

A Semantic Approach to Intelligent and Personal Tutoring System

By

Maria Sette

Submitted in partial fulfillment

Of the requirements for the degree of

Doctor of Professional Studies

In Computing

At

School of Computer Science and Information Systems

Pace University

January 2017

Copyright © 2016 Maria Sette

All rights reserved.

We hereby certify that this dissertation, submitted by Maria Sette, has successfully

satisfied all the dissertation requirements for the degree of Doctor of Professional

Studies in Computing.

School of Computer Science and Information Systems

Pace University 2017

Abstract

A Semantic Approach to Intelligent and Personal Tutoring System

By

Maria Sette

Submitted in partial fulfillment

Of the requirements for the degree of

Doctor of Professional Studies

In Computing

January 2017

Cyberlearning presents numerous challenges such as the lack of personal and assessment-

driven learning, how students are often puzzled by the lack of instructor guidance and

feedback, the huge volume of diverse learning materials, and the inability to zoom in

from the general concepts to the more specific ones, or vice versa. Intelligent tutoring

systems are needed to improve the Cyberlearning quality. One of the major difficulties is

knowledge representation. The current industry standard is to use Web Ontology

Language (OWL) for representing knowledge structure. But OWL only supports one

"first-class" relation, "is-a", between the concepts, and different knowledge areas usually

need different custom relations to describe the relations among the concepts. For example

"part-of" and time dependency are important relations to represent most engineering

knowledge bodies. OWL is limited to object properties to emulate such custom relations,

leading to awkward knowledge representation hard for domain experts to code, validate

and use such knowledge bases. This research uses Pace University’s extension to OWL,

named Knowledge Graph (KG), to support knowledge representation with custom

relations. The instructors can use Pace University extended Protégé IDE to declare and

apply custom relations in a single document. The instructors teaching experience is also

coded in the KG to better support custom learning order by students with different

backgrounds. The prototype of a knowledge-driven tutoring system was designed and

implemented to illustrate how the KG supports integrated assessments; using assessment

results to custom student learning order or material; and let the students freely navigate in

the knowledge space from general to specific or the opposite, and following various

custom relations. A web technology tutorial is used to validate the design and

effectiveness of this approach.

Acknowledgements

This journey has been a very challenging and exhausting path. At times I felt defeated

and other times I struggled to finish. I am very thankful to have been surrounded by

people who provided the encouragement, council, and strength to see the light at the end

of this journey.

This research paper is in honor and loving memory of my father Mr. Michael Sette. He

passed away in 1995 never had the opportunity to see my great achievements. Of course

my dear mother, Mrs. Agata Sette who has given me the strength, hope, and faith, in

believing and guiding me toward opportunities she never had but was able to give me this

special gift. Also my beloved and special dog’s Morgan Sette who was my best friend

and the love of my life who passed away in 2012 during my doctoral program and my

little angel Madison Sette a gift from GOD.

I dedicated this life achievement to the people who have been most important and

instrumental in guiding my life both by their support and their example. This

achievement would not have been made possible without the support of all my

relationships with those from Pace University.

First I would especially like to thank my advisor, Dr. Lixin Tao for his wise counsel,

guidance, and patience with me through this process. His keen insights and ability to

appreciate the complexities and challenges of technology in a professional setting has

been a source of inspiration and the encouragement that I needed to see this through. To

Dr. Fred Grossman, for having the forethought to craft such a program at Pace

University, I am truly thankful for having the opportunity to pursue this milestone in my

life.

And finally, I would also like to extend my thanks to Christine Martinez and Ning Jiang

for their countless hours of support and mentoring. Both have been my light to a dark

tunnel. This program has taught me a lot about who I was from the beginning and who I

have become at the end. I am very proud to be part of this establishment.

1

Table of Contents

Abstract ... iv

List of Figures ... 7

List of Tables ... 10

Chapter 1 Introduction ... 11

1.1 Cyberlearning Challenges .. 11

1.1.1 Unlimited Choices of Learning Materials .. 14

1.1.2 Lack of Instructor Personal Guidance ... 16

1.2 Knowledge Representation for Adaptive Student Navigation 16

1.2.1 An Intelligent Tutoring System Based on Knowledge Representation 18

1.2.2 Personalized Learning Profiles ... 19

1.2.3 Knowledge Learning Object Navigational Features .. 22

1.2.4 Generating Learning Sequences... 23

1.2.5 Assessment Based Learning ... 24

1.2.6 Instructor Teaching Experience Representation .. 24

1.2.7 Studying with Alternative Materials .. 25

1.3 Problem Statement .. 26

1.3.1 Research Problem ... 26

1.3.2 Solution Methodology ... 27

1.3.3 Main Objective and Contributions .. 28

1.4 Dissertation Roadmap .. 30

Chapter 2 Literature Survey of Knowledge Representation Methods and

Web-Based Technologies .. 31

2

2.1 Forms of Knowledge Representation Methods .. 31

2.1.1 Semantic Networks ... 31

2.1.2 Frame-Based .. 36

2.1.3 Rules-Based .. 42

2.1.4 Logic-Based ... 44

2.1.5 Ontology-Based... 46

2.1.6 Knowledge Graph .. 50

2.2 Learning Objects ... 54

2.3 Web-Based Technologies ... 55

2.3.1 JAVA .. 55

2.3.2 JavaScript ... 56

2.3.3 JavaServer Pages (JSP) .. 57

2.3.4 AJAX .. 58

2.3.5 Java Servlets ... 59

2.3.6 Tomcat ... 60

2.3.7 Spring MVC .. 67

2.3.8 Apache Jena... 73

2.3.9 XML Parsers .. 74

Chapter 3 An Intelligent Tutoring System Framework Empowered with

Knowledge Representation .. 77

3.1 Cyberlearning Challenges .. 77

3.1.1 Overwelming Study Resources And Lack Of Personlized Guidance 78

3.1.2 Lack Of Instructor Experience .. 79

3.1.3 Lack Of Assessment Based Study .. 80

3.2 Intelligent Tutoring System Solution Framework Overview 81

3

3.2.1 Concepts and Proposed Solution Framework .. 81

3.2.2 Knowledge Representation .. 82

3.2.3 Instructor Experience Representation ... 86

3.2.4 Knowledge Graph Navigation.. 87

3.2.5 Integrated Assessment ... 88

3.2.6 Web Tutorial Ontology.. 88

3.2.7 Evaluation .. 91

3.2.8 Documentation.. 91

3.2.9 Conclusion ... 92

3.3 Knowledge Representation of Intelligent Tutoring System Solution 92

3.3.1 Knowledge Representation .. 92

3.3.2 Capturing Instructor Experience in Learning Orders ... 97

3.3.3 Capturing Instructor’s Adaptive Learning Topics .. 99

3.3.4 Capturing Instructor’s Integrated Assessment ..101

3.3.5 Conceptualizaion of Web Tutorial Ontology ...102

3.4 Tutoring System Life Cycle Based on Knowledge Representation 106

3.5 Tutoring System Architecture... 107

3.5.1 Functional and System Design Requirements ..107

3.5.2 System Architecture ...108

3.6 Tutorial System Use Cases ... 110

3.6.1 Main Use Case ..111

3.6.2 Instructors Managing Course Content Use Case ..115

3.6.3 Student Login Process Use Case ...118

3.6.4 Login Use Case ...120

3.6.5 Registration Use Case ..122

4

3.6.6 Login Learning Order Use Case ..124

3.6.7 Knowledge Space Exploration Use Case ..125

3.6.8 Quiz Module Overview ..127

3.6.9 Conclusion ...131

3.7 Pace Protégé Extension for Knowledge Representation 131

3.8 PaceJena for Knowledge Navigation ... 136

3.9 Knowledge Graph Representation for Navigation .. 136

3.10 Summary ... 137

Chapter 4 Intelligent Tutoring System Implementation Highlights and

Adaptation to Other Subjects .. 139

4.1 Introduction to Tutorial Web-Based System .. 139

4.2 Overview of Tutorial Web-Based Architecture .. 140

4.3 Open Source Web-Based Technologies .. 141

4.4 Web Tutorial Knowledge Representation ... 145

4.5 Web Tutorial File Structure Representation .. 152

4.6 Web Tutorial Learning Order Specification .. 155

4.7 Web-Based Technology Implementation... 159

4.7.1 Tomcat Web Server ..160

4.7.2 Tutorial POM Descriptor ..163

4.7.3 Tutorial Deployment Descriptor ...167

4.7.4 Tutorial Web Dispatcher Customization ...174

4.7.5 Tutorial Application File Structure...180

4.7.6 Tutorial Annotation Web-Based Controllers ..182

4.8 Adaptive Tutorial Navigational Features... 186

4.8.1 Adaptive Navigational Knowledge Space ..186

5

4.8.2 Adaptive Navigational Knowledge Space Guidance ..187

4.8.3 Adaptive Navigational Knowledge Space Hiding ..187

4.8.4 Adaptive Navigational Knowledge Organization ..188

4.8.5 Adaptive Navigational Knowledge Assessment ...189

4.9 Managing Student Learning Profiles ... 189

4.10 Managing Knowledge Object Collection and Organization 191

4.11 Managing Students Learning Topic: Editing, Saving and Update Process .. 193

4.12 Managing Instructors New Subject Topics .. 195

4.13 Quiz Development and Integration ... 196

4.13.1 Challenge Quiz Overview ...196

4.13.2 Students Knowledge Exploration ..198

4.13.3 Instructor’s Integrated Assessment ...205

4.14 Process to Developing a Tutorial System for a New Subject........................... 206

4.14.1 Knowledge Representation...206

4.14.2 Learning Order Specification ...210

4.14.3 Knowledge Object Collection and Organization ...212

4.14.4 Managing New Topics for Editing, Saving, and Deletion214

4.14.5 Navigating the Knowledge Space ...216

4.14.6 New Quiz Development and Integration..217

4.15 Summary ... 217

Chapter 5 Validating System Effectiveness through Prototype Application

 218

5.1 Evaluation Process of the Tutorial System Prototype 218

5.1.1 Participates ...219

5.1.2 Procedures and Instruments ...220

6

5.1.3 Comparing and Contrasting Different Learning Methods ..222

5.1.4 Students Feedback ..223

5.2 Analyzing Quiz Results .. 225

5.3 Conclusion .. 233

Chapter 6 Conclusion ... 234

6.1 Major Research Contributions .. 235

6.2 Potential Future Work .. 236

Appendix A ... 237

Appendix B ... 246

Appendix C.. 260

Appendix D ... 262

Appendix E.. 263

Appendix F .. 265

References .. 267

7

List of Figures

Figure 1 PaceJena Tutoring System Architecture ... 13
Figure 2 Block Diagram of an Adaptive E-Learning System .. 17

Figure 3 Proposed PaceJena Tutoring System Life Cycle .. 19
Figure 4 PaceJena Tutoring System Login Page .. 20

Figure 5 PaceJena Tutoring System User Registration ... 21
Figure 6 PaceJena Tutoring System Learning Path Navigation 23

Figure 7 The “is-a” relationship between class and superclass 32
Figure 8 The “is an instance of“ relationship between instance and class 32

Figure 9 The “is a part of“ relationship between part and whole 32
Figure 10 The “has” relationship between object and attribute 33

Figure 11 Inheritance of semantic network .. 33
Figure 12 Repeated “is-a” link with different meanings ... 35

Figure 13 The “type-of” and “subtype-of” links ... 36
Figure 14 Representation of Semantic Network Frame .. 38

Figure 15 Diagrammatic form of frame-based system .. 39
Figure 16 Semantic Network Edges ... 45

Figure 17 Representation of Individuals .. 48
Figure 18 Representation of Properties .. 49

Figure 19 Representation of Classes .. 49
Figure 20 Example of Triple Representation .. 50

Figure 21 Pet Relations Using “is-a” Predicate .. 50
Figure 22 Hand Relations Using “partOf” Relation.. 53

Figure 23 Tomcat Architecture with Main Components [37] ... 61
Figure 24 Front Controller Design Pattern [14] .. 69

Figure 25 Spring MVC Design Pattern [14] ... 69
Figure 26 Spring MVC Architecture [14] .. 70

Figure 27 Spring Web Configuration Hierarchy... 70
Figure 28 Spring MVC Request Life Cycle ... 73

Figure 29 DOM Parser Workflow.. 74
Figure 30 SAX Parser Workflow ... 75

Figure 31 Solution Framework of PaceJena Tutoring System .. 85
Figure 32 Knowledge Graph Representation of Extended and Custom Relations 93

Figure 33 Learning Order for Beginner.. 98
Figure 34 Learning Order for Intermediate .. 99

Figure 35 Web Tutorial Ontology Scope of Knowledge Representations 103
Figure 36 Pace Protege Version 5.0 - Adding Relation .. 104

Figure 37 Pace Protege OWLVIZ Knowledge Graph with Custom Relations 105
Figure 38 PaceJena Tutoring System Architecture ... 108

8

Figure 40 Screen Capture of the PaceJena Tutoring System ... 111
Figure 41 Example of Knowledge Graph Based on Custom Relation “partOf” 112

Figure 43 Instructor / Teacher Login Use Case .. 115
Figure 44 Instructor / Teacher Editing Course Content Use Case 116

Figure 45 Instructor / Teacher Saving Course Content Use Case.................................. 116
Figure 46 A Snapshot of Proposed Web Tutorial Ontology In Pace Protégé 117

Figure 47 Student Login Process Use Case .. 119
Figure 48 Student Login Process Use Case ... 120

Figure 49 Interaction Diagram for Login Use Case .. 121
Figure 50 Login Use Case ... 121

Figure 50 Interaction Diagram for Registration Process ... 123
Figure 52 Registration Use Case .. 123

Figure 53 Interaction Diagram for Login Learning Order Process 124
Figure 54 Login Learning Order Use Case... 125

Figure 55 Knowledge Space Exploration Use Case.. 126
Figure 56 Instructor / Teacher Editing Quiz Assessment Use Case 128

Figure 57 Quiz Diagram .. 129
Figure 58 Student Quiz Assessment Use Case ... 130

Figure 59 Launching Pace Protege from Command Line ... 132
Figure 60 Pace Protege GUI Interface with Custom Relations Features 133

Figure 61 Pace Protege GUI Interface with Custom Relations and Related To Feature 134
Figure 62 Pace Protege GUI Interface with Customized OWLViz Knowledge Graph

Features ... 135
Figure 63 Tutoring System Architecture .. 141

Figure 63 SubClass.. 146
Figure 64 Sample of Individual Classes and Members ... 147

Figure 30 Sample of Knowledge Graph of Individual Classes and Members 147
Figure 31 Transitive and Inverse Property of “part of” Relations 148

Figure 67 Partial Knowledge Graph Representation of “include and “partOf” Relation 149
Figure 68 Partial Generalization and Specialization Relations...................................... 150

Figure 32 Partial Knowledge Graph of Generalization and Specialization Relations 150
Figure 33 Represents the IS-A Relation ... 151

Figure 34 Sample Knowledge Representation of Include Relation 151
Figure 72 New Custom Relation ImplementedBy .. 152
Figure 73 Knowledge Graph of New Custom Relation ImplementedBy 152

Figure 35 Declarations of the Standard Prefix Names and Custom Namespaces 154
Figure 75 Knowledge Representation of Customized New Relations 155

Figure 76 Knowledge Representation of Learning Order Structure 157
Figure 77 Defining Learning Order for Beginner ... 158

Figure 78 Defining Learning Order for Intermediate .. 158
Figure 36 A Sample of Tutoring System Learning Order Diagram............................... 159

Figure 80 Tomcat Server Configuration ... 161
Figure 81 Overview POM Descriptor Configuration .. 163

Figure 82 Sample of POM Dependencies .. 164
Figure 83 Sample of POM.XML File .. 166

Figure 84 Tutoring System Deployment Descriptor: Web.XML File 169

9

Figure 85 Serlvet and Servlet Mapping .. 170
Figure 86 SpringDispatcher – servlet.xml File ... 172

Figure 87 Context Parameter ... 173
Figure 88 Spring-Database.xml File .. 173

Figure 90 Tutoring System DispatcherServlet Diagram ... 175
Figure 92 Tutoring System Application File Structure ... 181

Figure 93 User Controller .. 182
Figure 94 Home Controller .. 183

Figure 95 Learning Topic Controller ... 184
Figure 96 Owl Navigator Controller .. 184

Figure 97 MYSQL USER Database A ... 189
Figure 98 MYSQL USERS Database B ... 190

Figure 99 Sample of Customized Master Web page Template 192
Figure 100 Summernote Editor Tool [44] .. 194

Figure 101 Tutoring System File Structure in Ubuntu .. 195
Figure 102 Quiz Question Database ... 197

Figure 103 Quiz Scores ... 198
Figure 104 PaceJenaAuthenticationSuccessHandler.Java ... 199

Figure 105 SecurityConfiguration.java .. 200
Figure 106 A Sample of User Flow Diagram ... 200

Figure 107 Capturing Generalization in PaceJena Tutoring System 204
Figure 108 Capturing Specialization in PaceJena Tutoring System 204

Figure 109 Resetting the Running Environment... 206
Figure 110 Defining Classes .. 207

Figure 111 Create a New Relation “partOf” ... 207
Figure 112 Defining Relations between Classes... 208

Figure 113 Declaring Relations between Concepts .. 208
Figure 114 Declare Hand is partOf Body ... 209

Figure 115 Visualization of the OWL .. 209
Figure 116 Defining Learning Order of Individuals ... 211

Figure 117 A Sample PaceJena Code for Learning Order .. 211
Figure 118 Implement New Ontology File ... 213

Figure 119 Replacing the webTutorial.owl in

PaceJenaAuthenticationSuccessHandler.java with New Subject File 213
Figure 120 Administrator Login Access .. 214

Figure 121 Click on Editing Mode ... 214
Figure 122 Managing Editing Mode Features .. 215

Figure 123 Learning Topic Database Table ... 216
Figure 124 Load XML file into MYSQL Database .. 217

Figure 125 Analyzing and Comparing Pre-Quiz and Paper Quiz Results Chart 228
Figure 126 Analyzing and Comparing Pre-Quiz and Web-Based Quiz Results Chart ... 229

Figure 127 Analyzing and Comparing Paper and Web Based Quiz Results Chart 230
Figure 128 Analyzing and Comparing Beginner Quiz Results Chart 231

Figure 129 Analyzing and Comparing Intermediate Quiz Result Chart 232

10

List of Tables

Table 1 Frame Example of the Book “Semantic Web” ... 40
Table 2 Frame Example of Personal Data .. 40

Table 3 Frame Example of “Dell Optiplex” ... 41
Table 4 Tomcat Default Directory Structure .. 63

Table 5 Web Tutorial Ontology Key Terms ... 102
Table 6 Example of Key Terms ... 112

Table 7 Open Source Web Technology.. 141
Table 8 Knowledge Representation of Learning Order .. 156

Table 9 Tomcat Webapp Tutoring System Directory Structure 162
Table 10 Elements of POM.XML File Structure .. 165

Table 11 Deployment Descriptor Elements .. 167
Table 12 Tutoring System Elements .. 175

Table 13 USERS Database Table Information ... 190
Table 14 Analyzing and Comparing Pre-Quiz and Paper Quiz Results 225

Table 15 Analyzing and Comparing Pre-Quiz and Web-Based Quiz Results 226
Table 16 Analyzing and Comparing Paper Quiz and Web-Based Quiz Results 227

11

Chapter 1 Introduction

1.1 Cyberlearning Challenges

Today Cyberlearning education has become a very acceptable way to learning course

content material, but students are faced with many challenges and are overwhelmed by

the choices. Some of the challenges that students encounter is the accessibility and

availability of many different types of rich learning object formats, which can be very

distracting to a student’s learning path and can affect students learning experience and

performance. Another challenge to Cyberlearning education is we don’t have teacher’s

present to coach students in learning subject materials. So how can students achieve

personalized adaptive learning experience in a Cyberlearning educational environment?

Personalized learning services are a key point in the field of online learning as there is no

fixed learning path, which is appropriate for all learners. However, traditional learning

systems ignore these service requirements and deliver the same learning content to all

learners and may not be effective for learners with different backgrounds and abilities.

Finally, learning object contains many knowledge concepts, and these concepts are

connected through different kinds of relations. Even though people have conducted over

a decade of learning objects research to use web base learning resources in learning, they

have not looked into knowledge concept reuse. In the last 20 years there has been studies

12

conducted on learning object’s, which is heavily supported by the National Science

Foundation. But this study was limited by categorizing, reusing existing learning

resource’s, they don’t have knowledge mapped to integrate these learning objects

together for customized adaptive learning environment. Over the past few years there has

been an increase in the awareness of a semantically adaptive web-based learning

environment [2][17][27][10]. This has been driven by the idea of individualizing tutoring

systems for personalized learning. Factors that contribute in this direction include the

diversity in the target population participating in learning activities, the diversity in the

access media and modalities that one can effectively utilize today in order to access,

manipulate or collaborate on educational content or learning activities, alongside with a

diversity in context of use of technologies [23]. Some investigations focus on how to

improve the organization of representing structure data vocabulary and content for

Learning Objects (LOb) [9]. However, this goal cannot be achieved at a massive scale

using the traditional approaches. Currently LOb remain an ill-defined concept, which

refers to a collection of knowledge points that are combined for being aware of a certain

objective [31]. They do not semantically represent knowledge structure relations which

links one LOb concept to another LOb concept for web based intelligent tutoring

systems, they only do indexing of learning resources. Although there are many tools and

various approaches for developing LObs concepts, the objective is to adapt to the

learner’s needs, assess the learner’s performance outcome and to provide feedback

recommendations and to adjust learning path and learning order accordingly. Moreover, a

web based intelligent tutoring system is a computerized instructional designed application

that offers online learning material resources or feedback assessment to learners. Web

13

based intelligent tutoring systems do not offer automatic feedback recommendation for

students on which LObs to recommend, what learning path and learning order learner

should follow in order to better understand learning concepts. The failure to recognize the

online leaners needs will result in a failure on how instructors use Lobs to improve

learning needs.

This research addresses this problem and proposes a semantic approach, PaceJena

Tutoring System, for achieving intelligent and adaptive learning, which uses Web LOb as

an approach to reuse learning resources. Figure 1 illustrates the architecture of the

PaceJena Tutoring System. Four tiers are included in the system, which involve client,

education, semantic, and data tiers.

Figure 1 PaceJena Tutoring System Architecture

14

This research seeks to purpose and improve a methodology and framework to support the

representational knowledge structures of LOb resources by means of ontology. Ontology

is a formal naming and definition of the types, properties, and inter-relationships of the

entities that exist for a particular domain of discourse. But this research goes beyond the

“is a” and inheritance relations and also supports the “partOf” relations along with

customized relations and to provide the learner with recommended feedback. The

recommended feedback consists of evaluating learner’s outcome and semantically

mapping learner to learning path using recommended LOb resources. The main

contributions of this work include: 1) we use Pace Knowledge Graph to represent

knowledge in a subject in order to achieve a customized knowledge structure and enable

an intelligent tutoring system. 2) We design and implement a personal tutorial system to

support personalized learning.

1.1.1 Unlimited Choices of Learning Materials

In today’s e-learning environment, students are overwhelmed with the amount of learning

materials that are available. Student are undecided which learning material is right for

them and which learning material they should learn first. Some students learn better from

videos, some from content, and others from audio. So many choices to choose from,

which is the right choice for me? As technology is evolving, many web-based educational

systems have been developed that offer an abundance of learning resources presented in

the form of a digital learning objects, such as document files, web pages, audio, video,

image files, and much more. Finding the relevant learning resources requires that these

15

resources be annotated with rich, standardized, and widely used metadata. Several

educational metadata standards, such as IEEE LOM (IEEE, 2002) [38], Dublin Core

(DCMI, 1990) [37], IMS Consortium (IMS, 2001) [39], and SCORM (ADL, 2004) [43],

have emerged to define a standard specification of a learning resource component as a

learning object to facilitate accessibility, interoperability, and reusability, the use of

different types of metadata has introduced the problem of interoperability across

heterogeneous learning resource systems. One of the problems lies on the lack of

semantic common standards in the e-learning domain. The abundance of e-learning

metadata standards and user-defined metadata does not purpose a globally agreed

common standard and still lacks formal semantics. The semantic web provides

organizations the ability to annotate learning resources to facilitate knowledge sharing

and reuse by others. As a number of learning objects increases, it is expected that many

different ontologies can use different e-learning metadata to describe the same or similar

sets of learning objects. The related learning objects dispersed over heterogeneous

learning resource systems are still difficult to discover and reuse within other courseware,

because of the lack of semantic common standards between learning resources

ontologies. To access learning objects users need to know the physical locations of the

desired learning objects. This leads to the problems of interoperability of heterogeneous

learning resource systems. Unfortunately, the various repositories are either closed

systems or systems that allow user access only through proprietary interfaces and data

formats.

16

1.1.2 Lack of Instructor Personal Guidance

Traditionally, the lecture based teaching as played an active role and the students a

passive one, this has been the main teaching vehicle in many colleges and university

systems, military and business training courses. Emerging are the online system

methodology approaches, lectures classes are losing their central role while student work

is gaining weight, with hours increasingly devoted to online learning. One objectives of

the online learning is to transfer knowledge from teachers to learners, and this knowledge

has to be interpreted, to be clear and to be retained by learners. Many e-learning

environments are challenged with the delivery of how to present learning materials to

their students. E-learning environments in colleges and universities tend to teach learning

materials in a restricted order for all learners regardless of students learning level. These

learning materials also known as learning objects have no intelligences in these types of

systems to be able to guide users learning abilities or personalized their learning

materials. The assessment follows each learning lesson, which is done by taking a quiz,

but the quiz can’t evaluate or recommend whether you understood the lesson or whether

you should be redirected back to learning topic before go ahead to learn the next topic.

Some learners are beginners while others are more advanced. How do we address some

of these issues?

1.2 Knowledge Representation for Adaptive Student Navigation

Many successful adaptive e-learning systems do not employ ontologies for knowledge

representation. An adaptive student navigation support system is needed to guide students

17

and generate available learning resource objects, and assist in assessment base learning

knowledge to track and compute student’s performance level and lead students to a

recommended learning path. In e-Learning applications metadata is also fundamental for

describing online learning materials and among other information, it can capture the

subjects or knowledge domains associated with each document. This information is

needed for customizing learning sessions, but it is not sufficient. For locating relevant

content, the system needs to know how the subjects are interrelated in an abstract

knowledge space and follow the associations to suggest links to the student.

Figure 2 Block Diagram of an Adaptive E-Learning System

The block diagram of a typical adaptive e-learning system is shown in Figure 2. The main

modules of an adaptive system are the domain ontology, student model, adaptive retrieval

module and the learning object repository. For the development of an adaptive system,

the domain ontology plays a crucial role [28], [30]. The ontological structures can be

18

used for organizing, processing and visualizing subject domain knowledge, marking

the topic and coverage of learning objects, and for building learner models in e-learning

systems. The domain ontology can be used for concept-based domain specific

information retrieval, visualization, and navigation that help learners to get oriented

within a subject domain and recommend learning path for their own understanding and

conceptual association [3], [18].

1.2.1 An Intelligent Tutoring System Based on Knowledge Representation

In this section we will describe the desired features that support our intelligent tutoring

system, which is based on our semantic approach to personalized learning profiles,

knowledge navigation, generating learning object sequences, assessment based learning,

teaching experience representation, and studying with alternative materials. In Figure 3,

Proposed PaceJena Tutoring System Life Cycle illustrates the different phases for this

system. The student content is where the student initiates his/her personalized learning

level. Once learning level has been established the tutoring system will assign the student

with the learning order. Student will have the ability to navigate the learning objects from

the knowledge structure for this learning content. The instructor content contains the

resources needed for the instructor to manage student’s performance and learning

outcomes. The semantic technology content contains the Web Tutorial Ontology, which

is a knowledge graph and knowledge structure, which gets read into the PaceJena

program. The PaceJena program is where the functions and methods drive the knowledge

graph. PaceJena also contains the Sax Parser, which will parser the knowledge data. The

assessment content is where student will be challenged with a quiz after each topic has

19

been completed. This quiz will evaluate and deliver feedback to students on how they

should proceed with their learning strategy.

Figure 3 Proposed PaceJena Tutoring System Life Cycle

1.2.2 Personalized Learning Profiles

Research as argued [36] that tutoring systems should provide a personalized learning

environment. In this subsection, we show how PaceJena Tutoring System adapts to the

individual users profile. PaceJena Tutoring System contains two learning levels of

learning for the purpose of this dissertation we have chosen a “Beginner” level and an

“Intermediate” level. Personalized student profile learning levels are pre-defined during

the new user account registration form. Students who wish to use the PaceJena Tutoring

System must register on the PaceJena Tutoring System user registration page. The

20

student can create his/her registration in Figure 4 by first going to the user login screen.

On this page the student will see a sentence and link called “Not Yet Registered!!!

Register Here”. This link will bring the student to the registration form page.

Figure 4 PaceJena Tutoring System Login Page

21

Figure 5 PaceJena Tutoring System User Registration

The registration page in Figure 5 contains the following registration information; user

must enter a “Student ID,” “Last Name,” First Name,” Preferred UserID,” “Email

Address,” “Password,” “Password (Repeated),” “Select Learning Level:,” (We are only

using Beginner and Intermediate for this dissertation.) student must use the down arrow

to select the learning level of their choice and finally the student will click on the submit

button. The system will register this information and generated the student‘s profile in the

PaceJena Tutoring System database. Students with learning level “Beginner” will learn

the learning material in sequential order from the very beginning. Students with

intermediate will learn in a different learning order then beginner.

