalism such as Semantics Network and

Frames was motivated by attempts to provide a structured representation of knowledge

[29]. Marvin Minsky who developed Frames and defined frames as “a data-structure for

representing a stereotyped situation” combined his introduction of the frame idea with a

18

general rejection of logic as a KR formalization [30]. According to Nilsson, “many

database systems and expert systems can be said to use declarative knowledge, and the

‘frames’ and ‘semantic networks’ used by several AI programs can be regarded as sets of

declarative sentences” [31].

Semantic Network was developed by Quillian for representing the semantics of natural

language that represents concepts and objects as nodes in a graph that has two different

edges. The first is a property edge for example assigning properties such as color to a

concept and the second an “IS_A” edge that introduces hierarchical relations among

concepts. Figure 8 depicts such edges [29].

The primary idea of Descriptive Logic (DL) is to commence with atomic concepts (unary

predicates) and roles (binary predicates) to build complex concepts and roles using a

small set of adequate constructors [30]. DL has been implemented in an array of

application domains such as natural language processing [38], configuration of technical

Head Hair Brown

Follicle

Eye

Retina

Brown

IS-A

IS-A color

IS-A

color

IS-A

Figure 8 : Semantic Network Edges

19

systems [39], software information systems [40], optimizing queries to databases [41],

and for support in planning [42].

“Modal logic is, strictly speaking, the study of the deductive behavior of the expressions

‘it is necessary that’ and ‘it is possible that’” [43]. Modal Logic KR extends propositional

logic by unary operators which are called a box and diamond operators [30]. The box □

operator implies “Necessarily” and the diamond ◇ property implies “Possibly”. “It will

snow today” is an example of a “Possibly” modality in that it implies the possibility to

snow today.

Non-monotonic Logic is KR language based on classical logics such as the First order

predicate in that if a statement ⏀ can be derived from a knowledge base then ⏀ can be

derived from any larger knowledge base [30]. An advantage of this property is that once

an inference is made it should not be revised when more information is received. A

disadvantage to this property is that an inconsistency may result when additional

information received contradicts the inference rendering the knowledge base useless. To

avoid this situation, when plausible conclusions are drawn from available knowledge and

the newly acquired knowledge show that some of the plausible conclusions are wrong,

the plausible conclusions are withdrawn and do not result in inconsistencies [30]. In the

Closed World Assumption (CWA) which by default assumes that the available

information is complete, if an assertion cannot be derived using classical inference from

the knowledge base, then CWA deduces to negation. Practical application of this

assumption is employed in relational databases and in Logic Programming languages

with “Negation of Failure” [30].

20

2.1.3 Ontology Based

Ontology is a vehicle to capture knowledge about a particular domain. It describes the

relations between the entities within that domain. Web Ontology Language OWL is one

of the most used languages for creating ontologies which is the latest recommendation of

W3C. The OWL consists of individuals, properties, and Classes.

Individuals: are instance of a class. For example, a Mathew is an individual or instance of

a Student class or Italy is an individual or instance of a Country class. Figure 9 shows the

Representation of Individuals.

Figure 9: Representation of Individuals

Properties: relate two individuals together. For example, Matthew livesIn England.

Properties have many characteristics such as inverse, reflexive, symmetric, transitive, or

asymmetric. Figure 10 shows the Representation of Properties.

21

Figure 10: Representation of Properties

Classes: can be described as a set that has individuals as members. Examples of a class

are Person, and Pet. Figure 11 shows the Representation of Classes.

Figure 11: Representation of Classes

OWL uses the Triple to describe the relations between two entities. Figure12 depicts this

relation.

22

Figure 12: Triple Example

The most popular tool for creating OWL document is the Protégé. There are many

versions of Protégé such as the Stanford University Protégé.

Stanford University Protégé: This protégé uses only one relation the “is-a” relation. For

example, “Dog is-a Pet”. In this triple, “Dog” is the subject, “is-a” is the predicate, and

“Pet” is the object. With “is-a” as the only relation to use between two classes, properties

may have to be used to capture a more vivid knowledge of the domain of interest. Figure

13 depicts an ontology created with the “is-a” relation of a class “Pet” and its subclasses

Figure 13: Pet Relations Using “is-a” Predicate

2.1.4 Knowledge Graph

Currently, there are a few systems or applications with different architectures and

objectives that are referred to as knowledge graphs. One such example is the Google

23

Knowledge Graph which is employed by Google to improve search accuracies and

relevancies and at times present Knowledge Graph boxes within the returned search

results to provide direct answers [57]. The Google Knowledge Graph Search API enables

users to query the Knowledge Graph database for specific information about entities

residing in the Knowledge Graph database [58]. Unlike the Google’s Freebase

Knowledge Graph Search API discontinued in December 2014 and now taken over by

Wikidata, which is part of Wikipedia, that allowed users to insert data in the knowledge

graph database, the new Google Knowledge Graph Search API allows users to only query

entities from the Knowledge Graph or Knowledge Vault databases and return results in

JSON-LD format [59].

The Pace University Knowledge Graph (KG) on the other hand is engendered by

extending OWL with custom relations. It is the extension of OWL with custom relations

that transforms OWL into a knowledge graph. The Pace University KG introduces

minimal syntax extension to OWL so it can benefit from existing tools for OWL. It has

the ability to relate two classes using various custom relations. Figure 14 depicts a Hand

class with custom created relations.

Figure 14: Hand Relations Using “partOf” Relation

24

It is evident that in addition to the “is-a” relation, the “partOf” custom relation was used

to relate two classes in a meaningful way.

2.2 Semantic Web

2.2.1 RDF

The Resource Description Framework (RDF) is a language recommended by W3C [24].

RDF is the basic block for supporting the Semantic Web and is all about vocabulary or

metadata. It is structured, machine readable, and capable of describing any resource

independent of any domain [13]. The basic blocks of RDF are Resource, Property, and

Statement.

Resource can represent anything or metadata. A Resource is anything being described by

RDF expressions. A resource can be any object such as a car, a person’s name, or an

address. A resource is identified by a uniform resource identifier (URI) and this URI is

used as a name of the resource. An example of a resource is

 http://www.yuchen.net/photography/SLR/#Nikon-D70 [13]

Property is a resource that has a name and can be used to describe a specific aspect,

characteristics, attributes, or relations of a resource. An example of a resource is

 http://www.yuchen.net/photography/SLR/#weight [13]

Statement is used to describe properties of resources. It has the following format known

as the Triple and Table 1 shows some examples of the Triple below [13].

http://www.yuchen.net/photography/SLR/#Nikon-D70
http://www.yuchen.net/photography/SLR/#weight

25

Table 1: Examples of the Triple

Subject Predicate Object

mySLR:Nikon-D70 mySLR:weight 1.4 lb

mySLR:Nikon-D70 mySLR:pixel 6.1 M

mySLR:Nikon-D50 mySLR:weight 1.3 lb

It is recommended that rdf:about be used in RDF document because it provides an

absolute URI for the resource and that URI is taken verbatim as the subject [13].

Figure 15, an example of rdf:about is displayed below.

Figure 15: rdf:about Example

2.2.2 RDFS

RDFS stands for RDF Schema. RDF by itself is just a data model and does not have any

semantics [25]. RDFS is used to create vocabulary to describe classes, subclasses and

properties of RDF resources and is a recommendation from W3C [26]. RDF associates

the properties it defines and can add semantics to RDF predicates and properties.

26

2.2.3 OWL

Recent work in AI is investigating the use of formal ontologies as a means of defining

content-specific concordances in the reuse and sharing of knowledge among software

entities [1]. Web Ontology Language (OWL) is a segment of the Semantic Web which

expands the current Web by extending current semantics to it [12]. OWL is based on the

RDF schema. OWL has three sublanguages OWL Lite, OWL DL, and OWL Full [71].

OWL Lite

 is a sublanguage of OWL DL

 supports only a subset of the OWL language

 has restrictions on class definitions such as the separation of classes, instances,

properties and data values

 has a restriction on mixing rdf and owl constructs

 has its owl:DataTypeProperty and owl:ObjectTypeProperty defined as disjoint

subclasses of rdf:property

 has OWL:class as a subset of RDF:class

 has “IntersectionOf” as the only class definition

 has Cardinality:0/1, MaxCardinality:0/1, and MinCardinality:0/1

 does not allow meta-modeling

 is not compatible to RDF

OWL DL

 supports same set of OWL language constructs

27

 has restrictions on class definitions such as the separation of classes, instances,

properties and data values

 has a restriction on mixing rdf and owl constructs

 has its owl:DataTypeProperty and owl:ObjectTypeProperty defined as disjoint

subclasses of rdf:property

 has OWL:class as a subset of RDF:class

 has class definition that includes “UnionOf”, “ComplementOf”, “IntersectionOf”,

and enumeration

 has Cardinality>=0, MaxCardinality>=0, and MinCardinality>=0

 does not allow meta-modeling

 is not compatible to RDF

OWL Full

 supports same set of OWL language constructs

 does not have restrictions on class definitions in that classes can be instances or

properties at the same time

 allows the mixing of rdf and owl constructs

 has its owl:ObjectProperty considered equivalent to rdf:property in that its

owl:DataTypeProperty which is a subset of rdf:property is also a subset of

owl:ObjectProperty.

 has its OWL:class and RDF:Class as equivalent

 has class definition that includes “UnionOf”, “ComplementOf”, “IntersectionOf”, and

enumeration

28

 has Cardinality>=0, MaxCardinality>=0, and MinCardinality>=0

 allows meta-modeling so that RDF and OWL constructs can be re-defined and

extended

 is compatible to RDF which indicates that a valid rdf document is also OWL Full

 document is equivalent to a valid rdf document in that owl:class and its sub

classes are equivalent to rdf:class and its sub classes

2.2.4 Inference Engines

Inference Engines are designed to draw conclusions by analyzing statements from a

repository of domain specific knowledge. Inference Engines uses a rule base to arrive at a

conclusion. Inference engines can simulate human thought by rule chaining and using

the knowledge embedded in ontology. Rule chaining inference can be categorized into

two types: forward chaining and backward chaining whereby forward chaining is when

the system starts with facts and progresses forward until it reaches a goal while backward

chaining entails that the system starts with an objective and works backwards to validate

the objective. Examples of inference engines are the HermiT [32], the Racer [51], and F-

OWL [52].

HermiT is a Protégé plugin and an open-source OWL reasoner “that can determine

whether or not the ontology is consistent, identify subsumption relations between classes”

[32].

Racer is a Descriptive Logic Inference Engine and a highly optimized inference system

which is freely accessible for research purposes. RICE is a tool for Racer that visualizes

taxonomies [51].

29

F-OWL is an inference engine for the semantic web language OWL and is based on F-

logic [52].

2.2.5 Apache Jena

Apache Jena developed by HP Labs is an open-source Java framework for building

Semantic Web and Linked-Data applications that comprises different APIs such as

SPARQL API, RDF API, Ontology API, and Inference API that interact together to

process RDF data [56]. Apache Jena provides comprehensive Java libraries to support

Java programmers develop RDF, RDFS, OWL and SPARQL related applications in

accordance to published W3C recommendations [55]. SPARQL is the query language

developed by the W3C RDF Data Access Working Group.

SPARQL API

Apache Jena Fuseki [63], an example of SPARQL API is a SPARQL server that provides

multi-purpose services such as:

 can be run as an operating system service

 can be run as a Java web application (WAR document)

 can be run as a standalone server

 it can provide security using Apache Shiro

 it can provide server monitoring and administration services via a user interface

ARQ [64], another example of SPARQL API is a Jena query engine that:

 supports the SPARQL RDF Query language

30

RDF API

 TDB [65], an example of RDF API is a component of Jena for RDF storage and query:

 that supports the full range of Jena APIs

 It can also be used as a high performance standalone RDF store on a single

machine

Ontology API

Jena uses Ontology API [66] to provide

 a consistent programming interface for ontology application development that is

independent of which ontology language being used in the programs

Inference API

The Jena Inference API [67]:

 is designed to accommodate a range of inference engines or reasoners that are

incorporated into Jena

 uses Inference engines to extract additional RDF assertions which encompass

some base RDF together with any elective ontological information as well as the

axioms and rules related with the reasoned

 main use is to support the use of languages such as RDFS and OWL and permit

additional facts to be deduced from instance data and class descriptions

31

2.2.6 Pace Jena

Pace University Jena is a simplified research application for Jena services developed by

Dr. Lixin Tao [21] that allows the parsing and processing of OWL documents. Pace Jena

has the capability to parse and print out entities such as classes, custom relations, object

properties, data properties, individual classes and others from KG documents. This

research has created four functions in Pace Jena. The first function will load and return an

array list with all unique classes in the OWL document. The second function will load

and return all unique relations in the OWL document, and the third function which takes

a class name and a relation name as arguments and return all instances of the Triple

namely a class instance as the subject, the custom relation as the predicate, and the

related class instance as the object. The forth function will validate the KG for well-

formedness and OWL syntax. Consult “Pace Jena Methods” section of this dissertation to

view the functions that this research contributed to Pace Jena. These functions were

developed to aid in the creation of the knowledge graph by providing syntax validation

and visual navigation of the class relations embedded in the OWL documents.

2.3 Conclusion

Knowledge Representation (KR) whose origins can be traced to AI in the 1950’s had

come a long way. There are Rule based and Logic based KRs. Rules are modes for

representing knowledge and most often goes beyond OWL1 and are typically conditional

statements in the Semantic Web for example the if then clauses. A Jena rule is an

32

example of rule based KR and contains a list of body terms or premises (the if clause) and

a list of head terms or conclusions (the then clause). SWRL is based on OWL1 DL and

OWL Lite species and uses a combination of OWL and RuleML modeled on Horn

clauses. The main goal of SWRL is to provide expressivity not permitted by OWL.

