

Reducing Complexity of Diagnostic Message Pattern Specification and Recognition

with Semantic Techniques

DPS Dissertation

by

Gilbert Alipui, B.S., M.S.

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Professional Studies

in Computing

at

School of Computer Science and Information Systems

Pace University

May 2016

Abstract

Reducing Complexity of Diagnostic Message Pattern Specification and Recognition

with Semantic Techniques

by

Gilbert Alipui, B.S., M.S.

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Professional Studies

in Computing

May 2016

Different companies in the same line of business can have similar computer systems with

built-in diagnostic routines, and the ability to regularly send error-driven or event-driven

environmental diagnostic messages in XML back to the system manufacturer. The

system manufacturer typically uses these to determine faults in the system. The outcome

of this troubleshooting can also assist end-users and clients in solving problems, and

provide the production team valuable information that can be used to improve future

versions of the product. A company merger could lead to the same team processing

diagnostic messages from similar but different products, in different syntax, leading to

the complexity of specifying and maintaining diagnostic message pattern specification

and recognition for many different syntaxes.

This research reduces the above complexity by extending ISO Schematron, the industry

standard language for XML semantic constraints specification and validation, with

conceptual rules. Pace University Knowledge Graphs are used to describe the concepts

or classes relevant to the diagnostic messages of a system, and the new conceptual

Schematron rules are introduced to specify diagnostic patterns on these concepts. Such

conceptual diagnostic patterns are then converted automatically into concrete Schematron

rules based on the syntax of the specific diagnostic messages. A complete prototype was

designed and implemented to validate this new methodology.

Acknowledgements

Tackling the challenge of researching my topic, and writing my DPS dissertation, trying

to keep up with a demanding job, and completing all the requirements for the DPS

program have been one of the most glorious, difficult, and exhausting challenges I have

ever undertaken in my life. I liken the experience to a very intense roller coaster ride on

steroids, for the very exciting, dizzying heights, thinking that I had finally found a

dissertation topic, to very depressing lows, upon realizing that my topic fell short of Dr.

Grossman’s “So What?” question.

I would like to thank My parents for their endless love and prayers, and for inspiring me

to strive for more knowledge, and my entire family for praying for me, and I thank God

for hearing those prayers, guiding, and helping me to stay on track to complete this very

challenging program.

Special Thanks to my wonderful twin teenage sons Miles and Milan for their patience,

companionship, encouragement, and putting up with Daddy being always buried in piles

of papers and books, and not being able to take them to Breezy water slides park as often

as they would have liked.

I would also like to thank my great brother Dr. Nicholas Alipui, his wife Sista Mabel and

their great children, my nephews Andrew and Mathew for welcoming me into their home,

supporting and encouraging me even in the bleakest of moments.

Thank you to my dearest friend Hirut Kassaye whom I affectionately call “Tweety Bird”.

She is a great mom, and a great financial advisor. Thank you, Hirut for helping me re-

organize my budget to enable me to keep up with my crushing financial obligations,

whilst at the same time improving my credit rating. Thank you also for your constant

intellectual support, willingness to engage in meandering exploratory discussions, your

unwavering encouragement, and for patiently listening to me moan ad-nauseam about not

being able to find a dissertation topic. Thank you for your love, and for helping me

extricate myself from the prison of bitterness and disappointment.

Thank you to my advisor Dr. Tao whose invaluable expert knowledge and guidance I

have benefited from greatly.

Thanks also to Dr. Frank for expertly guiding me to identify my research topic, and to Dr.

Qiu for all the great advice, and for being on my dissertation committee.

Thanks to Christian Martinez, and Steven Golikov for giving freely of their time to

explain their dissertations and conduct code reviews with me.

Last but not least, I would like to acknowledge my great friends and colleagues from the

2016 cohort. I shall long cherish the magic and great memories you have given me in the

DPS program.

v

Table of Contents

Abstract .. iii

List of Figures .. ix

List of Tables .. v

Chapter 1 Introduction .. 1

1.1 Overview .. 1

1.2 Hardware and Software Diagnostic Challenges .. 2

1.2.1 Motivating Example.. 2

1.2.2 Mailing Address Use-Case ... 3

1.2.3 DVD and CD-ROM Use-Case .. 4

1.3 Complexity Caused by Multiple Dialects .. 4

1.3.1 Inconsistent Tag Names .. 4

1.3.2 Semantic Validation for Data Integration ... 5

1.3.3 E-Mail Address Use-Case ... 5

1.3.4 Remaining Complexity ... 6

1.4 Current Approaches to the Problem ... 7

1.4.1 Computer Code Use-Case ... 7

1.4.2 Schema Use-Case.. 7

1.4.3 Schematron Use-Case ... 7

1.4.4 A Better Approach .. 8

1.4.5 An Even Better Approach ... 8

1.5 Problem Statement ... 9

1.6 Solution Methodology ... 10

1.7 Roadmap .. 11

Chapter 2 Current Status of the XML Semantic Rule Complexity Problem 12

2.1 Current Methods .. 12

vi

2.2 World Wide World Background in Brief... 17

2.3 XPointer ... 19

2.4 XPath.. 20

2.5 XQuery ... 20

2.6 XPattern ... 20

2.7 Document Object Model (DOM) and SAX ... 20

2.8 XML Parsers .. 21

2.9 Schematron .. 21

2.9.1 Components of a Schematron file. .. 23

2.9.2 Phase ... 24

2.9.3 Pattern ... 24

2.10 XSLT Validation .. 26

2.11 Semantic Web .. 27

2.12 Web Ontology Language (OWL) .. 29

2.13 PaceProtégé .. 30

2.14 PaceJena ... 31

2.15 Knowledge Representation .. 31

2.15.1 Association .. 31

2.15.2 is_a relationship .. 32

2.15.3 part_of relationship ... 33

2.16 Knowledge Graph .. 34

2.17 Conclusion ... 35

Chapter 3 Solution Methodology .. 36

3.1 Solution Strategy for the XML Semantic Dialect Proliferation Problem 36

3.2 Using a Knowledge Graph to Specify Relations and Explications...................... 37

3.3 Using Schematron to Specify Diagnostic Constraints Patterns 43

3.4 Detailed Solution Workflow .. 43

vii

3.4.1 Algorithm. Dialect Identification (DI) Algorithm .. 46

3.4.2 Diagnostic Message File Use-Case ... 46

3.5 Pace-Extended Schematron ... 48

3.6 The Abstract Concept .. 48

3.6.1 OWL Knowledge representation .. 53

3.7 Framework Validation Workflow .. 54

3.8 Solution Methodology Files ... 55

3.8.1 Abstract Rule .. 55

3.8.2 Mapping File ... 55

3.8.3 Concrete Rule.. 55

3.9 Mapping Used to Create the Concrete Rule .. 56

3.10 Mapping File Format ... 57

3.11 Solution Benefits .. 62

3.12 Conclusion ... 62

Chapter 4 Implementation Highlights ... 64

4.1 Introduction .. 64

4.2 Deriving the Concrete Rules from the Abstract Rules ... 65

4.3 Abstract to Concrete Algorithm ... 65

4.3.1 Dialect Recognition .. 65

4.3.2 Abstract to Concrete Algorithm (AbsToConc) ... 66

4.3.3 An Example Research Ontology ... 67

4.4 Solution Methodology Files ... 70

4.4.1 The XML File ... 70

4.4.2 Mapping File ... 70

4.4.3 Abstract Rule .. 70

4.4.4 Concrete Rule.. 71

4.5 Implementation Examples ... 73

viii

4.6 Important Research Considerations ... 76

4.7 The Quest for a More Scalable Approach .. 77

4.8 A More Scalable Approach for Real-World Applications 78

4.8.1 Elenment-based or In-Header Dialect Specification Use-Case 78

4.8.2 Research Data Generation... 79

4.9 Research Platform Equipment ... 79

4.10 Conclusion ... 79

Chapter 5 Interpretation and Evaluation of Solution Methodology 81

5.1 Evaluating the Solution .. 81

5.2 Research Experiment Demonstration .. 81

5.3 Research Data Generation.. 82

5.4 Crontab File Content .. 82

5.5 Crucial Components of the Research Solution Methodology.............................. 85

5.6 Research Validation ... 86

5.7 Conclusion ... 86

Chapter 6 Conclusion .. 87

6.1 Coupling Schematron Validation with Knowledge Graph 87

6.2 Summary .. 87

6.3 Future Work ... 88

 Schematron Validation Code ... 90

 Dialect Identification Code... 91

 Abstract-to-Concrete Rule Substitution Code .. 92

 Semantics and Explication Retrieval Code .. 93

References ... 94

ix

List of Figures

Figure 1 Computer Systems Diagnostic Files with Different XML Dialects 2

Figure 2 Example of Similar Information Encoded in Different Dialects 3

Figure 3 Another Depiction of the XML Dialect Proliferation and Rule Complexity

Problem ... 4

Figure 4 XML Listing with Missing E-mail Attribute.. 5

Figure 5 Listing of XML and Schematron Rule Where E-mail is Required 6

Figure 6 Schematron Validation Failure on Missing E-mail Attribute 6

Figure 7 The Three Possible Ways for Using Ontologies for Content Explication.......... 17

Figure 8 Basic Structure of a Schematron File ... 23

Figure 9 The Schematron Rule Element ... 24

Figure 10 XSLT-Based Schematron Limitations ... 26

Figure 11 Information about some people ... 27

Figure 12 Graph representation of the information about some people 27

Figure 13 A Vocabulary and a Taxonomy .. 29

Figure 14 Knowledge Representation Solely With the is_a Relation............................... 33

Figure 15 Launching PaceProtégé on the Command Line ... 37

Figure 16 PaceProtégé Class View Showing Custom Relations 38

Figure 17 PaceProtégé Class View Showing Linked Data ... 39

Figure 18 Complex and Rich Relationships Being Modeled Between Domain Objects,

Classes and Data ... 39

Figure 19 Knowledge Graph Using Extended Custom Relations to Describe a Hard Drive

... 40

Figure 20 Example of the OWL File .. 41

Figure 21 Custom Relations in the OWL File .. 42

Figure 22 System Architecture for Data Integration and Knowledge-driven Error

Classification... 44

x

Figure 23 Solution Process Flowchart .. 45

 Figure 24 Pseudocode for the Dialect Identification Algorithm 46

Figure 25 XML Listing with Customer Information and Error Code 47

Figure 26 Listing of PaceSchematron Rule to Enforce Error Safety Threshold 47

Figure 27 PaceSchematron Validation Failure on Safety Threshold Exceeded 48

Figure 28 The Three Levels of Knowledge Representation ... 49

Figure 29 The Abstract System Fault Concept ... 50

Figure 30 Mapping Used to Create the Concrete Rule .. 56

Figure 31 Multiple Dialects Represented in an Abstract Concept 59

Figure 32 Multiple Dialect-Handling Framework with Abstract to Concrete Rules 60

 Figure 33 Running Schematron PaceValidator on the Command Line 61

Figure 34 Pseudocode for the Abstract to Concrete Algorithm 66

Figure 35 An Example Mapping File with Target Elements .. 69

Figure 36 Transition from Abstract Rule to Concrete Rule .. 72

Figure 37 The Generated Concrete Rule .. 72

Figure 38 Retrieving the Abstract-to-Concrete Variables from the Mapping File 73

Figure 41 Dialect Identified Prior to Validation ... 74

Figure 42 Retrieving Semantics and Explications Upon Validation Failure 75

Figure 43 Invoking PaceJena for Semantics and Explication ... 76

Figure 42 XML Diagnostic File with Schematron Rule Files Created Beforehand 78

Figure 43 Another XML Diagnostic File Dialect ... 79

Figure 44 Running PaceValidator from the Windows Command Line 82

Figure 45 Crontab File Content .. 82

Figure 46 Power Subsystem Diagnostic Research Dataset -1 .. 83

Figure 47 Drive Subsystem Diagnostics Research Dataset – 2 .. 84

Figure 48 Cache Diagnostics Research Dataset - 3 .. 84

Figure 49 XML Dialect Data Integration.. 85

xi

 Figure 50 Potential Law Enforcement or Counter-Terrorism Use-Case 89

Figure 51 Schematron Validation Code Listing ... 90

Figure 52 Dialect Identification Code Listing .. 91

Figure 53 Abstract-to-Concrete Rule Substitution Code .. 92

Figure 54 Semantics and Explication Retrieval Code .. 93

v

v

List of Tables

Table 1 Summary of Ontology-Based Data Integration Approaches - 1 14

Table 2 Comparison of Ontology-Based Data Integration Approaches 16

Table 6 An RDF Triple Expressed in Table Format ... 28

Table 7 An RDF Triple Expressed in Table Format ... 28

Table 8 An RDF Triple Expressed in Table Format ... 28

Table 9 The Three Levels of Knowledge Representation .. 49

1

Chapter 1

Introduction

1.1 Overview

XML is used in many applications to capture and store diagnostic information. Built-

in diagnostic routines in computer systems regularly send error-driven or event-

driven diagnostic messages encoded in XML back to the system manufacturer for

fault conditions analysis to pinpoint what is wrong. The findings can also be used to

help end-users and clients to solve problems, and provide the production team

information with which to improve future versions of the product.

The XML file transfers are typically done through dial-up modem transport, Secure

File Transfer Protocol (SFTP) or over the Internet using secure HTTP transport.