22

1.2.3 Knowledge Learning Object Navigational Features

The knowledge learning object navigational in figure 6 features are activated when the

user creates his/her registration account. When user logs into the PaceJena Tutoring

System for the first time, the knowledge learning objects navigational menu will appear

on the left pane side, it will be based on the users personalized registration profile for

learning level and learning order. This knowledge learning objects navigational menu is

used to navigate through the learning object concepts under consideration during the

learning process. The learning order for “Beginner” is the recommended learning order

for this level of learning. Students have the ability to learn the learning objects in any

sequence but it is recommended that they learn according to the learning role for

“Beginner”. The same concept goes for also the “Intermediate” learning role. The

knowledge navigation learning object concepts will adapt to the learner‘s learning

assessment performance.

23

Figure 6 PaceJena Tutoring System Learning Path Navigation

1.2.4 Generating Learning Sequences

A student may want to learn a particular topic without learning every single topic

previously mention. A student who wants to summarize a learning object topic may want

to learn the minimum set of concepts in order to understand the chosen concept, where as

a student whom is not familiar with the topic may want to learn the maximum set of

concepts in order to understand the chosen concept in more detail. PaceJena will display

a learning sequence for the chosen concept topic.

24

1.2.5 Assessment Based Learning

The assessment based learning process is a multiple choice challenge quiz. All

knowledge based learning objects contain a challenge quiz. The challenge quiz can be

taken at any point in the learning process. The challenge quiz will determine and

recommend what the student should learn next or the student may need to re-learn the

same topic depending on the student’s assessment performance outcome. This assessment

will determine at what learning level to adjust the students learning role.

1.2.6 Instructor Teaching Experience Representation

In PaceJena Tutoring System both the PaceJena program and the Web Tutorial

Ontology provide the instructor’s teaching methods. Both components act as a virtual

tutoring instructor, presenting the contents in an appropriate sequence, based on the

student’s knowledge and his/her learning style. This is an interactive process and

these components have the ability to assess the knowledge state of the learning

process. The student module is used as input to this component, so the pedagogical

decisions reflect the differing needs of each student. One of the motivations for

building the PaceJena Tutoring System for learning was to create a more effective

representational teaching and student strategy. Many teaching strategies are the same for

all learners regardless of learning level. This causes an issue for educational institutions

because the learning materials are not in sync with the overall learning strategies for

different learning styles. This can cause students to be inconsistence with their learning

goals. Instructors tend to design learning materials using parameters of their own such as

25

learning order, learning concepts, and learning assessment. The semantic technology

representation and design of the ontology knowledge structure for this research permits

the student to decide on how the system should initiate his/her personalize learning from

the registration form when creating a user account. Personalization presents the choice of

most appropriate learning pattern or resource that will be recommended to the learner.

This decision determines what concepts and resources the system is going to present to

the learner. In our PaceJena Tutoring System the student is asked to select their level of

learning. For this dissertation we decided to keep it simple and just present two levels of

learning patterns. One is “Beginner” and the other is “Intermediate”. The PaceJena

program and the Web Tutorial Ontology knowledge structure ensure the uniformity

among different views in the domain. The order in which the teacher presents the

material is up to him/her, the basic knowledge graph structure is not violated.

1.2.7 Studying with Alternative Materials

The traditional way of studying has been from educational system such as attend classes

and teachers lectures. This would require buying books, lab materials, and other school

accessories like paper, pencils, and much more. But as technology grew and advanced

this as changed the dynamics of how we gain knowledge. Today learning is very agile.

Agile allows us to move quickly, adapt and reassess our learning consumption. We can

now conduct research and access information remotely using the World Wide Web, or

the new terminology call cloud computing. The alternative to this type of learning

provides use the ability to gain access to other resources and study materials which

otherwise would not be available or limited. Cyberlearning gives us the opportunity to

26

explore this way of learning. In our research we demonstrate how learning objects can

be an alternative way to study learning materials.

1.3 Problem Statement

1.3.1 Research Problem

This dissertation paper proposes to explore some of the key challenges that stand in the

way of adopting a semantic approach to intelligent and adaptive learning based on web

learning objects for traditional colleges and universities. Such systems rely on some of

these key challenges that have been mentioned in previous sections, such as;

1) First Major Problem – Learning objects for online learning resources provide

insufficient knowledge structure representation and relations needed to support

personalize learning and knowledge space assessment.

2) Second Major Problem – Learning objects have not been used to guide students

to online resources by automated recommendation because they currently don’t

represent knowledge structure in web technology content system, and only do

indexing of resources.

3) Third Major Problem – Learning objects are not interchangeable, because the

objects are not of consistent sizes, nor are they written in consistent languages,

they are not really interchangeable. Learning objects are interactive, text, html,

flash, Java, and Java-Script. While others learning objects are in audio,

multimedia, PowerPoint, and movies. One way to resolve these issues is to link

the learning objects. There are problems associated with this strategy, where links

27

go down, students don’t have the right plugins or drivers, or the learning

material supports only one fit’s all strategy.

4) Fourth Major Problem – OWL syntax does not support declaration and accurate

semantic inference engines for usage of new customized relations.

5) Fifth Major Problem – Ontology does not support any built-in primitives to

support part-whole relations.

6) Sixth Major Problem - Tree structure graphs are very limited in what it can

represent. Tree structures allow no multiple inheritances.

7) Seventh Major Problem – The lack of a semantically driven tutoring system to

improve the dynamic construction of learning objects to update a student model.

8) Eighth Major Problem – The lack of a semantically driven automatic

recommender to directly guide students to the next learning path.

1.3.2 Solution Methodology

This research focuses on the following solution methodology to the previous sections,

which describe the challenges and the problems with Cyberlearning education. We would

like to improve Cyberlearning by implementing the following:

 Developing an ontological knowledge structure graph representation allows me to

model complex relations for learning objects and personalized learning

knowledge graphs concepts.

28

 Extending web language ontology to support additional customized knowledge

structure relations and to assess and recommend learning order for students at

different learning levels and learning direction.

 Allow students to navigate the knowledge graph objects and knowledge space

structure using learning object concepts.

 Evaluate and validating this proposed methodology using prototype tutorial

system.

 Evaluate and validating the research using an effective comparative analysis of

student in a classroom environment.

1.3.3 Main Objective and Contributions

The main objective to this research is to achieve customized and personalized educational

knowledge structure and to improve assessment base learning so that students can take

advantage of enormous amount of resources to help them navigate in the knowledge

space in order to create a more effective learning experience. This dissertation makes

contributions in the area of developing, extending and analyzing knowledge learning

structure relations and how it effects the commitments that aggregation, generalization

and specialization impose on learning web-based objects in a personalized semantic web

based environment and the effects of adaptive learning to support predefine learning

paths for typical learners to improve learning order and to support adaptive learning

through embedded assessments and web-based learning objects. This research also gives

contributions to the following:

29

• Developed and design the knowledge structure representation schema domain

for course in “Introductory of Web Technology”, extend this schema and use new

customized relations.

• Extending the knowledge structure representation schema domain for web based

learning objects in PaceJena Framework to represent new customized knowledge

structure and relations.

• Creating the knowledge structure graph representation and learning objects of

Web Technology to be retrievable, interpretable, sharable, and re-usable and to

have granularity.

• Creating an environment to allowing different learning strategies of a tutoring

system environment, using the Web Technology course as a guideline, with

different learning paths.

 Students have the freedom to navigate knowledge structure and select the learning

objects of their choice.

A prototype tutoring system called PaceJena has been developed to provide students

the ability to personalize their learning path according to their abilities during the

registration process. PaceJena Tutoring System provides the student with a

personalized learning path and students are evaluated after taking the challenge quiz

which then the tutoring system will recommend the a new personalized learning order

in which student are to learn. Another contribution is that the PaceJena Tutoring

System also has enhanced the ease of adaptive navigation at which a student is guided

30

by the knowledge structure and is able to explore the knowledge space of next level

knowledge or previous knowledge.

1.4 Dissertation Roadmap

This research paper is structured has follows, Chapter 2 discusses the literature survey of

web development technologies and methods, learning objects, describing the advantages

of Java web application technology, and finally comparing and examine the best solution

for our tutoring system application. Chapter 3 discusses the objectives of why we need to

improve student’s online learning experiences, logical design and architecture and

knowledge representation prototype design, demo and validation process. This chapter

will also discuss predefined learning paths for typical learners, assess the outcomes, and

illustrate major use cases and a guideline for adopting this tutoring system for other

topics. Chapter 4 discusses the tutoring framework and its implementation such as the

Tomcat architecture, how student profiles are managed, details and specifications of the

integrate assessment, how student knowledge is captured using generalization and

specialization, and finally the process to develop a new subject for the tutoring system.

Chapter 5 discusses the validation process analysis, effectiveness and adaptability by

introducing the predefined learning path in the intelligent tutoring system to a classroom

environment. Chapter 6 discusses the major research contribution, and future works.

31

Chapter 2 Literature Survey of Knowledge Representation Methods

and Web-Based Technologies

2.1 Forms of Knowledge Representation Methods

2.1.1 Semantic Networks

Semantic network is a knowledge representation model, which is in a form of graphical

schemes consisting of nodes and links among nodes. Semantic networks of computer

executions have been first developed with regard to artificial intelligence and machine

interpretation. Nodes in a semantic network can show concepts, objects, features, events,

time, and also links indicating the connection among nodes. The links should be labeled

and directed. As a result, semantic net refers to a directed diagram. In the graphical

perspective, circles or boxes usually represent nodes, and the links are sketched as arrows

or connectors among the boxes or circles. The network design indicates it’s meaning,

based on which nodes are related to other nodes. Semantic network as a collection of

binary relations with a collection of nodes; the system refers with a predicate logic with

binary associations. Semantic systems are simply redundancy-free, because they are not

able to allow the duplication from the same node. There are many types of relationships

that can be used in semantic networks. The four types that are used are:

The “is-a” relationship between class and superclass (Figure 7);

32

Figure 7 The “is-a” relationship between class and superclass

1. The “is an instance of“ relationship between instance and class (Figure 8);

Figure 8 The “is an instance of“ relationship between instance and class

2. The “is a part of“ relationship between part and whole (Figure 9);

Figure 9 The “is a part of“ relationship between part and whole

3. The “has” relationship between object and attribute (Figure 10).

33

Figure 10 The “has” relationship between object and attribute

The inheritance is the interface of semantic network or is a procedure in which the local

knowledge of a node superclass is referred by class node, instance node, and superclass

node. In Figure 11 an example about inheritance is given in which a man inherits the

attributes of human - name and age.

Figure 11 Inheritance of semantic network

We can specify a semantic network by indicating the basic components:

 Lexical component: nodes denoting physical objects; links are relationships

between objects; labels denote the specific objects and relationships;

 Structural component: the nodes and links from a directed diagram;

34

 Semantic component: Definitions are related to the link and label of nodes. The

facts will depend on the approval area;

 Procedural part: constructors permit a creation the new links and nodes. The

destructors permit the removal of links and nodes.

The semantic network is generally characterized by a superior representation as well as

significant power, which explains why many people make up a strong and adaptable

approach to represent knowledge. The semantic networks have some advantages as given

below:

1) Despite the variety of entities, they can be shown in the same semantic network;

2) Semantic systems supply a graphic view from the trouble place, and for this

reason they may be simple to be implemented and easy to be understood;

3) Semantic network can be used as a typical connection application among various

fields of knowledge, for instance, among computer science and anthropology;

4) Semantic network permits a simple approach to investigate the problem space;

5) Semantic network gives an approach to make the branches of related components;

6) Semantic network reverberates with the methods the people process data;

7) Semantic network is more natural than the logical representation;

8) Semantic network is characterized by a greater cognitive adequacy compared to

logic based formalism;

9) Semantic network permits using of effective inference algorithm (graphical

algorithm);

35

10) Semantic network has a greater expressiveness compared to logic.

Semantic network also provides a number of disadvantages that frequently cause

problems. Some disadvantages are given below:

1) There is no difference between individuals and classes. The system is restricted by the

user’s knowledge of the definitions with the links in the semantic network. The links

among nodes aren’t most similar to functions. It is needed to distinguish the links,

which comprise a number of connections, and links, which are structural in nature.

The same links can be used to connect three nodes to show the structure of a network

(Figure 12). Actually the link “is-a” is used in two different relationships - the first

link labeled with “is-a” makes a relation between nodes “Ben” and “dog” that

identifies that Ben is a dog, but in the second “is-a” relation the nodes “dog” and

“living being” are connected to identify the category. It is necessary to specify more

descriptive method name of links differentiating concerning relational and structural

types demonstrated in figure 13. In such cases we rewrite the link between nodes

“Ben” and “dog” as a “type-of”, and the link between the objects “dog” and “living

being” as a “subtype-of” link.

Figure 12 Repeated “is-a” link with different meanings

36

Figure 13 The “type-of” and “subtype-of” links

2) The difference between features related to a class and features comes from the

individuals and from the class that doesn’t exist.

3) A conventional semantic doesn’t really exist; therefore there isn’t an agreed-upon

idea of what offered representational design indicates. The semantic systems are

usually based upon the techniques that change them. An alternative to this

problem could be both making use of conceptual diagrams, the formalism with

regard to knowledge representation KL-ONE that allows conquering semantic

indistinctness in the semantic system. KL-ONE is a popular knowledge

representation system in semantic network and frame.

2.1.2 Frame-Based

Frame-based representation is an important knowledge representation formalism

permitting us to show the concept of inheritance. The frame technique includes a number

of frames or nodes that are related to each other by relationships. Every frame explains

37

both an instance and a class frame. Marvin Minsky presented the idea of frame in 1975

as the major way to show a range of knowledge. A frame is a group of properties

identifying the condition of an object, and this object is related with other frames or

objects. Actually a frame is more than only a record or perhaps a data structure that

contains data. In artificial intelligence the frame is known as a slot-filler knowledge

representation method. Every frame provides a number of slots, which are designated as

slot values. This is the way the frame network is created. Instead of simply processing

links among frames, every relationship is indicated by away from a value being put into

any slot. For instance, the semantic network is represented in the form of frame in the

table below. The frame system can be shown in another form called diagrammatic, and it

is represented in figure 15. Whenever we point out that “Ben is a dog“, we actually mean

that “Ben is an instance with the class of “dog“ or “Ben” can be a member of the class of

dogs“. The “is a” connection is important in a frame-based system since it permits to state

a membership associated with classes. This connection can be referred as a generalization

due to the fact refereeing to the actual class associated with mammals, and is more

common in comparison with the class “dog”, and the class “dog” is more common than

the class “Ben”.

38

Frame Name Slot Slot Value

David is-a Framer

 owns Ben

 likes Meat

Ben is-a Dog

 hates Tom

Tom is-a Cat

 chases Mouse

Mouse likes Cheese

Figure 14 Representation of Semantic Network Frame

39

Figure 15 Diagrammatic form of frame-based system

Also it is practical to be able to discuss one object currently being a component of

another object. For instance, Ben has a tail, and the tail is one of the parts of Ben. This

connection is referred as aggregation in order Ben can be viewed as an aggregate of parts

of dog. Some other relations are generally called association. An instance of such a

connection is the “hates” relationship shown in Table 1. This clearly shows that how Ben

and Tom are related with each other. This relationship (association) has two direction

meanings. The point that Ben hates Tom shows that Tom is hated by Ben, therefore we’re

truly indicating two relationships in a single association.

The frame is just like a record construction and related to the fields and values which are

generally slots as well as slot fillers. Generally speaking, the frame is a set of fillers and

slots, which are, identified as stereotypical objects. An individual frame isn’t much

beneficial. The frame technique has a set of frames that can be joined together. The

attribute value of one of the frames may become another frame. The frame example of

40

the book “Semantic Web” is represented in Table 2. Table 3 shows a frame example of

personal data.

Table 1 Frame Example of the Book “Semantic Web”

Slots Filters

Title Semantic Web

Publisher James and Bartlett

Author Dr. Lixin Tao

Edition 1st

ISBN 0-76373230-3

Pages 768

Year 2016

Table 2 Frame Example of Personal Data

Slots Filters

Name Maria Sette

Job Teacher

Gender Female

Height 178 cm

Weight 50 kg

Marital Status Single

Intelligence High

A frame may be sometimes referred to a specific object or a group of comparable objects.

To be more specific, we use the actual instance frame while dealing with a specific object

41

as well as the class-frame while talking about a similar object. For example, in Table 4

the frame example of computer “Dell OptiPlex” is represented.

Table 3 Frame Example of “Dell Optiplex”

Class Computer

Code LW-02016

Model Dell

Processor Core i7

Hard Disk 500 GB

Memory 16 GB

CD-ROM DVD-RW

Screen 21”

Mouse Yes

Keyboard Yes

Battery 6 Cell

Camera 1.3MP

Wireless DW1501

Bluetooth Yes

A class-frame explains a set of objects with typical features. The person, car, and

computer are class-frames.

There are some advantages of a frame-based knowledge representation method described

below:

42

1) The frame knowledge representation makes the programming simpler by

grouping related data:

2) Compare to the knowledge representation method described in the form of

production rules, the frame is flexible and intuitive in many application areas;

3) The frame representation is easily understood and used by people who are

neither programmer nor designer of a system;

4) It is not hard to add slots for new attributes and relations:

5) It is simple to include default data and to discover the missing values.

The frame knowledge representation formalism has some disadvantages described below:

1) It is difficult to use the frame system in a program, so the algorithm is required

in the process of using the frame in the program:

2) The lack of low-priced computer software;

3) Inference mechanism is not easily processed in a frame system.

2.1.3 Rules-Based

In a rule-based formalism, knowledge is cast in the form of if-then rules: if X then Y. For

example, a rule for producing questions may be the following: if the intention is to query

the truth of P, then produce a yes/no question about P. If-then rules, also called

condition-action pairs or production rules, were developed during the seventies as a

43

model for human problem solving (Newell & Simon 1972). The rules can only produce

actual behavior with the help of an interpreter, which performs a cyclical process where

each cycle consists of three phases:

Identification. This phase determines for which rules the condition sides are currently

satisfied in working memory.

Selection. It will often happen that more than one rule’s condition side will be satisfied.

Since it is in general not desirable for all applicable rules to fire, one or more rules are

selected using a criterion, e.g. the first rule found, or the most specific rule.

Execution. The actions of the chosen rule are executed. Although such actions can take

many forms, the most typical ones involve the addition to or removal from working

memory of certain facts. Some of the facts added may represent a solution to the given

problem.

Production rule systems allow both forward chaining and backward chaining. In forward

chaining, inference is data-driven, i.e. states in working memory activate rules when their

left sides match the current state. Execution of these rules may in turn activate other rules

or achieve goals. In backward chaining, inference is goal-driven, i.e. goals are asserted

and conditions of rules achieving the goals are introduced as new goals when they are not

present in working memory. In the latter case, the right-hand side of the rules is used to

identify applicable rules.

44

The rule-base acts as a kind of long-term memory, whereas the working memory,

which describes the conditions that are satisfied at some point during computation, acts as

a short-term memory. Rule-based architectures have been further developed toward more

sophisticated cognitive models like Act* (Anderson 1983) and Soar (Newell,

Rosenbloom & Laird 1989). The Act* system has a semantic network as part of its long-

term memory. Soar contains special mechanisms for remembering the results of previous

computations in long-term memory. [7]

2.1.4 Logic-Based

Logic based Knowledge Representation formalism include Descriptive Logic, Modal

Logic, and Non-monotonic Logic. As stated by Franz Baader, “a knowledge

representation formalism should allow for the symbolic representation of all the

knowledge relevant in a given application domain” [10]. Knowledge representation

formalism such as Semantics Network and Frames was motivated by attempts to provide

a structured representation of knowledge [10]. Marvin Minsky who developed Frames

and defined frames as “a data-structure for representing a stereotyped situation”

combined his introduction of the frame idea with a general rejection of logic as a KR

formalization [24]. According to Nilsson, “many database systems and expert systems

can be said to use declarative knowledge, and the ‘frames’ and ‘semantic networks’ used

by several AI programs can be regarded as sets of declarative sentences” [25]. Semantic

Network was developed by Quillian for representing the semantics of natural language

that represents concepts and objects as nodes in a graph that has two different edges. The

45

first is a property edge for example assigning properties such as color to a concept and

the second an “IS_A” edge that introduces hierarchical relations among concepts. Figure

16 depicts such edges [4].

Figure 16 Semantic Network Edges

The primary idea of Descriptive Logic (DL) is to commence with atomic concepts (unary

predicates) and roles (binary predicates) to build complex concepts and roles using a

small set of adequate constructors [24]. DL has been implemented in an array of

application domains such as natural language processing [26], configuration of technical

systems [32], software information systems [6], optimizing queries to databases [5], and

for support in planning [22]. “Modal logic is, strictly speaking, the study of the deductive

behavior of the expressions ‘it is necessary that’ and ‘it is possible that’” [11]. Modal

Logic KR extends propositional logic by unary operators, which are called a box and

diamond operators [24]. The box operator implies “Necessarily” and the diamond ◇

property implies “Possibly”. “It will snow today” is an example of a “Possibly” modality

in that it implies the possibility to snow today. Non-monotonic Logic is KR language

46

based on classical logics such as the First order predicate in that if a statement ⏀ can

be derived from a knowledge base then ⏀ can be derived from any larger knowledge

base [24]. An advantage of this property is that once an inference is made it should not be

revised when more information is received. A disadvantage to this property is that an

inconsistency may result when additional information received contradicts the inference

rendering the knowledge base useless. To avoid this situation, when plausible

conclusions are drawn from available knowledge and the newly acquired knowledge

show that some of the plausible conclusions are wrong, the plausible conclusions are

withdrawn and do not result in inconsistencies [24]. In the Closed World Assumption

(CWA), which by default assumes that the available information is complete, if an

assertion cannot be derived using classical inference from the knowledge base, then

CWA deduces to negation. Practical application of this assumption is employed in

relational databases and in Logic Programming languages with “Negation of Failure”

[19].

2.1.5 Ontology-Based

Ontologies were developed in Artificial Intelligence to facilitate knowledge sharing

and reuse. The reason ontologies are becoming so popular is due to what they promise:

a shared and common understanding of some domain that can communicated between

people and application systems. Also the growth of disciplines such as Artifical

Intelligence and machine learning has resulted in the need to structure knowledge with

sufficient clariy that people and mahines can share common understanding of the terms

or concepts in the knowledge domain. The development of ontologies has been driven

47

by the need to develop a framework for a common vocabulary that woulod enable

people and software agent to share a common understanding of the meaning of the

basic concepts and terms in a given domain of knowledge as well as the relationships

between them. The distinction between an ontology and a knowledge base, a

knowledge base is the addition of individual instances into the ontology. The

advantages of an ontology;

 It abstracts the essence of a concept.

 It cataloguues and distinguishes various types of o0bjects and their reltionships.

 It facilitates communication, sharing and reuse of domain knowledge.

 It enables explicit specificaions of domain assumptions.

 It provides a means for separating operational knowledge from domain

knowledge.

An ontology typically consists of hierarchical arrangements of the classes which

describe the major concepts in the domain and subclasses which are the more specific

concepts under a particular class. The properties of the classes and subclasses

decription of features and attributes are specified as well as the relevant restrictions.

There are five kinds of ontology components classes, relations, functions, formal

axioms and instances.

a) Classes represent concepts, which can be considered generic entities.

b) Relations represent a type of association between concepts of the domain.

c) Functions are special case of relations.

48

d) Formal axioms serve to model sentences that are always true. They are

normally coherent description between Concepts / Properties / Relationships is

logical expressions.

e) Instances are used to represent elements or individuals in an ontology.

Web Ontology Language OWL is one of the most used languages for creating ontologies,

which is the latest recommendation of W3C. The OWL consists of individuals,

properties, and classes. Individuals: are instance of a class. For example, a Mathew is an

individual or instance of a Student class or Italy is an individual or instance of a Country

class. Figure 17 shows the Representation of Individuals.

Figure 17 Representation of Individuals

Properties: relate two individuals together. For example, Web Technology Include Web

Architecture. Properties have many characteristics such as inverse, reflexive, symmetric,

transitive, or asymmetric. Figure 18 shows the Representation of Properties.

49

Figure 18 Representation of Properties

Classes: can be described as a set that has individuals as members. Examples of a class

are Person, and Pet. Figure 19 shows the Representation of Classes.

Figure 19 Representation of Classes

OWL uses the Triple to describe the relations between two entities. Figure 20 depicts this

relation.

50

Figure 20 Example of Triple Representation

The most popular tool for creating OWL files is the tool called Protégé. There are many

versions of Protégé such as the Stanford University Protégé. Stanford University Protégé:

This protégé uses only one relation the “is-a” relation. For example, “Dog is-a Pet”. In

this triple, “Dog” is the subject, “is-a” is the predicate, and “Pet” is the object. With “is-

a” as the only relation to use between two classes, properties may have to be used to

capture a more vivid knowledge of the domain of interest. Figure 21 depicts an ontology

created with the “is-a” relation of a class “Pet” and its subclasses.

Figure 21 Pet Relations Using “is-a” Predicate

2.1.6 Knowledge Graph

Recent researches have also explored the searching domain by applying knowledge

graphs [26]. One attempt was uses relevance feedback to improve graph query that was

51

based on the implementations of knowledge graphs. The graphical-based approach

provides a method of mapping relations between relevant entities. The knowledge graph

commonly used to represent conceptual knowledge structures and their link with other

artifacts. The knowledge graph expression of Resource Description Framework (RDF)

language is an example that illustrates the flaws, such as arbitrary positioning and the

lack of visual expression for rules, the knowledge graph is used to represent the

mechanisms at work in conceptual representation. It is intensively used in works [23] for

categorizing systems. There are two types of objects involved in conceptual knowledge

navigation: Conceptual Structures where nodes are concepts and Edges Represent

Semantic Relations between the concepts. Based on this awareness, ontology can be

visualized as graphs and thus often play the role of conceptual structure for navigation

[6]. Hypertexts, where each node is a resource and edges represent hypertext links

between documents. What we mean by documents is that small entities that can be

addressed by its URL. A web page may contain anchors to several documents or

resources were we identify each resource to a learning object. Knowledge structures,

where nodes are concepts and edges represent semantic relations between concepts. In

adaptive hypermedia, the conceptual representations are generic and thus are different

from ontologies.

Many methods that are used for document representation rely on vector space model. The

documents are represented as a linear vectors and co-occurrence of the words in text

document corpus. Many semantic relations among concepts and significant information

52

are lost when a vector space model is used. If a document is long, it is very difficult to

represent it as a vector model due to large dimensionality. The main benefit of knowledge

graph-based method is that it allows keeping the structural information inherent to the

source document. The methodology of knowledge graph-based representation contains

definitions of graph based, sub graph and graph isomorphism. Knowledge Graph based

representation is an initial stage for text mining. It concentrates on how to represent text

documents as graph. The graph-based representation relies on the processing of the text

level. For example, Google Knowledge Graph Search API enables users to query the

Knowledge Graph database for specific information about entities residing in the

Knowledge Graph database [29]. Google’s Freebase Knowledge Graph Search API has

been discontinued since December 2014, and as been taken over by Wikidata. Wikidata

is part of Wikipedia, which allowed users to insert data in the knowledge graph database,

the new Google Knowledge Graph Search API allows users to only query entities from

the Knowledge Graph or Knowledge Vault databases and return results in JSON-LD

format [29]. The Pace University Knowledge Graph (KG) provides support to extend and

transform OWL with custom relations into a knowledge graph. The Pace University

Knowledge Graph introduces minimal syntax extension to OWL so it can benefit from

existing tools for OWL. It has the ability to relate two classes using various custom

relations. Figure 22 depicts a Hand class with custom created relations. It is evident that

in addition to the “is-a” relation, the “partOf” custom relation was used to relate two

classes in a meaningful way.

53

Figure 22 Hand Relations Using “partOf” Relation

While OWL is the current industry standard for knowledge representation, it mainly

supports ontologies, which is based on a single “first-class” relation “is-a”, or inheritance.

But each knowledge domain has its own rich custom relations among its concepts, and

partOf and time dependency are especially important in engineering and algorithm

related knowledge representation. This research uses Pace University’s knowledge graph

to support a set of custom relations unique to the specific knowledge to be taught.

Instructor’s teaching experience, in form of recommended learning order for students

with various background, are also encoded in the knowledge graph and used to provide

the base line of the personalized learning process of each student. Online assessment at

the end of each learning object further supports specific to general or the opposite so the

student can freely navigate in the knowledge space and further customize the learning

process.