Modal Logic is an example of logic based KR and extends propositional logic by unary

operators which are called a box and diamond operators. It is the study of the deductive

behavior of the expressions ‘it is necessary that’ and ‘it is possible that’. Other forms of

logic based KR are Descriptive Logic and Non-monotonic Logic. OWL is a language that

could be created via tools such as Protégé. An example of such tool is the Stanford

Protégé developed by the Stanford Center for Biomedical Informatics Research (BMIR)

at the Stanford University School of Medicine [53]. Protégé 4 was developed by Matthew

Horridge of Manchester University [54] who currently, is a research staff at BMIR at the

Stanford University School of Medicine. OWL consists of classes that are related by

relations. Currently, the “is-a” is the only first-class relation used in Stanford Protégé to

relate classes. However, classes can be related to using object properties and data

properties. KG extends OWL and uses Pace Jena to facilitate the syntax validation and

visual navigation of KGs. Knowledge Representation via knowledge graphs can enable

domain experts to develop effective systems to aid in their quest to facilitate machine and

human cooperation on the Internet and extend the provisioning of essential functionalities

to users on the World Wide Web.

33

Chapter 3

Knowledge Graph Syntax Validation

3.1 OWL Serialization Options

OWL/XML is a format proposed by University of Manchester UK and it represents OWL

information in small XML structures similar to triples. OWL/XML does have standard

XSD syntax definition. But OWL/XML is not suitable for people to read or write because

it scatters information into many small structures. OWL/XML serialization has some

similarities to RDF/XML in that they both

 support the single first-class relation “is-a”

 use object and data properties to relate individual classes

 are controlled under the Rule Interchange Format (RIF) a developed technology

that facilitates the control of the different values of need across the Web

 can be expressed in Triples of subject, predicate, and object

OWL/XML and RDF/XML has differences as well that include

 OWL/XML has standard XSD syntax definition while RDF/XML does not have a

standard syntax definition because it also needs to support other formats such as

RDF, RDF Schema and N3

 OWL/XML does not have XML extensions to support custom relations while

RDF/XML supports custom relations

34

 RDF/XML can represent multiple languages in the same document while

OWL/XML does not

 RDF allows exportation of contents in different formats including RDF + XML

and N3 which is a non-XML format

A KG with custom relations serialized in the RDF/XML format can be converted to

OWL/XML format via a Protégé tool but the custom relations are not recognized and

therefore discarded. Though an OWL document can be serialized in both OWL/XML and

RDF/XML formats, this dissertation is focused on the RDF/XML serialization because

currently, there is no OWL/XML extension for supporting custom relations. Also

RDF/XML serialization is more concise and mostly used by researchers. RDF/XML was

designed for RDF, but it can also be used to represent OWL ontologies with dedicated

namespaces. It does not have a standard syntax definition because it also needs to support

RDF, RDF Schema, N3, Turtle, and many others. RDF is the foundation and each other

semantic web languages add syntax elements to it. RDF/XML can represent multiple

languages in the same document.

Pace University opted to extend RDF/XML to KG instead of OWL/XML because

 OWL/XML serialized documents are not suitable for people to read or write since

it scatters information into many small structures

 OWL/XML format has no extension for supporting custom relations but rather

emulates custom relations with complex object and data properties

 Most Knowledge Representation (KR) applications needs custom relations

 RDF/XML document is more concise and used by most researchers

35

3.2 Knowledge Graph Syntax Extension to RDF/XML

The main objective for syntax extension to support custom relations is to enable domain

experts (not IT experts) to be able to:

 declare custom relations and use them in the same document

 use custom relations directly and intuitively without using object property

emulation

 declare and apply custom relations in IDEs like Protégé

When an OWL document serialized in the RDF/XML format is extended with custom

relations, it is transformed into a KG. This extension can be categorized into three parts

namely: the Definition of Namespace, the Definition of Custom Relations, and the

Definition of Classes.

Definition of Namespace: An XML namespaces (xmlns) provides “a simple method for

qualifying element and attribute names used in Extensible Markup Language documents

by associating them with namespaces identified by URI references” [68]. A namespace is

declared using an attribute name such as xmlns or have “xmlns:” as a prefix. There are

five namespaces defined for a KG which are “rdf”, “owl”, “rel”, “xsd”, and “rdfs”

respectively as shown in the Definition of Namespace section of a KG depicted below.

<? xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF [

<!ELEMENT rdf:RDF (owl:Ontology,rel:NewRelation+,owl:Class+)>

<!ATTLIST rdf:RDF

xmlns:rdf CDATA #FIXED "http://www.w3.org/1999/02/22-rdfsyntax-ns#"

xmlns:owl CDATA #FIXED "http://www.w3.org/2002/07/owl#"

xmlns:rel CDATA #FIXED "http://www.pace.edu/rel-syntax-ns#"

xmlns:xsd CDATA #FIXED "http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs CDATA #FIXED "http://www.w3.org/2000/01/rdf-schema#"]>

Figure 16: A KG Definition of Namespace

36

Each of these namespaces has a qualifying name identified by a URI. For example, the

qualifying name for “rdf” namespace is “http://www.w3.org/1999/02/22-rdfsyntax-ns#”

and that for “owl” namespace is “http://www.w3.org/2002/07/owl#”.

Definition of Custom Relations: The “NewRelation” element is used to declare custom

relations created in the KG. The “rdf:about” element is used to provide an absolute URI

for the resource (custom relation). Also a custom relation can be of FunctionalRelation,

InverseFunctionalRelation, IrreflexiveRelation, ReflexiveRelation, SymmetricRelation,

and TransitiveRelation rdf type. Figure 17 depicts the custom relations definition.

<? xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rel:NewRelation [

<!ELEMENT rel:NewRelation (rdf:type*)>

<!ATTLIST rel:NewRelation rdf:about CDATA #REQUIRED>

<!ELEMENT rdf:type EMPTY>

<!ATTLIST rdf:type rdf:resource

(&owl;AsymmetricRelation|&owl;FunctionalRelation|&owl;InverseFunctionalRelation|&owl;

IrreflexiveRelation|&owl;ReflexiveRelation|&owl;SymmetricRelation|&owl;TransitiveRela

tion) #REQUIRED>

]>

Figure 17: A KG Custom Relations Definition

Definition of Classes: The “rdf:about” element is used to provide an absolute URI for

the resource (class) and the “rdf:resource” is used as a name for the resource (class).

Figure 18 depicts the class definition of a KG.

<? xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE owl:Class [

<!ELEMENT owl:Class (rel:NewRelationName*)>

<!ATTLIST owl:Class rdf:about CDATA #REQUIRED>

<!ELEMENT rel:NewRelationName EMPTY>

<!ATTLIST rel:NewRelationName rdf:resource #REQUIRED>

]>

Figure 18: A KG Classes Definition

Currently, there is no known RDF/XML schema validator and the syntax validation of

OWL documents serialized in the RDF/XML format is a considerable challenge. Since

37

knowledge graph breaks standard XML syntax rules to support easier introduction of

custom relations, special algorithms are needed to support syntax validation and

visualization. When the OWL document serialized in RDF/XML format is extended to a

KG with custom relations, the syntax validation problem is further compounded because

these custom relation elements needs to be declared and validated by an XSD schema.

Also the custom relations are supposed to be declared in a XSD schema that will be used

to validate the KG. The generated RDF/XML serialized OWL document has six distinct

namespaces. They are “rdf”, “rdfs”, “owl”, and “rel”, “pace”, and “xml” namespaces

respectively. Since an “.xsd” schema can only have one target Namespace, a unique

method is needed to be devised for all six namespaces to work together as a single

schema. By experimentation it was discovered that a separate schema needs to be created

for each namespace. The main schema will be the “rdf” namespace called “main.xsd”

and will import the “rel.xsd”, “rdfs.xsd”, “pace.xsd”, “owl.xsd”, and “xml.xsd” schemas.

The “rel.xsd” schema will import the “main.xsd”, “pace.xsd”, “rdfs.xsd”, “xml.xsd”, and

the “owl.xsd” schemas, the “owl.xsd” schema will import the “main.xsd”, “xml.xsd”,

“pace.xsd”, “rdfs.xsd”, and “rel.xsd” schemas, the “xml.xsd” schema will import the

“main.xsd”, the “rdfs.xsd”, “pace.xsd”, “rel.xsd”, and the “owl.xsd” schemas, the

“pace.xsd” will import the “rel.xsd”, “main.xsd”, “rdfs.xsd”, “xml.xsd”, and “owl.xsd”

schemas and subsequently, the “rdfs.xsd” will import the “rel.xsd”, “main.xsd”,

“pace.xsd”, “xml.xsd”, and “owl.xsd” schemas. By this configuration, all six namespaces

persist in each individual schema even though only one target Namespace is permitted in

a schema. Once the six namespaces are created and working together as one unit via the

main schema as determined from an example of “xml.xsd” shown below in Figure 19, the

38

next challenge is how to make the schema generic enough that it can validate a subset of

RDF/XML centric document with custom relations or without custom relations.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

target Namespace="http://www.w3.org/XML/1998/namespace"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:pace="http://csis.pace.edu/semweb#" xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#">

 <xs:import namespace="http://csis.pace.edu/semweb#" schemaLocation="pace.xsd"/>

 <xs:import namespace="http://www.pace.edu/rel-syntax-ns#" schemaLocation="rel.xsd"/>

 <xs:import namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

schemaLocation="main.xsd"/>

 <xs:import namespace="http://www.w3.org/2000/01/rdf-schema#"

schemaLocation="rdfs.xsd"/>

 <xs:import namespace="http://www.w3.org/2002/07/owl#" schemaLocation="owl.xsd"/>

 <xs:attribute name="base" type="xs:anyURI"/>

</xs:schema>

Figure 19: xml.xsd Schema

The Pace RDF/XML XSD schema is shown in Figure 20.

Figure 20: Pace Custom Schema

Below, Figure 21 portrays the main.xsd schema.

Figure 21: main.xsd Schema Part of Pace Schema

39

Figure 22 below shows the five imported namespaces namely rel.xsd, main.xsd, rdfs.xsd,

owl.xsd, and xml.xsd in to pace.xsd to persist the five namespaces in the pace.xsd

schema.

Figure 22: pace.xsd Schema with Imported Namespaces

The rdfs.xsd, owl.xsd, xml.xsd, and rel.xsd all follow the 2 examples shown in Figure 21

and 22 and import five namespaces into each other and persist their namespaces. Consult

Appendix A to view all the six XSD schema documents in its entirety.

3.3 RDF/OWL Subset for Supporting Knowledge Graph Research

Since there is no standard syntax definition for RDF/XML, and the domain experts (not

IT experts) can easily introduce bugs, there is a need for a clear syntax specification for a

subset of RDF/XML to support this research on knowledge graphs. Custom relation

declaration in a Knowledge Graph can be broken into two parts namely: Definition of

Custom Relation and Application custom relations to Classes. Figure 23 shows an

example of the definition of the “partOf” custom relation.

40

Figure 23: Custom Relation Definition Example

Presented below in Figure 24 is an example of the syntax specification of a KG using the

class relations example, the syntax of the classes “Finger” and “Hand” which are the

nodes are linked with the custom relation “partOf” which is the predicate in the RDF

triples of subject predicate and object. Another example in Figure 24 is the class “Hand”

is related to class “Body” using the custom relation “partOf”. As shown below in Figure

24, “Finger” “partOf” “Hand” is an example of asymmetric relation” since a Finger is

part of the Hand but the Hand cannot be part of the Finger. Also, “Hand” “partOf”

“Body” is an asymmetric relation since “Hand” is part of “Body” but the “Body” cannot

be part of the “Hand”. Since “Finger” is part of “Hand” and “Hand” is part of “Body”, it

can be inferred that “Finger” is part of “Body”. Therefore “Finger” “partOf” “Body” is a

transitive relation.

Figure 24: Application Custom Relations to Classes Example depicting an Asymmetric

and Transitive Relations

Below, Figure 25 portrays examples of asymmetric and symmetric custom relations.

// Relations

 -->

<rel:NewRelation rdf:about=http://pace.edu/claude#partOf>

 <rdf:type rdf:resource="TransitiveRelation">

 <rdf:type rdf:resource="AsymmetricRelation">

// Classes -->

<!-- http://pace.edu/claude#Anatomy -->

 <owl:Class rdf:about="http://pace.edu/claude#Finger">

 <rel:partOf rdf:resource="http://pace.edu/Hand"/>

</owl:Class>

<owl:Class rdf:about="http://pace.edu/claude#Hand">

 <rel:partOf rdf:resource="http://pace.edu/claude#Body"/>

 </owl:Class>

41

Figure 25 Asymmetric and Symmetric Custom Relations Example

Figure 26 shows that class “Daughter” is related to class “Father” using the “childOf”

asymmetric custom relation since “Daughter” is child of “Father” but “Father” cannot

be child of “Daughter”. The symmetric relation of class “Daughter” to class “Brother”

via custom relation “siblingOf” is also shown in Figure 26. Class “Daughter” is sibling

of Class “Brother” and it can be inferred that Class “Brother” is also sibling of Class

“Daughter” who is a child to Class “Father”.

Figure 26: Asymmetric and Symmetric Class Custom Relations Example

Since in Figure 26 class “Daughter” is related to class “Brother” via a functional custom

relation “siblingOf”, it can be inferred that class “Brother” is a brother to Class

“Daughter” through the functional custom relation “siblingOf” as depicted in Figure 27.