Over time, a greater volume of diagnostic message files are sent home in a flood of

files being transmitted to report systems’ health status. Some of this incoming

traffic contains spurious, or trivial errors. Others contain critical errors that if

ignored, could cause catastrophic system failure and damage. If this growing

volume of error reports is not controlled, these files could overwhelm front-end

servers, which process the incoming XML files.

Another very important consideration is that the files largely contain similar

information about the health status of systems and their components. Crucially,

2

these data are stored in a myriad different ways. This is because “XML standards

and technologies do not provide an adequate layer for coping with dialects”. [95]

Worse yet, in the absence of a corporate XML standard, there is a proliferation of

vast amounts of similar diagnostic data being transmitted in a nightmarish

potpourri of different dialects and formats. [95]

This presents a serious challenge to define criteria for efficiently and accurately

recognizing the different system problems amidst the different dialects contained in

the XML documents.

1.2 Hardware and Software Diagnostic Challenges

1.2.1 Motivating Example

The crucial problem is how to manage the complexity of maintaining business rules

on similar but inexact XML dialects.

Figure 1 Computer Systems Diagnostic Files with Different XML Dialects

The following is a motivating example of a mailing address to illustrate the severity

3

of the problem of encoding similar data in different dialects. A mailing address is a

good starting point for illustrating the severity of the Semantic Rule Complexity and

Heterogeneity (SERCH) problem.

1.2.2 Mailing Address Use-Case

Figure 2 Example of Similar Information Encoded in Different Dialects

The examples shown in Figure 2 above are both syntactically valid and well-formed

XML representing the same information but because the vocabulary is different,

they are not the same.

 “The type of shipping address is reflected in the data (as an attribute value

 SHIPTO), in Example 1, but is indicated in the tag (shipping address) in

 Example 2.

 The street address and apartment number are encoded in nested tags in

 Example 1, but not in Example 2. The tag names are also different.

 Zip is used in Example 1 whereas postal-code is used in Example 2. Also,

 the capitalization is different.

4

 Special characters are used in Example 2, and the structure is different.

 Lastly, the format of the data is different. Example 1 uses two-letter

 abbreviations, and Example 2 contains the name of the state”. [95]

What this means is that validation rules that worked for the first instance document

(Address) will fail for the second document simply because the Address tag has

been changed to street.

1.2.3 DVD and CD-ROM Use-Case

Figure 3 Another Depiction of the XML Dialect Proliferation and Rule Complexity Problem

1.3 Complexity Caused by Multiple Dialects

1.3.1 Inconsistent Tag Names

As shown in the Figure 3, the challenge presented is that the tag names are not

constant. Worse yet, for similar information, they may differ, and may continue to

evolve with different versions or with other products. The severity of this fact will

be explained in more detail in Chapter 3.

5

1.3.2 Semantic Validation for Data Integration

The previous section describes important validation considerations for sound data

integration. Schematron schemas are the most expressive for semantic validation

and are typically used for semantic validation of XML data.[1] The following use-

cases show how Schematron can be used to specify patterns for constraints

validation.

1.3.3 E-Mail Address Use-Case

The listing in figure 4 below depicts an XML document missing the required contact

e-mail address. Figure 5 on page 6 shows the listing for a Schematron document

used to make sure that an e-mail address for the contact is present in the XML file.

Figure 6 on page 6 depicts the Schematron validation session correctly enforcing the

rule that contact e-mail must have an e-mail address.

Figure 4 XML Listing with Missing E-mail Attribute

6

Figure 5 Listing of XML and Schematron Rule Where E-mail is Required

Figure 6 Schematron Validation Failure on Missing E-mail Attribute

1.3.4 Reducing Complexity

The complexity of maintaining multiple Schematron files for the different dialects is

resource-intensive, error-prone, and inefficient. This research seeks an adaptive

means of recognizing and classifying the plurality of dialects to reduce the

complexity of maintaining custom rules.

7

1.4 Current Approaches to the Problem

The following use-cases describe current approaches to the problem.

1.4.1 Computer Code Use-Case

Computer programmers can use code and code-like rules to identify different

patterns and target actionable errors or conditions in XML diagnostic message files.

These programmed instructions typically take the form of if-else condition testing,

and other program logic and can take the form of data scrapers, and or parsers. The

advantage of using code is that code is accessible, often readily available, and there

are many competent programmers. This approach however, is brittle. Hard-coding

if-else-logic is not desirable as it is not agile, it is very hard to adjust to the different

syntaxes, and it does not scale easily.

1.4.2 Schema Use-Case

Schema Languages are often employed to enforce certain rules to ensure XML

instance documents conform to a certain format. The most common Schema

languages in widespread use are Document Type Definitions (DTDs), W3C XSD

(XML Schema Definition), Relax-NG, and Schematron.

1.4.3 Schematron Use-Case

As explained in section 1.3.2, Schematron, a powerful and flexible rule-based XML

schema language is another alternative for constraint validation[1]. Schematron is

more flexible, and more powerful than W3C XML schema, Relax-NG, and DTDs. This

alternative however, is still limited in its ability to handle the problem of the

8

complexity of many different dialects, and versions, as it is still necessary to specify

multiple schema files for the respective XML diagnostic message files.

1.4.4 A Better Approach

An ontology is a rich, formal logic-based model for using semantics to describe

knowledge about objects in a domain. Using a pre-defined, reserved vocabulary of

terms to define concepts and relationships between them, an ontology can refer to

either a vocabulary, taxonomy or something more. “The OWL Web Ontology

Language provides an expressive language for defining ontologies that capture the

semantics of domain knowledge”.[3] To overcome Schematron’s limitations, instead

of restricting the validation scope to syntactic and semantic validations, we propose

leveraging additional technologies to simplify the handling of multiple copies of

pattern specifications by adopting the inheritance relations for knowledge

representation that is supported by the Web Ontology Language (OWL), commonly

referred to as the is_a relation.

1.4.5 An Even Better Approach

As explained in the previous section, an ontology is capable of referring either to a

vocabulary, taxonomy or something more, as in the case of this research. It is

possible to go further in overcoming additional challenges in knowledge

representation. OWL primarily uses inheritance, the aforementioned is_a relation

for knowledge representation. Custom relations with their increased

expressiveness are required for knowledge representation in the diagnostic pattern

9

specification domain. This research goes further, and uses the composition relation

(part_of, or partOf) and other custom relations in novel ways to define custom

relations.

1.5 Problem Statement

Computing devices have built-in diagnostic routines that automatically send error-

driven or event-driven diagnostic messages encoded in XML back to the system

manufacturers. Each company may use different syntaxes for their diagnostic

information. In the event of a merger or acquisition, there is often a need to handle

diagnostic pattern classification for multiple dialects. This research aims at

reducing the complexity of maintaining patterns of XML system diagnostic

information based on different syntaxes.

This research expects to make the following contributions:

Provision of a knowledge graph to describe the diagnostic patterns in a

 more declarative way, allowing domain experts to easily understand and

 use the framework without needing extensive XML knowledge.

Reduce complexity by introducing an ontology, and going further by using

 a knowledge graph to support more economical specifications of

 diagnostic classification patterns for XML semantic constraints validation.

Reduction of the complexity of maintaining multiple versions of such

 semantic patterns by unique use of knowledge graphs.

10

1.6 Solution Methodology

Domain experts can use any text editor to represent domain knowledge in OWL files.

For convenience, the Protégé IDE can also be used to create the OWL files, and to

visually to represent domain knowledge. Coupling Schematron with a knowledge

graph to use semantic constraints to define diagnostic classification patterns and

reducing the complexity of maintaining multiple versions of such semantic patterns

are major contributions of this research, providing an adaptive framework that

brings more scalable and reusable semantic error explication to the semantic

constraints validation process.

Different systems sending messages similar in semantics but not in the same

dialects is a significant and important data integration problem. To avoid the

duplicated effort of maintaining many versions of the Schematron rules, this

research proposes a framework to:

(a) Apply Schematron to define exception patterns and automatically launch

reactions to actionable error conditions.

(b) Introduce a knowledge graph to define extra concepts and their

relationships and extend Schematron so that exception patterns are

defined at a conceptual level so that only one copy of the pattern needs to

be maintained, and the pattern can be used to automatically validate

diagnostic information in different syntaxes, or variations of the

constraints or patterns, resulting in significantly reduced complexity of

11

maintain many versions of similar constraints or patterns for different

dialects.

(c) Introduce the implementation of a prototype to validate the research idea.

1.7 Roadmap

The rest of this dissertation is structured as follows:

Chapter 2 entitled ‘Current Status of the XML Semantic Rule Complexity Problem’

provides background information on the XML data integration problem, reviews

achievements so far, key methodologies and tools relevant to the problem. A

motivating example is introduced to explain the current status of the Heterogeneous

XML Rule Complexity Problem and describe the major schema languages and

related technologies. Following that is an outline of Schematron’s XSLT-based

design goals and intended uses. This chapter demonstrates semantic constraints

with examples.

Chapter 3 entitled ‘Solution Methodology’ expands on the problem, and covers the

research in more detail and how it overcomes the limitations of XML data

integration and XSLT-based Schematron Validation.

Chapter 4 entitled ‘Additional Solution Methodology Details’ provides highlights in the

implementation of the research solution methodology.

Chapter 5 entitled ‘Interpretation and Evaluation of Solution Methodology ’ describes

the experimental validation of the research solution.

Chapter 6 concludes this dissertation, outlines the advantages of the knowledge-

driven Data Integration Solution and lays out future work that may extend this

research.

12

Chapter 2

Current Status of the XML Semantic Rule Complexity Problem

2.1 Current Methods

The primary thrust of this research is to propose a cost-effective data integration

framework that targets the semantic rule complexity and heterogeneity problem,

enabling the processing of the explosion of content in the form of inbound XML

diagnostic files traffic from field-resident systems running the gamut from

enterprise servers, storage arrays, software agents, other internet-connected

devices and IoT devices. In addition, this research also seeks to promote convenient

post-validation failure explication of symptom codes, and reduce the complexity of

maintaining many versions of similar constraints or patterns for different dialects

by providing a framework for pattern identification and classification that facilitates

data integration and improves the identification and explication of actionable errors.

The complexity that this research targets is known by different terms. “A good

example of semantic heterogeneity is the use of synonyms, where different

terms are used to refer to the same concept. There are many more types of

semantic heterogeneity and they have been classified in [Visser et al.,1998].”[120]

Variously called the “Integration Problem” or “Interoperability Problem”, “XML

Dialect Proliferation Problem”, “Semantic Heterogeneity Problem” or the “Semantic

13

Rule Complexity Problem”. This research uses Semantic Rule Complexity and

Heterogeneity Problem. (Henceforth interchangeably “Semantic Rule Complexity

and Heterogeneity Problem” (SERCH) or the “XML Semantic Dialect Proliferation

Problem”).

Prior recent research in this field employ many approaches to achieve efficient

interoperability between heterogeneous information systems. They can be

classified into three main ontology-based approaches: single, multiple and

hybrid.[22]

1. Single ontology approaches use one global ontology that links all information

sources by relations expressed via mappings that identify the correspondence

between each information source and the ontology.

2. Multiple ontologies approaches describe each information source by its own

ontology and inter-ontology mappings are used to express the relationships

between the ontologies.

3. The hybrid approaches combine the two previous approaches whereby each

information source has its own ontology and the semantic of the domain of interest

as a whole is described by a global reference ontology.

In these approaches there are two types of mappings:

1. Mappings between an information source and its local ontology.

2. Mappings between local ontologies and the global ontology.[95]

Another approach to overcome the issues posed by data heterogeneity to achieving

data interoperability also draws on ontologies. Based on architecture, a central data

14

integration system or a peer-to-peer data integration system is employed, where the

central data integration system typically has a global schema, and the peer-to-peer

data integration system does not.[94] Table 1 in next section (pages 14 - 16)

summarizes ontology-based data integration approaches drawn from the existing

literature.

Table 1 Summary of Ontology-Based Data Integration Approaches - 1

15

16

Table 2 Comparison of Ontology-Based Data Integration Approaches

17

Figure 7 The Three Possible Ways for Using Ontologies for Content Explication

There are many interesting initiatives such as Health Level 7 (HL7), the Clinical Data

Architecture (CDA), and Learning Source Description (LSD) in the healthcare arena,

but these are primarily based around the use of thesauri in automatic document

transformation. Though the thesauri play a similar role to that of the mapping file in

this research, fundamentally, automatic document transformation is not the

objective of this research [23], as transformations can come with their own set of

complexity and complications.

2.2 World Wide Web Background in Brief

World Wide Web Consortium W3C

18

“The World Wide Web Consortium (W3C) is the main international standards

organization for the World Wide Web (abbreviated WWW or W3).”[110] "where

member organizations, a full-time staff, and the public work together to develop

Web standards which are documents published by W3C that define Web

technologies through a process designed to promote consensus, fairness, public

accountability, and quality. At the end of this process, W3C then publishes

Recommendations, which are considered Web standards.” Some W3C standards

include CSS, SVG, WOFF, the Semantic Web stack, XML, and a variety of APIs.[112]

XML is the de-facto standard for data interchange.[114] It is ubiquitous in its use as

an information exchange platform in many business domains.[81][82] XML provides

a surface syntax for structured documents, but imposes no semantic constraints on

the meaning of these documents.[76] “An XML Schema is a language for expressing

constraints about XML documents.” XML Schemas also extend XML with datatypes.