54

2.2 Learning Objects

Learning objects are things in the world that contain learning material. The learning

materials in a learning object can be structured in a meaningful way that can be tied to an

educational learning objective [21]. They can vary in size, scope and level of granularity

ranging from small chunks of instruction to a series of combined resources to provide a

more complex learning experience [13]. Some of the types of Web-based learning object

materials can be a web page, web scripts, style sheets, documents, photos, videos, slides,

audio, blogs, links, movies, simulations, multimedia, and many other learning object

types that can be used, organized and reused for Cyberlearning education. LOs are not

interchangeable because the objects are not of consistent sizes, nor are they written in

consistent languages. LOs are interactive, text, html, flash, Java, and Java-Script. While

others LOs are in audio, multimedia, PowerPoint, and movies. The proposed problem is

finding out a way to link the Lobs according to custom relations. Moreover, LOs lack

consistent classification schemes. There have been initiatives that focus on the need to

develop a classification scheme, to catalogue the objects so that individuals can retrieve

and organize them. Another issue is learning levels are not resolved in a consistent way,

nor are the points of authorship, copyright, language of object, and many other issues.

The current issues with LO Metadata (LOM), is that it is an XML-based development,

which emphasizes on syntax and format and is not semantically driven by knowledge

representation. LOM does have the advantage of data transformation and digital libraries,

but lacks the semantic metadata to provide reasoning and inference. XML-based markup

language is limited in this approach because it causes compatibility problems with

existing data applications. LOs has its advantages and disadvantages; however. The lack

55

of technical experience may deter some technologically inexperienced staff to create

web-based LOs; they would be more comfortable using software, which they are familiar

with. It can also be also time consuming to create a high quality web-based LO and

subsequently the workload of the author will be increased [25]. Effective pedagogy is lost

if the author does not have a clear educational goal when designing a LO. Also, since the

definitions and the size of the Los are fairly unclear, it is not certain how much content is

contained in one single LO and it is difficult to construct LOs which are independent of

each other and with no context in mind [5]. Access to digital materials is now very easy;

however, permission must be obtained and correct attribution must be provided if you are

using learning materials in your LO which have been created by someone else [5]. The

requirement of LOs to be reusable has meant that many authors have had to reformat all

their existing learning content before it can be reused. For example, a PDF user manual

for a piece of software is required to be deconstructed into several smaller components,

and converted into XML before storing it into a database so that it can be reused in a LO

system. A high percentage of current digital educational materials cannot be reused

because they have not been decomposed and workload is therefore increased.

2.3 Web-Based Technologies

2.3.1 JAVA

The Java programming language [12] is ideal for Web-based applications because of its

rich network APIs and its ability to run on diverse operating systems and architectures.

Most of the technologies used in this dissertation use Java directly or indirectly, because

they are written as Java applications or as Java servlets [1]. Servlets are used to extend

56

the capabilities of Web servers by enabling programmers to produce interactive,

dynamic Web content based on user actions and data content. Servlets run within a

container that manages the servlet’s interaction with the server’s operating system and

Web server. Servlet containers are typical components of commercial and open-source

Web and application servers, and can also be implemented as stand-alone Web services.

2.3.2 JavaScript

JavaScript is a cross-platform, object-oriented scripting language. It is a small and

lightweight language. Inside a host environment for example, a web browser, JavaScript

can be connected to the objects of its environment to provide programmatic control over

them. JavaScript contains a standard library of objects, such as Array, Date, and Math,

and a core set of language elements such as operators, control structures, and statements.

Core JavaScript can be extended for a variety of purposes by supplementing it with

additional objects, for example:

Client-side JavaScript extends the core language by supplying objects to control a

browser and it’s Document Object Model (DOM). For example, client-side extensions

allow an application to place elements on an HTML form and respond to user events such

as mouse clicks, form input, and page navigation.

Server-side JavaScript extends the core language by supplying objects relevant to

running JavaScript on a server. For example, server-side extensions allow an application

57

to communicate with a database, provide continuity of information from one

invocation to another of the application, or perform file manipulations on a server [41].

2.3.3 JavaServer Pages (JSP)

JSP stands for Java Server Pages, which is added to server-side code to an HTML pages.

JSP is a Java platform technology for building and supporting applications containing

dynamic Web content such as HTML, DHTML or XM, which helps developers insert java

code in HTML pages by making use of special JSP tags, most of which start with <% and end

with %>. A JSP page is a text-based document containing static HTML and dynamic actions

that describe how to process a response to the client. At development time, JSPs are very

different from Servlets. However, they are precompiled into Servlets at runtime and executed

by a JSP engine, installed on a Web-enabled application server such as Tomcat 7.0 [20]

Servlets provide platform-independent, 100% Pure Java server-side modules and fit

seamlessly into the framework of the application server. Servlets are compiled into Java

bytecode that can be downloaded or shipped across the network; they are truly "Write

Once, Run Anywhere." Unlike CGI scripts, Servlets involve no platform specific

consideration or modifications: they are Java application components that are

downloaded, on demand, to the part of the system that needs them [34].

58

The drawback of this approach is that the creation of the page must be handled in the

Java Servlet, which means that if Web page designers want to change the appearance of

the page, they would have to edit and recompile the Servlet. With this approach,

generating pages with dynamic content still requires some application development

experience. Clearly, the Servlet request-handling logic needs to be separated from the

page presentation [20].

The solution is to adopt the Model-View-Controller (MVC) paradigm for building user

interfaces. With MVC, the back-end system is the tutoring systems logic model, the

templates for creating the look and feel of the response is the View, and the code that

glues it all together is the Controller. JSPs fit perfectly into this solution as a way of

creating a dynamic response or View. Servlets containing logic or managing requests act

as the Controller, while the existing business logic rules that implement and realize all the

functions of the tutoring system model [20].

2.3.4 AJAX

Asynchronous JavaScript and XML (Ajax) is the most technology often used in Web 2.0

applications. It uses JavaScript to upload and download data from the web server and

update parts of a web page without reload the pages. This method allows pages to

function more like desktop-based applications rather than as old-fashioned static content

pages. It is a technique for creating fast and dynamic webpages [42].

59

2.3.5 Java Servlets

The Java servlet is a server-side technology that accepts HTTP requests from a Web

browser and returns HTTP responses. Servlets, which can be multi-threaded, have

performance advantages over CGI for coding presentation logic for a Web client.

Servlets operates on the request-response model. Requests come into the servlet engine.

The server then executes the appropriate servlet and returns a response to the client. The

most commonly used servlet type is the HTTP servlet designed to fill HTTP protocol

requests. HTTP servlets provide the following core features:

• HttpRequest objects capture request details from requests submitted via Web page

forms, including data availability, protocol types, security levels, and so forth

• HttpSession objects specific to each user handle user session information in the

server.

• HttpResponse object capture response details. The servlet developer can output

everything that is sent back to the client making the request. The servlet engine

handles the rest [8].

Servlet-based applications avoid a lot of processing overhead. Using threads instead of

processes means that a Servlet can retain data between requests. Threading and

persistence make it easier to develop high performance solutions.

60

2.3.6 Tomcat

The Tomcat server is an open source, Java-based web application container that was

created to run servlet and JavaServer Pages (JSP) web applications. It was created under

the Apache-Jakarta subproject; however, due to its popularity, it is now hosted as a

separate Apache project, where it is supported and enhanced by a group of volunteers

from the open source Java community. Tomcat is very stable and has all of the features of

a commercial web application container yet comes under Open Source Apache License.

Tomcat also provides additional functionality that makes it a great choice for developing

a complete web application solution. Some of the additional features provided by Tomcat

other than being open source and free include the Tomcat Manager Application,

specialized realm implementations, and Tomcat valves. This research uses the latest

Tomcat version 7.0, which is a reference implementation of current Servlet API 3.0, JSP

API 2.2 and JDK 1.6 [34].

2.3.6.1 Tomcat Architecture

A Tomcat instance, or server, is the top-level component in Tomcat’s container

hierarchy. Only one Tomcat instance can live in a single Java Virtual Machine (JVM).

This approach makes all other Java applications, running on the same physical machine

as Tomcat server, safe in case Tomcat and/or its JVM crashes. Tomcat instance consists

of grouping of the application containers, which exist in the well-defined hierarchy. The

key component in that hierarchy is the Catalina servlet engine. Catalina is the actual Java

servlet container implementation as specified in Java Servlet API. Tomcat 7 implements

Servlet API 3.0, the latest specification from Sun [34].

61

Below is an XML representation of the relationships between the different Tomcat

containers.

Figure 23 shows the relationship of the main components of Tomcat architecture that

correspond with the described XML code snippet.

Figure 23 Tomcat Architecture with Main Components [37]

62

This instance can be broken down into a set of containers including a server, a service, a

connector, an engine, a host, and a context. By default, each of these containers is

configured using the server.xml file [34].

The Server

The first container element referenced in this snippet is the <Server> element. It

represents the entire Catalina servlet engine and is used as a top-level element for a single

Tomcat instance. The <Server> element may contain one or more <Service> containers

[34].

The Service

The next container element is the <Service> element, which holds a collection of one or

more <Connector> elements that share a single <Engine> element. N-number of

<Service> elements may be nested inside a single <Server> element [34].

The Connector

The next type of element is the <Connector> element, which defines the class that does

the actual handling requests and responses to and from a calling client application [34].

The Engine

The third container element is the <Engine> element. Each defined <Service> can have

only one <Engine> element, and this single <Engine> component handles all requests

received by all of the defined <Connector> components defined by a parent service [34].

63

The Host

The <Host> element defines the virtual hosts that are contained in each instance of a

Catalina <Engine>. Each <Host> can be a parent to one or more web applications, with

each being represented by a <Context> component [34].

The Context

The <Context> element is the most commonly used container in a Tomcat instance. Each

<Context> element represents an individual web application that is running within a

defined <Host>. There is no limit to the number of contexts that can be defined within a

<Host> [34].

2.3.6.2 The Default Tomcat Directory Structure

The Tomcat installation directory is referred to as CATALINA_HOME. Table 4

describes the directories that compose a Tomcat installation. It is assumed that each of

these directories is contained within the CATALINA_HOME directory [34].

Table 4 Tomcat Default Directory Structure

Directory Contents

/bin Contains the startup and shutdown scripts for both Windows and

Linux. Jar files with classes required for tomcat to start are also

stored here.

/config Contains the main configuration files for Tomcat. The two most

important are server.xml and the global web.xml.

64

/lib Contains the Tomcat Java Archive (jar) files, shared across all

Tomcat components. All web applications deployed to Tomcat can

access the libraries stored here. This includes the Servlet API and

JSP API libraries.

/logs Contains Tomcat’s log files.

/temp Temporary file system storage.

/webapps The directory where all web applications are deployed, and where

you place your WAR file when it is ready for deployment.

/work Tomcat’s working directory where Tomcat places all servlets that

are generated from JSPs. If you want to see exactly how a

particular JSP is interpreted, look in this directory.

2.3.6.3 Tomcat Servlet

Tomcat Servlet is an interface defined in javax.servlet package. It declares three essential

methods for the life cycle of a servlet - init(), service(), and destroy(). They are

implemented by every servlet defined in SDK or self-defined and are invoked at specific

times by the server.

1. The init() method is invoked during initialization stage of the servlet life cycle. It

is passed an object implementing the javax.servlet.ServletConfig interface, which

allows the servlet to access initialization parameters from the web application.

2. The service() method is invoked upon each request after its initialization. Each

request is serviced in its own separate thread. The web container calls the

service() method of the servlet for every request. The service() method determines

the kind of request being made and dispatches it to an appropriate method to

handle the request.

http://docs.oracle.com/javaee/1.4/api/javax/servlet/Servlet.html

65

3. The destroy() method is invoked when the servlet object should be destroyed. It

releases the resources being held.

The life cycle of a servlet object, is that the servlet classes are loaded to container by the

class loader dynamically. Each request is in its own thread, and a servlet object can serve

multiple threads at the same time. Threads are not safe. When it is no longer being used,

it should be garbage collected by JVM (Java Virtual Machine).

Using servlets allows the JVM to handle each request within a separate Java thread, this

is one of the key advantages of Servlet container. Each servlet is a Java class with special

elements responding to HTTP requests. The main function of Servlet container is to

forward a requests to the correct servlet for processing, and return the dynamically

generated results to the correct location after the JVM has processed them. In most cases

servlet container runs in a single JVM, but there are solutions where containers need

multiple JVMs.

2.3.6.4 Tomcat Servlet Container Process

The Tomcat parsing process of the servlet container must have an instance of an object

that calls the start method for Tomcat. The startup logic for Tomcat is based on the

observer design pattern, all containers will inherit the lifecycle interface, which manages

the containers modifications and state and will go by the notification of the registered

observers (Listeners). The initialization of the web application is implemented in the

configureStart method in ContextConfig. The application initializes the parsing web.xml

files, this file describes the key information of a web application. The web.xml file for

66

each configuration item will be parsed into the corresponding attribute and is stored in

a WebXML object. The properties of the WebXML object will be set to the Context

container, this includes creating the servlet object, filter, listener and much more. The

Context container is really running the Servlet container. The web application is

corresponding to a Context container, the container configuration attributes is specify by

the application of the web.xml.

2.3.6.5 Tomcat Servlet in Action

The Tomcat servlet request is first initiated by a user from the web browser interface to

the server, which will contain the following information:

http://hostname:port/contextpath/servletpath, the hostname and port is establish by a TCP

connection, the URL is used to select the server to the sub container service from a user

request. The Tomcat URL and servlet container will do the complete mapping by the

org.apache.tomcat.util.http.mapper. The mapping of the hostname, the contextpath host,

and the context container is provided to the mappingData property from the Request. All

requests are mapped to a servlet and then it implements the service method, this method

is the MVC framework. When the servlet is removed from the servlet container the

lifecycle is over and the servlet destroy method will be invoked. The listener

implementation class can be configured in the web.xml as <listener> label and we can

add additional listeners. The SerlvetContextListener in container startup monitors the

events. The web.xml filter is another common configuration item which uses the <filter>

and <filter-mapping> label. The filters can do the same things as the servlet, and even

more. It is flexible because it provides request and respond objects and also the

http://hostname:port/contextpath/servletpath

67

FilterChain object, which makes the controls more flexible for the transfer request.

This provides the mechanism to allow for intercepts, which allows for the increase or

decrease of items requested. The web.xml <servlet-mapping>, the <filter-mapping> and

the <url-pattern> configuration items roles are to match a request which will execute the

servlet or filter. The servlet request is completed through the

org.apache.tomcat.util.http.Mapper class, this class will match the configuration in each

Servlet according to the request to the URL. The filter url-pattern matching is performed

in an ApplicationFilterChain object. It will match all the definition of the filter url-pattern

with the current URL. The matching filter is stored in the filters array in the

ApplicationFilterChain, and then the FilterChain in turn is called. The web.xml loading

will first check the <url-pattern> configuration with the rules. This process will examine

the validateURLPattern method in StandardContext. If it is not successful, the Context

container restart will fail and will report to the

java.lang.illegalArgumentException:Invalid <url-pattern> /a/*.htm in the servlet mapping

error.

2.3.7 Spring MVC

The Spring Web MVC framework provides model-view-controller architecture and

ready components that can be used to develop flexible and loosely coupled web

applications. The MVC pattern results in separating the different aspects of the

application (input logic, business logic, and UI logic), while providing a loose coupling

between these elements [14].

68

 The Model encapsulates the application data and in general they will consist of

POJO.

 The View is responsible for rendering the model data and in general it generates

HTML output that the client's browser can interpret.

 The Controller is responsible for processing user requests and building

appropriate model and passes it to the view for rendering.

Spring’s MVC module is based on front controller design pattern shown in Figure 24

followed by MVC design pattern shown in Figure 25. All the incoming requests are

handled by the single servlet named DispatcherServlet, which acts as the front controller

in Springs MVC module shown in Figure 26. The DispatcherServlet then refers to

the HandlerMapping to find a controller object, which can handle the request.

DispatcherServlet then dispatches the request to the controller object so that it can

actually perform the business logic to fulfill the user request. (Controller may delegate

the responsibility to further application objects known as service objects). The controller

returns an encapsulated object containing the model object and the object view (or a

logical name of the view). In Springs MVC, this encapsulated object is represented by

class ModelAndView. In case ModelAndView contains the logical name of the view, the

DispatcherServlet refers the ViewResolver to find the actual View object based on the

logical name. DispatcherServlet then passes the model object to the object view, which is

then rendered to the end user [14].

69

Figure 24 Front Controller Design Pattern [14]

 Figure 25 Spring MVC Design Pattern [14]

70

Figure 26 Spring MVC Architecture [14]

Figure 27 Spring Web Configuration Hierarchy

71

In Figure 27 is a spring web configuration hierarchy explaining the how each

component interacts with each other.

Spring MVC Request Life Cycle

This section describes the Spring MVC request life cycle. Figure 28 is based on these

components and their purposes are as follows:

• Filter: The filter applies to every request. Several commonly used filters and their

purposes are described in the next section.

• Dispatcher servlet: The servlet analyzes the requests and dispatches them to the

appropriate controller for processing.

• Common services: The common services will apply to every request to provide supports

including i18n, theme, file upload, and so on. Their configuration is defined in the

DispatcherServlet’s WebApplicationContext.

• Handler mapping: This maps the request to the handler (a method within a Spring MVC

controller class). Since Spring 2.5, in most situations the configuration is not

required because Spring MVC will automatically register the

org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping cla

ss that maps handlers based on HTTP paths expressed through the

@RequestMapping annotation at the type or method level within controller classes.

• Handler interceptor: In Spring MVC, you can register interceptors for the handlers for

implementing common checking or logic. For example, a handler interceptor can check

and ensure that only the handlers can be invoked during office hours.

• Handler exception resolver: In Spring MVC, the HandlerExceptionResolver interface

72

(under the packageorg.springframework.web.servlet) is designed to deal with

unexpected exceptions thrown during request processing by handlers. By default, the

DispatcherServlet registers the DefaultHandlerExceptionResolver class (under the

packageorg.springframework.web.servlet.mvc.support). This resolver handles certain

standard Spring MVC exceptions by setting a specific response status code. You can also

implement your own exception handler by annotating a controller method with

the @ExceptionHandler annotation and passing in the exception type as the attribute.

• View Resolver: Spring MVC’s ViewResolver interface (under the package

org.springframework.web.servlet) supports view resolution based on a logical name

returned by the controller. There are many implementation classes to support various

view resolving mechanisms. For example, the UrlBasedViewResolver class supports

direct resolution of logical names to URLs. The ContentNegotiatingViewResolver class

supports dynamic resolving of views depending on the media type supported by the client

(such as XML, PDF, JSON, and so on). There also exists a number of implementations to

integrate with different view technologies.

73

Figure 28 Spring MVC Request Life Cycle

2.3.8 Apache Jena

Apache Jena is an open source Semantic Web framework for Java. It provides an API to

extract data from and write to RDF graphs. The graphs are represented as an abstract

"model". A model can be sourced with data from files, databases, URLs or a combination

of these. A Model can also be queried through SPARQL 1.1. Jena is similar to Sesame;

though, unlike Sesame, Jena provides support for OWL (Web Ontology Language). The

framework has various internal reasoners and the Pellet reasoner (an open source Java

OWL-DL reasoner) can be set up to work in Jena [16].

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/SPARQL
https://en.wikipedia.org/wiki/Sesame_(framework)
https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Pellet_(software)

74

2.3.9 XML Parsers

XML parsers simply read XML documents and provide the application with any

information it needs. It reads through the characters in the document and makes a

determination on what is a markup character and what is a data [19]. There are two main

parsers, which are included in android. Each parser has its pros and cons. They are called

SAX and DOM Parser: DOM stands for Document Object Model. DOM builds an in-

memory tree representation of the XML document. Generally it is an application for

validating XML Documents. [33] It defines the objects and properties of all elements in

xml and the methods to access them, where the elements and attributes are represented as

nodes in a hierarchical tree structure as shown in Figure 29. Each node stores the

element's name and attributes along with pointer information indicating the parent-child-

sibling relationship and the node value. Although it is memory inefficient, this memory

structure provides DOM with its basic feature, random access. Unlike SAX sequential

parsing, DOM provides fast random access to any and every node, due to its tree

hierarchical structure [15].

Figure 29 DOM Parser Workflow

75

However, DOM has one major aw: the data in the tree can only be accessed when the

tree is finished like the parser is done with parsing the whole XML document. Thus,

complex and large XML documents will not be available any time before the needed

memory and space are allocated and the parsing is complete [35]. Sax stands for Simple

API for XML. Sax is an event based XML parser, as it parses XML documents step by

step. It is considered a light-weight and fast parser with low memory consumption when

compared to a DOM parser due to the fact that, instead of creating hierarchical structure

representation of all elements and maintaining pointers to indicate the parent-child-

sibling relationship between them, it resets when it encounters opening tag, element or

attribute and works accordingly. When a certain event is triggered, it calls the

corresponding function to handle the event as shown in Figure 30.

Figure 30 SAX Parser Workflow

A SAX parser is recommended with large XML files that do not require frequent

modification, because SAX doesn't require loading the entire XML file in Java if the

application needs to parse specific parts in the XML document. Also, the memory

76

consumption is not affected by XML document size since the objects associated with

the triggered events could be destroyed on a regular basis. Moreover, it supports partial

data access before the XML document parsing is done [42]. However, DOM is more

powerful. It is more suitable for complex and frequent updates despite its high memory

consumption. Since a DOM parser uses a hierarchical tree structure for the data

representation of the XML document, it is much easier to add, modify or delete nodes in

the DOM tree. This could be achieved by pointer maneuvers between the tree nodes for

fast editing, insertion and deletion. On the other hand, SAX is more useful with

applications with limited memory that require simple or rare modifications [15].

77

Chapter 3 An Intelligent Tutoring System Framework Empowered

with Knowledge Representation

3.1 Cyberlearning Challenges

Historically in the pass, e-learning systems technologies where developed using HTML

and CGI, which resulted in low interactivity and poor content renewal. The development

of new emerging web and cloud technology development supports dynamic generation of

Web documents like Java Server Pages (JSP), Active Server Pages (ASP), and Hypertext

Preprocessor (PHP), which led to the development of improved interactive systems. This

bring us to the future of Cyberlearning, which is rapidly changing as new technologies

emerge. This has led to a shift of how this effect’s Cyberlearning content delivery to meet

student’s needs. If the education system can make the transition to a knowledge graph

driven learning environment, which can be personalized to adapt to student needs instead

of delivering a fix content structure, then the system can start to be far more intelligent

than it currently is and this can improve students learning outcome. For example, if

student A spends her summers at camp and playing tennis, then this is a different skill set

then student B who spends his summer working in a coffee shop. But when school starts

in the fall both student A and B who attends the same Cyberlearning class will get the

78

same leaning content regardless of skill and knowledge which is a fixed content

learning environment.

In chapter one we discuss some of the proposed challenges for this research to improve

Cyberlearning tutoring system to guide and personalize student’s needs.

3.1.1 Overwelming Study Resources And Lack Of Personlized Guidance

During any given semester students are presented with online learning materials for their

selected courses work. These online learning materials can be overwhelming due to the

lack of personalization and no direct guidance from students’ instructor. These

shortcomings of traditional e-learning systems lack the necessary intelligence to improve

how to guide learners according to their learning level and learning order. In other words,

todays e-learning systems lack the necessary semantic knowledge representation and

technology architecture, which makes learners, feel unconfident and suspicious. Some of

the challenges of this research is how to represent personalizing same student course

content for different learning levels and what should be the learning order for these

learning levels and resources? Also, supporting and improving learning object concepts

for interoperability, accessibility and reusability. Some use case studies have been

generated to demonstrate the need to facilitate learning object reuse thru the process of

student personalize guidance.

79

3.1.2 Lack Of Instructor Experience

In a traditional classroom setting an instructor is presented to the student to teach a

course. The face-to- face interaction allows student to engage with the instructor in order

to gain his/her experience and feedback on the course that is being taught. But with an

online learning system the student lacks the experience and feedback of instructor. This

can result in disorientation on what to learn first, where to find other resources, and

waiting to get feedback from the instructor. The instructor’s experience is a very

important concept to capture in a tutoring system. Intelligent tutoring systems are needed

to improve the Cyberlearning quality. One of the major difficulties is knowledge

representation. The current industry standard is to use Web Ontology Language (OWL)

for representing knowledge structure. But OWL only supports one "first-class" relation,

"is-a", between the concepts, and different knowledge areas usually need different custom

relations to describe the relations among the concepts. For example "part-of" and time

dependency are important relations to represent most engineering knowledge bodies.

OWL has to use object properties to emulate such custom relations, leading to awkward

knowledge representation hard for domain experts to code, validate and use such

knowledge bases. This research uses Pace University's extension to OWL, named

Knowledge Graph, to support knowledge representation with custom relations. The

instructors can use Pace University extended Protégé IDE to declare and apply custom

relations in a single document. The instructors teaching experience is also coded in the

Knowledge Graph to better support custom learning order by students with different

backgrounds. The instructor teaching experience is the center of intelligent tutoring

system, used in organizing, managing and implementing. This dissertation provides a

80

framework which empowers the knowledge representation that will adapt to students

learning level and learning order in order to analysis the current state of the students, and

give teaching strategies in order to implement the most effective teachings methods, so

that it can supervise and evaluate the results of learning, and achieve individualized

guidance.

3.1.3 Lack Of Assessment Based Study

Most mainstream learning systems have relied on predetermined and often fixed-path

delivery of content. Such systems lack agility in adapting to learners’ mastery states and

are thereby limited in their ability to tailor learning experiences to individual learners. An

adaptive, “intelligent” learning system needs an accurate model of the learner, a model of

the knowledge domain, and a capability that can evaluate the differences between the two

models and identify or devise (on-demand and in real time) instructional strategies that

will achieve desired instructional outcomes. In this dissertation a prototype of a

knowledge-driven tutoring system was designed and implemented to illustrate how the

Knowledge Graph supports integrated assessments, using assessment results to custom

student learning order or material, and let the students freely navigate in the knowledge

space from general to specific or the opposite, and following various custom relations. A

web technology tutorial is used to validate the design and effectiveness of this approach.

81

3.2 Intelligent Tutoring System Solution Framework Overview

3.2.1 Concepts and Proposed Solution Framework

In this section, we present the main concepts used in our proposed model and explain the

mechanism via an organized statement. We define our main research problem in this

section. The problem definition is a Linking Learning Objects Problem: Inputs include a

group of non-interchangeable LOs that are not in consistent sizes, are not written in

consistent languages. The output is a link LOs. The proposed problem is finding out the

method of linking all learning objects by using ontology-based semantic solution. LOs

are not interchangeable because the objects are not of consistent sizes, nor are they

written in consistent languages. LOs are interactive, text, html, flash, Java, and Java-

Script. While others LOs are in audio, multimedia, PowerPoint, and movies. The

proposed problem is finding out a way to link the Lobs according to custom relations.

Moreover, LOs lack consistent classification schemes. There have been initiatives that

focus on the need to develop a classification scheme, to catalogue the objects so that

individuals can retrieve and organize them. Another issue is learning levels are not

resolved in a consistent way, nor are the points of authorship, copyright, language of

object, and many other issues. The current issues with LO Metadata (LOM), is that it is

an XML-based development, which emphasizes on syntax and format and is not

semantically driven by knowledge representation. LOM does have the advantage of data

transformation and digital libraries, but lacks the semantic metadata to provide reasoning

and inference. XML-based markup language is limited in this approach because it causes

compatibility problems with existing data applications. LOs has its advantages and

disadvantages; however. The lack of technical experience may deter some

82

technologically inexperienced staff to create web-based LOs; they would be more

comfortable using software, which they are familiar with. It can also be time consuming

to create a high quality web-based LO and subsequently the workload of the author will

be increased [5]. Effective pedagogy is lost if the author does not have a clear educational

goal when designing a LO. Also, since the definitions and the size of the Los are fairly

unclear, it is not certain how much content is contained in one single LO and it is difficult

to construct LOs which are independent of each other and with no context in mind [5].

Access to digital materials is now very easy; however, permission must be obtained and

correct attribution must be provided if you are using learning materials in your LO which

have been created by someone else [5]. The requirement of LOs to be reusable has meant

that many authors have had to reformat all their existing learning content before it can be

reused. For example, a PDF user manual for a piece of software is required to be

deconstructed into several smaller components, and converted into XML before storing it

into a database so that it can be reused in a LO system. A high percentage of current

digital educational materials cannot be reused because they have not been decomposed

and workload is therefore increased.

3.2.2 Knowledge Representation

This section aims to provide a knowledge representation framework solution to

personalized learning. The knowledge representation framework is based on the idea that

adaptiveness is matched with the users profile knowledge learning level and learning

objects of the course concept learning order. Therefore we need to model the learner and

83

the course concepts. The adaptive learning system applies a mechanism to select the

appropriate content type resource to the learner.

Internet-related technology such as cloud-based solutions has dramatically revolutionized

the way people communicate and it has become a changing life style [38][37][39][43].

Educational systems around the world are trying to adapt to this change. This change

gives researchers the opportunity to explore how online digital content is enhanced,

designed and implemented to support personalized learning. Web based LOs are designed

in a contextualized manner to promote reusability in various diverse learning contexts

[28]. However, educators are required to deconstruct learning web based objects into

components in order to rebuild the materials according to their individual learning needs.