// Relations

 -->

<rel:NewRelation rdf:about=http://pace.edu/claude#childOf>

 <rdf:type rdf:resource="AsymmetricRelation">

 <rdf:type rdf:resource="FunctionalRelation">

<rel:NewRelation rdf:about=http://pace.edu/family#siblingOf>

 <rdf:type rdf:resource="SymmetricRelation">

 <rdf:type rdf:resource="FunctionalRelation">

// Classes -->

<!-- http://pace.edu/claude#Family -->

 <owl:Class rdf:about="http://pace.edu/claude#Daughter">

 <rel:childOf rdf:resource="http://pace.edu/Father"/>

</owl:Class>

<owl:Class rdf:about="http://pace.edu/claude#Daughter">

 <rel:siblingOf rdf:resource="http://pace.edu/claude#Brother"/>

 </owl:Class>

42

Figure 27: Functional Class Custom Relations Example

Since in Figure 26 shows that class “Daughter” is related to class “Father” using the

“childOf” functional custom relation, it can been inferred that class “Father” is the parent

of class “Daughter” via the Inverse functional custom relation of “parentOf” as portrayed

in Figure 28.

Figure 28: Inverse Functional Class Custom Relations Example

Figure 29 below shows a “Person” class that relates to itself via the reflexive custom

relations of “isKnownBy”.

Figure 29: Reflexive Class Custom Relations Example

In Figure 26, class “Daughter” is related to class “Father” via the custom relation

“childOf”. However class “Daughter” cannot relate to itself using the same custom

relation “childOf” and likewise class “Father” cannot relate to itself using the same

// Classes -->

<!-- http://pace.edu/claude#Family -->

<owl:Class rdf:about="http://pace.edu/claude#Brother">

 <rel:siblingOf rdf:resource="http://pace.edu/claude#Daughter"/>

 </owl:Class>

// Classes -->

<!-- http://pace.edu/claude#Family -->

<owl:Class rdf:about="http://pace.edu/claude#Father">

 <rel:parentOf rdf:resource="http://pace.edu/Daughter"/>

</owl:Class>

// Classes -->

<!-- http://pace.edu/claude#Human -->

<owl:Class rdf:about="http://pace.edu/claude#Person">

 <rel:isKnownBy rdf:resource="http://pace.edu/Person"/>

</owl:Class>

43

custom relation “childOf”. So it can be inferred that class “Daughter” is “notChildOf”

class “Daughter” and class “Father” is “notChildOf” class “Father” as shown in Figure 30

Figure 30: Irreflexive Class Custom Relations Example

An example of how an RDF/XML document is validated is presented below. Figure 31

shows five namespaces of an RDF/XML document.

Figure 31: Namespaces in an RDF/XML Document Example

In this example, a set of XSD documents are needed to be created to meet the validation

requirement for this KG document with five namespaces. The XML, RDF, RDFS, OWL,

REL documents with “.xsd” extension were therefore created. Each XSD document

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rel "http://www.pace.edu/rel-syntax-ns#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.pace.edu/claude#"

 xml:base="http://www.pace.edu/claude"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <owl:Ontology rdf:about="http://www.pace.edu/claude"/>

// Classes -->

<!-- http://pace.edu/claude#Family -->

 <owl:Class rdf:about="http://pace.edu/claude#Daughter">

 <rel:notChildOf rdf:resource="http://pace.edu/Daughter"/>

</owl:Class>

<owl:Class rdf:about="http://pace.edu/claude#Father">

 <rel:notChildOf rdf:resource="http://pace.edu/claude#Father"/>

 </owl:Class>

44

would cover all elements and attributes that start with the same prefix. For example in

Figure 32,

<owl:Class rdf:about="http://www.pace.edu/claude#Body">

Figure 32: Class Element Example

The element Class will be defined in “owl.xsd” document and the attribute about will be

defined in “rdf.xsd” document. In each XSD document, the other XSD documents will be

imported into it, so when the RDF/XML owl document is being validated, only one of the

XSD document needs to be inputted as the argument as shown in Figure 33.

Figure 33: XSD Document as Argument Example

If the internet is inaccessible and cannot be connected to, a new xml.xsd file needs to be

created and stored locally to meet validation as shown in Figure 34.

Figure 34: Create Local xml.xsd Example

3.4 Knowledge Graph Syntax Validation Algorithm

The next step is how to surmount the challenge of validating a KG document. Through

experimentation as explained in the previous chapter, it was determined that individual

<xs:import namespace="http://www.pace.edu/rel-syntax-ns#" schemaLocation="rel.xsd"/>

<xs:import namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#" schemaLocation="main.xsd"/>

<xs:import namespace="http://www.w3.org/2002/07/owl#" schemaLocation="owl.xsd"/>

<xs:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="http://www.w3.org/2001/xml.xsd"/>

<xs:import namespace="http://www.pace.edu/rel-syntax-ns#" schemaLocation="rel.xsd"/>

<xs:import namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#" schemaLocation="main.xsd"/>

<xs:import namespace="http://www.w3.org/2002/07/owl#" schemaLocation="owl.xsd"/>

<xs:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="xml.xsd"/>

<xs:import namespace="http://www.pace.edu/rel-syntax-ns#" schemaLocation="rel.xsd"/>

<xs:import namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#" schemaLocation="main.xsd"/>

<xs:import namespace="http://www.w3.org/2002/07/owl#" schemaLocation="owl.xsd"/>

<xs:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="http://www.w3.org/2001/xml.xsd"/>

45

namespace XSD schemas needed to be created to persist in the main.xsd schema. Also it

was determined that for the custom relation to be syntax validated, it needed to be

declared in the “owl.xsd” and “rel.xsd” schema documents with appropriate syntax

before it is syntax validated with the same XSD schemas. Using a

“cyberSecurityCommunications.owl” KG document which is the main Use Case for this

research, the six custom schemas were created which consist of the main.xsd for the “rdf”

namespace, rdfs.xsd for “rdfs” namespace, rel.xsd for the Pace University’s “rel”

namespace, xml.xsd for the “xml” namespace, pace.xsd for the Pace University

“semweb” namespace and the owl.xsd for the “owl” namespace. Figure 35 depicts the

flow chart for validating a KG or a supported RDF/XML document with custom created

main.xsd, owl.xsd, rel.xsd, pace.xsd, xml.xsd, and rdfs.xsd schemas in conjunction with

functions in Pace Jena. These schemas can be viewed in its entirety in Appendix A and

formed the pillars to syntax validate any KG with custom relations and a supported

RDF/XML serialized document with or without custom relations.

Figure 35: KG Syntax Validation Flowchart

46

After getting the “cyberSecurityCommunications.owl” KG document syntax validated

successfully, the next challenge is to design an algorithm that will use these six

namespaces and syntax validate a subset of supported RDF/XML serialized KG. First to

be able to update the “owl.xsd” document in real time in-order to syntax validate a KG on

the fly, a list of all relations in the KG needs to be retrieved and in a loop each custom

relation is verified if it has indeed been declared in “owl.xsd” and “rel.xsd” schema or is

yet to be declared. A function was created in Pace Jena as depicted in Figure 36 to

retrieve the custom relations into an array list which can then be printed to console or

piped into a syntax validation system.

Figure 36: Process Flow Retrieving Custom Relations Using Function In Pace Jena

An algorithm displayed in Figure 37 was designed to syntax validate a supported inputted

KG.

47

This algorithm though successful in validating KGs with new custom relations, it failed

to validate a KG that had its custom relations declaration in owl.xsd schema out of sync

to the order in which they were declared in the KG document. This situation is

manifested when any of the custom relations retrieved for declaration is already declared

in the “owl.xsd” schema resulting in the order of the declaration to be out of order and no

longer declared in a “First In First Out” (FIFO) manner. This prompted the algorithm of

Figure 37 to be further evaluated. Upon careful examination and research, a problem

related to the FIFO ordering of custom relations in “owl.xsd” schema was identified and

is presented below. First, it is important to establish that it is beneficial to create the

Read KG

Get All Relations into List A

Loop through List A

Is List A
exhausted

Is relation
element found
in owl.xsd?

Is List A
exhausted?

Put Relation yet to be declared into List B

Check If List B is empty

Is List B empty?

Determine Line
Number to insert
Relation element
by locating last
element’s tag line
for owl.xsd and
rel.xsd

Update
owl.xsd
and
rel.xsd

Call DomParse to Validate KG

NO
NO

YES

YES

NO

YES

NO

Figure 37: Algorithm to Syntax Validate Any KG on the Fly

48

“rel.xsd” and “owl.xsd” with pre-populated custom relations from an initial KG so that it

is easier to locate the line numbers to insert new custom relations to be declared and

validated using the pre-populated custom relations as a matching token to be identified to

insert the new custom relations with appropriate syntax. Consider a Use Case of two

custom relations namely “partOf” and “typeOf” in a new KG named KG_B. The

“partOf” custom relation relates two classes “Engine” and “Car” in a triple as [Engine

partOf Car]. The “typeOf” custom relation is used to relate two other classes “Cessna”,

and “Airplane” respectively in the triple as [Cessna typeOf Airplane]. So in the array list

of the custom relations named array list1, “partOf” is the first element and “typeOf” is the

second element of array list1. A KG named KG_A was used as the initial KG to create

the “rel.xsd” and “owl.xsd” schemas and syntax validated successfully with two custom

relations namely “typeOf” and “includedIn” respectively and are declared in “owl.xsd”

in that order. When KG_B is syntax validated, the “partOf” is written to “owl.xsd” and

“rel.xsd” because it is a new relation and needs to be declared. The “typeOf” relation is

not written to “owl.xsd” or “rel.xsd” because it has already been declared by KG_A.

However during the syntax validation before calling “DomParse” program of the

Multiple Pass Syntax Validation algorithm, an error will occur because the “typeOf” is

encountered first before “partOf” in the “owl.xsd” schema (it is expecting the FIFO order

of “partOf” then “typeOf” in the “owl.xsd”). To illustrate further the “owl.xsd” schema

will now have the relations declared in this order (“typeOf”, “includedIn”, and “partOf”).

To solve this problem, when a new custom relation encountered in a loop is flagged to be

declared in “owl.xsd” and “rel.xsd” schemas, that custom relation name is used to check

in the array list holding all custom relations retrieved from the KG and looks for the next

49

or adjacent custom relation name and retrieves it. It determines if the follow-up custom

relation has been declared in “owl.xsd” and if so, gets its line number from the line

number array list which has been retrieved from the “owl.xsd” schema using the

corresponding index of the declared custom relation in the declared custom relation’s

array list. The retrieved line number is decremented by one and the custom relation to be

declared is inserted at that line number with appropriate syntax thus maintaining the

FIFO order in the declarations of the new custom relation. This process is repeated if

warranted for other custom relations that need to be updated. In our use case the order of

the relations will now be (“partOf”, “typeOf”, and “includedIn”) in conformity with the

FIFO custom relation order of the custom relations as listed in the Classes portion of

KG_B knowledge graph. Note that for the declaration of custom relations in “rel.xsd”

schema, the FIFO ordering does not apply. The only requirement is that the new custom

relations be declared with appropriate syntax. After the KG has been validated, the

“owl.xsd” and “rel.xsd” are reverted to their original templates (that has the initial custom

relations of KG_A pre-populated and declared) by replacing them with fresh copies from

a template folder. The challenge to check the custom created schema if the element

names have been declared and if not, declare them instantaneously before the KG syntax

is validated is resolved by using the Multiple Pass Syntax Validation Algorithm which

encompasses the resolution of the FIFO custom relations declaration problem of “owl.xsd”

schema. A revised algorithm was designed as shown in Figure 38 below which depicts

the Multiple Pass Syntax Validation Algorithm with DOM Parsing used by

“ValidateKGraph” function of Pace Jena. Table 2 describes a pseudo code for Multiple

Pass Syntax Validation Algorithm with DOM Parsing.

50

Table 2: Multiple Pass Syntax Validation Pseudo Code

Require: KG

Ensure: Updated KG

1: Read KG

2: Get all relations into listA

3: for  relations in ListA do

4: if Relation tag is in owl.xsd then

Read KG

Get All Relations into List A

Loop through List A

Is List A
exhausted
?

Is relation
element
found in
owl.xsd?

Is List A
exhausted?

Put Relation yet to be declared into List D

Check If List D is empty

Is List D
empty?

Determine
Line Number
to insert by
locating the
last element’s
tag number

Update
owl.xsd and
rel.xsd with
new
relations

Call
DomParse to
Validate KG

NO
NO

YES

YES NO

YES

NO

Put
Relati
ons
into
Declar
ed List
B

Find
Line
No
and
put
into
lineNo
List C

YES

Did
validation
of KG
against
XSD
passed?

Is
adjacent
Relation
in List D
found in
List B?