[76] The main schema languages in widespread use are Document Type Definitions

(DTDs), Relax-NG, Schematron and W3C XSD (XML Schema Definitions).[112]

Founded with the support of the U.S. federal government, and subsequent to 1993,

operated as a standards development function under the auspices of the Internet

Society, the Internet Engineering Task Force (IETF) is an open standards

organization that develops and promotes voluntary Internet standards, in particular

the standards that comprise the Internet protocol suite (TCP/IP).[118]. Its stated

mission “is to make the Internet work better by producing high quality, relevant

technical documents that influence the way people design, use, and manage the

Internet.”[119]

19

2.3 XPointer

XPointer is “a syntax for URI fragment identifiers that selects particular parts of the

XML document referred to by the URI — often used in conjunction with an

XLink.”[119] URIs play a critical role in the Semantic Web. They make resources

uniquely identifiable; provide the basis for the graph-like RDF data model, and

enable distributed metadata creation.[4]

URI: A Uniform Resource Identifier defines a unique name for statements across the

entire Internet. Each component of a statement; the subject, predicate, and object

contains a URI affirming its identity throughout the entire WWW, eliminating

naming conflicts, and also providing a path to additional information. A URI may

include a Uniform Resource Locator (URL), which may be dereferenced for useful

additional information, or an abstract Uniform Resource Name (URN). A URI can

also extend to Internationalized Resource Identifiers (IRIs).[4]

IRI: The internationalized resource identifier (IRI) was defined by the Internet

Engineering Task Force (IETF) in 2005 as an extension to the uniform resource

identifier (URI) with support for the Universal Character Set “whereas URIs are

limited to a subset of the ASCII character set. IRIs may contain characters from the

Universal Character Set (Unicode/ISO 10646), including Chinese or Japanese kanji,

Korean, Cyrillic characters, and so forth.”[2]

20

2.4 XPath

ISO/IEC 19757 uses XPath to identify information items in Schematron

schemas.[13] XPath is “a non-XML syntax used by both XPointer and XSLT for

identifying particular pieces of XML documents. For example, XPath can locate the

third address element in the document or all elements with an email attribute

whose value is elharo@metalab.unc.edu.”[5]

2.5 XQuery

XQuery is a W3C Recommendation, supported by all major databases, “XQuery is the

language for querying XML data. XQuery for XML is like SQL for databases. XQuery

is built on XPath expressions.” [103]

2.6 XPattern

XPattern, a subset of Xpath is the way to identify templates in XSLT.

2.7 Document Object Model (DOM) and SAX

The Document Object Model, a language-neutral, tree-oriented API that treats an

XML document as a set of nested objects with various properties.[6] It is the only

XML Document parsing model that is officially recommended for XML document

parsing by the W3C. The W3C DOM can be used to create XML documents, navigate

DOM structures, and add, modify, or delete DOM nodes. DOM creates a

representation of the entire document as nodes, regardless of how large the

document is. DOM parsing can be slower than SAX parsing, but can be handy for

retrieving all the data from a document, or retrieving a piece of data several times.

mailto:elharo@metalab.unc.edu

21

The DOM stays resident in memory as long as the code that created the DOM

representation is running. [104]

“The SAX API is event-based. XML parsers that implement the SAX API generate

events that correspond to different features found in the parsed XML document. By

responding to this stream of SAX events in Java code, you can write programs driven

by XML-based data.” Though slightly more complicated, SAX parsing is faster than

DOM parsing. Also, XML document representations in SAX follows a different type

of directory and file structure to that of DOM documents. SAX parsing is more

appropriately compared to an index search as opposed to DOM parsers extracting

the same information by reformatting the entire book into a DOM format in memory.

[104]

2.8 XML Parsers

XML parsers are off-the-shelf components that perform some compiler-related tasks

like handling all lexical analysis and parsing. Many currently available Java-based

XML parsers support two popular parsing standards: the SAX and DOM APIs.

2.9 Schematron

Schematron is for specifying patterns. The Schematron assertion language provides

a mechanism for making assertions about the validity of an XML document using

XPath expressions. There are six commonly used elements in a Schematron

document: schema, ns, pattern, rule, assert, and report. The namespace URI for the

22

elements used by the Schematron assertion language is

http://purl.oclc.org/dsdl/schematron.

Designed and implemented by Rick Jeliffe at the Academia Sinica Computing Centre,

Taiwan, Schematron is an easy-to-use highly customizable rule-based language that

validates and reports on XML documents. Schematron is used by the likes of the

National EMS Information System (NEMESIS.org), OASIS Universal Business

Language (UBL), OASIS Election Markup Language, UK government’s e-government

interoperability framework, IBM’s Business Information Conformance Statements,

and the National Institute of Standards (B2B Interoperability test-bed and Security

Content Automation Protocol)[1][108]. Even the office of the Director of National

Intelligence of the United States (dni.gov) utilizes Schematron for data validation for

the XML data encoding specification for intelligence publications.[1][109] Using

XPath, which is a node-walking language used to look into and walk through the

nodes of an XML document, it can report on well formedness and the validity of XML

documents and run multiple stages of a workflow. It reports on the structure or

content of the XML document whilst leaving the document structure intact.

Languages can be very complicated and awkward in relation to real-world business

rules and often, it is difficult for domain experts to map business rules written in

English to the technical schema specifications, whereas Schematron expressions are

more declarative and closer to English grammar. Schematron is expressive enough

to document and assert business rules. Capable of working well with XML schemas,

it can assert complex requirements for constraints that are beyond the capability of

schemas. Schematron also uses a multi-phase approach to validating XML, which is

http://purl.oclc.org/dsdl/schematron

23

very handy with larger XML files. This way, groups of assertions and constraints on

related components are processed together in separate phases.

2.9.1 Components of a Schematron file.

The Schematron file is relatively simple, and is comprised of six basic elements that

make up the following structure[12]:

Figure 8 Basic Structure of a Schematron File

The core elements of a Schematron file are the root element bearing the name

schema, which can be represented in various ways provided by XML namespaces,

and has a number of rule elements. It is recommended that the schema element be

given a descriptive title. Each rule uses either an Assert or Report element to

perform validation. Rules are built using pattern elements that contain related

rules.[11]

In the above Schematron document structure, the context can be any valid XPattern.

2.9.1.1 Schema

Schema is the root element of the Schematron document. ISO Schematron must use

the namespace: http://purl.oclc.org/dsdl/schematron

http://purl.oclc.org/dsdl/schematron

24

2.9.2 Phase

Schematron Phases are used to organize a large number of rules into manageable

modular collections called phases.

2.9.3 Pattern

A pattern is a collection of related rules. Rules work independently of each other,

and do not need to work on the same elements. The name of the pattern will be

displayed in the output and is helpful in identifying which section of the document is

failing the validation within the pattern.

2.9.3.1 Assert

Assert is the fundamental element in the Schematron file that is used to test for a

given condition. Assert supports XSLT and XPath expression, Boolean logic and

complicated formulas.

2.9.3.2 Rule

Rule is another basic building block of a Schematron file.

Figure 9 The Schematron Rule Element

The context can be any valid XPattern. “All the asserts statements for particular rule

context are grouped together”. [11]

25

Schematron can inform the user about whether or not an element or attribute is

present, how many times an elemental attribute is present, about the content of an

elemental attribute and about the sequence of the elements in the XML document.

Once the desired location in the document is reached, assertions can be made or

questions asked through reports. Assertions allow the user to "declare that some

condition must be true, or return a message if it is not.” Report "asks if a condition

is true, and returns a message if it is."[1]

Schematron differs from other schema languages in its use of tree patterns to

operate on the parsed document. Other schema languages, which are grammar-

based, lack the convenience and ease of representing many different kinds of

structures and rules. It does not have the limitations of DTDs. Schematron has

additional capabilities. It can:

 Detect whitespace in an e-mail address

Check character lengths of titles

Detect empty elements[105]

Check that an ISSN has 8 characters with a hyphen in the middle

ISSN stands for International Standard Serial Number. It is an eight-digit serial

number used to uniquely identify a serial publication. [106]

Ensure that DOI syntax matches business rules

26

DOI stands for Digital Object Identifier. It is a serial code used to uniquely identify

content of various types on electronic networks.[107]

2.10 XSLT Validation

In addition to Xpath, Schematron also uses XSLT in its validation rules. However,

since XSLT’s main purpose is document transformation, the XSLT-based Schematron

implementation has many limitations, as listed in figure 10 below.

Figure 10 XSLT-Based Schematron Limitations

27

2.11 Semantic Web

 “The Semantic Web is a vision for the future of the Web in which information is

given explicit meaning, making it easier for machines to automatically process and

integrate information available on the Web. The Semantic Web will build on XML's

ability to define customized tagging schemes and the Resource description

Framework (RDF)'s flexible approach to representing data. Semantic web

information representation is done through a set of assertions called statements

comprised of subject predicate and the object, sometimes referred to or also known

as triples. These three elements are analogous in meanings to normal English

grammar. “The subject of the statement is the thing that statement describes, the

predicate describes the relationship between the subject and the object.”[7]

Figure 11 Information about some people

Figure 12 Graph representation of the information about some people

28

Table 3 An RDF Triple Expressed in Table Format

Subject Predicate Object

Ryan Works With John

Table 4 An RDF Triple Expressed in Table Format

Subject Predicate Object

Matt Knows John

Table 5 An RDF Triple Expressed in Table Format

Subject Predicate Object

Andrew Knows Matt

For example, Figure 11 shows a small dataset of information, which is graphically

depicted in Figure 12 is a graphical representation of the small dataset depicted in

figure 11. The first level above RDF required for the Semantic Web is an ontology

language that can formally describe the meaning of terminology used in Web

documents. If machines are expected to perform useful reasoning tasks on these

documents, the language must go beyond the basic semantics of RDF Schema.”[76]

“Key to the implementation of the Semantic Web is that data be structured”[96] into

a common vocabulary called an ontology.

29

2.12 Web Ontology Language (OWL)

The W3C OWL 2 Web Ontology Language is a semantic web language designed for

the representation of rich and complex knowledge about things, groups of things

and relations between things. A computational logic-based language, it allows

knowledge expressed in OWL to be reasoned through by computer programs either

for the verification of consistency of the knowledge being represented or to make

implicit knowledge explicit. It is designed for use by applications that need to

process the content of information instead of just presenting information to humans.

OWL facilitates greater machine interpretability of Web content than that supported

by XML, RDF, and RDF Schema (RDFS).[116]

Figure 13 A Vocabulary and a Taxonomy

An ontology is a rich, formal logic-based model for using semantics to describe

knowledge about objects in a domain. Using a pre-defined, reserved vocabulary of

terms to define concepts and relationships between them, an ontology can refer to

either a vocabulary, taxonomy or something more. “The OWL Web Ontology

Language provides an expressive language for defining ontologies that capture the

semantics of domain knowledge.”[3]

30

OWL documents are also known as ontologies, and can be published in the World

Wide Web and may be referred to from other OWL ontologies. OWL is part of the

W3C semantic web technology stack, which also includes RDF and SPARQL.[117]

OWL is built on RDF Schema, and is one of the most popular languages for creating

ontologies today. RDF is limited. OWL is more expressive than RDF, and with it,

much more complex and richer relationships may be defined. OWL = RDF schema +

new constructs for OWL and RDF schema have the same purpose; to define classes,

properties, and their relationships. All the classes and properties of RDF schema

can be used in creating an OWL document providing the ability to construct agents

or tools with greatly enhanced reasoning ability.[97]

The disadvantages of RDF and OWL are a lack of support for procedural functions

like arithmetic and string manipulation functions that are needed in real-world

applications.[31]

2.13 PaceProtégé

Another component of this research is to take advantage of Pace's extension to the

open source Stanford university Protégé. It is a large open source project which can

be compiled using a Maven script that was provided with the project. Once it is

compiled and run, it launches Protégé.

The extension that Pace contributed to this open source project is the relations’ tab.

Version 5 of protégé that is available for download from the Git website, does not

have the relations tab.

31

This extended feature boasts the capability of representing new custom relations.

For example, the partOf composition construct. This is explained in greater detail in

section 2.15.3.

2.14 PaceJena

The open-source Jena has been simplified and extended to support Pace computing

research and is called PaceJena. As an additional benefit of this research, PaceJena is

invoked upon validation failure, and the error code in the failing instance document

is passed to it. PaceJena parses the OWL knowledge graph file to extract semantics

and relations pertinent to other errors, other classes and objects, if any. As shown

in figure 22 (chapter 3), this dynamic error code explication enables semantics, and

object relations to be packaged with actionable errors that must be escalated to

technical support staff.

2.15 Knowledge Representation

2.15.1 Association

Association is a (*a*) relationship between two classes, which allows one object

instance to cause another to perform an action on its behalf. It defines a *has-a*

relationship between two classes where there is no particular ownership in place.

Association is the more general term that defines the relationship between two

classes, where as aggregation and composition are relatively special. Aggregation is

a weak type of Association with partial ownership. The term used for an

Aggregation relationship is *uses* to imply a weak *has-a* relationship. This is

weak compared to Composition, meaning the linked components of the aggregator

32

may survive the aggregations life-cycle without the existence of their parent objects.

“For example, a school department *uses* teachers. Any teacher may belong to more

than one department. And so, if a department ceases to exist, the teacher will still

exist.”[70]

2.15.2 is_a relationship

One of the most important relationships among objects in the real world is

specialization. Specialization can be described as the “is-a” relationship. The

statement, “A dog is a mammal”, means that the dog is a specialized kind of mammal.