Difficulties and the associated financial expenses arise when decomposing the learning

web based objects because it is difficult to index extremely decontextualized materials for

human discovery and use and also computers are unable to make meaning of these

materials [30]. An adaptive student navigation support system is needed to guide students

and generate available learning resource objects, and assist in assessment base learning

knowledge to track and compute student’s performance level and lead students to a

recommended learning path [3]. In e-Learning applications metadata is also fundamental

for describing online learning materials and among other information, it can capture the

subjects or knowledge domains associated with each document [18]. This information is

needed for customizing learning sessions, but it is not sufficient. For locating relevant

content, the system needs to know how the subjects are interrelated in an abstract

knowledge space and follow the associations to suggest links to the student. Moreover,

84

knowledge is the collection of raw facts and rules, which is the information about

objects, attributes and relations between objects, situations, events, states and time,

causes and effects [36]. Representing knowledge for different learning levels in a web-

based tutoring system such as beginner, intermediate and expert are often disaggregated

into modules, sections, or chapters. Therefore, knowledge representation provides the

way to represent all the above-defined things. The main characteristic of knowledge is

that it is hard to characterize such that it is difficult for us to represent it properly. We

have to represent the knowledge in such way that we can infer new knowledge also.

Recently new concept of knowledge graph is introduced by structuring knowledge into a

graph [7]. There are various techniques available to represent the knowledge. Part-whole

are important relations and plays a key role in many application domains, but receive less

attention than “IS-A” subclass / subsumption relations [4], [24]. The part-whole relations

learning model offers a helpful framework for developing the semantic relations and the

compositional knowledge structure to help improve learner’s navigational learning

experience. This conceptualization defines the knowledge graph representation and the

learner’s activities. In Figure 31, the PaceJena Tutoring System, learners are given the

option to choose their initial orientation by selecting the type of learner he/she is when

creating their user accounts. Learners are given the option of “Beginner” or

“Intermediate”. The role that the learner will encounter is the presentation of learning

objects in the form of its whole to its parts [25]. Learners are given the option to navigate

the knowledge graph from generalized broad concepts to a specific narrow concepts and

these concepts can be also bidirectional, such that a specific narrow concepts can return

to a generalized broader concept. In some cases the learner may not comprehend the

85

concept of the whole concept without an understanding and proficiency of the

individual parts concepts, so the return to the whole concepts allows the learner a second

change to arrive at a better understanding of the domains learning concepts for its whole.

Some learners are not “Beginners”. Some are “Intermediate” learners. Intermediate

learners are more advanced than a “Beginner”, but not yet an expert. These learners have

a different starting point in the whole concepts to its parts concepts. The learner’s level of

learning does matter because from a personalization perspective they have different

learning starting point but both learning level roles will achieve the same goal [4]. This

becomes a problem when trying to represent the part-whole relations when using OWL

because it does not provide any built-in primitives for part-whole relations as it does for

the subclass relation, but contains sufficient expressive power to capture most but not all

of the common cases.

Figure 31 Solution Framework of PaceJena Tutoring System

86

3.2.3 Instructor Experience Representation

The instructor is a person who organizes the subject to be taught in several lessons and

each lesson includes several topics. Instructor’s expertise includes domain specific

knowledge like topics in a lesson, examples, exercises and domain independent

knowledge which as general pedagogical rules, adaptation to contextual constraints such

as managing the last lesson.

In this dissertation we use learning objects to represent our web tutorial domain learning

concepts. The learning objects include the instructor’s expertise, for representing these

domain concepts by introducing adaptive personalized learning levels, adaptive

personalized learning orders, dynamic links with clear concept definitions, graphical

displays as well as navigational interactions. Another part of the teaching expertise is the

prototype model that is being proposed to describe the domain, the criteria used to

dynamically build the learning path for each user, knowledge graph navigation and the

adaptive learning assessment process. A learning order for each learning level is

presented to the user in a menu-driven knowledge graph navigational interface. The

instructor can easy enrich the given domain learning object content in the tutorial system

environment.

The explicit knowledge representation is the main feature of our tutoring system. The

instructor expert module containing the explicit knowledge provides the domain

intelligence for the system. In the domain model it is necessary to decide not only what

87

knowledge to include in the instructor expert model but also how it can be articulated,

codified, accessed and verbalized. The PaceJena Tutoring System is representing and

using a knowledge graph domain, which extends OWL and represents new custom

relations.

3.2.4 Knowledge Graph Navigation

Knowledge navigation in the PaceJena Tutoring System is used to describe learner

navigation among digital learning resources, guided by a knowledge structure graph of

the “Web Tutorial” domain concepts. The motivation of the PaceJena Tutoring System is

to provide learners with an improved navigational process for personalized learning using

learning objects. The conceptualization knowledge graph means that an explicit

representation of concepts and relations are involved to support the navigational

activities, such as navigating to reading a document, viewing a video, or listening to

audio, and much more. Learners are navigating the knowledge structure graph from top

level to next level and from next level to previous level. This behavior allows the user to

move from one resource to another. This research uses software engineering methods and

tools to support knowledge graph engineering activities that are concerned with the

knowledge graph development process, the knowledge graph life cycle, as well as the

methodologies. The knowledge graph development for this research was done using

specification and conceptualization. The specification phase is to acquire informal

knowledge about the domain and the conceptualization phase is to organize and structure

this knowledge using external representations that are independent of the implementation

languages and environments. This section shows how we have adapted different

88

knowledge graph development methodologies to define the specification and

conceptualization phases. This also shows how different software engineering techniques

were used to define different representations during these phases.

3.2.5 Integrated Assessment

The problem of assessing a student’s knowledge could be regarded as a process of

estimating what the student actually knows about the subject being taught. It is usually

performed through a set of quizzes generated by a tutor and solved by students. An

assessment provides very detailed information about a student’s competence at all points

during instruction. Assessments are used to guide the selection of the next instructional

actions.

This proposed integrated assessment solution uses multiple-choice quizzes to assess each

concept in our knowledge graph. During the assessment process students are to answer 10

questions. Upon completing the assessment process the system will evaluation the

student’s answers and recommend to the student the next steps in his / her learning

process. The conceptualization knowledge graph and navigation supports the

recommended outcome of student’s next learning order.

3.2.6 Web Tutorial Ontology

The current e-learning standards are for learning management systems and not for

89

integration with semantic web-based application systems. The most recent standard for

IEEE LOM is expressed in Resource Description Framework (RDF). RDF alone does not

provide common schema that helps to describe the resource classes and represent the

types of relationships between resources. A specification with more facilities than those

found in RDF to express semantics flexibility is needed. A semantic web-based

intelligent tutoring system solution can help solve these problems.

PaceJena was used to demonstrate how the Web Tutorial Knowledge Graph and Learning

Object could be the right extension to OWL and RDF based development, to emphasize

semantics, knowledge reasoning and inference functions. These functions are necessary

for computer interpretable descriptions, which are critical in the area of dynamic course

decomposition, learning object mining, learning object reusability, and automatic course

generation. This research will also identify important custom relations such as include,

partOf, ref, implement, and implementedBy for effective knowledge representation to

support adaptive learning based on web learning objects along with using a prototype to

validate feasibility of run-time knowledge representation. PaceJena Tutoring System

supports easy and flexible adaptive navigation access to related learning order resources,

preventing users from getting lost and providing consistent navigation operation. The

goal is to support adaptive knowledge navigation to help students find their paths in

knowledge space by adapting the knowledge structure presentation and functionality to

individual user’s needs. Using the semantic solution aims to providing learners with a

feasible on-demand tutoring systems, by which the study plan can be generated.

Moreover, the adaptive methodology is to assess the student’s knowledge by having them

90

take a challenge quiz at the end of learning a LO. The challenge quiz will determine

whether the student was competent in achieving a pass grade of 70 or better. If so, then

the system will adapt and recommend the student to continue to the next learning level. If

the student was not competent in achieving a pass grade of 70, the system will adapt and

navigate to the student’s need by recommending the student to return to an alternative LO

at the same learning level. In addition, the PaceJena tutoring system is a prototype to

validate research. This type of application is needed to help students personalize their

learning needs. Semantic web languages and technologies can help in achieving this goal.

These technologies can help fulfill the lack of knowledge representation and functional

requirements about specific education subjects. Most of these requirements should be

flexible enough to accommodate new requirements. Most of the requirements are about

supporting predefined learning paths for typical learners. This application should also be

interoperable with other subject topics. The predefined learning paths for this system will

be the beginner’s level and the intermediate level. This can be expanded to many other

types of learning level. As shown in Fig. 1 in Section I, we designed PaceJena tutoring

system with four tiers. Detailed statements of these four tiers are given as follows:

1) Client Tier: This tier consists of JSP/Servlets and web services. The PaceJena

framework is also a part of this architecture and is also built in Java, which is a more

mature framework that supports the semantic web technologies. The client tier interacts

with the educational tier and sends its requests to this tier.

2) Educational Tier: The educational tier consists of educational specific components, in

which all clients interact with it. Education components are responsible for getting the

requests from the clients and forward them to the semantic tier. Then the educational tier

91

forwards the results coming from the semantic tier to the clients.

3) Semantic Tier: The semantic tier consists of PaceJena, which is an alternative

implementation of Jena for research. It provides an API to extract data from and write to

RDF graphs and provides an extensive Java library for helping developers develop code

and includes a rule-based inference engine. All the educational components can interact

with this model through the semantic web tier.

4) Data Tier: Data tier consists of RDF/XML graph/model. JENA’s RDF model can be

build either in memory or in a file or in a database.

In summary, our tutoring system aims to assist learners to gain knowledge in a manner of

knowledge graph based knowledge representation. The diverse concept levels are linked

to learners’ knowledge levels, which can enable learners to accomplish learning activities

from a lower level to a higher level.

.

3.2.7 Evaluation

The evaluation process will consist of validating the systems effectiveness through the

prototype tutoring system.

3.2.8 Documentation

The documentation process and guidelines in developing the ontology was to use the

Methontology Framework.

92

3.2.9 Conclusion

The purpose for executing this educational ontology Methontology Framework was to

help improve the process of developing and evaluating this ontology and to follow some

guidelines to document the ontology process. This proposed process called Methontology

framework describes each phase and the techniques in developing a prototype for this

research.

3.3 Knowledge Representation of Intelligent Tutoring System Solution

3.3.1 Knowledge Representation

3.3.1.1 Knowledge Representation Overview

This section aims to provide a knowledge representation framework solution to

personalize learning. The knowledge representation framework is based on the idea that

the adaptiveness is matched with the users profile knowledge learning level and learning

objects of the course concept learning order. Therefore we need to model the learner and

the course concepts. The adaptive learning system applies a mechanism to select the

appropriate content type resource to the learner. We use ontologies to describe learning

objects and the learner state, and define pedagogical recommendation axioms that specify

which learning objects are best suited for a particular learner in a specific situation. The

web tutorial ontology represents individual learners, which we have optimized by means

of guidance through learning pathways of a particular order in which learning objects

have to be studied. We use OWL to model our learning pathways as structured

sequences. Ontologies provide a uniform model for the different aspects of a learning

93

process that can be conceptualized as the navigation through a network of available

LOs, thus requiring techniques for dynamic and adaptive sequencing of LOs. In e-

Learning, Learning Objects are organized into sequences that describe an optimal

navigational path towards a learning goal. But at present, there is no support for defining

sequences in OWL as would be needed for reasoning over learning pathways. Another

limitation is OWL 2 (Web Ontology Language) is that only binary relations between

classes can be represented.

Figure 32 Knowledge Graph Representation of Extended and Custom Relations

94

We introduce a knowledge graph to support our knowledge structure. There are

various techniques available to represent our knowledge structure. Part-whole relations

which has been mentioned in a previous chapter plays an important role for modeling and

developing semantic relations for compositional knowledge structure to support and

improve learner’s navigational learning experience. This conceptualization defines the

knowledge graph representation and the learner’s activities. In our domain ontology we

have encoded the learning level and order for representing initial personalize learning

knowledge state. The learning concept’s for each topic contains a quiz, which will assess

and recommend the learners next knowledge state.

3.3.1.2 Linking Learning Objects

In this dissertation we research and examine to find a method of supporting and

improving the linkage of learning objects by using knowledge graph solution. A link is a

basic relationship among objects and shows that the objects are somehow related.

Learning objects are interactive learning resources such as text, html, flash, java, and java

script, while others are audio, multimedia, PowerPoint, and movies. The current issue

with learning objects is that it is not semantically driven by knowledge representation

because it is represented as an XML-based language. XML-based markup language is

limited, because it lacks the semantic metadata to provide reasoning and inference.

Learning objects also lack consistent classification schemes and learning levels are not

resolved in a consistent way. Another issue with learning object is the lack of reusability

due to the lack of decomposition.

95

3.3.1.3 Ontology Representation

Ontologies represent and support relationships among concepts providing them

meaning. Three types of relationship are considered in this work: generalization/

Specialization, which are powerful abstractions for sharing similarities among classes

while preserving their differences; composition also known as aggregation (part-

whole and part-of relationships), in which classes representing the components are

associated to the class representing the entire assembly; and binary relationships,

representing any other type of relationship that connects two concepts. We also

extend OWL and introduce new custom relations such as the “include”, “implement”

and “implementBy”. The URLs are then mapped into the ontology concepts

according to the tomcat web server services with the Spring Web MVC structure,

along with the knowledge graph and the MYSQL database structures. The MVC structure

is a well-known pattern suggests the separation of domain models from user interface and

control logic. The separation of non-visual parts from visual components makes it

potentially easier to reuse and share domain models for other applications and target

platforms. The WebTutorial.owl ontology for this dissertation has been constructed to

contain both the domain ontology with topics to be taught in a course along with the

decoupled encoded learning level and order for students. The most straight forward way

in OWL to separate the classes that represent the domain model from the instances that

represent the topics being taught in a particular course is to use the subClassOf property

to model the relationships between the classes in the abstract domain model and the

instanceOf property to connect the concrete course topics to the classes in the abstract

domain model. Structuring domain models using these properties provides only

96

generalization and specialization relationships in general taxonomy and type

information for the topic instances of the course. The domain model is only representing

the “is-a” relationship. Domain models should fully represent all of the topics in the

domain so that they can be reused between different courses that teach the domain they

represent. What is needed is a richer representation of the domain concepts and its

relationship between each concept. We go beyond the “is-a” and inheritance relationship

and extend OWL to support the “part-of” relations. This dissertation work also support

recommendation for learning order, which goes beyond ontology.

3.3.1.4 Part-Whole Relations

Part-whole representation of educational materials is a very important and challenging

issue among people who want to use ontology. Currently OWL does not provide any

built-in primitives to support part-whole relationships. Part-whole plays a key role in

many application domains and is a central structuring principle in artifact design. For

example, it is used to describe ships and cars or when used in chemistry and medicine to

describe structure of a substance or structure of anatomy. Traditionally, part-whole

receives much less attention then subclass / subsumption relation. We can introduce new

relations to support this type of hierarchy. An important and common feature of part-

whole relationship is to support transitivity. If A is part of B and B is part of C, then A is

part of C. If we define a property as transitive property then the reasoned can conclude

that A is part of C. OWL also supports inverse relations, which we can define hasPart as

the inverse of partOf. For example, for any two individuals A and B, if A is part of B,

then B hasPart A. Unfortunately, reasoning cannot support both partOf and hasPart, and

97

as a result it is prefer to use partOf, since most queries are performed using this

property. It is important to structure and represent part-whole relationships as a hierarchy

in which objects at one level are composed of inter-related objects at the next level down.

But also, using this knowledge structure and representation for linking learning objects

for reusability and classification.

3.3.2 Capturing Instructor Experience in Learning Orders

The knowledge representation in our domain ontology and also in PaceJena captures the

instructor experience to support the learning order and also to personalize learning

experience for this research. The domain ontology for this research is called Web Tutorial

Ontology and the course topic is on “Introduction to Web Technology”. In figure 33 and

34 is a snapshot of both learning orders for “Beginner and Intermediate”, sequentially.

The learning order for “Beginner” starts at a different starting point then the intermediate.

The “Beginner” concepts will start with “WebPage”, “HTTP”, “SessionManagement”,

and WebArchitecture”.

3.3.2.1 Instructors Representation of Learning Order

The Web Tutorial Ontology captures the instructor’s representation of how the learning

order needs to be presented to the different types of learner. In this section we will dissect

some of the knowledge representational features to describe how we can capture this

learning order. The class owl:NamedIndividual is new to OWL 2, it is used globally in a

domain ontology. Individuals are facts about their class membership and their property

98

values. The declaration owl:NamedIndividual is extended using declaration called

"&pace;LearningOrder". In figure 33 and 34 we declare two sets of

"&pace;LearningOrder". One is for a “Beginner” and the other for “Intermediate” each

learning order as a new custom relations called level which is associated with a number,

such that <pace:level>0</pace:level> is learning level for a “Beginner” and

<pace:level>1</pace:level> is learning level for “Intermediate”. The namespace “pace”

along with the relations ”ref” creates facts about class membership and their relations

according to the students learning order. This code is reusable and for any learning order

and learning level and can be extended to add additional learning orders, along with any

ontology learning concept. The most important part of the web tutorial ontology structure

is the semantics between parent and child concepts and how these relations are extended

and inferred from PaceJena and how to relate this information into the ontology learning

order for each learning level. In order to enable rule-like knowledge representation and

inferencing we extend OWL with PaceJena rules, functions and methods.

Figure 33 Learning Order for Beginner

99

Figure 34 Learning Order for Intermediate

The student whom is a “Beginner” must start with the easier concepts first, students have

the option to choose which concepts to start with first, and at any point in time a student

may take the “Beginner” quiz. If student receives a passing score of 70 or above then

student can proceed to the next learning concept. If students receive a failing score of 70

or less then student will be directed back to the previous learning concept.

3.3.3 Capturing Instructor’s Adaptive Learning Topics

IMS Learning Design specification (IMS LD) and IEEE Learning Object Metadata

standard (LOM) enables one to specify learning designs and learning objects (LOs)

targeted for different learning situations, based on different pedagogical theories,

comprising different learning activities where students and teachers can play many roles,

and carried out in diverse learning environments. However, they cannot enable more

advanced learning processes, such as dynamic adaptation of content in accordance with

the students’ objectives, preferences, learning styles, and knowledge levels. Further, if

adaptation is to happen automatically information must be codified in an unambiguous

100

manner. Ontologies help increase the consistency and interoperability of metadata.

The Semantic Web community has already developed a number of different kinds of

ontologies that can be integrated in an ontological framework in order to enable adaptive

use of LOs inside a learning design.

We have investigated various tutoring principles used by tutors and educational software.

As described earlier this work focuses on several aspects of teaching and learning using

LOs in a web-based environment. The approached taken in this dissertation proposed a

framework that will improve the learning process support needed to provide the learner

with recommended learning content to learn from and the recommended learning path.

The topics are represented in a hierarchical and sequential order for each learning level.

This is represented once the student as logged into the tutoring system. These topics are

all composed of top level generalized topics and are decomposed to a more specific and

specialized topics. Each topic contains its own quiz to assess the learners understanding

at his/her current knowledge state. The instructor’s knowledge graph representation helps

support and guide students through the navigational knowledge space learning process.

The instructor’s integrated assessment strategy and techniques helps adjust student’s

learning strategy on what topics he/she should learn next. It is useful for students and

tutor to ensure what is being learned and assess is relevant to the topic. It is important to

ensure that the terms being brought up during the learning process is relevant to the topic.

This iterative process and knowledge graph representation helps the student’s learning by

introducing terms from topics that are more specific to the general topic. This also helps

101

the instructor understand the students learning progress and how the knowledge

representational design can be improved by introducing other LOs for this framework.

3.3.4 Capturing Instructor’s Integrated Assessment

This section captures the instructors integrated assessment feature’s, which interacts with

the knowledge graph to determine student’s next recommended learning order. Quizzes

will represent 10 multiple-choice random questions from the quiz database. In order to

measure a student’s learning performance students will have the option to select the

challenge quiz. During the challenge quiz, students must answer all 10 questions. At the

last question the system will present the submit button for students to submit their quiz

for evaluation and feedback. The system will evaluate the students results according to an

IF, THEN, ELSE statement. If quiz results are less than 70 then the system will

recommend and direct student to a more specific or narrow concept from the previous

concept. If greater then 70, then the student will continue to the next concept at the 1st

concept level moving along the knowledge graph in a horizontal direction. If not then

students will be directed to follow the previously mention less than 70 pattern. Quizzes

will be recorded in the students profile for the instructor to evaluate student’s

performance and learning outcomes. Administrators and instructors have the option from

their web-based application interface to add, save, edit, and delete quiz questions and

answers from the quiz database.

102

3.3.5 Conceptualizaion of Web Tutorial Ontology

In this section we describe the most important terms which where elaborated according to

the Methontology method. The top-down strategy approach was used to identify the core

basic terms first which are the most generalized terms then to specify terms that are more

specific at each level. The key terms are specified at the top level. The key terms where

categorized according to the concept levels. In this research, the concept levels were

defined by two relations, which were “include” and “partOf”. For example, in the

statements “A includes B” and “B is part of A”, the object A is a more generalized

concept than the object B. Then with these concepts as reference, the key term list was

defined and graph to illustration the scope of knowledge representation shown in Figure

35 and Table 5 showed an example of partial Web Tutorial Ontology in representing the

Introduction to Web Technology taxonomy. In the given example, we exhibited a variety

of relations, such as “include”, “partOf”, “ref”, “implementedBy”, and “implement”.

OWL was used to define these customized relations.

Table 5 Web Tutorial Ontology Key Terms

Web Technology Text Document

Web Architecture Tag Names

HTML Links

Web Pages Elements

Session Data Management Attributes

HTTP Protocol Cookies

URL Hidden Fields

Web Browser Query String

Application Server Server Side Session

Computer Program DNS

Web Server HTTP Request

Database Server HTTP Response

TCP IP Ports

Markup Language Domain Names

Resources Web Resources

103

Figure 35 Web Tutorial Ontology Scope of Knowledge Representations

3.3.5.1 Tools for Representing Web Tutorial Ontology

The tools used to implement the Web Tutorial Ontology were Pace University’s Pace

Protégé version 5.0. Figure 36 and Figure 37 illustrations some of the features presented

by Pace Protégé. Pace University’s Pace Protégé version 5.0 was developed by Pace

University’s PhD computer science students in an effort to help students establish a way

to identify their custom relations and also be able to use OWLViz to visualized there

knowledge structure graph while building ontologies that use these custom relations. Pace

Protégé has a relations tab which makes is easier to create custom relations. Currently

Protégé does not provide an easy way to create custom relations nor does it’s add on

plugin, OWLViz provide a way to visually recognize these custom relations.

104

Figure 36 Pace Protege Version 5.0 - Adding Relation

105

Figure 37 Pace Protege OWLVIZ Knowledge Graph with Custom Relations

After completing the ontology develop in Pace Protégé it is saved as a RDF/XML file.

This file is then used in our PaceJena program to read the ontology and will be parsed by

the SAX Parser, which is an event driven algorithm for parsing such files as RDF/XML.

When the parser has retrieved the necessary information it is then delivered to the

frontend application called PaceJena Tutoring System.

106

3.4 Tutoring System Life Cycle Based on Knowledge Representation

This dissertation proposes to deliver a tutoring system life cycle framework, which will

provide direct personal feedback to students, without the intervention of human being.

The definition of an intelligent tutoring system is an expert system, which can provide

artificial intelligence without the intervention of a human being. The tutoring system that

is presented in this dissertation contains four models or modules: the student module, the

expert module, the assessment module, and the Instructor and Administrator module.

 The student module is where the student interacts with the interface, which

provides the means for students to interact with the tutoring system, usually

through a graphical user interface with a rich simulation of the domain ontology

content the student is learning. The student module also contains the student

knowledge of learning level and learning order.

 The expert module references an expert or domain model containing a description

of the knowledge or functionalities and methods that represent expertise in the

subject-matter domain the tutoring system is teaching.

 The assessment module references the quiz module, which contains questions and

answers on the domain model containing the knowledge information. The

assessment model will evaluate the student’s knowledge level and will adaptively

respond with feedback on the student’s performance.

 The instructor and administrator module is where instructor has access to evaluate

student’s performance and also implement new course topics and quizzes. The

administrator module is where the administrator can manage user accounts and

maintain system.

107

An intelligent tutoring system with a semantic web environment and adaptive

characteristics should utilize the opportunities that are provided by all the modules

mentioned previously. Adaptive teaching and testing is essential to a student’s learning

environment. The adaptive characteristics provide the students with personal content

delivery and assessment evaluation. The agent is equipped to assess the students profile

and performance in order to adjust content delivery. The domain knowledge, expert

module and student model is reusable. This is achieved by using and extending the OWL

language and using Web Services to publish this knowledge information.

3.5 Tutoring System Architecture

3.5.1 Functional and System Design Requirements

PaceJena tutoring system is a prototype system design for this dissertation. This type of

system application is needed to help students personalize their learning needs. Semantic

web languages and technologies can help in achieving this goal. These technologies can

help fulfill the lack of knowledge representation and functional requirements about our

computer subject topic on “Introduction to Web Technology” ontology. Most of these

requirements should be flexible enough to accommodate new requirements. Most of the

requirements are about supporting predefined learning paths for typical learners. This

application should also be interoperable with other subject topics. The predefined

learning paths for this system will be students at the beginner’s level and students at the

intermediate level. This can be expanded to many other types of learning level but for this

dissertation we will limit it to just two learning levels.

108

3.5.2 System Architecture

This four-tier architecture is implemented using semantic web technologies. Figure 38

illustrates a high-level architecture diagram of our system.

Figure 38 PaceJena Tutoring System Architecture

3.5.2.1 Client Tier

Client tier consists of JSP/Servlets and web services. JSP/Servlets based client is more

java specific and there is strong support for this technology. The PaceJena framework is

also a part of this architecture and is also built in Java, which is a more mature framework

that supports the semantic web technologies. The client layer will interact with the

educational layer and send its request to this layer.

109

3.5.2.2 Educational Tier

The educational tier consists of educational specific components like handlers. All clients

will interact with this layer. Education components will be responsible to get the request

from the clients and forward them to semantic tier. Then educational tier forwards the

results coming from semantic tier to the clients.

3.5.2.3 Semantic Tier

The semantic tier will consist of PaceJena, which is an extension of Jena. The name Pace

comes from Pace University, in Pleasantville, NY, which is the origin of this dissertation

work. Jena was developed by HP Labs and is an Apache open source Semantic Web

Framework for Java and is built on Semantic Web applications. It provides an API to

extract data from and write to RDF graphs and provides an extensive Java library for

helping developers develop code that handles RDF, RDFS, OWL, and SPARQL and

includes a rule-based inference engine which is in line with W3C recommendations. Jena

is the most stable framework that supports semantic web technologies. This is why we

choose to extend this framework. All the educational components can interact with this

model through the semantic web tier. It is important to understand this framework and

how it plays a role in our knowledge representation for our ontology.

3.5.2.4 Data Tier

Data tier consists of RDF/XML knowledge graph / model. JENA’s RDF model can be

build either in memory or in a file or in a database.

110

 In Memory Model is a model in RAM. It is not possible to build a large in

memory model due to limitations of RAM size.

 File Model is physical storage like hard disk.

 Database Model is a model built into a database. PaceJena just like Jena supports

all major databases like Oracle, Microsoft SQL Server, MYSQL, PostgreSQL,

etc… A database can store more data in a more efficient way.

 The database server is central and uses persistent storage of all data.

In summary, our tutoring system aims to assist learners to gain knowledge in a

manner of ontology-based knowledge representation. The diverse concept levels are

linked to learners’ knowledge levels, which can enable learners to accomplish

learning activities from a lower level to a higher level. A use case is represented in

the following section.

3.6 Tutorial System Use Cases

In this section, we present the tutorial system main use case study that illustrates the

application of the methodology, described in the previous section that will support the

implementation of the proposed approach. The aim is to demonstrate that the proposed

methodology can be realized for the representation of a semantic approach to an

intelligent personal tutoring system in order to be used within the context of an

educational system.

111

3.6.1 Main Use Case

In this section we will also discuss the instructional teaching use case, student use cases

such as creating student accounts, how students learn a lesson, student assessment

process, and how students navigate the knowledge graph. Figure 40 shows the screen

capture of the PaceJena Tutoring System. A list of the most important terms was

elaborated according to the 101 METHOD guide. A Top-down strategy was used. With

this strategy, the core of basic terms is identified first and then they are specified and

generalized if necessary. The list shown in Table 6 is a list of key terms, which does not

include partial or total overlapping of concepts, synonyms, properties, relations and

attributes. Next, we categorized these key terms according to the concept levels. In this

study, the concept levels were defined by the following relations, which were “include”,

“partOf”, “ref”, “implement”, and “implementedBy”. For example, in the statements

“Web Technology” includes “Web Page”, “HTTP”, “Web Architecture”, and “Session

Management”; and “Web Page”, “HTTP”, “Web Architecture”, and “Session

Management” are part of “Web Technology”.

Figure 40 Screen Capture of the PaceJena Tutoring System

112

Table 6 Example of Key Terms

Figure 41 Example of Knowledge Graph Based on Custom Relation “partOf”

113

Figure 41 showed the knowledge graph related to “Web Technology”. In the given

example, we exhibited a variety of custom relations, such as “include”,

“implementedBy”, and “implement”. By using this technique to describe classes, an

entire semantic knowledge system structure was eventually developed. The linked

knowledge ontology had been assessed by our use case studies, which proved that our

system was effective for personalized learning.

114

Figure 42 Sample Showing Ontology Taxonomy

115

3.6.2 Instructors Managing Course Content Use Case

Use Case Name Instructors Managing Course Content Use Case

Primary Actor(s) Instructor

Description The Instructor / Teacher use case for editing and saving the

course content.