Check if
the
adjacent
Relation
name to
the
current
is in
ListD

Get LineNo
of
Adjacent
Relation
decrement
by 1 and
return that
number to
be used to
insert new
Relation in
owl.xsd

KG
validatio
n passes

YES

KG
Validation
Fails

Revert owl.xsd and
rel.xsd to original form

NO

Return
verdict of KG
validation

Determine
LineNo to be
used to insert
new Relations in
rel.xsd by
locating the last
element tag

NO

YES

Figure 38: Multiple Pass Syntax Validation Algorithm with DOM

Parsing

51

5: Put in listB

6: Get line number in owl.xsd and put in ListC

7: end if

8: if Relation tag is not in “owl.xsd” then

9: Put relation tags into listD to be declared as new relation

10: end if

11: end for

12: while ListD is not empty do

13: if the adjacent relation name to the intended release to be updated is in ListB

14: Use the corresponding index to get the lineNo from listC, decrement lineNo

by 1 to be used to update relation in “owl.xsd”

15: else locate last element tag in “owl.xsd” and get the lineNo to be used to update

relation in “owl.xsd”

16: end if

17: Locate the last element tag in “rel.xsd” and get line number to be used to

update relation in “rel.xsd”

18: Update “rel.xsd” and “owl.xsd” schemas by declaring new relation tag using

determined lineNos.

19: end while

20: Call “DomParse.java” with “main.xsd” schema, KG document, -print flag as

arguments

21: Validate KG against XSD

22. Revert “rel.xsd” and “owl.xsd” and to original state by discarding changes after

52

validation

23: Return verdict of validation whether successful or unsuccessful

When an inputted knowledge graph document is sent for knowledge graph syntax

validation, the “getFIFORelFromKG” function of “ValidateKnowledgeGraph” which is

part of “ValidateKGraph” function of Pace Jena is used to retrieve all custom relations

into an array list collection. In a loop each relation is verified in the “owl.xsd” schema

document to ascertain if it is declared in the owl schema (“owl.xsd”). If the relation tag is

found in “owl.xsd” document, it means it has already been declared so no declaration is

needed but it is put into an array list and its line number is determined and put into

another array list as well and the next relation element in the array list is fetched and

checked if it is declared in the “owl.xsd” schema. If it is determined that the relation is

not declared and therefore not found in “owl.xsd”, the relation is put in a new relation

array list collection. This process is repeated until the first array list is exhausted. A

second Pass is initiated if new relations are needed to be declared before the KG is

validated. This is determined by testing if the new relation array list’s size is greater than

zero. If the new relation array is determined to contain custom relations to be declared,

then in a loop, each custom relation is declared in the “rel.xsd” and “owl.xsd” documents.

However for the declaration in the “owl.xsd”, the adjacent custom relation to the custom

relation to be declared is first determined by checking the array list holding all relations

in a FIFO order and then check the array list holding the already declared relations if

there is a match and if there is, the corresponding line number is fetched, decremented by

1 and will be used to update the “owl.xsd”. The decrementing by 1 ensures that the newly

declared relation will precede the adjacent relation found to be already declared in the

53

“owl.xsd” document. Before the new relations tag in the “rel.xsd” document is declared

by updating the schema document, the position (line number) to insert and declare the

new relation had to be determined and a function

ValidateKnowledgeGraph.getTokenNumber(String relation, String owlSchema, String

tokenStr) imported into “ValidateKGraph” function of Pace Jena is used to return the line

number that the relation tag to be declared is to be inserted. It then updates the “rel.xsd”

document using theValidateKnowledgeGraph.insertStringToFile(String fileName, int

lineno, String lineToBeInserted) function. The same process is repeated for the “owl.xsd”

schema using the line number derived as described above. If the adjacent relation to the

relation to be declared is not found to be declared in “owl.xsd”, the same method used to

find the insertion point by determining the line number for “rel.xsd” is used for updating

“owl.xsd” as well. Note that though the String relation will remain the same for both

schema documents, their document names and “tokenStr” which is a pattern matching

string will differ since the declaration syntax of the relation element in the “rel.xsd” and

“owl.xsd” have different formats and will require different matching tokens to locate the

position (line number) to insert the relation element. The update of both the “rel.xsd” and

“owl.xsd” schemas documents is repeated until the new relations array list is exhausted.

Once the update and declaration of new relations elements are completed, the third Pass

is initiated. The “DomParse” program is called with the KG document and the “main.xsd”

schema as arguments into the main function of “DomParse” to validate the syntax of the

KG document. Note that the “main.xsd” document imports the ‘rel.xsd’, the “owl.xsd”,

“pace.xsd”, “xml.xsd”, and the “rdfs.xsd” documents respectively. With this

54

configuration, the “rel”, “owl”, “pace”, “xml”, and “rdfs” namespaces persists in the

“main.xsd” document.

A KG Syntax validation was tested using the “animal.owl” KG as shown in Figure 39. It

was then put through ValidateKGraph function of Pace Jena. The validation was run with

the output shown in Figure 40.

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rel "http://www.pace.edu/rel-syntax-ns#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.pace.edu/animal#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <owl:Ontology rdf:about="http://www.pace.edu/animal"/>

 <!--

 // Relations

 -->

 <rel:NewRelation rdf:about="http://www.pace.edu/animal#isHuntedBy"/>

 <!--

 // Classes

 -->

 <!-- http://www.pace.edu/animal#Antelope -->

 <owl:Class rdf:about="http://www.pace.edu/animal#Antelope">

 </owl:Class>

 <!-- http://www.pace.edu/animal#Buffalo -->

 <owl:Class rdf:about="http://www.pace.edu/animal#Buffalo">

 </owl:Class>

 <!-- http://www.pace.edu/animal#Lion -->

 <owl:Class rdf:about="http://www.pace.edu/animal#Lion">

 <rel: isHuntedBy rdf:resource="http://www.pace.edu/animal#Buffalo"/>

 <rel: isHuntedBy rdf:resource="http://www.pace.edu/animal#Antelope"/>

 </owl:Class>

 <!-- http://www.pace.edu/animal#Skin -->

 <owl:Class rdf:about="http://www.pace.edu/animal#Skin">

 </owl:Class>

 <!-- http://www.pace.edu/animal#Tiger -->

 <owl:Class rdf:about="http://www.pace.edu/animal#Tiger">

 <rel: isHuntedBy rdf:resource="http://www.pace.edu/animal#Buffalo"/>

 </owl:Class>

</rdf:RDF>

<!-- Generated by the OWL API (version 3.5.1) http://owlapi.sourceforge.net -->

Figure 39: “animal.owl” Knowledge Graph

55

Figure 40: Output for “animal.owl” Knowledge Graph Syntax Validation

3.5 Conclusion

The Syntax Validation applies to a supported subset of RDF/XML serialized documents

consisting of KGs with custom relations and an example of a non-custom relation

XML/RDF document. It was tested on the Windows platform only and not on other OS

platforms. Note that the “main.xsd” and “rdfs.xsd” schemas are not updated but are

required for the proper functioning of the Pace custom schema by working in tandem

with the “owl.xsd”, “pace.xsd”, “xml.xsd”, and “rel.xsd” schemas. Knowledge graph

syntax validation was a challenge in that the Pace KG with custom relations could not be

validated using W3C OWL schema because it is RDF/XML serialized. There is an RDF

Validator on the Internet called the W3C RDF Validation Service [60] which takes an

RDF/XML serialized owl document and parses the owl document in triples of the data

model of subject, predicate, and object but this “service does not do any RDF Schema

Specification validation” but rather it is an RDF parser [61]. Also the custom relations

embedded in the knowledge graph could not be validated until the use of the Multiple

Pass Syntax Validation (MPSV) Algorithm with DOM Parsing implemented in the

56

ValidateKGraph function of Pace Jena. The knowledge graph syntax validation was also

made possible by designing a custom Pace Schema using a scheme of creating multiple

schemas namely, “main.xsd”, “rdfs.xsd”, “xml.xsd”, “pace.xsd”, “rel.xsd”, and “owl.xsd”

respectively. This approach was due to the fact that only one target Namespace is

permitted per schema but the knowledge graph has multiple namespaces requiring the

“main.xsd” schema to import the others schema into itself as well as the other schemas

also importing the others into themselves to persist the multiple namespaces in the

“main.xsd” schema.

57

Chapter 4

Visual Knowledge Graph Navigation

4.1 Generic API for Accessing Custom Relations

It is important that visual navigation and visualization be provided for KGs because it is

very hard for domain experts to have a global view of their knowledge representation. Since

a real-life knowledge graph can easily contain hundreds or thousands of classes with

complex inter-relations, it is a major challenge for domain experts to review and validate

their knowledge representation. It is hard for application developers to fully understand the

complex relations among the classes especially very large KGs. IDEs like Protégé with a

plugin such as OWLViz may not be suitable to display all class relations and the elements

embedded in KGs it its entirety. Pace Extended Protégé is a generic API for accessing the

custom relations. If the KG is small it is easy to see the classes and custom relations via

OWLViz as shown in Figure 41. However if the KG is large, it is difficult to navigate the

class relations and see all the inter-connections. Figure 42 shows Threat Types of cyber

security communications and if more classes and custom relations are added say just about

50 more, it becomes increasing evident that the diagrammatical display will get crowded

and make it difficult to navigate the numerous connections.

58

Figure 41: OWLViz Display of Classes and Relations within The “animal.owl”

Knowledge Graph

Figure 42: Threat Types Relations

59

4.2 Web Based Knowledge Graph Navigation

Before the visual navigation and visualization application can be developed, the entities in

the KG namely the classes and the custom relations embedded in the KG needs to be

retrieved via parsing and put into a collection lists so that it can be acted upon. The

“readOntology” function of Pace Jena takes an RDF/XML serialized document as input and

uses print functions in Pace Jena to print the classes, custom relations, properties, data types,

and learning orders to console via the printClasses(), printRelations(), printProperties(),

printDataTypes(), and printLearningOrders() functions respectively. Though these entities

can be printed to console via their corresponding functions, it was not suitable to be used in

a full scale visual navigation and visualization application. This prompted the creation of

three functions in Pace Jena namely the getClassNames(), getRelations(), and

getClassRelClass() to facilitate the visual navigation and visualization of the KG. The first

function will load and return an array list with all unique classes in the KG. The second

function will load and return all unique relations in the KG. The third function which takes

a class name and a relation name as arguments and return all instances of the triple

namely a class instance as the subject, the custom relation as the predicate, and the related

class instance as the object. After testing these functions using different KG as inputs and

verifying that the returned output was correct and consistent based on the function under test,

the work flow of the visual navigation and visualization application design was embarked.

Since it is prudent to syntax validate any KG to be well formed and OWL syntactically

correct before using it in any application, the work flow of the visual navigation and

visualization application was designed to first do the syntax validation first and if the

validation is successful, it then proceeds to provide visual navigation and visualization

60

capabilities. The KG visual navigation and visualization work flow is portrayed in Figure 43

below.

Figure 43: KG Visual Navigation Work Flow Web Model

The WebBrowser program was designed as an HTML version of the visual navigation

application for the custom relation laden KG and takes as an input any supported KG

document and uses functions created in a revised Pace Jena to syntax validate the KG and

if it is successfully validated, all classes and relations are retrieved in the KG document

and displayed in an html page using a program that creates the class relations on the fly.

This html application presents to the user, the ability to navigate the classes and custom

relations of the KG. After the KG has been syntax validated, visual navigation is

provided by running the “WebBrowser” program. Presented below in Figure 44 is the

process flow of “WebBrowser” program.

Input KG into HTML Visual
Navigation Application

Validate KG Using
ValidateKGraph function of

Pace Jena

Parse KG into Classes and
Relations using getClassNames

and getRelations functions
respectively in Pace Jena

Call WebBrowser.java to Create
Navigation GUI on the fly

61

Figure 44: Flow Chart KG Visual Navigation Implementation

The process flow first takes a KG document as argument, syntax validate the KG using

the validateKGraph() function of Pace Jena that returns the syntax validation verdict and

if successful parse the KG into classes and relations array list using the getClassNames()

and getRelations() functions of Pace Jena. It then sorts the array lists in alphabetical order

and loops through the classes and relations lists and create their individual html pages on

the fly. It then creates a Class page and in a loop of the classes’ array list, creates a

hyperlinked class with links to all its related classes instantaneously using the

getClassRelClass() function of Pace Jena. It then creates a Relation page and in a loop of

the relations’ array list, creates a hyperlinked relation with links to all classes it is related

Take KG file as input

Validate KG by calling

validateKGraph() of Pace Jena

Parse KG into Classes and Relations arraylists

using getClassNames() and

getRelations()functions in Pace Jena

Loop through the Classes and create each individual Class’ html

pages on the fly. Loop through the Relations and create each

individual Relation’s html pages on the fly

Create a Class page with links for each Class then link to all its related

classes on the fly using the getClassRelClass() function of Pace Jena.

Create a Relation page with links for each Relation’s and link all

Classes that the Relation relates to on the fly using the

getClassRelClass() function of Pace Jena

62

to instantaneously using the getClassRelClass() function of Pace Jena. Figure 45 portrays

the logic design workflow.

The HTML version for the KG visual navigation program was run with the “animal.owl”

KG document as input which is shown in Figure 46 below.

Read KG

Syntax Validate KG

Was syntax
validation
successful?

Call a function with the
individual class as an
argument. Loop through
the relations array list and
use each relation to find
all other Classes the
relation relates to and
create links to the other
related Classes on the
Classes’ page on the fly

Empty existing
Html docs
directory or
create new
Html docs
directory if it
does not exist

YES
NO Cannot

create
Visual
Navigation
for KG

Get All
Classes into
array list
using
functions in
Pace Jena

Get All
Relations
into array
list using
functions in
Pace Jena

Create
Classes
Page

Loop through
Classes Array
and click each
Class link on
the Classes’
Page

Create a
Relations
Page

Loop through
Relations Array
and click each
Relation link on
the Relation’s
Page

Call a function with the
individual Relation as an
argument. Loop through the
Classes array list and use each
Class to find all other Classes
the Relation relates to and
create links to the other
related classes on the
Relations’ page on the fly

Create
an index
Page on
the fly

Create a
tab page
on the
fly

Create a homepage Return URL to the created
homepage to the user

Figure 45: Visual Navigation Web Design Process Flow

63

Figure 46: Output of HTML Version Visual Navigation for KG Launch

The URL is copied per the instruction of the output to a browser to launch the HTML

version of the visual navigation for the “animal.owl” KG. Presented below in Figure 47 is

the classes page showing all classes in the animal KG, Figure 48 is relations page,

showing all relations in the animal KG, Figure 49 is Lion Class page showing all Class

Lion relations to other classes, and isHuntedBy relation page at Figure 50 is showing all

classes that are related by the isHuntedBy relation. When you click any class link, it

displays the corresponding classes that it is linked to.