Having all the characteristics of any mammal, (the fact that it bears live young,

nurses with milk, has hair etc.), it specializes these characteristics to the familiar

characteristics of canis domesticus.

“The specialization and generalization relationships are both reciprocal and

hierarchical. Specialization is just the other side of the generalization coin: Mammal

generalizes what is common between dogs and cats, and dogs and cats specialize

mammals to their own specific subtypes.”[70]

33

Figure 14 Knowledge Representation Solely With the is_a Relation

Figure 14 illustrates a protégé class view of knowledge being represented solely

with the less expressive is_a inheritance structure.

2.15.3 part_of relationship

The part_of relationship is more formally known as composition.[70] Composition is

a strong type of Association with full ownership. The term used for a Composition

relationship, is *owns* or *part_of *to imply a strong *has-a* relationship. For

example, a department *owns* courses, which means that any course's life-cycle

depends on the department's life-cycle. Hence, if a department ceases to exist, the

underlying courses will cease to exist as well.” Relationships with no ownership in

place are regarded as just an Association and the term used is *has-a*, or sometimes

the verb describing the relationship. “For example, a teacher *has-a* or *teaches* a

student. There is no ownership between the teacher and the student, and each has

their own life-cycle”.[70]

34

Protégé has emerged as one of the most popular interfaces for creating knowledge

representation. The standard open source protégé primarily uses the inheritance

relationship, is_a to represent knowledge. Even though current OWL files can

emulate the custom relations by using this approach, relying solely on the is_a

inheritance relationship construct to describe knowledge is rather restrictive and

some domain experts find it awkward to understand and to use it to validate their

knowledge representations.

In the quest for a more expressive way of representing knowledge, this research

dispenses with these complexities and adds to is_a constructs for custom relations

using a Knowledge Graph, which is a more natural and flexible way to represent

knowledge, and can be used to overcome the limitations and restrictiveness of the

sole is_a relation.

2.16 Knowledge Graph

The Knowledge Graph is not an actual graph. It is a type of XML document. OWL is

extended by defining custom relations and applications; the result is called

“Knowledge Graph”. Knowledge Graphs can be created with any text editor. It can

also be created in Protégé, an optional IDE. Using custom relations enables the use

of the part_of or partOf composition relation, and based on the domain, any

additional custom relations can be introduced and defined in a straightforward,

flexible and expressive way by Subject Matter Experts (SMEs) or other domain

experts.

35

2.17 Conclusion

This chapter covered all the technologies relevant to support this research, XPointer,

XPath, XQuery, XPattern RDF, Schematron, Semantic Web, PaceProtégé, PaceJena,

OWL and knowledge graphs were described in detail. All these technologies

support the framework that enables the cost-effective integration of data from

diverse sources containing similar information encoded in different dialects. The

need for knowledge graphs was explained. As will be shown in the next chapter, the

ability to define custom relations is very valuable for the sort of data integration,

and error explication, through the local knowledge graph approach that is

addressed by this research. This research solution methodology offers an

alternative to costly full-blown integration.

36

Chapter 3

Solution Methodology

3.1 Solution Strategy for the XML Semantic Dialect Proliferation Problem

The problem is finding a cost-effective means of integrating data from disparate

sources by finding an approach to successfully reduce the complexity of files caused

by multiple dialects and providing a convenient semantic validation symptom code

explication.

This research seeks to provide a way of handling the Semantic Rule Complexity and

Heterogeneity Problem (SERCH) in a uniform way by using semantics pattern

description for the classification of diagnostic information coupled with knowledge

graphs for explication of actionable error data. After determining the classification

of the diagnostic information and its matching semantic design pattern, Schematron

is used to perform semantic constraint validation, and a knowledge graph is

introduced to define extra concepts and their relationships, explain the meaning of

the symptom code, and reduce the complexity of maintaining various versions of

semantic patterns.

By overcoming the limitations of one inheritance relation, this research framework:

1. Is adaptive, and capable of classifying different kinds of system diagnostic

information for different products.

37

2. Uses semantic constraints to define patterns for classifying the various

diagnostic information.

3. Uses a knowledge graph to reduce the complexity of maintaining multiple

versions of similar patterns.

3.2 Using a Knowledge Graph to Specify Relations and Explications

Web Ontology Language (OWL) knowledge graph is for specifying custom relations

and explications. Figure 15 demonstrates how to launch PaceProtégé on the

command line.

Figure 15 Launching PaceProtégé on the Command Line

38

Figure 16 PaceProtégé Class View Showing Custom Relations

39

Figure 17 PaceProtégé Class View Showing Linked Data

Figure 18 Complex and Rich Relationships Being Modeled Between Domain Objects, Classes and Data

40

Figure 19 Knowledge Graph Using Extended Custom Relations to Describe a Hard Drive

The custom relations extend the ontology to a knowledge graph. The custom

relations in this example are:

1. Logs

2. Means

3. Part of

These custom relations provide a more convenient and flexible means of describing

elements in a given problem domain. For example in figure 20 above, the

knowledge graph shows that:

1. A hard drive is part of the drive subsystem.

2. A hard drive logs the 2A30 error, which means data corruption.

3. A hard drive also logs the 100B error, which means that the physical device

has dropped into a Not-Ready State.

41

Figure 20 Example of the OWL File

42

Figure 21 Custom Relations in the OWL File

As stated in Chapter 2, the disadvantages of RDF and OWL are a lack of support for

procedural functions like arithmetic and string manipulation functions that are

needed in real-world applications.[31] This research targets this gap in this area of

data integration. The challenges is how to encode diagnostic knowledge in a way

that enables computers to automatically apply them to diagnostic messages, and

how to manage the complexity of similar but different diagnostic semantics based

on different terms.

We propose to use Schematron to specify the semantic constraints, and develop

knowledge graphs in Pace-extended OWL for capturing various dependencies

among system components with customized relations to support specification of

43

semantic constraints with ontology concepts instead of XML tag and attribute

names. We modify Pace Schematron Validator to support the resulting language

extensions.

3.3 Using Schematron to Specify Diagnostic Constraints Patterns

Schematron is used for constraint validation, to specify XML sematic patterns

validation. This research proposes to extend Schematron for XML diagnostic

message processing and error explication by coupling Schematron with knowledge

graphs. This coupling takes the form of Schematron validations, used in tandem

with OWL ontologies, to promote data integration whist, identifying and explaining

actionable system problems based on product diagnostic symptom codes.

3.4 Detailed Solution Workflow

The flowchart in Figure 23 below, illustrates the general flow of the solution

methodology. The process starts when a file arrives. The research solution

program inspects the received file to try to identify the dialect. If the dialect is

recognized, it proceeds to the abstract level to extract the abstract rule, performs

the abstract-to-concrete rule generation, populates the place-holder variables with

actual values, and proceeds on to validate the received diagnostic message file. If

the validation is successful and it is able to identify an actionable error, that has the

potential to cause a critical problem, it emits an alert. PaceJena is then invoked to

extract the semantics and relations relevant to that error, and the information is

escalated to the technical support staff to prevent catastrophic damage to business-

44

critical systems. If the error is spurious and deemed trivial, then it just discards the

file (Figure 22) and goes back to the beginning to check for additional files, and if

additional files exist, it goes through the entire process again for the new files.

Figure 22 System Architecture for Data Integration and Knowledge-driven Error Classification

When all the files are processed and there are no more files to process, the process

terminates. This process can be automated with a cron job or scheduled task.

45

Figure 23 Solution Process Flowchart

46

3.4.1 Algorithm. Dialect Identification (DI) Algorithm

To address the complexity caused by multiple dialects, we propose a Dialect

Identification (DI) algorithm. The pseudocode of the DI algorithm is shown in figure

24 below.

Figure 24 Pseudocode for the Dialect Identification Algorithm

3.4.2 Diagnostic Message File Use-Case

Chapter 1 used a mailing address to describe the SERCH problem. Now, consider

the same scenario, except this time with XML files containing diagnostic system

47

health status information. As shown in figure 24 below, the XML System Health

Report file from a system or software agent contains identifying information along

with diagnostic error code and other pertinent information. Figure 25 shows the

listing for a Schematron document used to make sure that the pre-set safety

threshold of 100 occurences is not exceeded for the error in the given XML instance

file.

Figure 25 XML Listing with Customer Information and Error Code

Figure 26 Listing of PaceSchematron Rule to Enforce Error Safety Threshold

48

Figure 27 PaceSchematron Validation Failure on Safety Threshold Exceeded

A typical use case is to determine if a preset safety threshold has been breached or

exceeded. In this case the total count of errors received clearly exceeds the hundred

safety threshold so the validation has Schematron triggers, and emits an error

message to alert to the failure.

3.5 Pace-Extended Schematron

This research employs the console application version of PaceSchematron. When

run from the command line this extended version performs semantic constraints

validation on the XML file specified on the command line, and upon failure invokes

PaceJena for sematic explanation of the error code.

3.6 The Abstract Concept

There are three levels of knowledge abstraction that must be considered for proper,

formalized knowledge representation. As shown in figure 27 below, knowledge

representation flows from the more abstract at the very top to the more concrete on

the bottom. The very top level is the methodological knowledge where modeling of

the data is done using OWL. The middle level is the conceptual level where the

49

conceptual model is built, and then below that is the factual knowledge level where

specific, concrete description of the data is handled.

Figure 28 The Three Levels of Knowledge Representation

Table 6 The Three Levels of Knowledge Representation

Level of Abstraction Knowledge Level Example Data

1 More Abstract Methodological Knowledge System Fault

50

2 Intermediate Conceptual Knowledge Power Subsystem Fault

3 Concrete Factual Knowledge 0x0D4F7E2

At the methodological level (top), Actor is_a (n) Entity, Computing Object is_a (n)

Entity, Action is_a (n) activity and Business Process is_a (an) Activity.

At the conceptual level (middle), Symptom Code is_a System Event, HW or SW

System is_a (n) Entity, and Reporting is_a (n) Object Process.

At the factual level (bottom) the data are now concrete and more specific. Actual

symptom hexadecimal symptom codes are used. For example, 0x22DFFEF and

0x70D4FE2 are actual error codes and the HW or SW System is a HW or SW

Component and the actions (Reporting) are Power Subsystem Error and Drive

Subsystem Error.

Figure 29 The Abstract System Fault Concept

51

Figure 29 represents the system fault concept in an abstract way, where the most

common elements in the various XML files that are of interest are represented here

in the abstract concept containing pertinent data such as the Customer Name,

Customer ID, System Component, Serial Number, Time, the Error Code and Total Error

Count logged.

To implement this, mappings play a major role as the glue that tie information

together from various sources to enable integration of such information to build a

bridge between the more abstract level and the factual concrete level.

As we saw in the address examples from chapter 1, the constraint validation rule

that works with the Address tag in one instance document (Example 1), will fail

once the structure changes, and the address tag is changed to street (Example 2).

The semantics have not changed but the structure has. So the Schematron rule to

validate the previous instance document will not work on the new instance

document that is using street for to represent address because the rule looking for

the address tag will instead find the street tag and fail validation. An entirely new

Schematron rule would need to be created to validate this new instance document.

Revisiting the address example seen previously, when one considers that additional

instance documents with such differences in semantics will be received, it becomes

clear that more Schematron rules would have to be created and maintained to

handle these changes. From the foregoing observations it can be said that in this

problem domain there is a need for N number of rules for N number of XML dialects.

 Ns = ? [15] (1)

52

Where Ns is the number of Schematron rules needed for complete validation

coverage of the address concept.

To determine exactly what the exact number would be for complete coverage of

rules to safely handle the dialect variations, one would need to consider the

following from the XML 1.1 Specification:

“A Name is a token beginning with a letter or one of a few punctuation characters,

and continuing with letters, digits, hyphens, underscores, colons, or full stops,

together known as name characters”.[21]

This means that Name:

can contain letters, numbers and a myriad of other characters.

cannot start with a number, a punctuation character, nor xml

cannot contain spaces.[15]

This suggests a grave problem, with a raft of character/digit combinations in a

multiplicity of written languages for the address tag name. Indeed, this suggests the

value of N to be infinite.

Ns = ∞ [15] (2)

As shown in the previous section rules are growing linearly correspondingly with

the dialect variations. However, assuming that the address concept doesn't change

then the semantics of the address concept remains the same, meaning that if the

address concept is expressed in some formalized abstract way, then semantic

53

validation rules based on the abstract concept can be used instead, enabling N to

gravitate from infinity, closer to one.[15]

 Ns = 1 [15] (3)

In the case of the problem domain targeted by this research, the semantic target

does not exactly remain the same, but the semantics are similar enough for the

foregoing arguments to be applicable.

Schematron supports abstract rules for declaring and re-using Schematron rules,

but they are limited to html tables. Therefore another type of abstract rule is

required.

The abstract rules used in this research leverage the flexibility, and rich expressivity

of semantic web technologies and knowledge graph structures.

3.6.1 OWL Knowledge representation

The scientific literature is replete with information on OWL’s superiority over XML

Schemas or DTDs for concept representation. Following the process laid out in

Amer and Tao[15], the XPath is transformed as explained in the following section.

The “sum” in test=”sum” tests the XPath //numberoferrors.

Substituting the XPath with place-holder variables corresponding to the ontology

class and attributes, the Schematron rule can be re-written as an OWL-based

abstract rule.