Precondition Instructor / Teacher must have a user account and admin

permission level.

Post condition

Basic Course of Action

Instructor / Teacher must login using Administrator user name and password.

Instructor / Teacher can navigate to the concept of choice.

Instructor / Teacher can click on the edit button to edit the concept content.

Instructor / Teacher as competed the changes to the content then he/she can click on the

close button to save the edited information in the database.

End of use case.

Alternative Course of Action

Figure 43 Instructor / Teacher Login Use Case

116

Figure 44 Instructor / Teacher Editing Course Content Use Case

Figure 45 Instructor / Teacher Saving Course Content Use Case

117

The instructional teaching use case improves the support of adopting different domain

topics and the reusability of learning object resources and also supports reusability of

student assessment process. This is further explained in the section called “Guidelines for

Adopting a New Topic”. The instructional teacher is task with creating the conceptual

vocabulary structure for the course by using the Pace Protégé tool in Figure 46.

Figure 46 A Snapshot of Proposed Web Tutorial Ontology In Pace Protégé

118

A template has been constructed for the instructional teacher, which can be used,

retrieved and altered for other domain subjects for reusability and adaptability. This

template is located within the tomcat architecture file structure, which will be discussed

in the next chapter. This course module for this research is in the subject area of

Introduction to Web Technology and the domain ontology name for this course is called

Web Tutorial Ontology. Pace Protégé is used along with Pace Universities OWLViz

which are important tools for the instructional teacher to be able to visualize the

knowledge graph domain constructs along with visualization of developing and extending

OWL and new custom relations.

3.6.3 Student Login Process Use Case

Use Case Name Student Use Case

Primary Actor(s) Student

Description Student’s personalized learning

Precondition Must create a user account and select a learning

level

Post condition Student must login and logout when done.

Basic Course of Action

The typical use-case is:

1. A user logs in, via a web browser (HTTP client), issues a URL request to an

HTTP server to start a webapp.

2. A client-side program (such as an HTML/JSP form) is loaded into client's

browser.

3. User is presented with his/her learning level and learning order in the

navigational pane.

4. User selects the learning object concept from the navigation pane

119

5. The client-side program sends the query parameters to a server-side program.

6. The server-side program receives the query parameters, queries PaceJena, first

by reading the knowledge graph, secondly by parsing the request in the Sax

Parser and finally retrieves the URI from the database and returns the query

result to the client.

7. The client-side program displays the query result on the browser.

8. The process repeats.

Alternative Course of Action

Figure 47 Student Login Process Use Case

120

Figure 48 Student Login Process Use Case

3.6.4 Login Use Case

Use Case Name Login

Primary Actor(s) User, Administrator, and Instructor /Teacher

Description Login to system. This use case describes how users gain

access to the PaceJena Tutoring System through the login

process.

Precondition All authorized users must have system account into order to

login with username and password.

Post condition The system accepts username and password

Basic Course of Action

1.) All authorized users must log into the system.

2.) Users must have username and password.

3.) User enters their username and password.

4.) The system checks the username and password.

5.) The system accepts username and password.

6.) The login use case ends.

Alternative Course of Action

Alternative Course of Action A

A1. If the users have no username and password.

A2. Users create their own new account by registration process.

A3. Go to step 3.

Alternative Course of Action B

B1. If the users enters incorrect username and password.

B2. Try with another username and password.

B3. Go to step 4.

121

Figure 49 Interaction Diagram for Login Use Case

Figure 50 Login Use Case

122

3.6.5 Registration Use Case

Use Case Name Registration Use Case

Primary Actor(s) User and Tutoring System

Description User registration is required to gain access into system This

use case describes how users gain access to the PaceJena

Tutoring System through the registration process.

Precondition User must input all required information into the registration

form.

Post condition User is registered

Basic Course of Action

1.) The user browses to the "Login" page.

2.) The new user chooses the "Create Account" link on the "Login" page.

3.) The new user is at the Registration form screen.

4.) The new user enters the following details in the Account Information Screen.

a. User ID

b. Email

c. First Name

d. Last Name

e. Password

f. Confirm Password

g. Select One Learning Level

i. Beginner

ii. Intermediate

5.) The user clicks on Register

6.) The system validates the information entered

7.) The system will return the new user back to the Login screen

8.) New user enters the new Username and Password

9.) The system accepts username and password.

The use case ends.

Alternative Course of Action

Alternative Course of Action A

A1. If the users have no username and password.

A2. Users create their own new account.

A3. Go to step 2.

Alternative Course of Action B

A1. If the users enters incorrect username and password.

A2. Try with another username and password.

A3. Go to step 4.

Special Requirements

 After three consecutive unsuccessful login attempts, the user's account will be

locked and must be reset by a system administrator.

123

 Users may not login from multiple different computers simultaneously. If this

condition is detected, the user will be notified with appropriate warning/error

messages.

Frequency of Occurrence

Users must log in to access their account information, to get tutorial, and, to take a quiz.

The system administrator must log in to administer the system.

Figure 50 Interaction Diagram for Registration Process

Figure 52 Registration Use Case

124

3.6.6 Login Learning Order Use Case

Use Case Name Login Learning Order Use Case

Primary Actor(s) User

Description User is required to select learning level during new account

registration. The learning level will determine the learning

order.

Precondition Select learning level during new account registration.

Post condition System will retrieve learning order for learning level that was

selected during new account registration for user each user.

Basic Course of Action

1.) User is at the new account registration form.

2.) User must select a learning level from pull down menu.

3.) User submits form.

4.) User information is stored in database.

5.) User login.

6.) System will retrieve the last user learning level and learning order state stored in

system.

7.) Learning order will be displayed at the left side pane for user to navigate learning

structure.

8.) End of login learning order.

Alternative Course of Action

1.) Learning order will change after student takes a quiz. This is explained in the quiz

use cases.

Figure 53 Interaction Diagram for Login Learning Order Process

125

Figure 54 Login Learning Order Use Case

3.6.7 Knowledge Space Exploration Use Case

Use Case Name Knowledge Space Exploration Use Case

Primary Actor(s) User and Navigation

Description
This use case describes how the User of the system can

navigate through the PaceJena Tutorial System.

Precondition
‘Learning Order’ page should be loaded for either “Beginner”

or Intermediate”.

Success Guarantee (Post Conditions):

a. User is able to navigate through his/her learning

order for Introduction to Web Technology

learning resources successfully.

b. User can navigate from a general concept to a

narrow concept, and from narrow concepts to

general concepts.

Post condition User takes quiz or exit system

Basic Course of Action

126

1. User logs into system with username and password.

2. The system will retrieve and display the navigation learning order from either

initial registration or from quiz result and present it on the left side navigational

pane as navigational buttons. The center pane will display the “Web Technology”

introduction page.

3. User clicks on ‘Web Architecture’ button link from left side navigational pane.

4. System displays the next level of learning order for ‘Web Architecture’, which

will be “Tier 1”, “Tier 2”, “Tier 3”, “Tier 4”, and ‘Web Architecture”.

5. User can take a quiz or log off system.

Alternative Course of Action

1. System will display “Tier 1”, “Tier 2”, “Tier 3”, “Tier 4”, and ‘Web

Architecture”.

2. User clicks on ‘Web Architecture’ button link in the Screen.

3. System displays the previous level of learning order, which is “Web Page”,

“HTML”, “Session Management”, and “Web Architecture”.

Figure 55 Knowledge Space Exploration Use Case

127

3.6.8 Quiz Module Overview

This quiz module represents an interaction with our PaceJena Tutoring System, which

will evaluate and personalize students learning environment. The students may take this

quiz at any point and time during their learning material studies. The block diagram

below is a representation of how students and instructor / teachers interact with the quiz

module. Students whom are “Beginners” will be quizzed on a “Beginner” quiz. Students

whom are “Intermediate” will be quizzed on “Intermediate” quiz. Students whom receive

a grade of greater than 70 will be allow to proceed to the next level. Students whom

receive a grade less than 70 will not be allowed to proceed to the next level and must

return back and study the learning material again.

3.6.8.1 Instructor / Teacher Editing Quiz Assessment Use Case

Use Case Name Teacher Editing Quiz Assessment Use Case

Primary Actor(s) Instructor / Teacher

Description Instructor / Teacher wants to evaluate students.

Precondition Teacher is identified and authenticated.

Post condition Quiz assessment is stored and saved in database.

Basic Course of Action

1.) Instructor / Teacher logins into system using the Administrator user name and

password.

2.) Instructor / Teacher clicks quiz for any concept.

3.) Instructor can edit and save a quiz questions and answers.

4.) Quiz questions and answers are saved to the database.

5.) End use case.

Alternative Course of Action

None

128

Figure 56 Instructor / Teacher Editing Quiz Assessment Use Case

3.6.8.2 Student Quiz Assessment Use Case

Use Case Name Student Quiz Assessment Use Case

Primary Actor(s) Student

Description Student wants to be evaluated and get feedback from taking

the intelligent quiz.

Precondition Student is identified and authenticated.

Post condition All quiz results are stored and saved in database.

Basic Course of Action

1.) Student logins into system.

2.) Student clicks on challenge quiz button for his/her level.

3.) If student is beginner then a beginner quiz will appear.

4.) If student is intermediate then an intermediate quiz will appear.

5.) Student will be presented 10 random and dynamic questions one at a time.

6.) System will display first random question.

7.) Student will view and answer each question, then click on submit button.

8.) System will display the next question.

9.) Student must answer each question before proceeding to the next question.

10.) Student submits the last question the system will assess all answers.

11.) System will display the quiz results and give feedback on student’s next

step.

129

12.) If student received a >70 result, then student can proceed to intermediate

concept topic.

13.) If student received a <70, result then student will be instructed to go back

and review course materials.

14.) Student will follow a link to next step

15.) End use case.

Alternative Course of Action

None

Figure 57 Quiz Diagram

130

Figure 58 Student Quiz Assessment Use Case

3.6.8.3 Retrieve Quiz Result Learning Order Use Case

Use Case Name Retrieve Quiz Result Learning Order Use Case

Primary Actor(s) Quiz Module

Description Quiz module will evaluate all 10 questions and determine the

outcome based on whether the student can achieve a greater

than 70 result to deliver the next learning order for the next

learning level. If not then students will be returned to same

learning order and learning level until student can achieve

the greater than 70 requirement.

Precondition Student must complete all 10 questions and submit to the

quiz module in order to evaluate and return results.

Post condition Depending on the results student will be either directed to go

to next learning order and learning level or student maybe

directed to go back and study the learning materials again

until the student can achieve a greater than 70 score.

131

Basic Course of Action

1.) Login

2.) Retrieve learning order

3.) Take quiz

4.) Quiz contains 10 questions

5.) Submit quiz

6.) System evaluates quiz

7.) System returns quiz results

8.) If greater than 70 direct to go to next learning level and order.

9.) If less than 70 direct to go back and study learning materials again for

current learning level and order.

10.) End use case.

Alternative Course of Action

None

3.6.9 Conclusion

This section discusses the different use cases for the PaceJena Tutoring System

prototype.

3.7 Pace Protégé Extension for Knowledge Representation

Protégé is an open-source tool developed at Stanford University Medical Informatics.

It is an open source tool, and as an ontology editor, it provides a suite of tools to

construct the domain model using various formats. Also, using plug-ins for adding

further functions makes it flexible. These plug-ins such as importing and exporting

ontology language specifications like XML, RDF, RDFS, OWL and different types of

reasoner are available. Pace Protégé is an extension of Protégé. Figure 59 shows the

startup of the Pace Protégé from the command line.

132

Figure 59 Launching Pace Protege from Command Line

Web Ontology Language (OWL) is used by domain experts to encode knowledge. OWL

primarily only supports the subClassOf (is-a or inheritance) relation. Various other

relations, such as partOf relations, are essential for representing information in various

fields including all engineering disciplines. The current syntax of OWL does not support

the declaration and usage of new custom relations. Representing part-whole relationship

is a very common issue among people who want to develop ontologies for semantic web.

The “partOf” relationship is one of the basic fundamental primitives of the universe.

Many applications are required to show this kind of relationships in the real world. RDF

schema and OWL does not provide any built-in primitives to support part-whole

relationship. In Workarounds to emulate custom relations do exist, but they add syntax

burden to knowledge modelers and don’t support accurate semantics for inference

engines. The Pace extended version of Protégé and OWLViz allows us to declare new

133

custom relations with special attributes, and apply the knowledge representation to be

visualized in a knowledge graph. In figure 60, we are able to extend the “partOf”

relations and custom relations such has “include”, “ref”, “implemented”, and

“implementedBy”.

Figure 60 Pace Protege GUI Interface with Custom Relations Features

The entities tab allows us to view the class hierarchy for the Web Tutorial domain

ontology. In this pane we can add new classes, sub classes and remove classes. The

relation’s pane allows us to add our custom relations and remove custom relations. In

Figure 61, Pace Protégé GUI interfaces with custom relations and related to feature show

134

how to relate classes to the “include” relations for the class “WebTechnology”. The

relations are used to relate these relations to each class in the domain. Once this has been

completed we can then use Pace’s extended customized version of OWLViz to visualize

our knowledge graph with these new custom relations.

Figure 61 Pace Protege GUI Interface with Custom Relations and Related To

Feature

135

Figure 62 Pace Protege GUI Interface with Customized OWLViz Knowledge Graph

Features

OWLViz was developed as part of the CO-ODE project by Mathew Horridge at the

University of Manchester. It is licensed under the Lasser GNU Public License. OWLViz

uses the layout algorithms provided by the GraphViz software by AT&T, and also the

Balik libraries by the Apache Software Foundation. OWLViz is design to be used in

Protégé as a plugin. It enables the class hierarchies in OWL Ontology to be viewed and

incrementally navigated, allowing comparison of asserted class hierarchy and inferred

136

class hierarchy. The finally step is to save this knowledge graph as an rdf/xml file.

This file will be used in our PaceJena API.

3.8 PaceJena for Knowledge Navigation

Knowledge navigation in the PaceJena Tutoring System is used to describe learner

navigation among digital learning resources, guided by a knowledge structure graph of

the “Web Tutorial” domain concepts. The motivation of the PaceJena Tutoring System is

to provide learners with an improved navigational process for personalized learning using

learning objects. The conceptualization knowledge graph means that an explicit

representation of concepts and relations are involved to support the navigational activities

such as navigating to reading a document, viewing a video, or listening to audio, and

much more. Learners are navigating the knowledge structure graph from top level to next

level and from next level to previous level. These actions allow the user to move from

one resource to another.

3.9 Knowledge Graph Representation for Navigation

The knowledge graph representation for navigation plays a major role in the PaceJena

Tutoring System for personalizing and adapting the users learning level, learning order

and quiz knowledge assessment. But in order for this to happen in our PaceJena Tutoring

System the user must create a user account. The user account is created from the

registration form. The registration form contains input information that must be entered

137

in order for the system to accept your registration. This information contains the

following information: User must enter a User ID, Email, First Name, Last Name,

Password, Confirm Password, and Learning Level. This information then gets logged into

the MYSQL database. The student can now access the PaceJena Tutoring system. Student

is presented with the login page where he/she must enter her username and password.

Once the user is authenticated into the system a HTTP request is sent to the Tomcat

server-side where the request accesses the knowledge graph and is parse by the Sax

Parser and the server-side sends the responses back to the client-side via HTTP. The

response’s is displayed on the browser where the student will see their learning order in

the navigational pane. The function of the navigational pane allows the user to navigate

the knowledge graph structure from narrow concepts to board concepts and from board

concepts to narrow concepts. If a student wishes to take the quiz to assess his / her

learning understanding of the domain then he or she will need to answer 10 questions.

After completing the quiz assessment the system will evaluate the student’s performance

and will recommend the student to either proceed to the next topic or return to the

previous topic. Depending on the student’s performance the system will either navigate

from a narrow to a boarder concept or a boarder to narrow concept or proceed forward to

the next concept on the knowledge graph.

3.10 Summary

In the chapter we discuss an intelligent tutoring framework, which is empowered by

knowledge representation. We examine the importance of the different ITS modules such

138

as the domain knowledge representation, the user knowledge representation the

instructors knowledge representation and the expert knowledge representation and the

technology and mechanisms that are used to produce a tutoring system web-based

application for learning.

139

Chapter 4 Intelligent Tutoring System Implementation Highlights and

Adaptation to Other Subjects

4.1 Introduction to Tutorial Web-Based System

This web based intelligent tutoring system framework was developed to help support and

improve instructors tutoring tasks of organizing and personalizing student’s

Cyberlearning content. This framework can be used for any tutoring course content. The

central part of this tutoring system takes place during the new user account registration

form process. The main question during the new user registration process that a student

needs to answer is whether they are a “Beginner” or “Intermediate” level for the web

tutorial course content. This will determine the initial state of user’s personalized learning

order. The users profile information is then stored in a MYSQL database and is updated

according to the user’s current state. This initial system state process tells the tutoring

system where the student needs to start at login. The tutoring system will then retrieve

this information and respond back with the recommended learning order that the

instructor as provided for the system. During the learning process student will be required

to take a quiz for each learning concept. The quiz results will evaluate the student’s

response and recommend the next learning concepts and the order in which these

concepts are to be learned. The main purpose of this dissertation is to develop a

140

Cyberlearning tutorial system framework using open source web based architecture

and semantic web technology to address student’s needs for personalized learning.

4.2 Overview of Tutorial Web-Based Architecture

The tutoring system web architecture design prototype is implemented using the Tomcat

with Spring MVC (Model, View and Controller) patterns. The JSPs (Java Server Pages)

are used for the presentation logic. Servlets control the execution of the business rules

and presentation logic. The personal data, linked data and quiz data is stored and

retrieved from the MYSQL database using URLs and XML.

In this tutorial web system application, the servlets control where and what technology is

used to retrieve the personal data, linked data and quiz data information. The servlet’s are

processed during the user’s tutorial training by user’s selection of learning concepts or

challenge quiz which then invokes the corresponding methods which interact with the

dispatcher servlets and containers. Figure 63 illustrates the tutoring system architecture

process.

141

Figure 63 Tutoring System Architecture

4.3 Open Source Web-Based Technologies

The tutoring system was developed using open source web technology architecture. Table

7 below describes the technology name, the version and a brief description.

Table 7 Open Source Web Technology

Open Source Web Technology Description

Oracle VirtualBox 5.1.6

r110634

VirtualBox is a powerful x86 and

AMD64/Intel64 virtualization product for

enterprise as well as home use. Not only is

VirtualBox an extremely feature rich, high

performance product for enterprise customers, it

is also the only professional solution that is freely

available as Open Source Software under the

terms of the GNU General Public License (GPL)

version 2. See "About VirtualBox" for an

introduction.

Presently, VirtualBox runs on Windows, Linux,

https://www.virtualbox.org/wiki/Virtualization
https://www.virtualbox.org/wiki/VirtualBox

142

Macintosh, and Solaris hosts and supports a large

number of guest operating systems including but

not limited to Windows (NT 4.0, 2000, XP,

Server 2003, Vista, Windows 7, Windows 8,

Windows 10), DOS/Windows 3.x, Linux (2.4,

2.6, 3.x and 4.x), Solaris and OpenSolaris, OS/2,

and OpenBSD.

Ubuntu 16.04.1
Ubuntu is published by Canonical Ltd, who offer

commercial support.[12] It is based on free

software and named after the Southern African

philosophy of ubuntu (literally, 'human-ness'),

which Canonical Ltd. suggests can be loosely

translated as "humanity to others" or "I am what I

am because of who we all are".[13] It uses Unity

as its default user interface for the desktop.

Ubuntu is the most popular operating system

running in hosted environments, so–called

"clouds", [14] as it is the most popular server

Linux distribution.

Development of Ubuntu is led by UK-based

Canonical Ltd., a company of South African

entrepreneur Mark Shuttleworth. Canonical

generates revenue through the sale of technical

support and other services related to Ubuntu. The

Ubuntu project is publicly committed to the

principles of open-source software development;

people are encouraged to use free software, study

how it works, improve upon it, and distribute it.

Apache-Tomcat 7.0.69
Apache Tomcat, often referred to as Tomcat

Server, is an open-source Java Servlet Container

developed by the Apache Software Foundation

(ASF). Tomcat implements several Java EE

specifications including Java Servlet, JavaServer

Pages (JSP), Java EL, and WebSocket, and

provides a "pure Java" HTTP web server

environment in which Java code can run.

Tomcat is developed and maintained by an open

community of developers under the auspices of

the Apache Software Foundation, released under

the Apache License 2.0 license, and is open-

source software.

Eclipse Neon 4.6.0 Eclipse provides IDEs and platforms for nearly

https://www.virtualbox.org/wiki/Guest_OSes
https://en.wikipedia.org/wiki/Canonical_%28company%29
https://en.wikipedia.org/wiki/Ubuntu_%28operating_system%29#cite_note-12
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Ubuntu_%28philosophy%29
https://en.wikipedia.org/wiki/Ubuntu_%28operating_system%29#cite_note-UbuntuStory-13
https://en.wikipedia.org/wiki/Unity_%28user_interface%29
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Ubuntu_%28operating_system%29#cite_note-Most_popular_on_Amazon_EC2-14
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Mark_Shuttleworth
https://en.wikipedia.org/wiki/Technical_support
https://en.wikipedia.org/wiki/Technical_support
https://en.wikipedia.org/wiki/Open-source_software_development
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Servlet_container
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
https://en.wikipedia.org/wiki/Java_Servlet
https://en.wikipedia.org/wiki/JavaServer_Pages
https://en.wikipedia.org/wiki/JavaServer_Pages
https://en.wikipedia.org/wiki/Unified_Expression_Language
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_software

143

every language and architecture. They are famous

for their Java IDE, C/C++, JavaScript and PHP

IDEs built on extensible platforms for creating

desktop, Web and cloud IDEs. These platforms

deliver the most extensive collection of add-on

tools available for software developers.

MYSQL Workbench 6.3

Community

MySQL Workbench is a unified visual tool for

database architects, developers, and DBAs.

MySQL Workbench provides data modeling,

SQL development, and comprehensive

administration tools for server configuration, user

administration, backup, and much more. MySQL

Workbench is available on Windows, Linux and

Mac OS X.

Spring Web MVC and Spring

JDBC Framework 3.2.9

Release

The Spring Web model-view-controller (MVC)

framework is designed around a

DispatcherServlet that dispatches requests to

handlers, with configurable handler mappings,

view resolution, locale, time zone and theme

resolution as well as support for uploading files.

The default handler is based on the @Controller

and @RequestMapping annotations, offering a

wide range of flexible handling methods. With

the introduction of Spring 3.0, the @Controller

mechanism also allows you to create RESTful

Web sites and applications, through the

@PathVariable annotation and other features.

Ajax Modified in accordance with Spring Security 3.2

Changed the sample code for CSRF measures

(method to create <meta> tag for CSRF

measures).

Modified in accordance with Jackson 2.4

Changed the sample code and description to use

components for Jackson 2.4.

Spring Security 3.2.9 Release Spring Security is a framework that focuses on

providing both authentication and authorization

to Java applications. Like all Spring projects, the

real power of Spring Security is found in how

easily it can be extended to meet custom

requirements. [45]

144

JQuery 2.1.1 jQuery is a fast, small, and feature-rich

JavaScript library. It makes things like HTML

document traversal and manipulation, event

handling, animation, and Ajax much simpler with

an easy-to-use API that works across a multitude

of browsers. With a combination of versatility

and extensibility, jQuery has changed the way

that millions of people write JavaScript.

Bootstrap 3.3.7 Bootstrap makes front-end web development

faster and easier. It's made for folks of all skill

levels, devices of all shapes, and projects of all

sizes. With Bootstrap, you get extensive and

beautiful documentation for common HTML

elements, dozens of custom HTML and CSS

components, and awesome jQuery plugins.

Apache Maven
Apache Maven is a software project management

and comprehension tool. Based on the concept of

a project object model (POM), Maven can

manage a project's build, reporting and

documentation from a central piece of

information.

Pace Protégé 1.0 Release
The Pace Protégé tool is an extension of Protégé.

The Pace Protégé was extended to create

knowledge graphs with other relations besides

the is-a relation. Protégé is a free, open source

ontology editor and a knowledge management

system. Protégé provides a graphic user interface

to define ontologies. It also includes deductive

classifiers to validate that models are consistent

and to infer new information based on the

analysis of an ontology. Like Eclipse, Protégé is

a framework for which various other projects

suggest plugins. This application is written in

Java and heavily uses Swing to create the user

interface. Protégé is being developed at Stanford

University and is made available under the BSD

2-clause license.[6] Earlier versions of the tool

were developed in collaboration with the

University of Manchester.

PaceJena API 1.0 Release
PaceJena API is an extension of Jena API.

PaceJena API as been customized with the Sax

Parser to read RDF/XML documents and

graphics. Apache Jena is an open source

Semantic Web framework for Java. It provides an

API to extract data from and write to RDF

https://en.wikipedia.org/wiki/Ontology_%28computer_science%29
https://en.wikipedia.org/wiki/Knowledge_management
https://en.wikipedia.org/wiki/Deductive_classifier
https://en.wikipedia.org/wiki/Deductive_classifier
https://en.wikipedia.org/wiki/Eclipse_%28software%29
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://en.wikipedia.org/wiki/Swing_%28Java%29
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/BSD_licenses#2-clause_license_.28.22Simplified_BSD_License.22_or_.22FreeBSD_License.22.29
https://en.wikipedia.org/wiki/BSD_licenses#2-clause_license_.28.22Simplified_BSD_License.22_or_.22FreeBSD_License.22.29
https://en.wikipedia.org/wiki/Prot%C3%A9g%C3%A9_%28software%29#cite_note-6
https://en.wikipedia.org/wiki/University_of_Manchester
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Resource_Description_Framework

145

graphs. The graphs are represented as an abstract

"model". A model can be sourced with data from

files, databases, URLs or a combination of these.

A Model can also be queried through SPARQL

1.1.

Summernote V0.8.2

Super Simple WYSIWYG Editor on Boot-

strap Summernote is a JavaScript library that

... Summernote is licensed under MIT and

maintained by the community. The software can

be accessed from http://summernote.org/getting-

started/

4.4 Web Tutorial Knowledge Representation

This section gives an example of the web tutorial knowledge representation of a web

technology domain to demonstrate how the collection of learning objects are represented,

structured and organized. This section describes how the web technology domain is used

in this dissertation to provide the reasoning, methods and functional capabilities of the

tutorial systems adaptive features using the knowledge graphic to support and improve

personalized web-based learning. The core ingredients of the knowledge graph incudes a

set of concepts, properties, and relations between the elements of these sets. The

introduction to web technology offers the classification level to describe how this

dissertation extends the OWL language using the “include” and “partOf” relations, along

with custom relations to produce a knowledge graph. The knowledge graph is an

overview of the domain concepts and relations among them.

The following constraints present some partial code of the web technology knowledge

graph to illustrate the OWL-based description logics, including class, OWL properties,

https://en.wikipedia.org/wiki/SPARQL
http://summernote.org/getting-started/
http://summernote.org/getting-started/

146

subclass, individual, transitive property, inverse property, and hierarchy such as

generalization and specialization respectively.

Definition of Class – OWL Expression

A Class is a set of individuals. A Class in OWL is a classification of individuals into

groups, which share common characteristics. If an individual is a member of a class, it

tells a machine reader that it falls under the semantic classification given by the OWL

class.

Definition of OWL Properties – OWL Expression

Individuals in OWL are related by properties. There are two types of property in OWL:

• Object properties (owl:ObjectProperty) relates individuals (instances) of two OWL

classes.

• Datatype properties (owl:DatatypeProperty) relates individuals (instances) of OWL

classes to literal values.

Definition of Subclass - OWL Expression

Subclass denotes a class is a subset of another class, meaning that an implication via

inference is that all members of a subClass are members of the superClass. There is no

concept of inheritance in OWL. Figure 63, is an example of subclass.

Figure 63 SubClass

Semantic meaning: The Tomcat is a subclass of the WebServer.

147

Rule expression: If Tomcat (x) then WebServer (x)

Definition of Individuals

Individual instances are members of classes. Instances of a class in Figure 64, are the

following concepts HTTP, SessionManagment, WebArchitecture, and WebPage are

individuals and a member of Web Technology. So we can enumerate a class for which all

members can be listed. The “include” relation is used to express that these individual

classes are a member and a “partOf” WebTechnology.

Figure 64 Sample of Individual Classes and Members

Figure 30 Sample of Knowledge Graph of Individual Classes and Members

148

Definition of Transitive Property - partOf Expression

Semantic meaning: Parts of parts are part of the whole. If A is part of B and B is part of

C, then A is part of C. If WebPage include with HTML include with HyperLinks then

WebPage include with HyperLinks. Transitive is functional and inverse functional.

Rule expression: If include (x, y) and include (y, z) Then include (x, z)

Definition of Inverse Property - partOf Expression

Semantic meaning: The WebPage is partOf WebTechnology, HTML is partOf WebPage,

Then WebTechnology must have WebPage as one of its parts and WebPage must have

HTML as one of its parts.