64

Figure 47: Class Page

Figure 48: Relations Page

Figure 49: Class Lion Page

65

Figure 50: Relation “isHuntedBy” Page

The web based model of the visual navigation and visualization of the KG is rugged and

requires no internet connection but just a browser. Neither does it require a database. A

supported inputted KG is syntax validated and if the syntax validation is successful, a

visual navigation and visualization tool is assembled and provided to the user on the fly.

This will come in handy for domain experts working in remote regions with limited

access to IT infrastructure needing to view the KG of their knowledge representation

systems. The limitation of the web based model is that creating a visual navigation and

visualization tool for an inputted KG on the fly requires that it be run from the command

line and may not be appealing to some users.

4.3 Application-Based Graph Navigation

The application model of the visual navigation and visualization tool for KGs is a GUI

based application that allows the user to select a KG as input from a File Explorer. The

application model follows a similar work flow as its html counterpart. First, the KG has

to be syntax validated to make sure it is well formed and OWL syntactically correct using

66

the Pace Multiple Pass Syntax Validation and Dom Parser as discussed earlier in Chapter

3. It then uses the getClassNames() and getRelations() functions created in Pace Jena to

populate the “Classes” and “Relations” Combo Boxes’ drop down lists. But before the

Combo Boxes drop down lists with its corresponding Grid Box that displays the class

relations is displayed, an action driven “Display Classes” and “Display Relations”

buttons needs to be clicked to trigger the population of the associated Grid Boxes with

the class relations in the triple via an Action Listener. Note that the default selection of

the “Classes” and “Relations” buttons are “ALL” that shows all class relations in the

“Classes” Grid Box and all relations related classes in the Relations Grid Box. Selecting

any individual class in the “Classes” dropdown list will display all related classes of the

selected class. Likewise, selecting an individual relation from the “Relations” dropdown

list will display all classes the selected relation relates to in a triple format. Note that the

display of the resultant triple in the Grid Boxes are facilitated by the getClassRelClass()

function of Pace Jena. Presented below in Figure 51 is the work flow of the application

based KG visual navigation and visualization model.

67

The Application model of the knowledge graph is a robust Java application that allows

the user to browse a KG document as input into the application in-order to navigate the

knowledge graph. Created is a jar file that can be double-clicked to launch the application.

The application consists of a Pace Jena, “ClassesKnowledgeGraph”,

“RelationsKnowledgeGraph”, and layout1 Java Classes.

Presented below in Figure 52 is the process flow of layout1.

Get Custom

Relations in FIFO

Declare in owl.xsd
if needed

Input KG

Syntax Validate KG
using “DomParse”

Get Custom
Relations into
Array List

SYNTAX VALIDATION

VISUAL NAVIGATION

Get Classes
into Array list

Display Visual
Navigation of KG

Figure 51 : Work Flow of Application-based KG Navigation

68

The layout1 has two combo boxes one for the Classes and the other for Relations. It uses

an Action Listener if “Display Classes” button is clicked to populate the Class’ combo

box’s dropdown list by calling “ClassesKnowledgeGraph” java class. Figure 53 depicts

the visual navigation application web design process flow.

Take KG file as

input

Validate KG by calling

ValidateKGraph function in

Pace Jena

Parse KG into Classes and

Relations array lists using

functions in Pace Jena

Create a Combo list with All Classes in array list with ALL as the

default in the dropdown list that will display all Class relations of the

selected Class in the dropdown list when the “Display Classes”

button is clicked

Create a Combo list with All Relations in array list with ALL as the default in the

dropdown list that will display all Class relations of the selected Relation in the

dropdown list when the “Display Relations” button is clicked

 Figure 52: Process Flow of “layout1.java”

69

 When a class item is selected in the dropdown list, it displays its class relations in a grid

box. Subsequently when a “Display Relation” button is clicked, it uses an action listener

to populate the Relation combo box dropdown list by calling the

“RelationsKnowledgeGraph()” Java class. Clicking the “Browse for OWL Document”

will present to the user a Windows File explorer to select a KG document as input into

the application model of the KG Visual Navigation GUI. When a KG document is

selected, the application syntax validates it to determine if it is OWL syntactically correct

and well-formed. If the KG validates successfully, it provides a visual navigation. If

syntax validation fails or the document selected does not have the “.owl” extension, an

“Error” message box is displayed and the user will have to fix the problem in the KG or

Select A KG document

Syntax Validate KG

Was syntax
validation
successful?

Create listener to hide
Relations Combo Box
and grid when clicked

Create
Listener to
hide Classes
Combo Box
and grid when
clicked

YES
NO Cannot

create
Visual
Navigation
for KG

Get All
Classes into
array list
using
functions in
Pace Jena

Create a
listener on
“Display
Classes”
button. If
button is
clicked, then
populate
Classes combo
Box with all
Classes

Create a listener on
“Display Classes”
button. If button is
clicked, then populate
Classes combo Box
with all Classes

When a Class is selected from
Combo Box, use that class as
argument into a function in
Pace Jena which will return all
Classes it relates to and
display the Class relations in
the Grid Box

When a Class is selected from
Combo Box, put that Relation as
argument into a function in
Pace Jena which will return all
Classes that Relation relates to
and its Class relations in the
Grid Box

Figure 53: Visual Navigation Application Design Process Flow

70

select a valid KG to proceed with the visual navigation. A “runnable” jar file of the

application model shown below in Figure 54 is double click to launch the application.

Figure 54: Launching the Java Application Model of the KG Visual Navigation

The “country.owl” KG document is navigated to and selected as input to the application

as shown in Figure 55.

Figure 55: Selecting the “country.owl” KG as Input to the Application

Figure 56 shows the resultant output depicting the successful validation of the KG and

the subsequent display of the all classes and relations embedded in the KG via their

default “All” selected item of their respective dropdown lists.

71

Figure 56: KG Visual Navigation with Default "ALL" Selected for both Classes and

Relations

Selecting “America” as Class item and “capitalOf” as selected Relation item from their

respective dropdown lists manifests the display illustrated in Figure 57.

Figure 57: Application Model of the KG Visual Navigation GUI

72

4.4 Conclusion

The design and implementation of the visual navigation for KG is limited to KGs created

with custom relations using the “rel” namespace. It does not support non-custom relations

owl documents. OWL documents with object and data properties are not supported.

Extending OWL to KG enables domain experts to design knowledge representation

systems and applications using expressive custom relations. However, the KG needs to be

navigated to ascertain its completeness and correctness before it can be used to design

these knowledge-representation and knowledge-based decision-making systems.

Moreover, if the KG is large, it is difficult to verify the correctness and inter-relations

between the classes. The KG Visual Navigation system uses functions in Pace Jena in

conjunction with the Web Browser program to facilitate visual navigation for KG in the

Web or HTML format. Likewise, the KG Visual Navigation system uses functions in

Pace Jena in conjunction with layout1 program to facilitate visual navigation for KG in

the application model. The ability for the knowledge graph to accommodate any inputted

KG document with custom relations makes it a powerful tool that enables domain experts

to visualize the symbiosis between the classes and their custom relations and to review

and validate their knowledge representation.

73

Chapter 5

Experimental Validation

5.1 A Sample Knowledge Graph for Cyber Security Communications

A cyber engineer wants to build a knowledge graph of cyber security terminology using a

semantic approach to bridging the gap between different levels of technicality from

layman to technological sophistication. He posits that for any topic, there are different

versions of terminology. Some are formal, others are less formal thus necessitating the

need to bridge the communication between different groups of people so that the

terminology at the different levels of formality can work together and be reconciled to

some extent. The benefit of reconciling these different versions of terminologies is to

make searches of documents more effective. This research will use this cyber security

communications Use Case as the basis for the validation of the knowledge graph syntax

validation and visual navigation for developing intelligent systems.

Cyber security has threats, networking concepts, and cyber security terminology. Threats

are cyber security concepts that have threat actors, threat vectors, threat types, and threat

mitigations. In order to define and create the classes, a class hierarchy is first constructed

of the cyber security terminology using a top down approach. Portrayed in Figure 58 are

the cyber security concepts’ relations and in Figure 59 are the cyber security concepts to

threat relations. You will notice that only a section of the tree hierarchy is displayed

74

because displaying all the classes though possible will be clustered again emphasizing the

need of a knowledge graph.

Figure 58: Cyber Security Concepts Relations

Figure 59 –Figure 61 below shows some of the KG relations derived from the class

hierarchical tree of Figure 51.

Figure 59: Cyber Security Concepts to Threat Relations

Cyber
Security
Concept

Threat

Threat Actor
Threat
Vector

Treat Type
Threat

Mitigation

Networking
Concept

Cyber
Security

Terminology

Layman
Term

Professional
Term

75

Figure 60: Layman Term, Professional Term, and Cyber Security Terminology Relations

Figure 61: Networking Concept Relation to Cyber Security Concept

Cyber security concepts have many threat actors. Figure 62 shows the various threat

actors within the cyber security concept hierarchical tree.

Figure 62: Threat Actor’s Entities within the Cyber Security Concept Hierarchy

Cyber
Security
Concept

Threat

Threat Actor

Organized
Crime

Terrorist
Group

State
Sponsored

Threat
Vector

Treat Type
Threat

Mitigation

Networking
Concept

Cyber
Security

Terminology

Layman
Term

Professional
Term

76

Cyber security threats have threat actors that strive to wreck-havoc on a country’s or

organization’s cyber security infrastructure. Three categories of cyber threat actor namely

state-sponsored, organized crime, and terrorist group have been identified [57]. Figure 63

describes the threat actor’s entities KG class relations.

Figure 63: Threat Actor’s Entities Relations

Moving down the cyber security hierarchy, Figure 64 shows the threat vector’s entities

within the hierarchy.

Figure 64: Threat Vector Entities within the Cyber Security Concept Hierarchy

Displayed in Figure 65 are the threat vectors’ KG class relations.

Cyber Security
Concept

Threat

Threat Actor Threat Vector

Email Mobile Device
Social

Networking
USB Web

Treat Type
Threat

Mitigation

Networking
Concept

Cyber Security
Terminology

Layman Term
Professional

Term

77

Figure 65: Threat Vector’s KG Class Relations

Presented in Figure 66 below are the Threat Types entities within the cyber security

concept’s hierarchy.

Figure 66: Threat Type’s Entities within the Cyber Security Concept’s Hierarchy

Presented below in Figure 67 are the threat type’s KG class relations.

Cyber
Security
Concept

Threat

Threat
Actor

Threat
Vector

Treat Type

Manual
Attack

Malicious
Mobile
Code

Identity
Theft

Malware
Advanced
Persistent

Threat

Physical
Attack

Network
Layer
Attack

Man In The
Middle

Password
Cracking

Application
Layer
Attack

Buffer
Overflow

Content
Attack

Threat
Mitigation

Networking
Concept

Cyber Security
Terminology

Layman
Term

Professional
Term

78

Figure 67: Threat Type’s Class Relations

Moving down the cyber security hierarchy tree, Figure 68 depicts the threat mitigation

entities in the cyber security threat vulnerability mitigation classes.

Figure 68: Threat Mitigation’s Entities within the Cyber Security Concept’s Hierarchy

Cyber Security
Concept

Threat

Threat Actor Threat Vector Treat Type
Threat

Mitigation

Detection Defense Deterrence

Networking
Concept

Cyber Security
Terminology

Layman Term
Professional

Term

79

Depicted below are three types of threat mitigation entities, notably; detection, defense,

and deterrent which are displayed in Figure 69.

Figure 69: Threat Mitigation’s Class Relations

Appendix B shows the owl document created for the Visual Navigation of cyber security

terminology KG which is a KG to bridge the gap between different levels of technicality

from layman to technological sophistication of cyber security concepts. The created KG

document will first be syntax validated by the validateKGraph function in Pace Jena and

then parsed into a collection of relations and classes using the getRelations and

getClassNames functions of Pace Jena. The classes and relation collection lists are

inputted into the visual navigation application of the KG in both the Web and the

Application models.

80

5.2 Syntax Validation

The KG of Cyber Security terminology (“cyberSecurityCommunication.owl”) is

validated using the validateKGraph function of Pace Jena. A test program was created

which takes the full path of the KG document as an argument was ran from the command

line as depicted in Figure 70.

Figure 70: “cyberSecurityCommunication.owl” KG Syntax Validation Input Arguments

The output for the validation of the KG is displayed in Figure 71 below that displays the

successful syntax validation of the “cyberSecurityCommunication.owl” KG document.

81

82

Figure 71: “cyberSecurityCommunication.owl” KG Syntax Validation Output

5.3 Web Based Knowledge Graph Navigation

The “WebBrowser” program takes as an input any KG document with custom relations

and uses functions created in a revised Pace Jena to retrieve all classes and relations in

the KG document and display them in an html page using a program that creates the class

relations on the fly. This program presents to the user, the ability to navigate the classes

and relations of the KG. The Web model implemented in “WebBrowser” program

consists of Pace Jena and Owl Type java classes. Presented below are the screen shots of

the application.