<rule context="$xpath">

54

<rule context="$error">

These changes replace hard-coded XPath expression with place-holder variables.

Then, with known mappings between the knowledge graph class and XPath

representations of corresponding concepts in a given syntax, it is possible, with

some normalization, to create a concrete rule, which can then be used to validate the

XML instances of that particular dialect.

3.7 Framework Validation Workflow

Step 1: Create and publish a knowledge graph of the concept

Step 2: Create an abstract rule based on the knowledge graph

Step 3: Obtain the following artifacts related to the XML document to be validated:

a. Schema (XSD/DTD) file

b. Mappings between ontology class and XPath representations. Typically a text file

 containing name-value pairs of the published ontology

c. One or more XML Instance documents to be validated

Step 4: Values in the mapping are normalized and substituted for the values

 that make up the concrete rule.

Step 5: The newly created concrete rule is used to validate all the instances of the

 provided dialect by using a Schematron Validator such as the

 Pace SchematronValidator.

55

3.8 Solution Methodology Files

3.8.1 Abstract Rule

<rule context="$systemfaultdetails">

<assert test="$custidentity">Must be valid</assert>

<assert test="$location">Must be valid</assert>

<assert test="$errorcode">Must be valid</assert>

<assert test="$time">Must be valid</assert>

<assert test="$counts">Must be valid</assert>

</rule>

3.8.2 Mapping File

$systemfaultdetails=//systemfault

$custidentity=//$systemfaultdetails/customername

$location=//$systemfaultdetails/customerid

$errorcode=//$systemfaultdetails/faultcode

$location=//$systemfaultdetails/compserialnumbr

$time=//$systemfaultdetails/time

$count=//$syetemdefaultdetails/count

3.8.3 Concrete Rule

<rule context="systemfault">Must be valid</assert>

<assert="customername">Must be valid</assert>

<assert="customerid">Must be valid</assert>

<assert=”faultcode”>Must be valid</assert>

<assert="compserialnumbr">Must be valid</assert>

<assert="time">Must be valid</assert>

<assert="count">Must be valid</assert>

</rule>

56

3.9 Mapping Used to Create the Concrete Rule

Figure 30 Mapping Used to Create the Concrete Rule

With placeholders replacing hard-coded XPath expressions; having knowledge of

the mapping between Knowledge Graph classes/attributes and XPath

representations corresponding to concepts in a given dialect; plus some

normalization, concrete rules can be created to validate the XML instances of the

varying dialect.[15]

57

3.10 Mapping File Format

The mapping file is typically a simple text file containing name value pairs separated

by an equal sign. The name to the left of equal sign is the value of OWL

Class/Property rdf:ID. The value on the hand side is the XPath expression that

resolves to the XML Schema entity equivalent to the knowledge graph entity.[15]

There are many approaches to data integration. Chapter 2 described studies of

existing approaches such as the single, multiple and hybrid ontology, and related

work in the healthcare domain like Health Level 7 (HL7), the Clinical Document

Architecture (CDA) and the Learning Source Description (LSD). Chapter 2 also

outlined the inflexibility of representing knowledge solely with the is_a inheritance

construct, and explained the need to expand to more flexible, richly expressive

custom relations that are possible with knowledge graph constructs.

By describing information in a more abstract conceptual manner, one can simplify

the information and reduce the complexity of the data being represented. There are

three levels of knowledge abstraction that must be considered. As can be seen in

figure 27, knowledge representation flows from the more abstract at the very top to

the more concrete on the bottom. The very top level is the methodological

knowledge, where modeling of the data is done using OWL. The middle level is a

conceptual level where the conceptual model is built, and then below that is the

factual knowledge level where specific, concrete description of the data is handled.

As shown in Chapter 2, existing approaches to the data integration challenge fall

into three categories the single ontology approach, the multiple ontology approach

58

and the hybrid ontology approach.

Mappings are useful in linking one set of terms with another to create mutually

understood vocabulary and explicate the data.

Chapter 2 also explained the process of using the inheritance relationship is_a to

describe more complex relationships. This technique falls short when more

expressiveness is required as it can prove to be difficult, complicated and labor-

intensive.

However, through the extension of protégé this research goes beyond ontologies

and simple explication, by being able to define multiple custom relations such as the

composition part_of and other relations defined by subject matter experts (SMEs)

and having the flexibility of describing many of the multiple relations specific to the

problem domain of this research extends. Thus, this work extends beyond mere

ontologies to use knowledge graphs.

Though they have some common elements, this research can be seen in contrast to

these other approaches which are restricted to using database interoperability

whereas this research couples knowledge graphs with Schematron validation to

ensure accuracy of data integration, to enable a more powerful level of recognition,

when two pieces of seemingly unrelated data are describing the same thing.

59

Figure 31 Multiple Dialects Represented in an Abstract Concept

Figure 33 above, represents a high level overview of the solution methodology. The

abstract concept in the middle contains an abstract representation of the common

elements of all the data from the different dialects. The different dialects are

represented as different shapes, triangle, rectangle, circle, and a star etc. These are

different dialects coming from different systems, machines and software agents.

The common elements are represented in this abstract concept. This drives the

auto-population and generation of concrete rules, which are used, for the actual

validation of the received XML message files. Benefits of this approach include

promoting a more rapid response to actionable events, increased flexibility,

reducing complexity, lowering the total cost of management, and avoiding having to

maintain multiple Schematron files.

60

This research framework solution classifies Schematron rules by dialect. IT staff,

domain experts and subject matter experts (SMEs) use the same pattern, but write

different Schematron rules for different products.

Figure 34 below depicts the multiple dialect-handling framework with the same

abstract-to-concrete rules pattern for reduced complexity, increased flexibility,

lower cost of management, enhanced semantic explication, and promoting more

rapid response to actionable errors.

Figure 32 Multiple Dialect-Handling Framework with Abstract to Concrete Rules

Figure 35 is a screenshot of running the PaceValidator on the command line with

required arguments. The first parameter, 1 is for the standard run option, the

second parameter is the XML filename, and the third option is the Schematron file

61

that is used to perform the validation. An error code is identified, and the validation

tests to see if a predetermined safety threshold has been breached. (100). In this

case, the threshold is 101, which is more than the allowable limit. The safety

threshold has been exceeded, so the file has failed validation. An error to that effect

is emitted; PaceJena is invoked to obtain additional relations and semantics from an

associated OWL file for this error and other associated errors. These are extracted,

packaged together, and escalated to tech support.

This solution enables one to avoid having to maintain multiple Schematron files.

There is reduced complexity because multiple diagnostic message files are

processed with the afore-mentioned framework, to validate the array of arriving

XML diagnostics.

Figure 33 Running Schematron PaceValidator on the Command Line

62

This research avoids translation, and seeks to directly check the semantics of the

XML file that is being processed.

3.11 Solution Benefits

We propose a framework solution that:

1. Is adaptive, and capable of classifying different kinds of system diagnostic

information for different products.

2. Uses semantic constraints to define patterns for classifying the various

diagnostic information.

3. Uses a knowledge graph to reduce the complexity of maintaining

multiple versions of similar patterns.

The proposed solution is a framework that facilitates the integration of data from

disparate sources containing similar information, in different dialects, automatically

identifies system problems based on product diagnostic messages, uses semantic

constraints to define patterns for classifying the various diagnostic information, and

introduces a knowledge graph to define extra concepts and their relationships, and

explain the meaning of symptom codes. Schematron is used to specify business rules

on abstract concepts so that such abstract rules are automatically applied to

diagnostic messages based on concrete incarnations of these concepts, achieving

efficient maintenance of diagnostic rules.[15]

3.12 Conclusion

This chapter provided a detailed specification of the XML Dialect proliferation

63

problem, provided a comprehensive overview of the proposed solution strategy,

outlined the use of knowledge graphs to specify patterns and explained using

Schematron to specify diagnostic constraints patterns. We saw the solution

workflow, the abstract concept, the framework validation workflow, and mapping

file. Chapter 4 will provide more detail. The rational for extending Schematron to

specify business rules on ontology concepts, and automatically apply abstract rules

to specific tag names used in the diagnostic messages was explained. This chapter

also explained the use of the same abstract-to-concrete rules pattern for reduced

complexity, flexibility, lower cost of management, enhanced semantic explication,

and also the promotion of more rapid response to actionable errors.

As far as I am aware, this research solution to the SERCH problem is unique in

coupling Schematron validations with OWL knowledge graphs, to enable data

integration, automatically identifying system problems based on product diagnostic

messages.

64

Chapter 4

Implementation Highlights

4.1 Introduction

Chapter 3 described the research solution methodology in detail and covered

PaceSchematron, PaceProtégé, and PaceJena. This chapter provides additional

details, which will describe the Eclipse IDE for the development of the Java program,

used to couple Schematron with the knowledge graph and the process of post-

validation failure symptom code explication.

As we saw in Chapter 3, OWL’s lack of support for arithmetic and string

manipulation functions[31] provides an opportunity for this research to target this

gap in this area of data integration. This research overcomes this limitation by

extending Schematron to handle OWL’s lack of support for arithmetic and string

manipulation functions.

Leveraging the extensions mentioned in the previous chapter, this research couples

Schematron validation with OWL to give it more expressive power and the

capability of handling data from disparate sources and recognizing relations

between linked data and providing explication of the data. Rather than manually

processing each distinct XML dialect file, the program swaps in concrete rules at

run-time. This is accomplished through the use of the $-prefixed variables where

the abstract rules are replaced by concrete rules. The abstract rule variables then

contain the concrete rules after the run-time swap is done, automatically producing

the concrete rule-instantiated Schematron instance file.

65

The previous chapter described the process by which an ontology-based knowledge

graph is used to map the conceptual level Schematron rules to concrete Schematron

rules. The next sections provide more detail.

4.2 Deriving the Concrete Rules from the Abstract Rules

Since this research solution can be used for many companies and for many different

situations, this section provides the algorithm and the description of the

implementation of the algorithm.

4.3 Abstract to Concrete Algorithm

4.3.1 Dialect Recognition

Dialect recognition is an important part of the abstract-to-concrete algorithm

generation. There are multiple options for dialect identification.

 embedded xsd containing the version number

 Regex pattern identification

 A combination of both

If there are multiple dialects that fit the same pattern, regular expressions may

prove to be unsuitable, and match duplicate patterns. In such a case more work

would be needed to distinguish these patterns from each other, or it may be more

expedient to switch to the embedded specifying the dialect version in the xsd file

referenced in the xml file.

66

4.3.2 Abstract to Concrete Algorithm (AbsToConc)

To explain the process of deriving concrete rules from abstract concepts, we

propose the Abstract to Concrete (AbsToConc) algorithm. The pseudocode of the

AbsToConc algorithm is shown in figure 34 below.

Figure 34 Pseudocode for the Abstract to Concrete Algorithm

67

This research has application utility for other domains like cloud, cyber-security,

law enforcement, counter-terrorism (Figure 12, Figure 47) or the FOAF project that

“offers tools to relate people through a model that contains typical social attributes

such as a name, email address, interests, and the like”[10], and healthcare. When

faced with similar pattern definition challenges, information technology staff from

other domains, from medical companies for instance, could meet, collaborate and

make decisions, then agree on abstract rules for their respective domains. They

would state the specific type of XSD they are using, the other companies doing

likewise, and they arrive at a common understanding and agreement. Based on

agreed-upon concepts and knowledge graphs, a given XPath would be referenced,

and matched to a specific pattern and mapping. The system would then read a

specific diagnostic message looking for the respective patterns in an element within

the XML file to identify the syntax used. The abstract concept, being mapped this

way would then be used to implement the specific concrete rules.

The workflow follows that of this research, and is illustrated in the sequence below.

For each new dialect, the analyst analyses the XML diagnostic file and provides the

knowledge graph, mapping file, and the abstract rule file.

4.3.3 An Example Research Ontology

<owl:Class rdf:ID=”MachineFaultDetails”>
<rdfs:label> MachineFaultDetails</rdf:label>
<rdfs:comment> MachineFaultDetails</rdfs:comment>
</owl:class>

<owl:DatatypePropert rdf:ID=”siteid”>
<rdf:domain rdf:resource=”#MachineFaultDetails”/>

68

<rdfs:range rdf:resource=”&xsd;string” />
</owl:DatatypeProperty>

<owl:DatatypePropert rdf:ID=”error”>
<rdf:domain rdf:resource=”#MachineFaultDetails”/>
<rdfs:range rdf:resource=”&xsd;string” />
</owl:DatatypeProperty>

<owl:DatatypePropert rdf:ID=”numberoferrors”>
<rdf:domain rdf:resource=”#MachineFaultDetails”/>
<rdfs:range rdf:resource=”&xsd;string” />
</owl:DatatypeProperty>

With the abstract rule mapping file in place, the following steps are taken to perform

the validation:

For a given knowledge graph above, the Schematron command line or IDE-based

program takes the name of XML file, the Schematron file, the mapping file, and the

OWL file as input parameters. After the XML, sch, txt and owl filenames are passed

to Schematron, (through the IDE or on the command line), the XML file is parsed and

a regular expression (regex) is applied to identify the dialect. For example, a given

vocabulary is identified by a pattern similar to XXX_X_XXX. The error or symptom

code is also acquired at this time and held in reserve for use in case semantic

validation requirements are not met. Figure 34 below illustrates how elements of

interest are identified. As previously described, in this case the XXX_X_XXX pattern

from the mapping file is used to identify the dialect. Specifically, a pattern like

NBR_O_Errors or NMR_O_Errors, which is a tag name or could also be an attribute

in the XML file is matched by pattern.