Rule expression: If WebPage (x, y), Then standard (y, x)

Figure 31 Transitive and Inverse Property of “part of” Relations

In Figure 67, is a partial representation of the webTutorial.owl file code of how each

concept is represent to extend the OWL language and use the customized namespace to

represent these relation’s. In Figure 67, is a partial representation of the knowledge graph

for the concept HTTP.

149

Figure 67 Partial Knowledge Graph Representation of “include and “partOf”

Relation

Definition of Generalization and Specialization Relations

In this section we introduce the methods to describe and to infer generalization and

specialization relations between concepts and for deriving concepts and learning object

resource hierarchies. There exists a generalization and specialization relation between

entities for Web Technology, which describes WebPage, HTTP, Session Management,

and Web Architecture. Where WebPage is a specialization of Web Technology, and

HTML is a specialization of WebPage, and Hyperlink is a specialization of HTML. In

Figure 68, is a partial representation of how the user would navigate from top level to the

next level and back to the previous level. Figure 69 is a Knowledge Graph that represents

the generalization and specialization.

150

Figure 68 Partial Generalization and Specialization Relations

Figure 32 Partial Knowledge Graph of Generalization and Specialization Relations

Definition of the IS-A Relation

Semantic meaning: The is-a relation is transitive, which means that if A is a B, and B is a

C, we can infer that A is a C. It should be noted that is-a does not mean ‘is an instance

of’. An ‘instance’, ontologically speaking, is a specific example of something; like a cat

is-a mammal, but Garfield is an instance of a cat, rather than a subtype of cat. Web

Tutorial, like most ontology, does not use instances, and the terms in Web Tutorial

represent a class of entities.

151

Figure 33 Represents the IS-A Relation

Definition of the Include Relation

Figure 71 is a sample representation of the “include” relation. This figure describes the

root concept to be the Web Technology. The Web Technology uses the “include” relation

to describe the next level of concepts such as “HTTP”, “SessionManagement”,

“WebArchitecture”, and “WebPage”.

Figure 34 Sample Knowledge Representation of Include Relation

Definition of the New Custom Relation implementedBy

The new custom relation implementedBy represents the concept Application Server

which is implementedBy EjbContainer and Transaction Server. Figure 72 is an example

of the usage of implementBy and Figure 73 is a representation of the knowledge graph.

The inverse of implementedBy is implement.

152

Figure 72 New Custom Relation ImplementedBy

Figure 73 Knowledge Graph of New Custom Relation ImplementedBy

4.5 Web Tutorial File Structure Representation

The knowledge representation is determined by the richness of the ontological modeling

to support the course subject. The current industry standard is to use Web Ontology

Language (OWL) for representing knowledge structure. But OWL only supports one

"first-class" relation, "is-a", between the concepts, and different knowledge areas usually

need different custom relations to describe the relations among the concepts. For example

"part-of" and time dependency are important relations to represent most engineering

knowledge bodies. OWL has to use object properties to emulate such custom relations,

leading to awkward knowledge representation hard for domain experts to code, validate

and use such knowledge bases. This research uses Pace University's extension to OWL,

named Knowledge Graph (KG), to support knowledge representation with custom

relations. The instructors can use Pace University extended Protégé IDE to declare and

apply custom relations in a single document. The instructor teaching experience is also

153

coded in the KG to better support custom learning order by students with different

backgrounds as described in section 4.10.2. This research also used the Pace University’s

extended version of OWLViz, which aided in the knowledge graph development of

visualizing the concepts and their relations to each other. The ontology namespace and

header contains the follow information from Figure 74. The first two declarations identify

the namespace associated with this ontology. The first makes it the default namespace,

stating that prefixed qualified names refer to the current ontology. The second identifies

the base URI for this document. The third identifies rdf: prefix refers to things drawn

from the namespace called http://www.w3.org/1999/02/22-rdf-syntax-ns#. The fourth

namespace declaration says that in this document, elements prefixed with owl: should be

understood as referring to things drawn from the namespace called

http://www.w3.org/2002/07/owl#. This is a conventional OWL declaration, used to

introduce the OWL vocabulary. The next two customized namespace declarations such as

xmlns:pace represents the element prefix for identifying the customized individuals that

represent the different learning levels and order for this ontology. The xmlns:rel

namespace represents the customized relations. The next two namespace declarations

make similar statements about the XML Schema datatype (xsd:) and RDF Schema (rdfs:)

namespace. Once namespaces are established we normally include a collection of

assertions about the ontology grouped under an owl:Ontology tag. These tags support

such critical housekeeping tasks as comments, version control and inclusion of other

ontologies. The rdf:about attribute provides a name or reference for the ontology. Where

the value of the attribute is "", the standard case, the name of the ontology is the base URI

of the owl:Ontology element. Typically, this is the URI of the document containing the

http://www.w3.org/1999/02/22-rdf-syntax-ns

154

ontology. An exception to this is a context that makes use of xml:base which may set

the base URI for an element to something other than the URI of the current document.

rdfs:comment provides the obvious needed capability to annotate an ontology.

owl:priorVersion is a standard tag intended to provide hooks for version control systems

working with ontologies. owl:imports provides an include-style mechanism. owl:imports

takes a single argument, identified by the rdf:resource attribute. Figure 74 declares the

prefix names that are commonly used throughout this specification and custom

namespaces for this tutorial system.

Figure 35 Declarations of the Standard Prefix Names and Custom Namespaces

The New Custom Relations section for the Web Tutorial Ontology requires the

customized namespace “rel” prefix in order to represent the NewRelation such as

“include”, “partOf”, “ref”, “implement”, “implementBy”, “level”, and “name”. The

“NewRelation” element is used to declare the custom relations in the knowledge graphic.

The “rdf:about” is used to provide an absolute URI for resourses. The custom relations

can be used to define other types of functional and non functional relations.

155

Figure 75 Knowledge Representation of Customized New Relations

4.6 Web Tutorial Learning Order Specification

First, it is important to clearly identify the target audience, such as identifying the

learners, their skill levels and what the learners should be able to do and achieve during

the learning process. In Table X, describes the language features for learning order. The

NamedIndividual language feature captures the URL Individual names.

For example, rdf:about= http://csis.pace.edu/semweb/webTutorial.owl#Beginner, and

rdf:about= http://csis.pace.edu/semweb/webTutorial.owl#Intermediate.

In this prototype only two NamedIndividual where used but when developing a new

subject, the instructor can add to this language feature. For example, the instructor may

want to add a learning level for an advance user or an expert user.

The &pace:LearningOrder represents an ampersand (&) which is the escape character

that begins any entity reference. In this case it would be the pace referencing the learning

order. The pace:level represents the numeric number of the NamedIndividual. For

example the NamedIndividual is Beginner with the pace:level of “0” expressed as

<pace:level>0</pace:level>. The pace:name represents each learning level by name. For

http://csis.pace.edu/semweb/webTutorial.owl#Beginner
http://csis.pace.edu/semweb/webTutorial.owl#Intermediate

156

example <pace:name>Beginner</pace:name>. The pace:ref represents each resource

concept URL by referencing the URL location of each resource. For example, <pace:ref

rdf:resource="http://csis.pace.edu/semweb/ webTutorial.owl# WebPage"/>, represents

the URL location of the resource concept for “WebPage” at the

http://csis.pace.edu/semweb/webTutorial.owl# location. The general concepts for each

learning level is represented in differently for each learner.

Table 8 Knowledge Representation of Learning Order

Language

Features

Description

NamedIndividual Obtains the individual as a named individual if it is indeed named.

The individuals for this tutorial are rdf:about=

http://csis.pace.edu/semweb/webTutorial.owl#Beginner, and

rdf:about=http://csis.pace.edu/semweb/webTutorial.owl#Intermedi

ate

&pace:LearningOr

der

The ampersand (&) is the escape character that begins any entity

reference. In this case it with be the pace referencing the learning

order.

pace:level The pace:level represents the numeric number of the

NamedIndividual. The pace:level of Beginner is “0”, and the

intermediate level is “1”.

pace:name The pace:name represents each learning level by name. For

example <pace:name>Beginner</pace:name>.

pace:ref The pace:ref represents each resource concept URL by referencing

the URL location of each resource. For example, <pace:ref

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebP

age"/>.

Figure 76, is a knowledge representation of the learning order structure as descrbed in

Table 8.

http://csis.pace.edu/semweb/webTutorial.owl#Beginner
http://csis.pace.edu/semweb/webTutorial.owl#Intermediate
http://csis.pace.edu/semweb/webTutorial.owl#Intermediate

157

Figure 76 Knowledge Representation of Learning Order Structure

Scenario – The tutorial system needs to store two types of information about the Beginner

and the Intermediate learner.

 Store information about a learner who is a Beginner

 Beginner contains information such as: NameIndividual, pace:LearningLevel,

pace:level, pace:name, pace:ref

 Store information about a learner who is an Intermediate

 Beginner contains information such as: NameIndividual, pace:LearningLevel,

pace:level, pace:name, pace:ref

 NameIndividual in this domain includes a Beginner and Intermediate learner

 pace:Level and pace:LearningOrder is the unique identifier that differentiates the

Beginner learner from Intermediate learner

The Beginner level is a user whose starting point is at the beginning of the course

learning process because they have no knowledge of the course content. The Intermediate

158

level is a user that starts at a different starting point position in the knowledge space

because they have some knowledge of the course content. Although we have two

different learning types the course content material remains the same for both learner,

which allows for reusability of learning material.

Figure 77 Defining Learning Order for Beginner

Figure 78 Defining Learning Order for Intermediate

Figure 79, below illustrates a sample of the tutoring system web page hierarchy for both

the Beginner and the Intermediate student just as it is designed in the learning order

specifications.

159

Figure 36 A Sample of Tutoring System Learning Order Diagram

4.7 Web-Based Technology Implementation

The Web-Based components to this tutoring system is based on Tomcat and Spring MVC

Framework, with a customized Dispatcherservlet which uses PaceJena API along with

Data Access Objects with MYSQL to retrieve data from the Knowledge Graph. The

Spring annotated controllers accept and process requests for various web resources.

When a request is dispatched to the web server, Spring MVC runs the appropriate

controller code. This code accesses a predetermined model object and responds to the

request. The web view is a rendered Java Server Page. The JavaServer Pages Standard

Tag Library is used to perform basic processing on data within a Java Server Page. There

are five controllers in this tutoring system: Home Controller, Learning Topic Controller,

Owl Navigator Controller, Quiz Controller, and User Controller. These controllers

contains the logic to perform all the operations in a specific web section.

160

4.7.1 Tomcat Web Server

The main function of the Tomcat server is to act as a container for Java web applications.

The concept of a web application was introduced with the release of the Java servlet

specification 2.2. According to this specification, “a web application is a collection of

servlets, html pages, classes, and other resources that can be bundled and run on multiple

containers from multiple vendors.” What this really means is that a web application is a

container that can hold any combination of the following list of objects:

 Servlets

 Java Server Pages (JSPs)

 Utility classes

 Static documents, including HTML, images, JavaScript libraries, cascading

stylesheets, and so on

 Client-side classes

 Meta-information describing the web application

One of the main characteristics of a web application is its relationship to the

ServletContext. Each web application has one and only one ServletContext. This

relationship is controlled by the servlet container and guarantees that no two web

applications will clash when accessing objects in the ServletContext.

4.7.1.1 Tomcat Configuration

In Figure 80, the server configuration is divided into seven sections, we have the general

information, server locations, server options, publishing, timeouts, ports, and MIME

mappings. The general information section specifies the server name Tomcat v7 Server at

161

localhost, the host name is localhost and the runtime environment is Apache Tomcat

v7.0, the configuration path is /Servers/Tomcat v7.0 Server at localhost-config. The

server location section specifies the server path and deploy path. The server path is

.metadata/.plugins/org.eclipse.wst.server.core/tmpCore and the deploy path is

wtpwebapps. The server options selected is modules auto reload by default. The

publishing section, the automatically publish when resources change was selected. The

timeout section specifies the time limited to complete server operations which is set at

start 45 seconds and stop 15 seconds. The ports section specifies the selected ports names

and numbers used for this application, which are the Tomcat admin port, which is on port

number 8005, the HTTP/1.1, which is on port number 8080, and the AJP/1.3, which is on

port number 8009. The last section is the MIME mappings, which are configured for this

application.

Figure 80 Tomcat Server Configuration

162

4.7.1.2 Tomcat Directory Structure

The container that holds the components of the tutoring system web application is the

directory structure in which it exists. Table 11 illustrates the directory structure for

tutoring system web application, and a description of what each of its directories should

contain. Each of these directories should be created from the application base directory of

the web application container, the root directory is where web applications are stored and

accessed from the servlet container. The default application base directory for Tomcat is

CATALINA_HOME/webapps directory.

Table 9 Tomcat Webapp Tutoring System Directory Structure

Directory Description

/pacejena The root directory of the web application. All JSP and

HTML files should be stored here. Usually each type

of static content is stored in a separate sub-directory

(images/, styles/, js/).

/pacejena/webapp/resources Contains all the folders for CSS files, HTML files, and

Image files.

/pacejena/webapp/WEB-

INF

Contains all resources related to the application that

are not in the document root of the application. This is

where your web application deployment descriptor is

located (defined in the next section). Note that the

WEB-INF directory is not part of the public

document. No files contained in this directory can be

requested directly by a client.

/pacejena/webapp/WEB-

INF/Views

Contains the JSP view template files of the

header.jsp, footer.jsp, includes.jsp, home.jsp,

registration.jsp, login.jsp, quiz.jsp and score.jsp.

/pacejena/webapp/WEB-

INF/spring-database.xml

Contains the configuration connection login

resources to the MYSQL database.

/pacejena/webapp/WEB-

INF/spring-security.xml

Contains all the intercepts URL patterns for login

access, resources access, webjar access, user register

access and */** access.

/pacejena/webapp/WEB- Contains the package to connect to the domain URL

163

INF/SpringDispatcher-

servlet.xml

which is the edu.pace.pacejena, maps to the

pacejena, WEB-INF/views, all *.jsp, resouces, and

webjars.

/pacejena/webapp/WEB-

INF/web.xml

Contains the XML files that maps and loads the

SpringDispatcher servlet, spring-database, and

Spring-Security.

4.7.2 Tutorial POM Descriptor

The POM descriptor stands for “Project Object Model”. It is an XML representation of a

Maven project held in a filed named pom.xml. The POM contains all the necessary

information about a project as well as the configurations of plugins to be used during the

build process. In Figure 81, it specifies the overview POM descriptor configuration which

contains the following sections; Artifact, Parent, Properties, Modules, Project,

Organization, SCM, Issue Management, and Continuous Integration.

Figure 81 Overview POM Descriptor Configuration

164

The artifact section specifies the Group id: pace-jena, the artifact id: pace-jena,

version is a snapshot 0.0.1 snapshot, package used is war. The properties specifies the

java version 1.6, spring.version: 3.2.17 release, and the spring.security.version: 3.2.9.

release. The project section specifies the name: pace-jena, using the URL

http://maven.apache.org . In Figure 82 defines a sample of the tutorial system

dependencies. And finally, Figure 82 is a sample of the POM.XML file which defines the

POM elements used for this tutorial application.

Figure 82 Sample of POM Dependencies

http://maven.apache.org/

165

The following elements are needed to created a POM.XML file structure which is

shown in Table 10. Figure 11 is a sample of how the POM file was used for this tutoring

system.

Table 10 Elements of POM.XML File Structure

Element Description

project It is the root element of pom.xml file.

modelVersion It is the sub element of project. It specifies the modelVersion. It

should be set to 4.0.0.

groupId

It is the sub element of project. It specifies the id for the project

group.

artifactId

It is the sub element of project. It specifies the id for the artifact

(project). An artifact is something that is either produced or

used by a project. Examples of artifacts produced by Maven for

a project include: JARs, source and binary distributions, and

WARs.

version It is the sub element of project. It specifies the version of the

artifact under given group.

166

Figure 83 Sample of POM.XML File

167

4.7.3 Tutorial Deployment Descriptor

The deployment descriptor is an XML file named web.xml. The deployment descriptor is

located in the WEB-INF/ directory within the main application directory. It contains

configuration information for the entire web application. It provides the configuration

options for web applications such as defining mapping between URL and servlet class.

The information that is contained in the tutoring system deployment descriptor includes

the following elements in Table 11.

Table 11 Deployment Descriptor Elements

Elements Description

<display-name>pace-jena</display-

name>

Can be used to provide a name that will be

displayed by a GUI interface, if one exists.

The <display-name> is pace-jena.

<listener-class>

org.springframework.web.context.Contex

tLoaderListener</listener-class>

Name of the class that responds to a Web

application event.

<servlet-name>

SpringDispatcher</servlet-name>

Contains the name of the servlet, which is

used to reference it from elsewhere in

Web.xml.

<servlet-class>

org.springframework.web.servlet.Dispatc

herServlet</servlet-name>

Contains the fully qualified class name of the

servlet. All servlet classes will be contained

in the WEB-INF\classes directory, so that the

servlet name is relative to that directory.

<load-on-startup>1</load-on-startup> Allow’s you to indicate the order in which

servlets should be loaded when the server is

started up. This element should contain a

positive integer; servlets will be loaded from

lowest to highest value according to this

element. If you do not include a <load-on-

startup> element, servlets can be loaded in

any order. Note that if you use the <jsp-file>

element in combination with a <load-on-

startup> element, the JSP referred to will be

precompiled instead of being read on-the-fly

when accessed.

<servlet-mapping></servlet-mapping> Must correspond to a <servlet-name>

element in a <servlet> element. This

168

indicates which servlet is being mapped to

the URL.

<context-param></context-param> Element contains the declaration of a Web

application's servlet context initialization

parameters.

<param-name>

contextConfigLocation</param-name>

Defines the name of this attribute.

<param-value>

/WEB-INF/spring-database.xml

/WEB-INF/spring-security.xml

</param-value>

Defines a String value for this attribute.

<filter-name>

springSecurityFilterChain

</filter-name>

The name of the filter to which you are

mapping a URL pattern or servlet. This name

corresponds to the name assigned in the

<filter> element with the <filter-name>

element.

<filter-class>

org.springframework.web.filter.Delgating

Filterproxy

</filter-class>

The fully-qualified class name of the filter.

<url-pattern>/*</url-pattern> Contains the URL pattern that will be added

to your host name/application name URL and

used as a unique URL for the servlet.

<session-config>

 <session-timeout>1</session-

timeout>

</session-config>

Element allows you to specify how long a

session with this Web application lasts.

<session-config> contains a single child

element, <session-timeout>, whose value

should be an integer representing the session

length in minutes.

169

Figure 84 Tutoring System Deployment Descriptor: Web.XML File

170

The tutoring system web.xml file in Figure 65 defines a servlet named

“SpringDispatcher”, implemented in “org.springframework.web.servlet.Dispatcher

Servlet” servlet class and maps to url-pattern “/” which denotes the context root of the

webapp to pace-jena and is loaded on startup by the sub element <load-on-startup>. The

number inside the <load-on-startup>1</load-on-startup> element tells the servlet

container in what sequence the servlets should be loaded. The lower numbers are loaded

first. If the value is negative, or unspecified, the servlet container can load the servlet at

any time. Figure 85 is a screenshot of the servlet and servlet mapping section from the

web.xml file.

Figure 85 Serlvet and Servlet Mapping

The <servlet> element declares the DispatcherServlet. When the dispatcherServlet is

initialized, the framework will try to load the application context from a file named

“SpringDispatcher-servlet.xml”, located in the /WEB-INF/ directory. The ,servlet-

mapping> element of web.xml file specifies what URLs will be handled by the

DispatcherServlet. The DispatcherServlet is also responsible for loading a Spring

Application Context that used to perform wiring and dependency injection of managed

171

components. At this point we specify some init parameters to servlet which configure

the Application Context. The follow actions take place;

- We register the DispatcherServlet as a Servlet called SpringDispatcher

- We map this Servlet to handle incoming requests (relative to the app path)

starting with “/”.

- We use the contextConfiguration init parameter to customize the location

for the base configuration XML file for Spring Application Context that is

loaded by the DispatcherServlet.

 In Figure 86, of the SpringDispatcher-servlet.xml file the

org.springframework.web.servlet.view.InternalResourceViewResolver is defined as a

bean, and is used as an internal resource views resolver, which means it will find the JSP

and HTML files in the /WEB-INF/ folder. The prefix and suffix properties can be set to

the view name to generate the final view page URL.

172

Figure 86 SpringDispatcher – servlet.xml File

The context-parm element is the subelement of web-app, which is used to define the

initialization parameter in the application scope. The parm-name is <parm-

name>contextConfigLocation</parm-name> which defines the parm-value from the

/WEB-INF/spring-database.xml and the /WEB-INF/spring-security.xml and are the sub-

elements of the context-parm. Figure 87 is a screenshot of this section from the web.xml

file.

173

Figure 87 Context Parameter

The /WEB-INF/spring-database.xml and the /WEB-INF/spring-security.xml files below

initializes the entire application. The spring-database.xml file initializes the application

database and the spring-security.xml file initializes the security and makes a bean call to

the “pacejenaauthenticationSuccessHandler” file. The spring-security.xml contains the

following interceptors-url patterns; “login”, “resources”, “webjars”, “user/register”, and

“*/**”.

Figure 88 Spring-Database.xml File

174

Figure 89 Spring-Security.xml File

4.7.4 Tutorial Web Dispatcher Customization

The Spring Web model-view-controller (MVC) framework is designed around a

DispatcherServlet that handles all the HTTP Servlet requests and responses. The request

processing workflow of the Spring Web MVC DispatcherServlet for the tutoring system

is illustrated in the following diagram:

175

Figure 90 Tutoring System DispatcherServlet Diagram

Table 12 explains the tutoring system application elements.

Table 12 Tutoring System Elements

No. Packages Description

1 HTTPServlet Request public interface HttpServletRequest

extends ServletRequest

Extends the ServletRequest interface to

provide request information for HTTP

servlets.

The servlet container creates an

HttpServletRequest object and passes it as

an argument to the servlet's service

https://docs.oracle.com/javaee/6/api/javax/servlet/ServletRequest.html
https://docs.oracle.com/javaee/6/api/javax/servlet/ServletRequest.html

176

methods (doGet, doPost, etc).

2 DISPATCHERSERVLET or

DEPLOYMENT

DESCRIPTOR:WEB.XML

Java web applications use a deployment

descriptor file to determine how URLs map

to servlets, which URLs require

authentication, and other information. This

file is named web.xml, and resides in the

app's WAR under the WEB-INF/ directory.

web.xml is part of the servlet standard for

web applications.

2 SpringDispatcher The web.xml file contains a servlet called

SpringDispatcher which will load on

startup. This file contains the package

edu.pace.pacejena which will invoke the

Handler mapper file called PaceJena-

AuthenicationSuccessHandler.Java.

2 Spring-Database.XML The web.xml file contains parameters to

locate and establish connection to the

database xml file.

2 Spring-Security.XML The web.xml file contains parameters to

locate and establish connection to the

security xml file.

2 pace-jena The web.xml file contains parameters to

locate and retrieve the pace-jena domain.

3 DTO (Data Transfer Object) A DTO is a data transfer object that carries

data between processes. The motivation for

its use is that communication between

processes is usually done resorting to

remote interfaces like web services, where

each call is an expensive operation.

Because the majority of the cost of each

call is related to the round-trip time

between the client and the server, one way

of reducing the number of calls is to use an

object (the DTO) that aggregates the data

that would have been transferred by the

several calls, but that is served by one call

only.

4 HANDLER MAPPER

 PaceJenaAuthenicationSuccess

Handler.Java

This file is the handler mapper for handling

the login authentication request and execute

177

the webTutorial.owl file that will map

request to the user’s learner level and

learner order.

5 CONTROLLER

 HomeController.java The HomeController maps to the login

page.

 LearningTopicController.java The LearningTopicController gets the topic

and content of the topic to be presented to

the LearningTopicService.

 OwlHandlerController.java The OwlHandlerController creates an

ArrayList to supports dynamic arrays that

can grow as needed. Standard Java

ArrayList are fixed and not dynamic.

 QuizController.java The QuizController is a template that

creates the ModelandViewer for the

retrieval of the dynamic questions.

 UserController.java The UserController is a Model and Viewer

that maps to the registration page.

5 SERVICE

 LearningTopicService.java The LearningTopicService is used to load,

save, and update Learning Topics.

 LearningTopicServiceImpl.

java

The LearningTopicServiceImpl is used to

implement the LearningTopicService to

prepare it to be saved in the database.

 QuizService.java The QuizService is used to list the

questions in the quiz module.

 UserDetailServiceImpl.java The UserDetailServiceImpl implements the

UserDetailsService to retrieve Username

then is mapped to UserDetails.

 UserService.java The UserService is used to find users that

are register and update user.

5 MODEL

 LearningTopic.java The LearningTopic gets the topic and

content and prepares to model the

information for the viewer.

178

 Question.java The Question models the questions and

question choices by questionID.

 User.java The User.java implements the user details

from the registration form.

5 DAO

 LearningTopicDao.java The LearningTopicDao is used to insert,

get, and update a topic from the database.

 LearningTopicDaoImpl.java The LearningTopicDaoImpl implements

LearningTopicDao to map to the database

to insert, get and update the topic and

content in the database.

 QuizDao.java The QuizDao retrieves the questions from

the database.

 QuizDaoImpl.java The QuizDaoImpl is use as a template for

the questions to be displayed and to save

the scores.

 UserDao.java The UserDao gets, delete, and updates the

userID in the database.

 UserDaoImpl.java The UserDaoImpl injects and inserts the

user information from the registration form

into the MYSQL user database.

6 VIEW RESOLVER

 SpringDispatcher-Servlet.xml The SpringDispatcher-Servlet is used to

map the WEB-INF/views of all the JSP

files also maps to the resources and

webjars.

7 VIEWS

 Foot.jsp This is the foot template for all web pages.

 Header.jsp This is the header template for all web

pages.

 Home.jsp This is the home page that will appear after

user as authenticated into the system.

 Includes.jsp The includes file directive includes the

header and footer JSP file.

179

 Login.jsp This is the Login form to authenticate an

existing user.

 Quiz.jsp This is a quiz template that is used

dynamically for presenting quiz questions.

 Registration.jsp This is the registration form to create a new

user account login and profile.

 Score.jsp This is score template that is used

dynamically for presenting each user with

their score results.

8 HTTPServlet Response public interface HttpServletResponse

extends ServletResponse

Extends the ServletResponse interface to

provide HTTP-specific functionality in

sending a response. For example, it has

methods to access HTTP headers and

cookies.

The servlet container creates an

HttpServletResponse object and passes it as

an argument to the servlet's service

methods (doGet, doPost, etc).

All actions here surround the front controller, which is the DispatcherServlet. This

DispatcherServlet and all other components are part of the WebApplicationContext of

Spring. Following steps illustrate the process depicted above.

 Client sends HTTPRequest to DispatcherServlet (via web container)

 DispatcherServlet requests HandlerMapping for a proper controller against this

client request

 HandlerMapping returns appropriate controller information

 DispatcherServlet requests that Controller for action

https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletResponse.html

180

 Controller (business logic is either implemented here or service is invoked

from here) processes the request and returns ModelAndView object with logical

view name

 DispathcerServlet requests ViewResolver for the actual view implementation

 ViewResolver returns view information

 DispatcherServlet requests View to prepare the response with the input Model

 View returns rendered response

 DipatcherServlet returns HTTPResponse to the Client (via web container)

4.7.5 Tutorial Application File Structure

The tutorial system application file structure in Figure 92, illustrates the constructs of

where the files are located.

181

Figure 92 Tutoring System Application File Structure

182

4.7.6 Tutorial Annotation Web-Based Controllers

User Controller

The User Controller is invoked when the user needs to create a user account for the

tutoring system. In Figure 93 the @RequestMapping has a value which is equal to

/register and the RquestMethod is called to GET and POST the Model and View which is

resolved by the Dispatcher Servlet. User whom are added successfully to the tutoring

system will be redirected to the login page.

Figure 93 User Controller

Home Controller

The Home Controller is invoked when the user logins into the tutoring system. In Figure

94, the @RequestMapping has a value equal to /login and the RequestMethod is called to

GET Authentication auth = SecurityContextHolder.getContext().getAuthentication() and

displays the Model and View to the home page.

183

Figure 94 Home Controller

Learning Topic Controller

The Learning Topic Controller is invoked when the user logins into the tutoring system.

In Figure 95, the @RequestMapping which as a value equal to /topic makes a

RequestMethod call to GET and load the course topics and content to the home page. The

@RequestMapping which as a value equal to /save makes a RequestMethod call to POST

the getTopic and get Content from the MYSQL database. The learningTopicService

makes updates to the getTopic and getContent.

184

Figure 95 Learning Topic Controller

Owl Navigator Controller

The Owl Navigator Controller is invoked when the user logins into the tutoring system to

retrieve their profile with their learning order. In Figure 96, the @RequestMapping which

as a value /parent/{nodeName} and /children/{nodeName} makes a RequestMethod call

to GET the getParent and getChildren.

Figure 96 Owl Navigator Controller

185

Quiz Controller

In Figure 97, the Quiz Controller is invoked when the user clicks on the challenge quiz

button. The @RequestMapping which as a value of /quiz and /{qidx} / {ans} makes a

Request Method to GET and loads the loadQuiz. The questions and answers are

evaluated from the @RequestMapping to the /{qidx} / {ans} which make a call to GET

the questions from the quiz database and dynamically display each quiz questions one at

a time. Each quiz contains 10 questions.