The application is launched from the command line using the test program and takes any

KG document with custom relations as input. Note that the KG is syntax validated first

83

and if it passes, the visual navigation application is launched. Figure 72 shows the launch

and portion of the KG being syntax validated.

Figure 72: Launching the Application. Windows Command Prompt Example

When the program runs to completion, an output is presented as shown in Figure 73

below that the syntax validation has succeeded with instruction to copy the URL

84

provided and to paste it inside any browser. Note that the html model does not require

any Internet connection.

Figure 73: Program Output Presenting a URL that the User can Paste in any Browser

Presented below in Figure 74 is the welcome page of the application.

Figure 74: Knowledge Graph Prototype Welcome Page

85

When you click the “Get All Classes” link you will be presented with all classes retrieved

from the KG as hyperlinks as depicted in Figure 75

Figure 75: All Classes Page

When you click the link of any of the class, you will be presented with all links to other

classes of the selected class showing you the “Triple” which is the subject, predicate, and

object. Figure 76 displays “CyberSecurityConcept” relations. When you click any class

link, it will display the other classes it is related to by a custom relation in the “Triple”

format of subject, predicate, and object. Note that the predicate’s font color is red which

is the custom relation embedded in the KG.

86

Figure 76: “CyberSecurityConcept” Class Relations Display Page

When you click the “Get All Relations” tab on the left banner of the application you will

be presented with the Relations page that displays all relations as hyperlinks and when

clicked, will display all the classes that use that relation to link two classes in the KG.

Figure 77 shows the Relations Page.

Figure 77: Relations Page

87

When you click any Relation for example the “partOf” relation link, it will display all

classes that relate to other classes using the “partOf” custom relation. Figure 78 depicts

the resulting page.

Figure 78: “partOf” Relation Page

The user may click any link of any class whether subject or object of the Triple to view

any class relations. The Visual Navigation capability of the KG presents a useful means

for any domain expert, developer, or student who is using KG in their research or

application to be able to navigate the KG to ascertain the completeness of their KG. The

visual navigation adds value to the KG and very convenient in viewing the KG in its

entirety.

88

5.4 Application Based Knowledge Graph Navigation

The Application Model of the KG is a robust application that allows the user to browse

for a KG owl document on their file system as input into the application in-order to

navigate the KG. The application consists of a Pace Jena, “ClassesKnowledgeGraph”,

“RelationsKnowledgeGraph”, “OwlTypes”, and “layout1” java classes. Figure 79 depicts

the launching of the application by clicking the “KG_JavaSwing-model.jar” file.

Figure 79: Clicking “KG_JavaSwing-model.jar” to launch the Application

Figure 80 below depicts the application when launched.

Figure 80: Java Swing Knowledge Graph

89

When the “Browse For OWL File” button is clicked, the user is presented with the File

Explorer to browse and locate the KG document to be inputted into the application so that

it can be navigated as shown in Figure 81.

Figure 81: Browsing for an OWL Document to input into the KG Visual Navigation

Application

Once the “Open” button is clicked, the KG is syntax validated and if the validation is

successful, the application is loaded with the selected KG document otherwise you get a

message box indicating that the validation failed and what type of failure and code line

number and suggests a fix before being able to syntax validate the KG. When the

“Display Classes” button is clicked, the application uses the default “All” of the

dropdown list of the Combo Box to display all class relations initially as shown in Figure

82.

90

Figure 82: Displaying All Classes Relations of Knowledge Graph

When the “Display Relations” button is clicked, the application uses the default “All” of

the dropdown list of the Combo Box to display all custom relations related classes as

shown in Figure 83 below.

91

Figure 83: Displaying All Relations in Addition to All Classes

A user may choose to work on one display at a time by clicking the “Hide Relations” or

“Hide Classes” buttons to hide one display window. The user can then select a class via

the drop down list. Figure 84 shows the Relations Display hidden by clicking the “Hide

Relations” button and selecting “ThreatType” from the “CLASSES” drop down list.

Figure 84: Threat Type Class Relations Display

Figure 85 shows the Classes display window hidden by clicking the “Hide Classes”

button and displaying the “partOf” relation of all classes using that custom relation.

92

Figure 85: “partOf” Relations

5.5 Conclusion

In this chapter, it was successfully proven that a fairly large KG can be syntax validated

and successfully visually navigated. The creation of a KG by a domain expert and the

syntax validation and visual navigation of the KG by a domain expert was simulated

using the cyber security communication use case. A KG of cyber security communication

was designed by creating the hierarchical tree of the cyber security concept and deriving

the class relations from them. The information gathered was then used to create a KG.

The KG was syntax validated and visually navigated successfully using the knowledge

graph syntax validation, and the knowledge graph visual navigation applications. It was

93

demonstrated how functions in Pace Jena are employed to provide syntax validation and

visual navigation capabilities for both web and application models for a subset

RDF/XML serialized document with custom relations also known as Knowledge Graph.

The provision of syntax validation and visual navigation as demonstrated by the cyber

security communication use case will enable domain experts to syntax validate their KGs

to improve the correctness of knowledge encoding and to assist domain experts navigate,

evaluate, and lookup the contents of their KG to support their research.

94

Chapter 6

Conclusion

6.1 Contributions Summary

Extending ontology to KG simplifies the relation of classes using custom relations as

predicates. Custom relation provides flexibility in relating two individual classes by

providing alternatives to the use of complex object and data properties to relate two

individual classes. The KG needs to be syntax validated because domain experts (not IT

experts) can easily introduce bugs, when designing KR systems using RDF/XML

documents. Typical KR documents are large and complicated and document transmission

can compromise documents requiring the need for syntax validation to safeguard the

introduction of bugs. Also it is necessary to syntax validate a KG before it is inputted in

the visual navigation mechanism to avoid potential unpredictability because the KG was

not well-formed and OWL syntax validated. Validating the KG syntax-wise for the

supported subset of RDF/XML for this research is a challenge in that the KG owl

document contains custom relations which are not recognized by the W3C owl schema

which validates only owl documents serialized in the OWL/XML format thus

necessitating the creation of a custom schema that can syntax validate KGs serialized in

the RDF/XML format and other supported non-custom relation RDF/XML documents.

Another problem that needed to be surmounted was how to persist the six targeted

Namespace in an XSD schema to validate a KG or a supported RDF/XML document.

The six XSD schemas are the “main.xsd”, the “rdfs.xsd”, the “owl.xsd”, the “xml.xsd”,

95

the “pace.xsd”, and the “rel.xsd”. For the “main.xsd” schema to be able to syntax validate

the KG supported by this research, the other namespaces need to persist in the main.xsd

schema. However, an XSD schema can only have one target Namespace prompting the

design of a scheme to import all other namespaces into each other for their namespaces to

persist in the “main.xsd” schema. Once the namespace persistence problem was

surmounted, the syntax validation of a supported KG challenge had to be solved. This

was accomplished by designing and implementing the Multiple Pass Syntax Validation

algorithm with Dom Parsing to declare any new custom relations in the Pace custom

created schema before the KG is syntax validated. Once the KG is syntax validated, this

dissertation also provided visual navigation capability for the KG by extending Pace Jena

with functions to facilitate the creation of visual navigation applications created on the fly

and provide the navigation of the KG in its entirety. The demonstration of this

dissertation by using various types of custom relations to create a KG by extending

OWL, providing syntax validation for the KG, and extending Pace Jena by creating

functions that provides visual navigation capabilities for the KG has presented an

alternate avenue to better support knowledge representation and decision-making and

enable domain experts to be effective in designing their KGs, declare custom relations

and use them in the same document, use custom relations directly and intuitively without

using object property emulation, and declare and apply custom relations in IDEs such as

Protégé.

96

6.2 Future Work

There is ample opportunity to continue to support syntax validations of other subsets of

RDF/XML centric documents. Also KGs can be explored to support effective knowledge

base decision-making. KGs can be explored as data sources for applications designed in

the realms of Internet of Things (IoTs) and also can be used in the design of intelligent

systems in the Cloud.

97

 Pace Jena Methods

Figure 86: “getRelations” function

Figure 87: “getClassNames” function

98

Figure 88: “getClassRelClass” function

Figure 89 : “validateKGraph” function

99

Appendix “A KG Syntax Validation”

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 target Namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:pace="http://csis.pace.edu/semweb#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#">

 <xs:import namespace="http://csis.pace.edu/semweb#" schemaLocation="pace.xsd"/>

 <xs:import namespace="http://www.pace.edu/rel-syntax-ns#" schemaLocation="rel.xsd"/>

 <xs:import namespace="http://www.w3.org/2000/01/rdf-schema#"

schemaLocation="rdfs.xsd"/>

 <xs:import namespace="http://www.w3.org/2002/07/owl#" schemaLocation="owl.xsd"/>

 <xs:import namespace="http://www.w3.org/XML/1998/namespace"

schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xs:element name="RDF">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="owl:Ontology"/>

 <xs:element maxOccurs="unbounded" ref="rel:NewRelation"/>

 <xs:element maxOccurs="unbounded" ref="owl:Class"/>

 </xs:sequence>

 <xs:attribute ref="xml:base" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:attribute name="about" type="xs:anyURI"/>

 <xs:attribute name="resource" type="xs:anyURI"/>

</xs:schema>

Figure 90: “main.xsd” Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 target Namespace="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:pace="http://csis.pace.edu/semweb#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#">

 <xs:import namespace="http://csis.pace.edu/semweb#" schemaLocation="pace.xsd"/>

 <xs:import namespace="http://www.pace.edu/rel-syntax-ns#" schemaLocation="rel.xsd"/>

 <xs:import namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

schemaLocation="main.xsd"/>

 <xs:import namespace="http://www.w3.org/2002/07/owl#" schemaLocation="owl.xsd"/>

 <xs:import namespace="http://www.w3.org/XML/1998/namespace"

schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xs:element name="subClassOf">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

Figure 91: “rdfs.xsd” Schema

100

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

target Namespace="http://csis.pace.edu/semweb#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:pace="http://csis.pace.edu/semweb#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#">

 <xs:import namespace="http://www.pace.edu/rel-syntax-ns#" schemaLocation="rel.xsd"/>

 <xs:import namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

schemaLocation="main.xsd"/>

 <xs:import namespace="http://www.w3.org/2000/01/rdf-schema#"

schemaLocation="rdfs.xsd"/>

 <xs:import namespace="http://www.w3.org/2002/07/owl#" schemaLocation="owl.xsd"/>

 <xs:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="xml.xsd"/>

 <xs:element name="level" type="xs:integer"/>

 <xs:element name="name" type="xs:NCName"/>

 <xs:element name="ref">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

Figure 92: “pace.xsd” Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

target Namespace="http://www.w3.org/XML/1998/namespace"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:pace="http://csis.pace.edu/semweb#" xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#">

 <xs:import namespace="http://csis.pace.edu/semweb#" schemaLocation="pace.xsd"/>

 <xs:import namespace="http://www.pace.edu/rel-syntax-ns#" schemaLocation="rel.xsd"/>

 <xs:import namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

schemaLocation="main.xsd"/>

 <xs:import namespace="http://www.w3.org/2000/01/rdf-schema#"

schemaLocation="rdfs.xsd"/>

 <xs:import namespace="http://www.w3.org/2002/07/owl#" schemaLocation="owl.xsd"/>

 <xs:attribute name="base" type="xs:anyURI"/>

</xs:schema>

Figure 93: “xml.xsd” Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 targetNamespace="http://www.w3.org/2002/07/owl#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

101

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#"

 xmlns:pace="http://csis.pace.edu/semweb#">

 <xs:import namespace="http://csis.pace.edu/semweb#" schemaLocation="pace.xsd"/>

 <xs:import namespace="http://www.pace.edu/rel-syntax-ns#" schemaLocation="rel.xsd"/>

 <xs:import namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

schemaLocation="main.xsd"/>

 <xs:import namespace="http://www.w3.org/2000/01/rdf-schema#"

schemaLocation="rdfs.xsd"/>

 <xs:import namespace="http://www.w3.org/XML/1998/namespace"

schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xs:element name="Ontology">

 <xs:complexType>

 <xs:attribute ref="rdf:about" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Class">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" ref="rel:isMajorSourceOf"/>

 <xs:element minOccurs="0" ref="rel:moreTechnical"/>

 <xs:element minOccurs="0" ref="rel:isUnderstoodBy"/>

 <xs:element minOccurs="0" ref="rdfs:subClassOf"/>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="rel:initiatedBy"/>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="rel:isMaintainedBy"/>

 <xs:element minOccurs="0" ref="rel:laymanTermIs"/>

 <xs:choice minOccurs="0">

 </xs:choice>

 <xs:element minOccurs="0" ref="rel:lessTechnical"/>

 <xs:choice>

 <xs:element ref="rel:isUsedToDeliver"/>

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="rel:isExampleOf"/>

 </xs:choice>

 <xs:element minOccurs="0" ref="rel:areAlsoCalled"/>

 <xs:element minOccurs="0" ref="rel:typeOf"/>

 <xs:choice>

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="rel:isSiblingTo"/>

 <xs:sequence>

 <xs:element ref="rel:technicalDefinitionIs"/>

 <xs:element ref="rel:laymanDefinitionIs"/>

 </xs:sequence>

 </xs:choice>

 <xs:element minOccurs="0" ref="rel:partOf"/>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="rel:causedBy"/>

 </xs:sequence>

 <xs:attribute ref="rdf:about" use="required"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