69

Once it matches that tag name in the XML file, it searches for it in the mapping file. A

match for the tag name found in the mapping file points to a corresponding XPath in

the Schematron file. In this case, NBR_O_Errors in the mapping file is equal to

//nmboferrors and is represented with a $ sign, $numberoferrors to signify that it is

a variable of the abstract rule.

 The mapping file is searched for the dialect pattern

Figure 35 An Example Mapping File with Target Elements

The line, $nmboerror=//$machinefaultdetails/NBR_O_Error, matching the dialect

identification pattern is further processed to acquire all the necessary tokens. Once

the tokens are available, the place-holder variables in the abstract rule are replaced

with the appropriate token. For example, in this case $nmboerror is replaced with

NBR_O_Errors at run-time to produce the concrete rule as shown in Figure 36 below.

During the validation session, the Schematron program substitutes the XPath found

in the mapping file for $numberoferrors ($numberoferrors is replaced with the

70

actual XPath i.e. NBR_O_Errors). Once the substitution is done, then the Schematron

file is now a concrete rule that can be used to perform the validation.

4.4 Solution Methodology Files

4.4.1 The XML File

<?xml version="1.0" encoding="UTF-8">
<library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="support.xsd">
<machinefault="System Health Report">
 <siteinfo id="1">
 <siteid>100099</siteid>
 <company>ACME</company>
 <model>Viper IO</model>
 <time>2016-03-23</time>
 <error>07D4FE2</error>
 < NBR_O_Error >105</ NBR_O_Error >
 </siteinfo>
</dpsrule>

4.4.2 Mapping File

$machinefaultdetails=//machinefault

$siteid=//$machinefaultdetails/siteid

$company=//$machinefaultdetails/model

$faultcode=//$machinefaultdetails/error

$nmboerrors=//$machinefaultdetails/NBR_O_Errors

$time=//$machinefaultdetails/time

4.4.3 Abstract Rule

<rule context="$machinefaultdetails">

<assert test="$siteid">siteid may not be empty.</assert>

<assert test="$company">Company may not be empty.</assert>

71

<assert test="$error">Error may not be empty.</assert>

 <assert test="sum($nmboerror) < 100">numberoferrors element
 value should less than "100".
 </assert>

<assert test="$time">Time may not be empty.</assert>

</rule>

4.4.4 Concrete Rule

<schema xmlns="http://purl.oclc.org/dsdl/schematron">
 <pattern name="Sum Less Than 100">
 <rule context test="machinefault">Title may not be empty. </assert>
 <assert test="siteid">Siteid may not be empty.</assert>
 <assert test="company">Company may not be empty.</assert>
 <assert test=”error”>Error may not be empty.</assert>
 <assert test="sum(//NMB_O_Error) < 100">numberoferrors element
 value should less than "100".
 </assert>
 <assert test="time">Must be valid</assert>
 </rule>
</schema>

72

Figure 36 Transition from Abstract Rule to Concrete Rule

Figure 37 The Generated Concrete Rule

73

Figure 38 Retrieving the Abstract-to-Concrete Variables from the Mapping File

With the concrete rule in place, the validation is performed. If the XML file fails the

validation, PaceJena is invoked, the symptom or error code (which is already on

hand) is passed to PaceJena to retrieve its semantic explication.

4.5 Implementation Examples

This section displays screenshots of excerpts of important solution implementation

code examples from the Eclipse IDE like dialect identification, retrieval of relations

and explications, and the invocation of PaceJena.

74

Figure 39 Dialect Identified Prior to Validation

75

Figure 40 Retrieving Semantics and Explications Upon Validation Failure

76

Figure 41 Invoking PaceJena for Semantics and Explication

4.6 Important Research Considerations

As with all engineering work, tradeoffs are an important consideration. In this

research, scalability of the solution methodology is a major consideration. In

weighing the advantages and disadvantages of using regular expressions for dialect

identification the risk of dialect misidentification was undeniable, and recognized as

being high, when processing a large volume of in-bound files because of the

likelihood of multiple patterns being similar in structure and falsely matching a

specific regex pattern.

77

4.7 The Quest for a More Scalable Approach

Since IT staff and domain experts are typically involved in integration activities, it is

natural to engage them. This research methodology was extended to introduce a

process where IT integration staff collaborate with domain experts to leverage

existing product and systems' itemized inventories in documenting and pairing the

acquired systems and products, with their respective dialect IDs defined either in

the document elements or linked XSD file, and generating their corresponding

Schematron rule files beforehand, to eliminate the risk of dialect misidentification,

and thus enabling the research solution to scale easily to support many more

dialects. As the company grows and more products are added, this framework

would handle new dialects in the same uniform way as shown in Figure 42 on page

79. PaceJena is still invoked on validation failure to retrieve pertinent relations and

symptom code explications.

78

4.8 A More Scalable Approach for Real-World Applications

Figure 42 XML Diagnostic File with Schematron Rule Files Created Beforehand

4.8.1 Element-based or In-Header Dialect Specification Use-Case

This process would be applied to handle different dialect like the one depicted in

Figure 39 on page 76 below where the dialect is specified in the siteinfo element.

79

Figure 43 Another XML Diagnostic File Dialect

4.8.2 Research Data Generation

The generated data are as close to industry standard as possible. File and data

generated by Java Programs run from cron jobs.

4.9 Research Platform Equipment

Hardware:

19” MacBook Pro Running Mac OS X Version 10.7.5 (Lion)

Software:

Eclipse IDE, Keplar version.

Central Processing Power (CPU)

Processor 2.66 GHz Intel Core i7

Memory 8 GB 1067 MHz DDR3

4.10 Conclusion

This chapter expanded on the description of the solution methodology information

in Chapter 3 by providing additional detail on the novel coupling of Schematron and

expressive OWL semantic web structures in this research. This chapter covered this

research framework validation methodology in more detail, elaborating on the

sematic validation and explication of the data integration workflow step-by-step

from beginning to end, to clarify the process. The next chapter will describe how to

80

set up a platform for experimental demonstration to validate this research

methodology.

81

Chapter 5

Interpretation and Evaluation of Solution Methodology

5.1 Evaluating the Solution

This chapter describes how to set up a platform for experimental demonstration to

validate this research methodology. PaceSchematron and the research validation

extension program were both developed using Java in the Eclipse IDE. Pace-

extended Schematron is platform-independent and can run on any major operating

system such as Windows Linux OS X Lion (10.7.5) on the Mac.

This research was verified on a MacBook Pro running OS X. As mentioned

previously, this research also uses Protégé for creating the knowledge graph. It also

uses PaceJena for semantic processing of the knowledge graph as we saw in the

previous chapter. All of these technologies converge to address the XML Semantic

Rule Complexity Heterogeneity problem (SERCH).

5.2 Research Experiment Demonstration

The methodology validation prototype of this work uses PaceJena, to integrate

Schematron validation with a knowledge graph into the research solution. Figures

40, 41, and 42 demonstrate a Schematron semantic constraints validation session,

where PaceJena is invoked to retrieve symptom code explications and relations

parsed from the OWL file.

82

Figure 44 Running PaceValidator from the Windows Command Line

5.3 Research Data Generation

The generated data are as close to industry standard as possible. File and data

generated by Java Programs run from cron jobs.

5.4 Crontab File Content

Research data are generated by a cron-driven java program. Figure 43 below

depicts an excerpt of the cron file.

Figure 45 Crontab File Content

83

Figure 46 Power Subsystem Diagnostic Research Dataset -1

84

Figure 47 Drive Subsystem Diagnostics Research Dataset – 2

Figure 48 Cache Diagnostics Research Dataset - 3

85

Figure 49 XML Dialect Data Integration

5.5 Crucial Components of the Research Solution Methodology

XMlDialectCreator.jar: Generates XML files with different semantics to

simulate in-bound XML diagnostic files’ transfer. XMlDialectCreator.jar is executed

by a cron job running every minute.

PaceValidator.jar identifies the semantic version of the received XML file,

generates the concrete rule dynamically from the abstract concept and validates the

XML files using the appropriate Schematron schemata, and crucially instantiates a

PaceJena object, and calls its public methods such as getClassNames(),

getClassRelClass(String relation, String ObjectName) to extract relevant

semantics, class names and object relations. Executed by a cron job running every

10 minutes, it logs its execution in PaceValidatorRunLogtimestamp.txt

As illustrated in the previous chapter, the research extension to PaceValidator uses

regular expressions pattern matching (regex) to identify the dialect found within the

received XML file. The dialect can also be explicitly specified in an XSD file, and the

file referenced in the XML file. PaceValidator.jar checks to see if the file exists first. If

it exists, it identifies the syntax as previously described, then performs some

86

variable substitutions of the relevant tags or elements and normalization to

instantiate the concrete rules file.

5.6 Research Validation

Chapter 4 illustrated the data integration and semantic explication process of this

research solution. This research was validated by Java extensions to

PaceSchematron. Specifically, PaceSchematron was extended with:

1. Multiple dialect classification.

2. Coupling with a knowledge graph for extended semantics and symptom code

explication.

3. Reduction of the complexity of integrating XML in different dialects.

5.7 Conclusion

This chapter set up a platform for experimental demonstration to validate this

research methodology. Chapter 6 will provide a summary of the major

contributions, followed by suggested future work.

87

Chapter 6

Conclusion

6.1 Coupling Schematron Validation with Knowledge Graph

As far as I am aware, the coupling of Schematron and Knowledge Graph in this

research provides a singularly unique and valuable contribution to reduction of

complexity of diagnostic message specification and recognition with data relations

and explications.

6.2 Summary

After a company merger and acquisition, the acquiring company is often faced with

weighty decisions with regard to data integration. In the specific problem domain

addressed by this research work, there is added need to improve the identification

of actionable errors, fault conditions, and to provide easy to understand semantics

of the identified events. Current XML semantic validation methods are syntax-

oriented, and fall short when it comes to the validation of concepts. Applying

techniques derived from Amer and Tao[15] the validation process of this research

employed abstract concept-driven semantic validation, coupled with knowledge

graph semantic explication. This process allows the validation rule to be created

once, and then mapping is leveraged[15] to create concrete rules that can handle the

multiple XML file dialects in the incoming files from the disparate systems.

The major contributions of this research are threefold. This research solution:

88

1. Is adaptive, and capable of classifying different kinds of system diagnostic

information for different products in data integration.

2. Uses knowledge graph-driven to define custom relations, and enhances

the meaning of diagnostic events.

3. Reduces the complexity of maintaining multiple versions of similar XML

diagnostic file patterns.

6.3 Future Work

Future work can automate the entire process, and support more dialects. Extended

relations between error codes could be defined to set the foundation for enhanced

interpretation, inference, and prediction. With regard to prediction, this research

can be extended for predictive modeling, to enable machines to monitor trends, and

forecast potential future problems. One such use-case is predicting the risk of a

site-wide power event. Future work could also provide support for semantic

validation on JSON, and encoding error explication in JSON format. Another use-

case is for potential law enforcement or counter terrorism applications. Figure 49

below illustrates one such use-case:

89

Figure 50 Potential Law Enforcement or Counter-Terrorism Use-Case

90

Schematron Validation Code

Figure 51 Schematron Validation Code Listing

91

Dialect Identification Code

Figure 52 Dialect Identification Code Listing

92

Abstract-to-Concrete Rule Substitution Code

Figure 53 Abstract-to-Concrete Rule Substitution Code

93

Semantics and Explication Retrieval Code

Figure 54 Semantics and Explication Retrieval Code

94

References

[1] Integrated Syntactic/Semantic XML Data Validation with a Reusable Software Component.

Steven Golikov DPS Dissertation. Pace University, White Plains, N.Y. 2012.

[2] http://shop.oreilly.com/product/9780596527716.do. (March, 2016)

[3] J. Hebeler, M. Fisher, R. Blace and A. Perez-Lopez, “Semantic Web Programming,”

pp.100, 2009.

[4] J. Hebeler, M. Fisher, R. Blace and A. Perez-Lopez, “Semantic Web Programming,”

pp.480, 2009.

[5] J. Hebeler, M. Fisher, R. Blace and A. Perez-Lopez, “Semantic Web Programming,”

pp.6, 2009.

[6] J. Hebeler, M. Fisher, R. Blace and A. Perez-Lopez, “Semantic Web Programming,”

pp.7, 2009.

[7] J. Hebeler, M. Fisher, R. Blace and A. Perez-Lopez, “Semantic Web Programming,”

pp.69, 2009.

[8] J. Hebeler, M. Fisher, R. Blace and A. Perez-Lopez, “Semantic Web Programming,”

pp.486, 2009.

[9] J. Hebeler, M. Fisher, R. Blace and A. Perez-Lopez, “Semantic Web Programming,”

pp.468, 2009.

[10] J. Hebeler, M. Fisher, R. Blace and A. Perez-Lopez, “Semantic Web Programming,”

pp.29, 2009.

[11] IBM Developer Works. A hands-on introduction to Schematron. pp.3 - 6. Uche

Ogbuji, Fourthought, 02 Sep 2004

[12] The Bornhold Group. http://www.bornholtz.com. (March, 2016).