Figure 97 Quiz Controller

186

During the quiz session user will only be allow to answer the quiz question and click

on the next button. When the user reaches the last question the submit button will display

only for the user to submit his her answers to the quiz module to be evaluated. The quiz

evaluation process is an IF, THEN and ELSE statement. The rubric score for each quiz is

100. If the quiz score is less then 70 then student will be recommended to go back to

previous topic and re-read the failed subject. If the quiz score is greater then 70 then

student will be recommended to go to next topic.

4.8 Adaptive Tutorial Navigational Features

4.8.1 Adaptive Navigational Knowledge Space

The adaptive navigational menu is generated by the knowledge graph according to the

user’s profile. During users login process the learning profile is retrieved and generates

the learner’s navigational knowledge space initial starting state. This initial state changes

as the student progresses with their learning knowledge. The quiz assessment, which is

explained in section 4.5.5, will either progress the students learning or digress the

students learning depended on their quiz evaluation outcome. The Knowledge Graph

supports integrated assessments, using assessment results to custom student learning

order or material, and lets the student freely navigate in the knowledge space from

general to specific or the opposite, and following various custom relations. This feature

provides the user the ability to navigate the knowledge graph freely in any direction and

will give guidance on the concepts in which the user needs to learn and the order.

187

4.8.2 Adaptive Navigational Knowledge Space Guidance

In this feature the user is sequentially guided through the concept knowledge space. The

tutoring system will display the learning object concepts in sequentially order in which

he/she needs to learn but is free to choose any display concept and is not limited by its

displayed sequential order. The adaptive knowledge graph is used to help the learner find

their path in the hyperspace as mention in section 4.5.1. The adaptive navigational feature

which guides the user in the knowledge space as been created using buttons that respond

to links. These links are stored in the learning topic database table and retrieved from the

PaceJena API where the knowledge graph file is read into the Sax Parser and is parsed

according to the user’s interaction with the tutoring system. The button feature guides the

user in the knowledge graph. If the user needs more specific details on a concept then he /

she will click on the concept name and the tutoring system will produce a navigation of

buttons that only relates to that practical concept and will also have the previous concept

named display. If the user needs to go back to the previous concept the navigational pane

will have this concept name available so that the user can navigate back up the

knowledge graph. These navigational features guide the user to concepts that are specific

to concepts that are general.

4.8.3 Adaptive Navigational Knowledge Space Hiding

This method excludes the possibility of visiting pages with no relevant information.

Links leading to such pages are hidden or disabled. This restriction avoids the learner

from being lost in the knowledge hyperspace. For example, user maybe at a learning

concept which is at a generalized level of the domain knowledge but needs to understand

188

the more specific details of the general topic. The learner will then navigate the

knowledge graph which will display only the more specific subtopics while the

generalized super topics are hidden except for the main concept topic the user is

interested in understand. This will enable the learner to navigate back up the knowledge

graph and display the generalized super topics and hide the specialized subtopics. This

feature helps the user stay focus on only the topics of interest and not topics that are

unrelated. This features helps in learning specific concepts.

4.8.4 Adaptive Navigational Knowledge Organization

The adaptive linked data within the knowledge graphic are structured to organize

concepts according to the domain knowledge model, the representation of its hierarchy

and the relations between concepts. Currently the tutorial system is setup to display the

navigational list in the browser interface at the left side pane window. The navigational

feature of the links are displayed as buttons with the concept names displayed in the

buttons. The collection of the data from the knowledge graph is organized to display the

concepts the way it is delivered from the PaceJena API where the knowledge graph is

read into the sax parser for which it will trigger the event that has been requested by the

user. The organization of this information is depended on what the user is requesting

from the navigational window pane.

189

4.8.5 Adaptive Navigational Knowledge Assessment

This method is used at the completion of each challenge quiz. The tutoring system will

evaluate the quiz results by the outcome of their score. If student receives less than a 70

then the system will navigate the student back to the current topic to review and try again.

If great then 70 then the system will navigate the student to the next learning topic. This

is further explained in quiz integration section.

4.9 Managing Student Learning Profiles

The student’s learning profile will be managed from the web-based interface from

PaceJena Tutoring System. The user account management area in PaceJena Tutoring

System will only be accessible to the system administrator and instructor. The system

administrator will be able to view, add, edit, delete, disable, and enable the user account.

In Figure 97, the changes to this information will reflect the “USERS” table from the

“pacejena” table. If administrator needs to make changes to the database columns then

he/she can use the MYSQL Workbench. The figure below depicts a sample of how this

information looks inside MYSQL.

Figure 97 MYSQL USER Database A

190

Figure 98 MYSQL USERS Database B

The USERS Database B reflects the following information:

Table 13 USERS Database Table Information

USERS Database Column

Names

USERS Database Description

USER_ID The USER_ID identifies the user in the tutoring systems and authorizes

the authentication with the correct login credentials.

FIRST_NAME The system will register the user’s first name during the registration
process and store this information in the USERS database.

LAST_NAME The system will register the user’s last name during the registration

process and store this information in the USERS database.

PASSWORD The PASSWORD identifies the user with the USER_ID. The user must

provide both user name and password information during the login
process in order to access the tutoring system.

EMAIL The EMAIL address is used also to identify a user. This can be used to

reset a user’s password. This was not part of this dissertation work.

REG_DATE The REG_DATE is user log the date and time the user access the system.

LEARNING_LEVEL The Learning_Level is the critical information that is needed during the
registration process because it sets the users learning order.

191

4.10 Managing Knowledge Object Collection and Organization

The knowledge object collection and organization for this dissertation was developed

using a knowledge graph, PaceJena, Spring Web MVC templates, models, views,

controllers, and JSP web pages. First it is important to ensure that the Spring MVC

application and engine is properly configured and we are able to invoke it from the

browser. The code below defines the Spring Web MVC HomeController and the actions

required to handle the HTTP GET for the root URL of the project “/“. When someone

opens http://localhost:8080/ from a Web browser, the action below will be called. It

returns the “home” view and this means to render a template “home.html” located in the

file src/main/resources/templates/home.html. And return a new ModelandView called

“login”.

In Figure 99 is a sample of the home.html page customized master web page template,

which is formatted and organized with a header that displays the Pace University logo,

http://localhost:8080/

192

the jpeg picture with the PaceJena Tutoring System name. The footer will display the

copyright information with the year and the name of contributor. This information will

not change and is static. The navigational window pane, which is location on the left side

panel, will be dynamic and will contain the knowledge navigational features, which will

display the collection of data concepts as data linked buttons.

Figure 99 Sample of Customized Master Web page Template

The buttons with the next learning order indicates that these buttons will navigate the user

to the next learning level of concepts for that specific topic. The previous learning level

will navigate the user back to the previous topic. Also on this panel is the challenge quiz

button, which I will explain later. The body area, which is located in the middle, is also

dynamic and will display the concepts content information. Depending on which concept

is active that information will be displayed as the learning resource in that time and

193

moment. The body area also contains hidden features, which are to be used by the

administrator and instructor only. This is hidden from the students. The student will only

see the concept content in this area. As the students navigate their way using the

knowledge navigational buttons the concepts will either display concepts that are specific

to the topics and hide the general topics except for the previous topic which will be

displayed last in this navigation sequence. This allows the students to move freely and

will display only the information need to understand a specific topic. The student has the

option to that a challenge quiz anytime during his/her learning assignments. The

challenge quiz will appear in the body area of the web page. The student will answer 10

multiple choice questions and at the end submit his/her answer to be evaluated by the

tutoring system. The tutoring system will respond back with recommendation to either

proceed forward to the next topic or to return back to the previous topic. The quiz results

will determine the student’s next step and using that information to navigate the user to

either to proceed forward or to go back. Depending on the state and position in the

knowledge graph will determine the collection and organization of the student’s

knowledge learning path.

4.11 Managing Students Learning Topic: Editing, Saving and Update Process

The instructor can manage the students learning resources with the integrated

summernote tool bar editor plugin which has been implemented on the home.html page to

allow only the administrator and the instructor the capability to make the necessary

changes to learning topics.

194

Figure 100 Summernote Editor Tool [44]

Figure 100, is a sample of the summernote tool editing bar features.

1. The instructor and system administrator must login to the tutoring system with

administration privileges in order to edit and save course content into the tutoring

system.

2. Instructor logs into the tutoring system with administrator privileges.

3. Instructor would like to edit and save a topic.

4. In the navigational pane the instructor will have an option to click on a learning

concept.

5. In the Instructor mode the instructor will see the HTML editor along with menu

options such as edit and save.

6. Instructor will click on a concept word to be edited.

7. Instructor must click on edit to edit the concept content. The edit and save tabs are

located below the concept content widow.

8. The instructor will click on the edit button. This will present the HTML editor to

the instructor indicating that he/she is in edit mode and can edit the course

concept content.

9. When all changes have be completed the instructor must save these changes by

clicking on the save icon in the HTML editor menu.

10. The javascript function sends an Ajax request to LearningTopicController using

the jquery framework.

11. The LearningTopicController.save (TopicDto dto) is called.

195

12. The LearningTopicService.save Topic Content (Topic Content) or

LearningTopicService.updateTopicContent.save (Topic Content) is called.

13. The LearningTopicDao.insert (Topic Content) or LearningTopicDao.update

(Topic Content) is called.

14. The INSERT or UPDATE command in MYSQL is send to the database using the

Spring JDBC.

15. The system will respond with either a success or failure response, which will

propagate back to the controller.

16. These changes will be stored and saved to the database.

4.12 Managing Instructors New Subject Topics

The management of instructor’s new subject topic can be implemented by replacing the

current webTutorial.owl file with the new webTutorial.owl file in the directory file

structure. In Figure 101, this file structure in Ubuntu is located in the home / workspace /

pace-jena / pace-jena / src / main / java.

Figure 101 Tutoring System File Structure in Ubuntu

196

This can also be done in the instructor’s management system. The web-based

interface for this feature has not been development but can be implemented by providing

a feature to browse the file structure and replacing the current OWL file with the new

OWL file to be used for a specific course.

4.13 Quiz Development and Integration

4.13.1 Challenge Quiz Overview

The challenge quiz assessment module is integrated, which means combining and

aggregating web-based resources, so that they can be collectively usable and reusable.

This is also a form of interoperability, which describes the extent to which the quiz

module can interpret the quiz assessment results and recommend the learner to the next

level of learning order form the web tutorial ontology knowledge graph. It then delivers

this information to the servlet that takes the incoming request and delegates the

processing of that request to one of a number of handlers. The mapping, which is specific

in the dispatcher servlet configuration, prepares the dynamic views back to the user’s

session. The quiz development and integration in the tutoring system application helps to

evaluate and recommend the next step for each student’s. The development of the quiz

questions and answers are done in XML format and implemented into the MYSQL

database. In Figure 102, the quiz question and answer database contains the following

information. Question_ID with type int(11), Question type is text, Learning_Level type is

int(1), Choice_1, Choice_2, Choice_3, Choice_4 all with type varchar(255) and

Correct_Ans type int(1). In Figure 103, the quiz scores table is where the scores are

197

retained after they have been evaluated by the tutoring system. This database table

contains the user_ID is the students user name, score_TS is the date and time,

Learning_Level is a number which translates back to the level of the learner, and score is

how the tutoring system will evaluate the students performance and determine the next

steps.

Figure 102 Quiz Question Database

198

Figure 103 Quiz Scores

4.13.2 Students Knowledge Exploration

4.13.2.1 Users Access Process

In Figure 104 and Figure 105 describes the user’s access process, which is first to use the

authentication and authorization configuration files, handled by the Spring Security

Framework. All user’s data are accessed and stored in the “pacejena” database. Upon

successful login, the application checks to see if the ontology is already parsed and

loaded. If it isn’t, it will parse the web ontology language file called ‘WebTutorial.owl”

and stores the resulting knowledge graph structure in memory. In Figure 104, the

dispatcher knows to get this information from the

PaceJenaAuthenticationSuccessHandler.java. Users are then directed by the dispatcher

199

servlet’s security configuration file to go to the home page. The home page for each

user profile will display the sequential knowledge navigational learning order for each

learning level. In Figure 106, is a sample of a user flow diagram from the knowledge

learning path to the knowledge quiz module and finally the quiz results, which adapts the

users learning path for the next steps.

Figure 104 PaceJenaAuthenticationSuccessHandler.Java

200

Figure 105 SecurityConfiguration.java

Figure 106 A Sample of User Flow Diagram

201

4.13.2.2 Users Registration and Login Process

1. Before a user can use the PaceJena Tutoring System he/she must have a user

account.

2. If user doesn’t have a user account then he/she must register for an account by

clicking on the registration button.

3. The registration.jsp web page is called and presented to the user.

4. User must complete and answer all questions in the registration form in order to

proceed.

5. When registration form is completed the user will submit his/her information.

This information is then stored in the MYSQL database as a profile for each

student.

6. The key information to be retrieved by each user will be the learning level and

order, which is one the key input questions on the registration form. This is

important because this is the initial starting point for each user.

7. When the user submits his her login information, the servlet responsible for

handling the request is called – Home.jsp

8. The Servlet is responsible for calling the appropriate method in the DAO so that it

can indirectly interact with the DB.

It is also responsible for setting and updating data saved in the bean, which will be

used later by the DAO.

In this prototype,

o The LoginServlet creates a new instant of the UserBean and fills it with

the username and the password entered by the user. The DAO will use this

bean later to compare between the user input and the DB data.

o The Servlet calls the "login" method in the "UserDAO" to start performing

its task.

202

9. The Login method, in the DAO, is responsible for checking whether the data

entered by the user exists in the DB or not.

In addition, it has to update the Bean's data that will be used later by the servlet.

In this prototype,

o The DAO uses the ConnectionManager class to get the DB connection

o Query the DB (asks the DB to search for a user having certain username

and password) and checks,

 If the ResultSet is empty, this means that the username and

password were invalid (not in the DB).

 If the ResultSet is not empty, this means that the username and

password were valid.

o Updates the UserBean.

 In case of valid username and password, the DAO fills the bean

with the rest of the user's information that will need to be displayed

later by the JSP (first and last names).

In addition, it sets the "valid" attribute of the bean to true.

 Otherwise, the DAO sets the "valid" attribute of the bean to false

Now we know if the user was registered or not

10. Finally, the Servlet will check the validity of the user (by reading the valid

attribute of the bean) and redirect to the appropriate JSP.

o If valid, the servlet will

 Add the bean as an attribute to the session. The bean will be used

by the JSP to display the user's first and last names

 Redirect to home.jsp - That will welcome the user to his/her

personalized learning level and order home web page.

203

o If invalid, the servlet will redirect to invalidLogin.jsp - That will ask

the user to register.

4.13.2.3 Capturing Knowledge for Generalization and Specialization

The dispatcher servlet captures the representation for both generalization and

specialization from the knowledge graph. The generalization and specialization is already

captured from using the OWL language but we improve the retrievals of this

generalization and specialization to help improve user’s personal needs when identifying

parts of things and when representing new custom relations for domains that require these

types of hierarchical retrieval and identification. Figure 107 illustrates how a user starts at

the top level of the domain knowledge graph hierarchy, which represents topics at a

broad level. By clicking on one of the topic names, a student will navigate to topics at the

next level, which are more specific in the knowledge graph. Figure 108, illustrates topics

which are more narrow and specific. It also contains a link to return back to the previous

level, which is the “WebPage” topic. This means we can navigate from a specialized

topic back to a more general topic. In this dissertation, the OWL language was extended

to use the “include” and “part of” relations along with other new custom relations such as

“implement” and “implementedBy”

204

Figure 107 Capturing Generalization in PaceJena Tutoring System

Figure 108 Capturing Specialization in PaceJena Tutoring System

205

4.13.3 Instructor’s Integrated Assessment

The instructor’s assessment is represented in XML form and implemented in MYSQL as

a quiz table to be presented to students by the web-based applications interface. The

views for the quizzes are dynamically represented from a quiz table in MYSQL. The

instructors quiz assessment is represented as a dynamic template containing multiple

choice questions and answers that are randomized.

4.13.3.1 Integrated Assessment Work Flow Process

1. In the navigational pane the user will have the option to take a challenge quiz for

each topic.

2. User will click on the challenge quiz button, which will invoke a javascript

function.

3. The Javascript function will send an Ajax request to the QuizController using

jquery framework.

4. The QuizController is autowired to the quizService and userService. The request

method gets the ModelandView to loadQuiz to prepare it to be scored by the

quizService which will determine whether or not the student achieved a score

which is greater then 70 or less then 70 to then recommend the next step.

5. If student doesn’t achieve a score less then 70 then he/she will be recommended

to return to the previous topic.

6. If student does achieve a score of greater then 70 then he/she will be

recommended to proceed to the next topic.

7. The userService determines the user and updates, records, and stores the user

information in the database.

8. When user logs into the system again the tutoring system will know the state in

which the student left off last.

206

4.14 Process to Developing a Tutorial System for a New Subject

4.14.1 Knowledge Representation

The concept for a new subject can be developed using a course material to gather your

concept course information and working with an ontology knowledge expert to provide

feedback. Developing your knowledge concepts and relations can be done using the Pace

Protégé tool. This tool will help support and guide the instructor in building an ontology

structure for a new subject. The benefit’s of using the Pace Protégé is that it can extend

the OWL language and supports custom relations. Open the Protégé IDE, if you are running

the revised version for the first time, please click “Window|Reset selected tab to default state” as

shown in Figure 109.

Figure 109 Resetting the Running Environment

207

Switch to the “Entities” tab. In the “Class hierarchy” view, select root class Thing, and click

the “Add sub class” to create class “Finger”. While “Finger” is highlighted, click the “Add sibling

class” to create classes “Hand” and “Body” as shown in Figure 110.

Figure 110 Defining Classes

Choose the “Relations” tab in the left bottom corner (if you don’t see it, click

“Window|Reset selected tab to default state”), and choose the “add relation” to create the

new relation “partOf” as shown in Figure 111. You need to type the name of the new

relation: partOf in the Pop-up window and the click “OK” button.

Figure 111 Create a New Relation “partOf”

208

Switch to “Classes” tab. You need to click “Window|Reset selected tab to default state”

again, then click the “Related to” tab in the right pane. Make sure the class “Finger” is

selected, and click the “Add relation” icon as shown in Figure 112.

Figure 112 Defining Relations between Classes

A new window would pop up. First select “partOf” in the left pane of relations, then

select “Hand” from the right class list, as shown in Figure 5. Click “OK” to close the

pop-up window.

Figure 113 Declaring Relations between Concepts

209

Similar to steps 4 and 5, make sure the class “Hand” is selected in the class hierarchy,

click “Add relation” icon () in the “Related To” tab to pop up the window for declaring a

new relation, choose “partOf” in its left pane, then select “Body” in its right pane, as

shown in Figure 114. Click the “OK” button to complete the declaration.

Figure 114 Declare Hand is partOf Body

Switch to “OWLViz” tab and get the visualization of your OWL file as shown in Figure

115.

Figure 115 Visualization of the OWL

210

4.14.2 Learning Order Specification

The learning order specification is represents by the xml namespace called “pace” as its

prefix as previously mention in previous sections. The relation “ref” is used to reference

the topics associated with each learning order and learning level. Beginner represents a

student with no experience in the topic on Web Technology. And Intermediate represents

a student with some experience. When creating a new topic the instructor may choose to

keep these learning levels but wishes to change the topic associate with these level. To

change the learning topics for each level the instructor can use the Pace Protégé tool to

alter this information. The instructor may want to add additional learning levels such as

an advance learner or expert learner. In Figure 116, the instructor can copy one of the

<owl:NamedIndividual> start tag and copy it to its </owl:NamedIndividual> end tag.

Next the instructor will need to assign this new learning level an ID number. Change the

name from Beginner to Advance. And finally change the learning order of the topics for

and advance level student. No changes are needed on the PaceJena API because it will

read in and get the ids = getLearningOrderIDs();. In Figure 117 is a sample snapshot of

the PaceJena code for learning order.

211

Figure 116 Defining Learning Order of Individuals

Figure 117 A Sample PaceJena Code for Learning Order

Copy and Paste below to add

212

4.14.3 Knowledge Object Collection and Organization

The knowledge representation of learning objects plays a critical role in the success of the

tutoring system and how instructors can organize these learning materials to be suitable

for adaptive interaction delivery on web-based technology and semantic web languages.

In the previous section it was important to identify the learners and their learning skill

levels in order to determine the organization of learning content. The next step is to

organize these collections of web-based learning objects into a classification from a

generalized topic to a more specialized topic for those learners whom find it challenging

to grasp the learning concepts. In order to properly represent these knowledge learning

objects it was also important to identify the relationships between each concept. The

relations between concepts provide organizational structure that converts information

known about individual entities into interconnected concepts, which are linked by

different types of relations. The purpose of knowledge organization is to organize

knowledge objects and to manage the knowledge collection of that information.

The domain knowledge concept for this dissertation research was identified using the

reading materials from Dr. Lixin Tao’s Security Lab Series called “Introduction to Web

Technologies” manual. The concept collection process was to select the data starting

from the main topics and to categorize these topics into subtopics in a hierarchical

structure. The knowledge object resources are enriched with semantically annotated data,

which are machine process able information by linking and extracting concepts from the

knowledge graph. Once we have identified the new learning topic it was important to

work with an ontology expert to review and evaluate the correctness of how these object

collection and organization of information was structured. Pace Protégé was used to

213

develop the ontology because it provide the support of extending OWL and creating

custom relations other then the “is-a” relations as mention in section 4.14.1. OWLViz

tool was also extended to support the visualization of our knowledge graph. The

knowledge graph was then implemented into the tutoring system file structure. In Figure

118, the WebTutorial.owl file was placed in the pace-jena /src / main / java. In Figure

119, a change must be made in the PaceJenaAuthenticationSuccessHandler.java file. Line

item 44 PaceJena = new PaceJena (“/webTutorial.owl”); webTutorial.owl file will be

replaced with your knowledge graph file.

Figure 118 Implement New Ontology File

Figure 119 Replacing the webTutorial.owl in

PaceJenaAuthenticationSuccessHandler.java with New Subject File

214

4.14.4 Managing New Topics for Editing, Saving, and Deletion

The management of new topics for editing, saving, and deleting can be easily done from

the web-based application interface. As mentioned in section 4.11. The instructors and

administrators must login with administrative privileges, which allows for these features

to work. In Figure 120, I have logged into the system as administrator. In Figure 121 and

Figure, I clicked on the WebPage topic and will enter into edit mode. Instructor must

click on the edit button at the bottom of the page.

Figure 120 Administrator Login Access

Figure 121 Click on Editing Mode

215

After clicking on the edit button we are ready to use the summernote editing tool which

as been integrated into tutoring system which will allow the instructor to make changes to

the concept content materials. The top menu allows the user to select options to make

changes and save the content after the user as completed their editing function. The save

button is located at the far right hand side of menu. The top menu offers other features in

sequential order from left to right such as B is for BOLD letters, I for Italic, U for

underscore, remove font style, strikethrough, font size, unordered list, order list,

paragraph, line height, full screen, code view and save. Must click on save to save your

changes. Then you can click on the close button to get out of edit mode.

Figure 122 Managing Editing Mode Features

216

Figure 123, the course concept topics are stored in a MYSQL database table called

Learning_Topics. This table contains two columns. One called Topic and the other

Content. Topics contain all the learning concepts and Content contains all the content

information regarding the topics for Web Technology. The system administrator would

have the access to the MYSQL database.

Figure 123 Learning Topic Database Table

4.14.5 Navigating the Knowledge Space

The navigation model is a knowledge graph that represents different concepts that form

the navigational knowledge space. Such as a Web page requesting a data link to the

knowledge graph which reads the request into PaceJena Sax Parser methods which

response back to the dispatcher servlet framework and sends this request back to the user

interface with the results. The Web pages, and the relations of the concepts represent

217

knowledge information from the domain that is displayed during a learners tutoring

session. The navigational features are explained in Section 4.7 called Adaptive Tutorial

Navigational Features.

4.14.6 New Quiz Development and Integration

The new quiz development and integration for a new subject topic can be easy

implemented into the tutoring system. The current structure of the quiz in the MYSQL

database can stay the same structure as mentioned in section 4.11.3. Quiz questions and

answers can be developed as a XML file and imported into the MYSQL database to

replace the existing file.

Figure 124 illustrates the command to load your XML file.

Figure 124 Load XML file into MYSQL Database

4.15 Summary

This section summarizes the web-based intelligent tutorial systems architecture and

implementation, specification on knowledge representation, learning order, learning

topics, adaptive navigational features, and process to developing a new course topic.

218

Chapter 5 Validating System Effectiveness through Prototype

Application

This chapter discusses how the Tutoring System Prototype was evaluated to see whether

it achieved its objectives. Section 5.1 explains the evaluation process in detail. It

describes how the participants were selected and also discusses the procedures and

instruments that were used during the evaluation process. Section 5.2 compares and

contrast traditional learning with the PaceJena Tutoring System and how they were used

for the purpose of analysis. Section 5.3 discusses the results of the evaluation and Section

5.4 summarizes the chapter.

5.1 Evaluation Process of the Tutorial System Prototype

The evaluation process addressed such aspects as the adaptability, usability, re-use of the

system, improvement in students’ knowledge representation, navigational knowledge

space and assessment recommendation guidance of web-based learning objects due to use

of the system, the appropriateness of the subject matter taught, the effectiveness of the

teaching module and the validity of the student module.

219

5.1.1 Participates

The participants in the evaluation process were undergraduate students from Fairfield

University School of Engineering whom agreed to evaluate the tutorial system, which is

setup with the course work for “Introduction to Web Technology”. The student’s where

not all from the same major concentration. The breakdown of how this is represented is

as follows in the matrix below.

Major

Concentration

Technology Computer Science Computer

Engineering

Software

Engineering

No. Of

Students for

Pre-Quiz

4 7 8 13

No. Of

Students for

Paper Quiz

2 3 4 7

No. Of

Students for

Web-Based

Quiz

2 4 4 6

This course is offered at Pace University’s Computer Science Department for

undergraduates. The course material was developed and taught by Dr. Lixin Tao. This

course domain was choose to be used for this dissertation along with the course manual

to develop the knowledge representation and knowledge graph for the tutorial system

prototype. The students taking part in this evaluation had some or no prior background in

Web Technology. Based on these requirements, 16 students were chosen to learn Web

Technology from the traditional method and 16 students where instructed to use the

tutorial system prototype. Although it would have been better to have more students, only

this number showed an interest and satisfied the necessary requirements for participation.

220

5.1.2 Procedures and Instruments

5.1.2.1 Pre-Quiz

All participates where required to take a pre-quiz exam prior to taking traditional method

exam and the web-based exam. The purpose of the pre-quiz exam was to use it in the

validation results to better understand and gage students initial understand of the course

topic. The pre-quiz exam was given as a paper exam with the same course content

material from the course topic “Introduction to Web Technology” by Dr. Lixin Tao’s

manual. This pre-quiz exam contains 40 multiple choice questions on all the topics that

are contained in the manual. Each correct answer is worth 2.5 points. These questions

cover the general topics, which are WebPage, HTTP, Session Management, and Web

Architecture. The pre-quiz contains 10 questions for each topic with 4 multiple choice

answers for each question. Only one correct answer is needed to complete each pre-quiz

question.

5.1.2.2 Traditional Classroom Learning Method

The traditional classroom learning method is where participates are in a classroom setting

with the instructor. The instructor provides the learning material resources as a manual to

be read in sequential order and then at the end of each chapter the students are required to

take the concept quiz for each chapter. The quizzes contain 10 multiple choice questions.

Students are to select the correct answer for each question. The students are given two

hours to complete traditional classroom assignments. Every students is learning the

course material at the same starting point.

221

5.1.2.3 Web-Based Tutorial System Learning Method

The tutoring system is a cloud web-based application, which can be accessed anywhere

and anytime using a browser interface and the HTTP protocol. The instructor is not

available in this method, a web-based application tutoring agent is provided to support

the user’s interaction during each session. The participants were required to register with

the tutoring system in order to obtain user credentials and access to the system. During

the registration process the participants were required to select a learning level. The

learning level was the initial determining fact of the knowledge space starting point for

each learner. As stated in previous chapters for this prototype only two learning levels

where implemented to keep it simplified. Once this was completed and submitted to the

system it was then recorded and stored as a profile in the user profiles database table.

Participates were required to login with their user name and password. The tutoring

system would then take the successful login credentials and identified the users learning

level from their stored profile and retrieve this information from the PaceJena API where

it would then retrieve the knowledge graph file from the stored file structure path which

would then be read and parsed by the Sax Parser. The Sax Parser would then retrieve the

users learning level and match this information with the appropriate learning order. The

knowledge collection and organization of the users learning material would then be

displayed in a web-based browser interface for visualization and navigation into the

tutoring system. The concept navigational structure would be displayed in the left pane

window and the concept content would be displayed in the body area. Each concept data

would have its own button form. The challenge quiz would be displayed below the

concept navigational structure in a button form. At any point and time during the learning

222

process the user has the option of when he / she is ready to take the challenge quiz for

a practical topic. The challenge quiz would then display the selected concept quiz. Each

quiz is setup to display 10 multiple choice questions. Participates are to select one answer

for each question and do not have the ability to go back to the previous question. The

next button is display after each selected answer in order to move forward in the quiz

process. The last question would only display a submit button. The submit button would

then evaluate the quiz questions to produce a scoring of either greater than 70 percent or

less than 70 percent. The tutoring system would then recommend and determine the next

learning state for the user. The scoring is stored in the user’s database profile. This

process ends when the user has completed all concept quizzes successfully.