Figure 94: “owl.xsd” Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 target Namespace="http://www.pace.edu/rel-syntax-ns#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 <xs:import namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

schemaLocation="main.xsd"/>

 <xs:import namespace="http://www.w3.org/2000/01/rdf-schema#"

schemaLocation="rdfs.xsd"/>

 <xs:import namespace="http://www.w3.org/2002/07/owl#" schemaLocation="owl.xsd"/>

102

 <xs:import namespace="http://www.w3.org/XML/1998/namespace"

schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xs:element name="NewRelation">

 <xs:complexType>

 <xs:attribute ref="rdf:about" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="isMajorSourceOf">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="moreTechnical">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="isUnderstoodBy">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="has">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="laymanTermIs">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="lessTechnical">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="isUsedToDeliver">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="isExampleOf">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="areAlsoCalled">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="typeOf">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="isSiblingTo">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="laymanDefinitionIs">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="technicalDefinitionIs">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

103

 </xs:element>

 <xs:element name="partOf">

 <xs:complexType>

 <xs:attribute ref="rdf:resource" use="required"/>

 </xs:complexType>

 </xs:element>

<xs:element name="isAmodelOf">

<xs:complexType>

<xs:attribute ref="rdf:resource" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="continentFor">

<xs:complexType>

<xs:attribute ref="rdf:resource" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="locatedIn">

<xs:complexType>

<xs:attribute ref="rdf:resource" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="capitalOf">

<xs:complexType>

<xs:attribute ref="rdf:resource" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="include">

<xs:complexType>

<xs:attribute ref="rdf:resource" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="areHandled">

<xs:complexType>

<xs:attribute ref="rdf:resource" use="required"/>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 95: “rel.xsd” Schema

104

Appendix B “KG Documents used in This Dissertation”

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rel "http://www.pace.edu/rel-syntax-ns#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.pace.edu/country-72#"

 xml:base="http://www.pace.edu/country-72"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <owl:Ontology rdf:about="http://www.pace.edu/country-72"/>

 <!--

 // Relations

 -->

<rel:NewRelation rdf:about="http://www.pace.edu/country-72#locatedIn"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/country-72#isSpokenIn"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/country-72#capitalOf"/>

 <!--

 // Classes

 -->

 <!-- http://www.pace.edu/country-72#America -->

 <owl:Class rdf:about="http://www.pace.edu/country-72#America">

 <rel:locatedIn rdf:resource="http://www.pace.edu/country-72#North_America"/>

 </owl:Class>

 <!-- http://www.pace.edu/country-72#Angentina -->

 <owl:Class rdf:about="http://www.pace.edu/country-72#Angentina">

 <rel:locatedIn rdf:resource="http://www.pace.edu/country-72#South_America"/>

 </owl:Class>

 <!-- http://www.pace.edu/country-72#Buenos_Aries -->

 <owl:Class rdf:about="http://www.pace.edu/country-72#Buenos_Aries">

 <rel:capitalOf rdf:resource="http://www.pace.edu/country-72#Angentina"/>

 </owl:Class>

 <!-- http://www.pace.edu/country-72#English -->

 <owl:Class rdf:about="http://www.pace.edu/country-72#English">

 <rel:isSpokenIn rdf:resource="http://www.pace.edu/country-72#America"/>

 </owl:Class>

Figure 96: “country.owl” KG

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

105

 <!ENTITY dc "http://purl.org/dc/elements/1.1/" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rel "http://www.pace.edu/rel-syntax-ns#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.pace.edu/cyber#"

 xml:base="http://www.pace.edu/cyberSecurity"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <owl:Ontology rdf:about="http://www.pace.edu/cyber#"/>

 <!--

 // Relations

 -->

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#partOf"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#areAlsoCalled"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#laymanTermIs"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#moreTechnical"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#lessTechnical"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#causedBy"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#laymanDefinitionIs"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#isMaintainedBy"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#isMajorSourceOf"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#isSiblingTo"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#moreKnowlegeable"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#lessKnowlegeable"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#technicalDefinitionIs"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#isExampleOf"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#isUnderstoodBy"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#isUsedToDeliver"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#typeOf"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/cyber#initiatedBy"/>

 <!--

 // Classes

 -->

 <!-- http://www.pace.edu/cyber#APT -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#APT">

 <rel:areAlsoCalled

rdf:resource="http://www.pace.edu/cyber#AdvancedPersistentThreat"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#AdvancedPersistentThreat -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#AdvancedPersistentThreat">

 <rel:technicalDefinitionIs

rdf:resource="http://www.pace.edu/cyber#UnAuthorizedPersonGainAccessToNetWorkToStealData"

/>

 <rel:laymanDefinitionIs

rdf:resource="http://www.pace.edu/cyber#StealPersonalInformationOnInternet"/>

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#AntiVirusSoftware -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#AntiVirusSoftware">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#Defense"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#ApplicationLayerAttack -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#ApplicationLayerAttack">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

106

 <!-- http://www.pace.edu/cyber#AuditTrail -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#AuditTrail">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#Detection"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#BodyOfKnowledgeOfComputerAndCommunicationDevice -->

 <owl:Class

rdf:about="http://www.pace.edu/cyber#BodyOfKnowledgeOfComputerAndCommunicationDevice">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#BodyOfKnowledgeOfNetworking -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#BodyOfKnowledgeOfNetworking">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ProfessionalTerm"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#BodyOfKnowledgeToSafeGuardAllAssetsUsingInternet -->

 <owl:Class

rdf:about="http://www.pace.edu/cyber#BodyOfKnowledgeToSafeGuardAllAssetsUsingInternet">

 <rel:lessTechnical

rdf:resource="http://www.pace.edu/cyber#BodyOfKnowledgeToSafeGuardCyberAsset"/>

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#LaymanTerm"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#BodyOfKnowledgeToSafeGuardCyberAsset -->

 <owl:Class

rdf:about="http://www.pace.edu/cyber#BodyOfKnowledgeToSafeGuardCyberAsset">

 <rel:moreTechnical

rdf:resource="http://www.pace.edu/cyber#BodyOfKnowledgeToSafeGuardAllAssetsUsingInternet"

/>

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ProfessionalTerm"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#BufferOverFlow -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#BufferOverFlow">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#CompromisedJavaScript -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#CompromisedJavaScript">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#MaliciousMobileCode"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#ContentsAttack -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#ContentsAttack">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Corporation -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Corporation">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Country -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Country">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Cross-SiteScriptingOrXSS -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Cross-SiteScriptingOrXSS">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#ContentsAttack"/>

 </owl:Class>

107

 <!-- http://www.pace.edu/cyber#CyberInfrastructure -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#CyberInfrastructure">

 <rel:isMaintainedBy rdf:resource="http://www.pace.edu/cyber#Corporation"/>

 <rel:isMaintainedBy rdf:resource="http://www.pace.edu/cyber#Country"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#CyberSecurityConcept -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#CyberSecurityConcept">

 <rel:technicalDefinitionIs

rdf:resource="http://www.pace.edu/cyber#BodyOfKnowledgeToSafeGuardCyberAsset"/>

 <rel:laymanDefinitionIs

rdf:resource="http://www.pace.edu/cyber#BodyOfKnowledgeToSafeGuardAllAssetsUsingInternet"

/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#CyberSecurityPolicy -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#CyberSecurityPolicy">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#Deterrence"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#CyberSecurityTerminology -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#CyberSecurityTerminology">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#CyberSecurityConcept"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Defense -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Defense">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatMitigation"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Detection -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Detection">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatMitigation"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Deterrence -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Deterrence">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatMitigation"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#DistributedDenialOfService-DDOS -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#DistributedDenialOfService-DDOS">

 <rel:isExampleOf

rdf:resource="http://www.pace.edu/cyber#AdvancedPersistentThreat"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Email -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Email">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatVector"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#GuessingPasswordOrUsingBruteForce -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#GuessingPasswordOrUsingBruteForce">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#PasswordCracking"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Hacker -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Hacker">

108

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Hijacked -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Hijacked">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#IdentityTheft -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#IdentityTheft">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#InterceptCommunicationBetween2Party -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#InterceptCommunicationBetween2Party">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#ManInTheMiddle"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Layman -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Layman">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#LaymanTerm -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#LaymanTerm">

 <rel:lessTechnical rdf:resource="http://www.pace.edu/cyber#ProfessionalTerm"/>

 <rel:partOf

rdf:resource="http://www.pace.edu/cyber#CyberSecurityTerminology"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#MaliciousMobileCode -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#MaliciousMobileCode">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#MaliciousSoftware -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#MaliciousSoftware">

 <rel:areAlsoCalled rdf:resource="http://www.pace.edu/cyber#Malware"/>

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Malware -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Malware">

 <rdfs:subClassOf rdf:resource="http://www.pace.edu/cyber#MaliciousMobileCode"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#ManInTheMiddle -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#ManInTheMiddle">

 <rel:laymanTermIs rdf:resource="http://www.pace.edu/cyber#Hijacked"/>

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#ManualAttack -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#ManualAttack">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#MobileDevice -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#MobileDevice">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatVector"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#NetworkLayerAttack -->

109

 <owl:Class rdf:about="http://www.pace.edu/cyber#NetworkLayerAttack">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#NetworkingConcept -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#NetworkingConcept">

 <rel:technicalDefinitionIs

rdf:resource="http://www.pace.edu/cyber#BodyOfKnowledgeOfNetworking"/>

 <rel:laymanDefinitionIs

rdf:resource="http://www.pace.edu/cyber#BodyOfKnowledgeOfComputerAndCommunicationDevice"/

>

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#CyberSecurityConcept"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#OrganizedCrime -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#OrganizedCrime">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatActor"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Packed.Generic.236 -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Packed.Generic.236">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#Worm"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#PacketSniffing -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#PacketSniffing">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#NetworkLayerAttack"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#PasswordCracking -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#PasswordCracking">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#PenDrive -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#PenDrive">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#People -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#People">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#PhysicalAccessToBankPIN -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#PhysicalAccessToBankPIN">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#PhysicalAttack"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#PhysicalAttack -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#PhysicalAttack">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#PointOfSaleMalwareKnownAsCodeRed -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#PointOfSaleMalwareKnownAsCodeRed">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#Malware"/>

 </owl:Class>

110

 <!-- http://www.pace.edu/cyber#PortScanningAnIPAddress -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#PortScanningAnIPAddress">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#ManualAttack"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#PotentialCyberAttack -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#PotentialCyberAttack">

 <rel:moreTechnical

rdf:resource="http://www.pace.edu/cyber#PotentialInternetOrNetworkingRelatedAttack"/>

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ProfessionalTerm"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#PotentialInternetOrNetworkingRelatedAttack -->

 <owl:Class

rdf:about="http://www.pace.edu/cyber#PotentialInternetOrNetworkingRelatedAttack">

 <rel:lessTechnical

rdf:resource="http://www.pace.edu/cyber#PotentialCyberAttack"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Professional -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Professional">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#ProfessionalTerm -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#ProfessionalTerm">

 <rel:moreTechnical rdf:resource="http://www.pace.edu/cyber#LaymanTerm"/>

 <rel:partOf

rdf:resource="http://www.pace.edu/cyber#CyberSecurityTerminology"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#SocialNetworking -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#SocialNetworking">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatVector"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Spyware -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Spyware">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#StateSponsored -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#StateSponsored">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatActor"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#StealPersonalInformationOnInternet -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#StealPersonalInformationOnInternet">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#StealingAndUsingSomeOnesCreditCard -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#StealingAndUsingSomeOnesCreditCard">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#IdentityTheft"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#TerroristGroup -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#TerroristGroup">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatActor"/>

 </owl:Class>

111

 <!-- http://www.pace.edu/cyber#Threat -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Threat">

 <rel:initiatedBy rdf:resource="http://www.pace.edu/cyber#ThreatActor"/>

 <rel:technicalDefinitionIs

rdf:resource="http://www.pace.edu/cyber#PotentialCyberAttack"/>

 <rel:laymanDefinitionIs

rdf:resource="http://www.pace.edu/cyber#PotentialInternetOrNetworkingRelatedAttack"/>

 <rel:partOf

rdf:resource="http://www.pace.edu/cyber#CyberSecurityConcept"/>

 <rel:causedBy rdf:resource="http://www.pace.edu/cyber#ThreatVector"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#ThreatActor -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#ThreatActor">

 <rel:laymanTermIs rdf:resource="http://www.pace.edu/cyber#Hacker"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#ThreatMitigation -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#ThreatMitigation">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#ThreatType -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#ThreatType">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#Threat"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#ThreatVector -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#ThreatVector">

 <rel:technicalDefinitionIs

rdf:resource="http://www.pace.edu/cyber#UnAuthorizedPathToCyberInfrastructure"/>

 <rel:laymanDefinitionIs

rdf:resource="http://www.pace.edu/cyber#UnAuthorizedAccessToDataViaInternet"/>

 <rel:partOf

rdf:resource="http://www.pace.edu/cyber#CyberSecurityConcept"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Trojan -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Trojan">

 <rel:isExampleOf

rdf:resource="http://www.pace.edu/cyber#AdvancedPersistentThreat"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#UnAuthorizedAccessToDataViaInternet -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#UnAuthorizedAccessToDataViaInternet">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#UnAuthorizedPathToCyberInfrastructure -->

 <owl:Class

rdf:about="http://www.pace.edu/cyber#UnAuthorizedPathToCyberInfrastructure">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#UnAuthorizedPersonGainAccessToNetWorkToStealData -->