[13] This part of ISO/IEC 19757 uses XPath to identify information items in Schematron

schemas. (March, 2016).

[14] http://www.cisco.com/c/en/us/td/docs/storage/san_switches/mds9000/sw/rel_3_x/tro

ubleshooting/guide/trblgd/ts_call.pdf (August 4, 2015).

[15] A. Amer and L. Tao, “Syntax Agnostic Semantic Validation of XML Documents

Using Schematron” http://csis.pace.edu/~ctappert/srd2014/c3.pdf , pp.5 (July 8,

2015).

[16] http://www.zvon.org/xxl/SchematronTutorial/Examples/Example13/example.html

(July 8, 2015).

[17] http://www.storagenewsletter.com/rubriques/systems-raid-nas-san/emc-entry-level-

symmetrix-vmax-10k/ (July 17, 2015).

http://shop.oreilly.com/product/9780596527716.do
http://www.bornholtz.com/
http://www.cisco.com/c/en/us/td/docs/storage/san_switches/mds9000/sw/rel_3_x/troubleshooting/guide/trblgd/ts_call.pdf
http://www.cisco.com/c/en/us/td/docs/storage/san_switches/mds9000/sw/rel_3_x/troubleshooting/guide/trblgd/ts_call.pdf
http://csis.pace.edu/~ctappert/srd2014/c3.pdf
http://www.zvon.org/xxl/SchematronTutorial/Examples/Example13/example.html
http://www.storagenewsletter.com/rubriques/systems-raid-nas-san/emc-entry-level-symmetrix-vmax-10k/
http://www.storagenewsletter.com/rubriques/systems-raid-nas-san/emc-entry-level-symmetrix-vmax-10k/

95

[18] http://www.consultoriaadhoc.com/netapp_oracle.aspx (July 17, 2015).

[19] https://store.emc.com/us/Product-Family/EMC-VMAX-Products/EMC-VMAX-

10K/p/EMC-VMAX10K (July 17, 2015).

[20] http://www.information-management.com/issues/20010401/3170-1.html

(July 17, 2015).

[21] https://www.w3.org/TR/xml11/ section 2.3. (March 16, 2016).

[22] Ontology-Based Integration of Information — A Survey of Existing Approaches.

H.Wache, T. V¨ogele, U. Visser, H. Stuckenschmidt,G. Schuster, H. Neumann and

S. H¨ubner

[23] A Feasibility Study of Ontology-Based Automatic Document Transformation. Anne

Manette Wright DPS Dissertation. Pace University, White Plains, N.Y. 2009.

[24] http://broadcast.oreilly.com/2012/03/xmls-dialect-problem.html (July 17, 2015).

[25] Tao and Golikov, “Integrated Syntax and Semantic Validation for Services

Computing.” http://csis.pace.edu/~ctappert/srd2013/d2.pdf (July 29, 2015).

[26] Rodrigues, Rosa, and Cardoso, “Mapping XML to Existing OWL Ontologies.”

https://eden.dei.uc.pt/~jcardoso/Research/Papers/CP-2006-026-WWW-Internet-

Mapping-XML-to-existing-OWL-ontologies.pdf (July 29, 2015)

[27] “Yu, A Developer’s Guide to the Semantic Web.” pp. 72, 2011.

[28] Kumaran and Tao, “Efficient Information Access in Enterprise Content

Management Systems Using Semantic Technologies.”(August 3, 2015)

[29] http://www.w3.org/TR/2008/WD-rif-ucr-

20081218/#Interchanging_Rule_Extensions_to_OWL

[30] http://www.alquier.org//laurent/documents/conferences/www2010-linked-data-

framework-final.pdf pp.10, (March 17, 2015)

[31] https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/

[32] “8.4.15.Taming Data Chaos- Simplify Data Integration.pdf”. An ENTERPRISE

MANAGEMENT ASSOCIATES® (EMA™) White PaperPrepared for DataDirect

March 2009

[33] http://cdn.ttgtmedia.com/searchSOA/downloads/17_791199_ch14.pdf. (August 4,

2015) (8.14.15.Integrating and Automating Business Processes_ch14.pdf)

[34] K. Parris, "http://www.technewsworld.com/story/69267.html", Feb 4, 2010 5:00

AM PT

[35] http://www.infoq.com/articles/lawson-casestudy. (August 4, 2015)

http://www.consultoriaadhoc.com/netapp_oracle.aspx
https://store.emc.com/us/Product-Family/EMC-VMAX-Products/EMC-VMAX-10K/p/EMC-VMAX10K
https://store.emc.com/us/Product-Family/EMC-VMAX-Products/EMC-VMAX-10K/p/EMC-VMAX10K
http://www.information-management.com/issues/20010401/3170-1.html
https://www.w3.org/TR/xml11/
http://broadcast.oreilly.com/2012/03/xmls-dialect-problem.html
http://csis.pace.edu/~ctappert/srd2013/d2.pdf
https://eden.dei.uc.pt/~jcardoso/Research/Papers/CP-2006-026-WWW-Internet-Mapping-XML-to-existing-OWL-ontologies.pdf
https://eden.dei.uc.pt/~jcardoso/Research/Papers/CP-2006-026-WWW-Internet-Mapping-XML-to-existing-OWL-ontologies.pdf
http://www.w3.org/TR/2008/WD-rif-ucr-20081218/#Interchanging_Rule_Extensions_to_OWL
http://www.w3.org/TR/2008/WD-rif-ucr-20081218/#Interchanging_Rule_Extensions_to_OWL
http://www.alquier.org/laurent/documents/conferences/www2010-linked-data-framework-final.pdf%20pp.10
http://www.alquier.org/laurent/documents/conferences/www2010-linked-data-framework-final.pdf%20pp.10
https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/
http://cdn.ttgtmedia.com/searchSOA/downloads/17_791199_ch14.pdf
http://www.infoq.com/articles/lawson-casestudy

96

[36] http://www.emc.com/collateral/software/white-papers/h10775-emc-it-integration-

mergs-acqs-wp.pdf. (8.4.15.h10775-emc-it-integration-mergs-acqs-wp (1).pdf)

(August 4, 2015)

[37] Liu, Zhang, and Tang, “Grid-Enabled Fault Diagnostic System for Manufacturing

Equipments.”(8.6.15.Grid-enabled Fault Diagnostic System for Manufacturing

Equipments.pdf)

[38] 8.6.15.Symptoms Ontology for Mapping Diagnostic Knowledge Systems .pdf

[39] http://knoesis.wright.edu/library/download/SemanticEnterpriseContentManagement.

pdf

[40] http://www.xml.com/pub/a/2002/11/06/ontologies.html

[41] http://www.xml.com/2002/11/06/Ontology_Editor_Survey.html

[42] Fisher and Sheth, “Semantic Enterprise Content Management.” 8.6.15.Semantic

Enterprise Content Management.pdf (For OWL Fodder)

[43] http://austria.emc.com/collateral/TechnicalDocument/docu55298.pdf

[44] http://broadcast.oreilly.com/2012/03/xmls-dialect-problem.html. Schematron

abstract patterns.

[45] http://www.ibm.com/developerworks/library/x-stron/

[46] http://www.devarticles.com/c/a/XML/Schematron-Patterns-and-Validation/1/

[47] http://www.dpawson.co.uk/schematron/abstract.html

[48] http://www.schematron.com/iso/P8.html (is-a)

[49] http://www.schematron.com/iso/P8.html

[50] http://www.xml.com/pub/a/2003/11/12/schematron.html?page=2 (Nice abstract

pattern explanation using $time)

[51] http://web1.see.asso.fr/erts2012/Site/0P2RUC89/1D-1.pdf (August 7, 2015).

[52] http://www.sourcetricks.com/2014/02/parse-xml-file-using-xpath-in-

java.html#.VdSV5CxVhBc

[53] file:///Users/GilbertAlipui/Downloads/Schematron.XUG.2012.pdf

[54] http://www.javaworld.com/article/2076171/java-se/xml-document-processing-in-

java-using-xpath-and-xslt.html

[55] http://www.schematron.com/

[56] http://protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_Guide

http://www.emc.com/collateral/software/white-papers/h10775-emc-it-integration-mergs-acqs-wp.pdf
http://www.emc.com/collateral/software/white-papers/h10775-emc-it-integration-mergs-acqs-wp.pdf
http://knoesis.wright.edu/library/download/SemanticEnterpriseContentManagement.pdf
http://knoesis.wright.edu/library/download/SemanticEnterpriseContentManagement.pdf
http://www.xml.com/pub/a/2002/11/06/ontologies.html
http://www.xml.com/2002/11/06/Ontology_Editor_Survey.html
http://austria.emc.com/collateral/TechnicalDocument/docu55298.pdf
http://broadcast.oreilly.com/2012/03/xmls-dialect-problem.html
http://www.ibm.com/developerworks/library/x-stron/
http://www.devarticles.com/c/a/XML/Schematron-Patterns-and-Validation/1/
http://www.dpawson.co.uk/schematron/abstract.html
http://www.schematron.com/iso/P8.html
http://www.schematron.com/iso/P8.html
http://www.xml.com/pub/a/2003/11/12/schematron.html?page=2
http://web1.see.asso.fr/erts2012/Site/0P2RUC89/1D-1.pdf
http://www.sourcetricks.com/2014/02/parse-xml-file-using-xpath-in-java.html#.VdSV5CxVhBc
http://www.sourcetricks.com/2014/02/parse-xml-file-using-xpath-in-java.html#.VdSV5CxVhBc
/Users/GilbertAlipui/Downloads/Schematron.XUG.2012.pdf
http://www.javaworld.com/article/2076171/java-se/xml-document-processing-in-java-using-xpath-and-xslt.html
http://www.javaworld.com/article/2076171/java-se/xml-document-processing-in-java-using-xpath-and-xslt.html
http://www.schematron.com/
http://protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_Guide

97

[57] https://www.biostars.org/p/10439/

[58] S. Shanmugan and L. Tao, “An Approach to Eliminate Semantic Heterogenity

Using Ontologies in Enterprise Data Integration”.(August, 2015)

[59] https://acc.dau.mil/adl/en-

US/19593/file/1045/PM_BusinessProcessUseCase_0705.pdf. (September 3, 2015)

[60] 9.3.15.XML Use Cases.pdf. (September 3, 2015)

[61] https://en.wikibooks.org/wiki/XML_-_Managing_Data_Exchange/acord. Insurance comp

[62] http://pluto.ksi.edu/~cyh/cis501/ch8.html. (September 4, 2015) goo importance of

validation when companies exchange XML

[63] http://www.xml.com/pub/a/2001/01/24/rdf.html. (September 4, 2015)

[64] http://www.ibm.com/developerworks/library/x-ind-ublcodel/

[65] http://www.iimahd.ernet.in/~jajoo/ibmpc_faq/part4.htm

[66] http://broadcast.oreilly.com/2010/01/microsoft-patents-schematron.html. (Example of

outlining limitations)

[67] Fan, Wenfei, Minos Garofalakis, Ming Xiong, and Xibei Jia. “Composable XML

Integration Grammars.” In Proceedings of the Thirteenth ACM International

Conference on Information and Knowledge Management, 2–11. ACM, 2004.

http://dl.acm.org/citation.cfm?id=1031176.

[68] Schematron INTERNATIONAL STANDARD ISO/IEC 19757-3 First edition 2006-06-01

— Information technology — Document Schema Definition Languages (DSDL) — Part 3:

Rule-based validation. pp. 6.

[69] https://www.oxygenxml.com/events/2014/schematronUsecases.pdf. (September 16, 2015)

[70] http://www.codeproject.com/Articles/22769/Introduction-to-Object-Oriented-

Programming-Concep. (September 16, 2015)

[71] Woensel, William Van, Newres Al Haider, Patrice C. Roy, Ahmad Marwan Ahmad,

and Syed S.R. Abidi. “A Comparison of Mobile Rule Engines for Reasoning on

Semantic Web Based Health Data,” 126–33. IEEE, 2014. doi:10.1109/WI-

IAT.2014.25.

[72] http://www.w3.org/2005/Incubator/ssn/wiki/XML_dataset_content_validation.

(September 16, 2015)

[73] http://www.dpawson.co.uk/schematron/introduction.html#arch. (September 17, 2015)

[74] http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/simple-part-whole-

relations-v1.3.html. (September 18, 2015)

[75] Aitken, Webber, and Bard, “Part-of Relations in Anatomy Ontologies.”

https://www.biostars.org/p/10439/
https://acc.dau.mil/adl/en-US/19593/file/1045/PM_BusinessProcessUseCase_0705.pdf
https://acc.dau.mil/adl/en-US/19593/file/1045/PM_BusinessProcessUseCase_0705.pdf
https://en.wikibooks.org/wiki/XML_-_Managing_Data_Exchange/acord
http://pluto.ksi.edu/~cyh/cis501/ch8.html
http://www.xml.com/pub/a/2001/01/24/rdf.html
http://www.ibm.com/developerworks/library/x-ind-ublcodel/
http://www.iimahd.ernet.in/~jajoo/ibmpc_faq/part4.htm
http://broadcast.oreilly.com/2010/01/microsoft-patents-schematron.html
https://www.oxygenxml.com/events/2014/schematronUsecases.pdf
http://www.codeproject.com/Articles/22769/Introduction-to-Object-Oriented-Programming-Concep
http://www.codeproject.com/Articles/22769/Introduction-to-Object-Oriented-Programming-Concep
http://www.w3.org/2005/Incubator/ssn/wiki/XML_dataset_content_validation
http://www.dpawson.co.uk/schematron/introduction.html#arch
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/simple-part-whole-relations-v1.3.html
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/simple-part-whole-relations-v1.3.html

98

http://psb.stanford.edu/psb-online/proceedings/psb04/aitken.pdf. (September 18, 2015)

[76] http://www.w3.org/TR/owl-features/#s1.2. (September 22, 2015)

[77] http://www.computer.org/csdl/mags/cs/2004/04/c4012.pdf. (September 22, 2015)

[78] http://homepages.inf.ed.ac.uk/wadler/xml/#core. (September 22, 2015)

[79] http://www.techrepublic.com/article/xml-too-much-of-a-good-thing.(September 22, 2015)

[80] http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA420617.
(September 24, 2015)

[81] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4185431/. (September 25, 2015)

[82] http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA420617.