 <owl:Class

rdf:about="http://www.pace.edu/cyber#UnAuthorizedPersonGainAccessToNetWorkToStealData">

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Usb -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Usb">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatVector"/>

 </owl:Class>

112

 <!-- http://www.pace.edu/cyber#Virus -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Virus">

 <rel:areAlsoCalled rdf:resource="http://www.pace.edu/cyber#Malware"/>

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!--

http://www.pace.edu/cyber#VulnerabilityCreatedAsAresultOfInsuficientMemoryforProgramInput

-->

 <owl:Class

rdf:about="http://www.pace.edu/cyber#VulnerabilityCreatedAsAresultOfInsuficientMemoryforP

rogramInput">

 <rel:isExampleOf rdf:resource="http://www.pace.edu/cyber#BufferOverFlow"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Web -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Web">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Worm -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Worm">

 <rel:partOf rdf:resource="http://www.pace.edu/cyber#ThreatType"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#ZeroDayVulnerability -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#ZeroDayVulnerability">

 <rel:isExampleOf

rdf:resource="http://www.pace.edu/cyber#ApplicationLayerAttack"/>

 </owl:Class>

 <!-- http://www.pace.edu/cyber#Zombie -->

 <owl:Class rdf:about="http://www.pace.edu/cyber#Zombie">

 <rel:isExampleOf

rdf:resource="http://www.pace.edu/cyber#AdvancedPersistentThreat"/>

 </owl:Class>

</rdf:RDF>

<!-- Generated by the OWL API (version 3.5.1) http://owlapi.sourceforge.net -->

Figure 97:“cyberSecurityCommunications.owl”

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rel "http://www.pace.edu/rel-syntax-ns#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.pace.edu/country-71#"

 xml:base="http://www.pace.edu/country-71"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <owl:Ontology rdf:about="http://www.pace.edu/country-71"/>

113

 <!--

 // Relations

 -->

 <rel:NewRelation rdf:about="http://www.pace.edu/country-71#partOf"/>

 <rel:NewRelation rdf:about="http://www.pace.edu/country-71#continentFor"/>

 <!--

 // Classes

 -->

 <!-- http://www.pace.edu/country-71#England -->

 <owl:Class rdf:about="http://www.pace.edu/country-71#England">

 <rel:partOf rdf:resource="http://www.pace.edu/country-71#Europe"/>

 </owl:Class>

 <!-- http://www.pace.edu/country-71#Europe -->

 <owl:Class rdf:about="http://www.pace.edu/country-71#Europe">

 <rel:continentFor rdf:resource="http://www.pace.edu/country-71#England"/>

 </owl:Class>

</rdf:RDF>

<!-- Generated by the OWL API (version 3.5.1) http://owlapi.sourceforge.net -->

Figure 98: “europe.owl” KG

114

References

[1] T. R. Gruber. Toward principles for the design of ontologies used for knowledge

sharing. Presented at the Padua workshop on Formal Ontology, March 1993, later

published in International Journal of Human-Computer Studies, Vol. 43, Issues 4-5,

November 1995, pp. 907-928.

[2] http://www.nsf.gov/awardsearch/showAward?AWD_ID=1021975.

[3] http://its2014.its-conferences.com/.

[4] The Stanford Encyclopedia of Philosophy, Alan Turing, First published Mon Jun 3,

2002; substantive revision Mon Sep 30, 2013

[5] Mark Urban-Lurain, “Intelligent Tutoring Systems: An Historic Review in the

Context of the Development of Artificial Intelligence and Educational Psychology,”

College of Engineering Michigan State University,

http://www.cse.msu.edu/rgroups/cse101/ITS/its.htm#_Toc355707494

[6] Intelligent Tutoring Systems, Chapter 37 / Corbett, Koedinger & Anderson /

Chapter 37 (Original pp 849-874) 14 retrieved May 21, 2012 from http://act-

r.psy.cmu.edu/papers/173/Chapter_37_Intelligent_Tutoring_Systems.pdf

[7] Beal, C. R., Beck, J., & Woolf, B. (1998). Impact of intelligent computer instruction

on girls' math self concept and beliefs in the value of math. Paper presented at the

annual meeting of the American Educational Research Association.

[8] Keles, A., Ocak, R., Keles, A., & Gulcu A. (2009). ZOSMAT: Web-based

Intelligent Tutoring System for Teaching-Learning Process. [Elsevier.]. Expert

Systems with Applications , 36 , 1229-1239.

[9] http://www.cs.iit.edu/~circsim/

[10] Lajoie, S. P., & Lesgold, A. (1989). Apprenticeship training in the workplace:

Computer coached practice environment as a new form of apprenticeship. Machine-

Mediated Learning , 3 , 7-28

[11] Eliot, C., & Woolf, B. (1994). Reasoning about the user within a simulation-based

real-time training system. In Proceedings of the fourth international conference on

user modeling , 121-126.

[12] International Journal of Human-Computer Studies, Volume 43, Issues 5–6,

November 1995, Pages 907–928

[13] Liyang Yu, Introduction to the Semantic Web and Semantic Web Services, 2007

[14] Roy Ladner, Frederick E Petry, Net Centric Approaches to Intelligence and National

Security, Page 3, 2005

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1021975
http://its2014.its-conferences.com/
http://its2014.its-conferences.com/
http://www.cse.msu.edu/rgroups/cse101/ITS/its.htm#_Toc355707494
http://act-r.psy.cmu.edu/papers/173/Chapter_37_Intelligent_Tutoring_Systems.pdf
http://act-r.psy.cmu.edu/papers/173/Chapter_37_Intelligent_Tutoring_Systems.pdf
http://www.cs.iit.edu/~circsim/

115

[15] Ontology for Biomedical Investigations, http://obi-ontology.org/page/

[16] Semantic System Biology, http://www.cellcycleontology.org/

[17] Uhr, L. (1969). Teaching machine programs that generate problems as a function of

interaction with students. Proceedings of the 24th National Confernece, 125-134.

[18] Harry Halpin,The Semantic Web: The Origins of Artificial Intelligence Redux,

ICCS, School of Informatics,University of Edinburgh

[19] http://webfoundation.org/about/vision/history-of-the-web/

[20] Berners-Lee,T Hendler,J and Lassila,O, 2001 the Semantic Web, Sceintific

American,284:34-43

[21] Dr Lixin Tao, Pace University, Chairperson, Computer Science Department,

Westchester, Chair of Ph.D. in Computer Science Program, Chair of Doctorate

Professional Studies (DPS) in Computing Program

[22] http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2

[23] Outline for a Theory of Intelligence, James S. Albus, IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 3, MAY/JUNE 1991

[24] Resource Description Framework (RDF):Concepts and Abstract Syntax, W3C

Recommendation 10 February 2004

[25] An Introduction To the OWL Web Ontology Language, Jeff Heflin, Lehigh

University

[26] RDF Vocabulary Description Language 1.0: RDF Schema, W3C,

http://www.w3.org/TR/rdf-schema

[27] Rule-Based Inference Systems Richard O. Duda, Peter E. Hart, Ntis J. Nilsson, and

Georgia L. Sutherland Stanford Research Institute Menlo Park, CA 94025

[28] https://jena.apache.org/documentation/inference/

[29] Logic based Knowledge Representation, Franz Baader, LuFg Theoretical Computer

Science, RWTH, Aachen, AhonstraBe, 55, 52074 Aachen Germany

[30] Framework for Representing Knowledge Marvin Minsky MIT-AI Laboratory

Memo 306, June, 1974

[31] Nilsson, N.J., Logic and artificial intelligence, Artificial Intelligence 47 (1990) 31-

56

[32] http://www.hermit-reasoner.com/

http://obi-ontology.org/page/
http://www.cellcycleontology.org/
http://webfoundation.org/about/vision/history-of-the-web/
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2
http://www.w3.org/TR/rdf-schema
https://jena.apache.org/documentation/inference/
http://www.hermit-reasoner.com/

116

[33] http://www.gao.gov/products/GAO-12-666T

[34] https://www.w3.org/2005/rules/wg/charter.html

[35] https://www.w3.org/Submission/SWRL/

[36] Semantic Web Programming, John Hebeler, Mathew Fishert, Ryan Blake, Andrew

Perez-Lopez

[37] http://www.daml.org/2003/11/swrl/examples.html

[38] J. Quantz and B. Schmitz, Knowledge-based disambiguation for machine

translation. Minds and Machines, 4:39-57,1994

[39] J.R. Wright, E.S. Weixelbaum, K. Brown, G.T. Vesonder, S.R. Palmer, J.T.

Berman, and H.H. Moore. A knowledge-based configurator that supports sales,

engineering, and manufacturing at AT&T network systems. AI Magazine, 14(3):69-

80, 1993

[40] P.Devanbu, R. J. Brachman, P.G. Selfridge, and B.W. Ballard. LASSIE: A

knowledge-based software information system. Communications of the ACM,

34(5):34-49, 199

[41] M. Buchheit, M. Jeusfeld, W. Nutt, and M Staudt. Subsumption of queries to object-

oriented databases. Information Systems, 19(1):33-54,1994.

[42] J Koehler. An application of terminological logics to case-based reasoning. In

Proceeding of the fourth International Conference on Principles of Knowledge

Representation and Reasoning, KR’94, pages 351 362, Bonn, Germany, 1994.

Morgan Kaufmann.

[43] http://plato.stanford.edu/entries/logic-modal/

[44] B.F. Chellas. Modal Logic: An Introduction. Cambridge University Press,

Cambridge, UK. 1980

[45] G.E. Hughes and M.J. Cresswell. A Companion to Modal Logic. Methuen & Co.,

London, 1984

[46] D.M. Gabbay, C.J. Hogger, and J.A. Robison, editors. Hand-book of logic in

Artificial Intelligence and Logic Programming, Vol.3: Nonmonotonic Reasoning

and Uncertain Reasoning. Oxford University Press, Oxford. UK, 1994

[47] G. Brewka. Nonmonotonic Reasoning: Logical Foundations of Commonsense.

Cambridge University Press, Cambridge, UK, 1991

[48] G. Brewka, J. Dx, and K. Konolige. Nonmonotonic Reasoning: An Overview. CSLI

Publications, Center for the Study of Language and Information, Stanford, Cal.,

1997

[49] A Practical Guide To Building OWL Ontologies Using Protégé 5. A Revision of

Matthew Horridge’s “A Practical Guide To Building Building OWL Ontologies

Using Protégé 4 and CO-ODE Tools Edition 1.3” for Protégé 5

http://www.gao.gov/products/GAO-12-666T
https://www.w3.org/2005/rules/wg/charter.html
https://www.w3.org/Submission/SWRL/
http://www.daml.org/2003/11/swrl/examples.html
http://plato.stanford.edu/entries/logic-modal/

117

[50] http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

[51] https://www.w3.org/2001/sw/wiki/OWL/Implementations

[52] http://fowl.sourceforge.net/

[53] http://protege.stanford.edu/about.php

[54] A Practical Guide To Building OWL Ontologies Using Protége 4 and CO-ODE

Tools Edition 1.2, The University Of Manchester, by Matthew Horridge, March 13,

2009

[55] https://jena.apache.org/about_jena/about.html

[56] https://jena.apache.org/

[57] http://searchengineland.com/library/google/google-knowledge-graph

[58] http://searchengineland.com/google-launches-knowledge-graph-search-api-

promises-to-close-freebase-api-in-future-238949

[59] http://www.seoskeptic.com/google-releases-knowledge-graph-api/

[60] https://www.w3.org/RDF/Validator/rdfval

[61] https://www.w3.org/RDF/Validator/documentation

[62] NF Noy, DL McGuinness, Ontology development 101: A guide to creating your

first ontology, 2001

[63] https://jena.apache.org/documentation/fuseki2/

[64] https://jena.apache.org/documentation/query/

[65] https://jena.apache.org/documentation/tdb/

[66] https://jena.apache.org/documentation/ontology/#general-concepts

[67] https://jena.apache.org/documentation/inference/index.html

[68] https://www.w3.org/TR/1999/REC-xml-names-19990114/

[69] https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/#section-Syntax-

intro

[70] K. Patel, I. Dube, L. Tao, and N. Jiang. Extending OWL to support custom

relations. In IEEE 2nd International Conference on Cyber Security and Cloud

Computing, pages 494–499, New York, NY, USA, 2015. IEEE.

[71] https://www.w3.org/TR/owl-ref/#Sublanguages

[72] https://www.w3.org/TR/owl-guide/

http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
https://www.w3.org/2001/sw/wiki/OWL/Implementations
http://fowl.sourceforge.net/
http://protege.stanford.edu/about.php
https://jena.apache.org/about_jena/about.html
http://searchengineland.com/library/google/google-knowledge-graph
http://searchengineland.com/google-launches-knowledge-graph-search-api-promises-to-close-freebase-api-in-future-238949
http://searchengineland.com/google-launches-knowledge-graph-search-api-promises-to-close-freebase-api-in-future-238949
http://www.seoskeptic.com/google-releases-knowledge-graph-api/
https://www.w3.org/RDF/Validator/rdfval
https://www.w3.org/RDF/Validator/documentation
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/query/
https://jena.apache.org/documentation/tdb/
https://jena.apache.org/documentation/ontology/#general-concepts
https://jena.apache.org/documentation/inference/index.html
https://www.w3.org/TR/1999/REC-xml-names-19990114/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/#section-Syntax-intro
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/#section-Syntax-intro
https://www.w3.org/TR/owl-ref/#Sublanguages

	Signature page and Electronic Consent form(4)
	ClaudeAsamoah_KG Validation-Visualization-Revision-05_30_2016-v22