Appendix B (September 25, 2015)

[83] http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-47/wache.pdf.

(September 28, 2015)

[84] http://ceur-ws.org/Vol-47/cui.pdf. (September 28, 2015)

[85] Cui, Zhan, Dean Jones, and Paul O’brien. “Semantic B2B Integration: Issues in

Ontology-Based Approaches.” ACM SIGMOD Record 31, no. 1 (2002): 43–48.

(September 28, 2015)

[86] http://www2.cs.uic.edu/~advis/publications/dataint/eis05j.pdf. (September 28, 2015)

[87] http://web.stanford.edu/~natalya/papers/SigmodRecordReview.pdf. (September 28, 2015)

[88] Grasic, Bostjan, and Vili Podgorelec. “Automating Ontology Based Information

Integration Using Service Orientation.” WSEAS Transactions on Computers 9, no. 6

(2010): 1109–2750

[89] Uschold, Mike, and Michael Gruninger. “Ontologies: Principles, Methods and

Applications.” The Knowledge Engineering Review 11, no. 02 (1996): 93–136.

 http://www.upv.es/sma/teoria/sma/onto/96-ker-intro-ontologies.pdf. (October 5, 2015)

[90] http://ubercrawl.com/wp-content/uploads/2011/01/The-Semantic-Web.pdf

10.8.15.The-Semantic-Web.pdf

[91] https://homes.cs.washington.edu/~alon/files/acmq.pdf (October 9, 2015)10.8.15.Why

Your Data Won’t Mix- Semantic Heterogeneity.pdf

Hakimpour, Farshad, and Andreas Geppert. “Resolving Semantic Heterogeneity in

Schema Integration.” In Proceedings of the International Conference on Formal

Ontology in Information Systems-Volume 2001, 297–308. ACM, 2001.

http://dl.acm.org/citation.cfm?id=505196.

http://psb.stanford.edu/psb-online/proceedings/psb04/aitken.pdf
http://www.w3.org/TR/owl-features/#s1.2
http://www.computer.org/csdl/mags/cs/2004/04/c4012.pdf
http://homepages.inf.ed.ac.uk/wadler/xml/#core
http://www.techrepublic.com/article/xml-too-much-of-a-good-thing
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA420617
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4185431/
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA420617.
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-47/wache.pdf
http://ceur-ws.org/Vol-47/cui.pdf
http://www2.cs.uic.edu/~advis/publications/dataint/eis05j.pdf
http://web.stanford.edu/~natalya/papers/SigmodRecordReview.pdf
http://www.upv.es/sma/teoria/sma/onto/96-ker-intro-ontologies.pdf
http://ubercrawl.com/wp-content/uploads/2011/01/The-Semantic-Web.pdf
http://dl.acm.org/citation.cfm?id=505196

99

[92] Hammer, Joachim, and Dennis McLeod. “An Approach to Resolving Semantic

Heterogeneity in a Federation of Autonomous, Heterogeneous Database Systems.”

International Journal of Intelligent and Cooperative Information Systems 2, no. 01

(1993): 51–83.

[93] Pinto, Carlos Sousa, Herlina Jayadianti, Lukito Edi Nugroho, and Paulus Insap

Santosa. “Solving Problems of Data Heterogeneity, Semantic Heterogeneity and

Data Inequality: An Approach Using Ontologies.” In MCIS2012-The 7th

Mediterranean Conference on Information Systems, In Knowledge and

Technologies in Innovative Information Systems, 2012.

http://repositorium.sdum.uminho.pt/handle/1822/23089.

[94] Kotenko, Igor, Olga Polubelova, Andrey Chechulin, and Igor Saenko. “Design and

Implementation of a Hybrid Ontological-Relational Data Repository for SIEM

Systems.” Future Internet 5, no. 3 (July 9, 2013): 355–75. doi:10.3390/fi5030355.

[95] Ghawi, Raji, and Nadine Cullot. “Database-to-Ontology Mapping Generation for

Semantic Interoperability.” In VDBL’07 Conference, VLDB Endowment ACM, 1–8,

2007. http://test2010le2i.u-bourgogne.fr/le2i/IMG/publications/InterDB07-

Ghawi.pdf.

[96] Yu, Liyang. Introduction to Semantic Web and Semantic Web Services. Boca Raton:

Chapman & Hall/CRC, pp.49, 2007.

[97] Yu, Liyang. Introduction to Semantic Web and Semantic Web Services. Boca Raton:

Chapman & Hall/CRC, pp.95, 2007.

[98] http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/

(October 13, 2015)

[99] Shenoy, Manjula, K. C. Shet, and U. Dinesh Acharya. “OWL Based XML Data

Integration.” International Journal of Computer Applications 68, no. 2 (2013).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.1441&rep=rep1&typ

e=pdf.

[100] 1.20.15.XML in a Nutshell_Tao.pdf, Elliotte Rusty Harold, W. Scott Means

pp.473

[101] http://www.javaworld.com/article/2076141/java-se/mapping-xml-to-java--part-

1.html. (October 20, 2015)

[102] XML 1.1 Bible, 3rd Edition.pdf. p.53

[103] http://www.w3schools.com/xsl/xquery_intro.asp. (October 20, 2015)

[104] 2.14.15.XML Programming Bible.pdf p.80

[105] Schematron.XUG.2012.pdf. INERA Inc. XUG 2012

[106] https://en.wikipedia.org/wiki/International_Standard_Serial_Number

http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.1441&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.1441&rep=rep1&type=pdf
http://www.javaworld.com/article/2076141/java-se/mapping-xml-to-java--part-1.html
http://www.javaworld.com/article/2076141/java-se/mapping-xml-to-java--part-1.html
http://www.w3schools.com/xsl/xquery_intro.asp
https://en.wikipedia.org/wiki/International_Standard_Serial_Number

100

[107] https://en.wikipedia.org/wiki/Digital_object_identifier

[108] Scap.nist.gov, “Security Content Automation Protocol”. 2012. Available at

http://scap.nist.gov/revision/1.2/schematron.html.

[109] Scridb.com, “XML Data Encoding Specification for Intelligence Publications Version 6

(PUBS.XML.V6)”. 2012. Available at http://www.scribd.com/doc/61419741/Spying-

Documents-Specifications.

[110] https://en.wikipedia.org/wiki/World_Wide_Web_Consortium. (October 23, 2015)

[111] http://www.w3.org/Consortium/. (October 23, 2015)

[112] http://www.w3.org/standards/xml/schema. (October 23, 2015)

[113] Lehti, Patrick, and Peter Fankhauser. “XML Data Integration with OWL:

Experiences and Challenges.” In Applications and the Internet, 2004. Proceedings.

2004 International Symposium on, 160–67. IEEE, 2004.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1266111.

[114] http://ftp.cse.buffalo.edu/users/azhang/disc/SIGMOD/pdf-files/563/721-nimble.pdf.

Draper, Halevy and Weld. The Nimble Integration Engine XML.pdf.

[115] http://www.w3schools.com/xml/xml_rdf.asp. (October 26, 2015)

[116] http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.3. (October 26, 2015)

[117] http://www.w3.org/TR/owl2-primer/#Introduction. (October 26, 2015)

[118] https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force. (October 27, 2015)

[119] http://ietf.org. (October 27, 2015)

[120] 10.28.15.Assessing Heterogeneity by Classifying Ontology Mismatches.pdf

[121] 9.26.15.Ontology Based Integration of Information.pdf

[122] The IEEE computing edge October, 2015 pp. 22-28. “Trustworthy Processing of Healthcare

Big Data in Hybrid Clouds”. Blue Skies Department.

[123] Jennings, Nicholas R., Anthony G. Cohn, Maria Fox, Derek Long, Michael Luck,

Danius T. Michaelides, Steve Munroe, and Mark J. Weal. “Motivation, Planning

and Interaction.” Cognitive Systems: Information Processing Meets Brain Science,

2006, 163–88.

https://en.wikipedia.org/wiki/Digital_object_identifier
http://www.scribd.com/doc/61419741/Spying-Documents-Specifications
http://www.scribd.com/doc/61419741/Spying-Documents-Specifications
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://www.w3.org/Consortium/
http://www.w3.org/standards/xml/schema
http://ftp.cse.buffalo.edu/users/azhang/disc/SIGMOD/pdf-files/563/721-nimble.pdf
http://www.w3schools.com/xml/xml_rdf.asp
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.3
http://www.w3.org/TR/owl2-primer/#Introduction
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
http://ietf.org/

	DPS Dissertation
	Abstract
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Overview
	1.2 Hardware and Software Diagnostic Challenges
	1.2.1 Motivating Example
	1.2.2 Mailing Address Use-Case
	1.2.3 DVD and CD-ROM Use-Case

	1.3 Complexity Caused by Multiple Dialects
	1.3.1 Inconsistent Tag Names
	1.3.2 Semantic Validation for Data Integration
	1.3.3 E-Mail Address Use-Case
	1.3.4 Reducing Complexity

	1.4 Current Approaches to the Problem
	1.4.1 Computer Code Use-Case
	1.4.2 Schema Use-Case
	1.4.3 Schematron Use-Case
	1.4.4 A Better Approach
	1.4.5 An Even Better Approach

	1.5 Problem Statement
	1.6 Solution Methodology
	1.7 Roadmap

	Chapter 2 Current Status of the XML Semantic Rule Complexity Problem
	2.1 Current Methods
	2.2 World Wide Web Background in Brief
	2.3 XPointer
	2.4 XPath
	2.5 XQuery
	2.6 XPattern
	2.7 Document Object Model (DOM) and SAX
	2.8 XML Parsers
	2.9 Schematron
	2.9.1 Components of a Schematron file.
	2.9.1.1 Schema

	2.9.2 Phase
	2.9.3 Pattern
	2.9.3.1 Assert
	2.9.3.2 Rule

	2.10 XSLT Validation
	2.11 Semantic Web
	2.12 Web Ontology Language (OWL)
	2.13 PaceProtégé
	2.14 PaceJena
	2.15 Knowledge Representation
	2.15.1 Association
	2.15.2 is_a relationship
	2.15.3 part_of relationship

	2.16 Knowledge Graph
	2.17 Conclusion

	Chapter 3 Solution Methodology
	3.1 Solution Strategy for the XML Semantic Dialect Proliferation Problem
	3.2 Using a Knowledge Graph to Specify Relations and Explications
	3.3 Using Schematron to Specify Diagnostic Constraints Patterns
	3.4 Detailed Solution Workflow
	3.4.1 Algorithm. Dialect Identification (DI) Algorithm
	3.4.2 Diagnostic Message File Use-Case

	3.5 Pace-Extended Schematron
	3.6 The Abstract Concept
	3.6.1 OWL Knowledge representation

	3.7 Framework Validation Workflow
	3.8 Solution Methodology Files
	3.8.1 Abstract Rule
	3.8.2 Mapping File
	3.8.3 Concrete Rule

	3.9 Mapping Used to Create the Concrete Rule
	3.10 Mapping File Format
	3.11 Solution Benefits
	3.12 Conclusion

	Chapter 4 Implementation Highlights
	4.1 Introduction
	4.2 Deriving the Concrete Rules from the Abstract Rules
	4.3 Abstract to Concrete Algorithm
	4.3.1 Dialect Recognition
	4.3.2 Abstract to Concrete Algorithm (AbsToConc)
	4.3.3 An Example Research Ontology

	4.4 Solution Methodology Files
	4.4.1 The XML File
	4.4.2 Mapping File
	4.4.3 Abstract Rule
	4.4.4 Concrete Rule

	4.5 Implementation Examples
	4.6 Important Research Considerations
	4.7 The Quest for a More Scalable Approach
	4.8 A More Scalable Approach for Real-World Applications
	4.8.1 Element-based or In-Header Dialect Specification Use-Case
	4.8.2 Research Data Generation

	4.9 Research Platform Equipment
	4.10 Conclusion

	Chapter 5 Interpretation and Evaluation of Solution Methodology
	5.1 Evaluating the Solution
	5.2 Research Experiment Demonstration
	5.3 Research Data Generation
	5.4 Crontab File Content
	5.5 Crucial Components of the Research Solution Methodology
	5.6 Research Validation
	5.7 Conclusion

	Chapter 6 Conclusion
	6.1 Coupling Schematron Validation with Knowledge Graph
	6.2 Summary
	6.3 Future Work

	Appendix A Schematron Validation Code
	Appendix B Dialect Identification Code
	Appendix C Abstract-to-Concrete Rule Substitution Code
	Appendix D Semantics and Explication Retrieval Code
	References