5.1.3 Comparing and Contrasting Different Learning Methods

5.1.3.1 Traditional Classroom Learning Method

This method does not provide the students with the ability to start the learning process

according to their knowledge level. Students read the material then take the quiz. The

instructor grades quizzes later after the students complete the entire assignment. This

method lacked in providing students with more information if they lacked the

understanding of the concept. This also method does not provide students with guidance

of real-time results of each learning concept. Students are left with not knowing whether

or not they understood the concept from each chapter due to the lack of real-time quiz

feedback which can lead to discouragement and strangling with understand the other

course concepts. Real-time feedback is important for students so that it can guide and

support the learning process of each student.

223

5.1.3.2 Web-Based Tutorial System Learning Method

The benefits of this web-based tutoring system provides the student the ability to select

his / her learning level during the registration process. This is different than the

traditional learning method because student have different learning starting points but are

learning the same materials. This method also supports and provides the student with an

adaptive navigational feature, which will guide the student during the learning process.

These adaptive navigational features as mention in section 4.8 provides the student the

support needed to navigate to more specific concept from the general concept. This type

of feature is useful for those students whom may need more information on the general

concept. The more specific concepts are broken down into smaller concepts that are

specific to the general concept. This provides the student with more detail information in

order to grasp the concept as a whole. The quiz module provides the student with real-

time feedback after taking the quiz. The tutoring system will recommend whether the

student can proceed to the next concept or whether the student needs to go back and

revisit the previous concept due to the lack of understanding which is evaluate from the

quiz results. This type of feedback is not preferred during the traditional method.

5.1.4 Students Feedback

5.1.4.1 Traditional Classroom Learning Method

Students feedback on the traditional learning method were not satisfied with the learning

material due to the lack of information needed if you were a beginner in this area learning

this course concept. Other’s whom where more knowledgeable with the course concepts

where not satisfied with the learning process of having to learning the subject matter from

224

the beginning of the learning lesson. Students all agreed that the quiz process lacked

the necessary feedback for evaluating the student’s performance after completing each

assignment section along with the quiz and also lacked in the support needed to guide

students in the learning process.

5.1.4.2 Web-Based Tutorial System Learning Method

Students experience with the web-based tutoring system prototype, find the process to be

very user friendly. Both students with beginner and intermediate experience find the

registration form of selecting the initial learning level to be very helpful and how the

system was able to retrieve their learning order and display this information in a web-

based browser application. Students also felt that the adaptive navigational features

provide much needed support in understanding the course concepts and the abilities to

freely navigate to different learning concepts. As stated in previous chapter’s students

with less knowledge benefited from being able to navigate to more specific details to

better understands the general topic. The real-time adaptive quiz module provides the

necessary feedback needed to evaluate and recommend the students next learning steps.

Student’s also commented on the prototype limitation, which doesn’t provide different

types of learning object resources. These would include PowerPoint presentations,

videos, audios, and much more.

225

5.2 Analyzing Quiz Results

This section will discuss the validation of the results of all quizzes taken by all students.

Table 14, 15, & 16 Quiz Results is a description of the number of students that have

participated in this study and the three different types of quizzes used to validate this

dissertation research with a comparative study for each group. Table 14 describes the 16

students whom took the pre-quiz and paper quiz. The numbers under each quiz are the

score results and the overall total average is calculated at the bottom of this table.

Table 14 Analyzing and Comparing Pre-Quiz and Paper Quiz Results

No. Of

Students

Pre-Quiz Paper Quiz

1 42.5 50

2 52.5 60

3 52.5 60

4 32.5 50

5 65 70

6 35 40

7 65 70

8 55 60

9 55 60

10 72.5 80

11 55 60

12 60 60

13 55 60

14 55 60

15 75 70

16 62.5 70

Average 55.625 61.25

226

Table 15 describes the 16 students whom took the pre-quiz and web-based quiz. The

numbers under each quiz are the score results and the overall total average is calculated at

the bottom of this table.

Table 15 Analyzing and Comparing Pre-Quiz and Web-Based Quiz Results

No. Of

Students

Pre-Quiz Web-Base Quiz

1 50.5 60

2 55.5 70

3 62.5 80

4 52.5 60

5 70 80

6 32.5 50

7 55 60

8 62.5 70

9 60 70

10 72.5 90

11 65 70

12 62.5 80

13 65 70

14 60 70

15 65.5 90

16 65 80

Average 59.78125 71.875

227

Table 16 analzes and compares both students whom took the paper quiz and the web-

base quiz. The numbers under each quiz are the score results and the overall total average

is calculated at the bottom of this table.

Table 16 Analyzing and Comparing Paper Quiz and Web-Based Quiz Results

No. Of

Students

Paper Quiz Web-Base Quiz

1 50 60

2 60 70

3 60 80

4 50 60

5 70 80

6 40 50

7 70 60

8 60 70

9 60 70

10 80 90

11 60 70

12 60 80

13 60 70

14 60 70

15 70 90

16 70 80

Average 61.25 71.875

228

Figure 125 Analyzing and Comparing Pre-Quiz and Paper Quiz Results Chart

This is analyzing and comparing Pre-Quiz with the Paper Quiz.

Calculating Pre-Quiz and Paper Quiz Results

Calculating the difference between Pre-Quiz and Paper Quiz.

Formula = (Paper Quiz – Pre-Quiz / Pre-Quiz) x 100

Quiz Average = (61.25 – 55.625 / 55.625) x 100 = 10.11 or 10%

This means that the Paper Quiz is 10% more effective then the Pre-Quiz.

229

Figure 126 Analyzing and Comparing Pre-Quiz and Web-Based Quiz Results Chart

This is analyzing and comparing Pre-Quiz with the Web-Based Quiz.

Calculating Pre-Quiz and Web-Based Quiz Results

Calculating the difference between Pre-Quiz and Web-Based Quiz.

Formula = (Web-Based Quiz – Pre-Quiz / Pre-Quiz) x 100

Quiz Average = (71.875 – 59.78 / 59.78) x 100 = 20.23 or 20%

This means that the Web-Based Quiz is 20% more effective then the Pre-Quiz.

230

Figure 127 Analyzing and Comparing Paper and Web Based Quiz Results Chart

This is analyzing and comparing Paper Quiz with the Web-Based Quiz.

Calculating Paper Quiz and Paper Quiz Results

Calculating the difference between Pre-Quiz and Paper Quiz.

Formula = (Web-Based Quiz – Paper-Quiz / Paper-Quiz) x 100

Quiz Average = (71.875 – 61.25 / 61.25) x 100 = 14.78 or 15%

This means that the Web-Based Quiz is 15% more effective then the Paper Quiz.

231

Figure 128 Analyzing and Comparing Beginner Quiz Results Chart

This is analyzing and comparing Beginner students whom took the paper quiz with

Beginner students whom took the web-based quiz.

Calculating Beginner Quiz Results

Calculating the difference between Paper Quiz and the Web Based Quiz for Beginner

students.

Formula = (Web-Based Quiz B – Paper Quiz A / Paper Quiz A) x 100

Beginner Quiz Average = (66.25 – 57.5 / 57.5) x 100 = 15.21 or 15%

This means that the Web-Based Quiz for a Beginner is 15% more effective then the Paper

Quiz.

232

Figure 129 Analyzing and Comparing Intermediate Quiz Result Chart

This is analyzing and comparing Intermediate students whom took the paper quiz with

Intermediate students whom took the web-based quiz.

Calculating Intermediate Results

Calculating the difference between Paper Quiz and the Web Based Quiz for Beginner

students.

Formula = (Web-Based Quiz D – Paper Quiz C / Paper Quiz C) x 100

Intermediate Quiz Average = (77.5 – 65 / 65) x 100 = 19.23 or 19%

This means that the Web-Based Quiz is 19% more effective then the Paper Quiz.

233

5.3 Conclusion

We can conclude that our prototype effectively validates both the pre-defined learning

path and adaptive learning. We can also qualify that by extending the OWL language,

using custom relations and knowledge graph to describe our knowledge structure,

knowledge space and open source technology infrastructure does indeed provide the

reusability, flexibility and adaptability that our tutoring system requires. The tutoring

system quiz results reveal that student’s performance improved in real-time with a

recommender, which is a knowledge driven graph, helped support students learning

process.

234

Chapter 6 Conclusion

In concluding this research, touches on many areas such as Cyberlearning, learning

objects, semantic web technology, open source technology, open source tools and our

very own customized semantic tools to demonstrate how it was possible to developing

the knowledge structure and knowledge graph for classification, customized relations,

graph visualization using these customized relations, the ability for learning object

navigation of our knowledge structure and knowledge evaluation to determine student

learning level and the order in which learning materials are presented.

The development of PaceJena Tutoring System was developed to demonstrate student

personalization and how all these technologies and tools where used to demonstrate

student’s ability to easily navigate the learning objects and crawl the knowledge graph.

Finally the implementation for PaceJena Tutoring System and its customized supporting

tools and other solutions such as the semantic web technologies and open source

technologies can be used with other technologies like databases, enterprise systems, JSP,

Jena, Apache, and much more. We can conclude by the design and implementation that

semantic web solutions provide a great flexibility to adopt new requirements about data

classification and there relations without change the technology architecture structure.

Semantic web languages and its technologies are very powerful concept for knowledge

235

graph representation and how this knowledge data is retrieved using our customized

PaceJena program. This work also describes our customized Pace Protégé tool in

developing our customized relations and customized graph, using OWLViz. In order to

retrieve this knowledge data, our knowledge structure was expressed using the basic is-a

relations, the partOf relations and we had to extend and develop some new customized

relations such as the include, implemented, and implementedBy relations. These concepts

and relations gave meaning to our data and the use of ontology made it possible for our

data to be machine processed. It was very difficult to find help with the technology that

was used for this research.

6.1 Major Research Contributions

This dissertation makes contributions in the area of knowledge structure and

representation in adaptive and web-based tutoring system application framework to

improve and recommend students learning path and learning order. A prototype tutoring

system called PaceJena Tutoring System has been developed to provide students the

ability to personalize their learning path according to their learning abilities which helped

to enhance the ease of adaptive personalized learning features along with adaptive

navigational features which guides students by the knowledge graph structure to support

students learning. Another contribution the prototype provides students with feedback to

real-time quiz results and guidance. And finally the instructors editing tool, which was

integrated into the learning content to support different types of editing features for

236

learning concepts. This research has been published and is available to other student

and researchers whom are interested in extending this work.

6.2 Potential Future Work

Future research in this area of study can be extended for many opportunities in the area of

analyzing personalized learning with different type of semantic web languages and

technology, analyzing different types of teaching strategies, analyzing different type of

performance strategies, analyzing different types of semantic architecture frameworks,

technologies, tools and different types of inferences, logic and application programming

interfaces. Also extend Knowledge Graphs to support and improve effective design and

development for Internet of Things (IoTs) and Cloud Base systems.

237

Appendix A

Web Tutorial Knowledge Graph

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY pace "http://csis.pace.edu/semweb#" >

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rel "http://www.pace.edu/rel-syntax-ns#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://csis.pace.edu/semweb/webTutorial.owl#"

 xml:base="http://csis.pace.edu/semweb/webTutorial.owl"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:pace="http://csis.pace.edu/semweb#"

 xmlns:rel="http://www.pace.edu/rel-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <owl:Ontology rdf:about="http://csis.pace.edu/semweb/webTutorial.owl">

 <rdfs:label>Web Technology Concepts</rdfs:label>

 <owl:versionInfo>WebTutorial.owl 1.0</owl:versionInfo>

 <rdfs:comment>Web Tutorial Knowledge Representation</rdfs:comment>

 </owl:Ontology>

 <!--

///

 //

 // Relations

 //

///

 -->

 <rel:NewRelation rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#include"/>

 <rel:NewRelation rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#partOf"/>

 <rel:NewRelation rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#ref"/>

 <rel:NewRelation

rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#implement"/>

 <rel:NewRelation

rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#implementedBy"/>

 <rel:NewRelation rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#level"/>

 <rel:NewRelation rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#name"/>

 <!--

///

 //

 // Classes

 //

238

///

 -->

 <!-- http://csis.pace.edu/semweb#LearningOrder -->

 <owl:Class rdf:about="&pace;LearningOrder">

</owl:Class>

 <!-- http://csis.pace.edu/semweb#ref -->

 <owl:Class rdf:about="&pace;ref">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Apache -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Apache">

 <rdfs:subClassOf

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebServer"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#ApplicationServer -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#ApplicationServer">

 <rel:implementedBy

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#EjbContainer"/>

 <rel:implementedBy

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#MsTransactionServer"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#CSS -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#CSS">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Cookie -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Cookie">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#DatabaseServer -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#DatabaseServer">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#DoGet -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#DoGet">

 <rel:partOf rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HTTP"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#DoPost -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#DoPost">

 <rel:partOf rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HTTP"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#DomainName -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#DomainName">

239

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#DomainNameServer -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#DomainNameServer">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#EjbContainer -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#EjbContainer">

 <rel:implement

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#EntityEJB"/>

 <rel:implement

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#SessionEJB"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#EntityEJB -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#EntityEJB">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Firefox -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Firefox">

 <rdfs:subClassOf

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebBrowser"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#GlassFish -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#GlassFish">

 <rdfs:subClassOf

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#ApplicationServer"/>

 <pace:name>GlassFish Server</pace:name>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#HTML -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#HTML">

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HyperLinks"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HtmlForm"/>

 <rel:partOf rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebPage"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#WebPage -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#WebPage">

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#JavaScript"/>

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#CSS"/>

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HTML"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#HTTP -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#HTTP">

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#DoGet"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#DomainNameServer"/>

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#DoPost"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#SessionManagement"/>

240

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#URL"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#HashTable -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#HashTable">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#HiddenField -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#HiddenField">

 <rel:partOf rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HtmlForm"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#HtmlForm -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#HtmlForm">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#HyperLinks -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#HyperLinks">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#IE -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#IE">

 <rdfs:subClassOf

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebBrowser"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#IPAddress -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#IPAddress">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#IPv4 -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#IPv4">

 <rdfs:subClassOf

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#IPAddress"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#IPv6 -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#IPv6">

 <rdfs:subClassOf

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#IPAddress"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#JSF -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#JSF">

</owl:Class>

241

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#JSP -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#JSP">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#JavaScript -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#JavaScript">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#MsTransactionServer -->

 <owl:Class

rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#MsTransactionServer">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#MySQL -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#MySQL">

 <rdfs:subClassOf

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#DatabaseServer"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Oracle -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Oracle">

 <rdfs:subClassOf

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#DatabaseServer"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#PHP -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#PHP">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Plugins -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Plugins">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#PortNumber -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#PortNumber">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#QueryString -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#QueryString">

 <rel:partOf rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#URL"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#SQL -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#SQL">

 <rdfs:subClassOf

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#DatabaseServer"/>

</owl:Class>

242

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#SecuritySandbox -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#SecuritySandbox">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Servlet -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Servlet">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#ServletContainer -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#ServletContainer">

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#JSP"/>

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#JSF"/>

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#Servlet"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#SessionEJB -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#SessionEJB">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#SessionID -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#SessionID">

 <rel:implementedBy

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#Cookie"/>

 <rel:implementedBy

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HiddenField"/>

 <rel:implementedBy

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#QueryString"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#SessionManagement -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#SessionManagement">

 <rel:implementedBy

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#Cookie"/>

 <rel:implementedBy

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HiddenField"/>

 <rel:implementedBy

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#QueryString"/>

 <rel:implementedBy

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#SessionObject"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#SessionObject -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#SessionObject">

 <rel:ref rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HashTable"/>

 <rel:ref rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#SessionID"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Tier1 -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Tier1">

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebBrowser"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Tier2 -->

243

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Tier2">

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebServer"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Tier3 -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Tier3">

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#ApplicationServer"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Tier4 -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Tier4">

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#DatabaseServer"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Tomcat -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Tomcat">

 <rdfs:subClassOf

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebServer"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#URL -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#URL">

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#DomainName"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#IPAddress"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#PortNumber"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#QueryString"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#WebArchitecture -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#WebArchitecture">

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#Tier4"/>

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#Tier3"/>

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#Tier2"/>

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#Tier1"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#WebBrowser -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#WebBrowser">

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#Plugins"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#SecuritySandbox"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#WebLogic -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#WebLogic">

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#ApplicationServer"/>

 <rel:include

244

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebServer"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#WebPage -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#WebPage">

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#CSS"/>

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HTML"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#JavaScript"/>

 <rel:partOf

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebTechnology"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#WebServer -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#WebServer">

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebServerCore"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebServerExtension"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#WebServerCore -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#WebServerCore">

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#WebServerExtension -->

 <owl:Class

rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#WebServerExtension">

 <rel:implementedBy

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#PHP"/>

 <rel:implementedBy

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#ServletContainer"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#WebSphere -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#WebSphere">

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#ApplicationServer"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebServer"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#WebTechnology -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#WebTechnology">

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HTTP"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#SessionManagement"/>

 <rel:include

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebArchitecture"/>

 <rel:include rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebPage"/>

</owl:Class>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#XHTML -->

 <owl:Class rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#XHTML">

 <rdfs:subClassOf

245

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HTML"/>

</owl:Class>

 <!--

///

 //

 // Individuals

 //

///

 -->

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Beginner -->

 <owl:NamedIndividual

rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Beginner">

 <rdf:type rdf:resource="&pace;LearningOrder"/>

 <pace:level>0</pace:level>

 <pace:name>Beginner</pace:name>

 <pace:ref rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebPage"/>

 <pace:ref rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HTTP"/>

 <pace:ref

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#SessionManagement"/>

 <pace:ref

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebArchitecture"/>

 </owl:NamedIndividual>

 <!-- http://csis.pace.edu/semweb/webTutorial.owl#Intermediate -->

 <owl:NamedIndividual

rdf:about="http://csis.pace.edu/semweb/webTutorial.owl#Intermediate">

 <rdf:type rdf:resource="&pace;LearningOrder"/>

 <pace:level>1</pace:level>

 <pace:name>Intermediate</pace:name>

 <pace:ref rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#HTTP"/>

 <pace:ref

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#SessionManagement"/>

 <pace:ref

rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebArchitecture"/>

 <pace:ref rdf:resource="http://csis.pace.edu/semweb/webTutorial.owl#WebPage"/>

 </owl:NamedIndividual>

</rdf:RDF>

<!-- Generated by the OWL API (version 3.5.1) http://owlapi.sourceforge.net -->

246

Appendix B

PaceJena API

package edu.pace.semweb;

import java.io.*;

import java.util.*;

import org.xml.sax.*;

import org.xml.sax.helpers.DefaultHandler;

import org.xml.sax.ext.LexicalHandler;

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.parsers.SAXParser;

public class PaceJena extends DefaultHandler implements LexicalHandler {

 StringBuffer textBuffer;

 Stack<OwlElement> stack_E = new Stack<OwlElement>(); // stack of element enum

values

 Stack<Object> stack_object = new Stack<Object>(); // stack of OWL elements

 int pass = 1;

 Hashtable<String, Ontology> ontologyHash = new Hashtable<String, Ontology>();

 Ontology currentOntology;

 public static void main(String argv[]) {

 if (argv.length < 1 || argv.length > 2) {

 System.err.println("Usage: java PaceJena Ontology-file");

 System.exit(1);

 }

 PaceJena o = new PaceJena();

 o.readOntology(argv[0]);

 o.printOntology();

 o.printClasses();

 o.printProperties();

 o.printDataTypes();

 o.printLearningOrders();

 System.exit(0);

 }

 public PaceJena() {}

 public PaceJena(String ontologyFileName) {

 PaceJena o = new PaceJena();

 readOntology(ontologyFileName);

 }

 String removeFilePath(String fileName) {

 int i1 = fileName.lastIndexOf('\\');

 int i2 = fileName.lastIndexOf('/');

 if (i1 > i2) i2 = i1;

 if (i2 == -1) return fileName;

 else return fileName.substring(i2+1);

 }

 public void readOntology(String ontologyFileName) {

 currentOntology = new Ontology();

 currentOntology.filePath = ontologyFileName;

247

 String ontologyNameBase = removeFilePath(ontologyFileName);

 currentOntology.fileName = ontologyNameBase;

 ontologyHash.put(ontologyNameBase, currentOntology);

 boolean hasError = false;

 SAXParserFactory factory = SAXParserFactory.newInstance();

 factory.setNamespaceAware(true);

 InputStream stream = null;

 try {

 // Parse the input

 SAXParser saxParser = factory.newSAXParser();

 XMLReader xmlReader = saxParser.getXMLReader();

 // Use an instance of the class as the SAX event handler

 xmlReader.setProperty("http://xml.org/sax/properties/lexical-handler", this);

 pass = 1;

 stream = getClass().getResourceAsStream(ontologyFileName);

 saxParser.parse(stream, this); // register classes and properties only

 textBuffer = null;

 pass = 2;

 stream.close();

 stream = getClass().getResourceAsStream(ontologyFileName);

 saxParser.parse(stream, this); // process the rest

 } catch (SAXParseException spe) {

 // Error generated by the parser

 System.out.println("\n** Parsing error"

 + ", line " + spe.getLineNumber()

 + ", uri " + spe.getSystemId());

 System.out.println(" " + spe.getMessage());

 // Use the contained exception, if any

 Exception x = spe;

 if (spe.getException() != null)

 x = spe.getException();

 x.printStackTrace();

 } catch (SAXException sxe) {

 // Error generated by this application

 // (or a parser-initialization error)

 Exception x = sxe;

 if (sxe.getException() != null)

 x = sxe.getException();

 x.printStackTrace();

 } catch (ParserConfigurationException pce) {

 // Parser with specified options can't be built

 pce.printStackTrace();

 } catch (IOException ioe) {

 // I/O error

 ioe.printStackTrace();

 } catch (Throwable t) {

 t.printStackTrace();

 } finally {

 try {

 if (stream != null) {

 stream.close();

 }

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

 }

 // Return a vector of super class OwlClass objects for className

 public Vector<OwlClass> superClasses(String className) {

 Vector<OwlClass> classes = new Vector<OwlClass>();

 OwlClass o = findClass(className);

 if (o == null) return null;

 Iterator<OwlClass> i = o.subClassOf.iterator();

 while (i.hasNext())

 classes.add((OwlClass)i.next());

 return classes;

 }

248

 // Return a vector of subclass OwlClass objects for className

 public Vector<OwlClass> subClasses(String className) {

 Vector<OwlClass> classes = new Vector<OwlClass>();

 OwlClass o = findClass(className);

 if (o == null) return null;

 Iterator<OwlClass> i = o.superClassOf.iterator();

 while (i.hasNext())

 classes.add((OwlClass)i.next());

 return classes;

 }

 // Return a vector of equivalent class OwlClass objects for className

 public Vector<Object> equivalentClasses(String className) {

 Vector<Object> classes = new Vector<Object>();

 OwlClass o = findClass(className);

 if (o == null) return null;

 Iterator<Object> i = o.equivalentClass.iterator();

 while (i.hasNext())

 classes.add(i.next());

 return classes;

 }

 // Return a vector of disjoint class OwlClass objects for className

 public Vector<OwlClass> disjointClasses(String className) {

 Vector<OwlClass> classes = new Vector<OwlClass>();

 OwlClass o = findClass(className);

 if (o == null) return null;

 Iterator<OwlClass> i = o.disjointWith.iterator();

 while (i.hasNext())

 classes.add((OwlClass)i.next());

 return classes;

 }

 // Return an array of super class names for className

 public String[] superClassNames(String className) {

 Vector<OwlClass> classes = superClasses(className);

 String[] names = new String[classes.size()];

 for (int i = 0; i < classes.size(); i++)

 names[i] = classes.get(i).id;

 return names;

 }

 // Return an array of subclass names for className

 public String[] subClassNames(String className) {

 Vector<OwlClass> classes = subClasses(className);

 String[] names = new String[classes.size()];

 for (int i = 0; i < classes.size(); i++)

 names[i] = classes.get(i).id;

 return names;

 }

 // Return an array of equivalent class names for className

 public String[] equivalentClassNames(String className) {

 Vector<Object> classes = equivalentClasses(className);

 String[] names = new String[classes.size()];

 for (int i = 0; i < classes.size(); i++) {

 Object p = classes.get(i);

 if ((p instanceof String) && (p != null))

 names[i] = (String)p;

 else if ((p instanceof OwlClass) && (p != null))

 names[i] = ((OwlClass)p).id;

 }

 return names;

 }

 // Return an array of disjoint class names for className

 public String[] disjointClassNames(String className) {

 Vector<OwlClass> classes = disjointClasses(className);

 String[] names = new String[classes.size()];

 for (int i = 0; i < classes.size(); i++)

 names[i] = classes.get(i).id;

249

 return names;

 }

 // Returns className's ontology name

 public String classOntology(String className) {

 OwlClass o = findClass(className);

 return o.ontology.label;

 }

 // Returns propertyName's ontology name

 public String propertyOntology(String propertyName) {

 PropertyClass o = findProperty(propertyName);

 return o.ontology.label;

 }

 // Returns className's namespace

 public String classNamespace(String className) {

 OwlClass o = findClass(className);

 return o.namespace;

 }

 // Returns propertyName's namespace

 public String propertyNamespace(String propertyName) {

 PropertyClass p = findProperty(propertyName);

 return p.namespace;

 }

 // Returns a vector of PropertyClass objects for className

 public Vector<PropertyClass> properties(String className) {

 OwlClass o = findClass(className);

 Iterator i = o.properties.iterator();

 Vector<PropertyClass> v = new Vector<PropertyClass>();

 while (i.hasNext())

 v.add((PropertyClass)i.next());

 return v;

 }

 // Returns an array of property names for className

 public String[] propertyNames(String className) {

 Vector<PropertyClass> p = properties(className);

 String[] names = new String[p.size()];

 for (int i = 0; i < p.size(); i++)

 names[i] = p.get(i).id;

 return names;

 }

 // Returns property type name of propertyName

 public String propertyType(String propertyName) {

 PropertyClass p = findProperty(propertyName);

 return p.propertyType.name();

 }

 // Returns domain name of propertyName

 public String propertyDomain(String propertyName) {

 PropertyClass p = findProperty(propertyName);

 return p.domain.id;

 }

 // Returns range name of propertyName

 public String propertyRange(String propertyName) {

 PropertyClass p = findProperty(propertyName);

 switch (p.propertyType) {

 case DatatypeProperty:

 DatatypeProperty d = (DatatypeProperty)p;

 return d.range;

 case ObjectProperty:

 ObjectProperty o = (ObjectProperty)p;

 return o.range.id;

 default: return "";

 }

250

 }

 // Returns vector of OwlClass objects for learning order with name "name"

 public Vector<OwlClass> getLearningOrderClasses(String name) {

 return currentOntology.learningOrderHash.get(name);

 }

 String[] classToString(Vector<OwlClass> c) {

 if (c == null) return null;

 String [] names = new String[c.size()];

 for (int j = 0; j < c.size(); j++)

 names[j] = c.elementAt(j).id;

 return names;

 }

 // Returns list of learning order IDs

 public String[] getLearningOrderIDs() {

 Enumeration<String> e = currentOntology.learningOrderHash.keys();

 String[] s = new String[currentOntology.learningOrderHash.size()];

 for (int i = 0; e.hasMoreElements(); i++)

 s[i] = e.nextElement();

 return s;

 }

 // Returns learning order for learning order ID id

 public String[] getLearningOrderNames(String id) {

 return classToString(getLearningOrderClasses(id));

 }

 void printOntology() {

 System.out.println("Ontology general data:");

 if (currentOntology.about != null) System.out.println("Ontology:about: " +

currentOntology.about);

 if (currentOntology.comment != null) System.out.println("Ontology:comment: " +

currentOntology.comment);

 if (currentOntology.label != null) System.out.println("Ontology:label: " +

currentOntology.label);

 if (currentOntology.versionInfo != null)

System.out.println("Ontology:versionInfo: " + currentOntology.versionInfo);

 // Print namespace prefix definitions

 Enumeration<String> j = currentOntology.nsPrefixHash.keys();

 while (j.hasMoreElements()) {

 String prefix = j.nextElement();

 System.out.println("xmlns:" + prefix + "='" +

currentOntology.nsPrefixHash.get(prefix) + "'");

 }

 if (currentOntology.base != null) System.out.println("Ontology:base: " +

currentOntology.base);

 if (currentOntology.allDifferent != null)

 System.out.println("Ontology:allDifferent: " + (currentOntology.allDifferent ?

"true" : "false"));

 }

 void printClasses() {

 System.out.println("\nClasses:");

 Enumeration<String> j = currentOntology.owlClassHash.keys();

 while (j.hasMoreElements()) {

 OwlClass o = currentOntology.owlClassHash.get(j.nextElement());

 System.out.println("Class " + o.id + ": namespace = " + o.namespace);

 System.out.println("Class " + o.id + ": ontology = " + o.ontology.label);

 Iterator i = o.subClassOf.iterator();

 while (i.hasNext())

 System.out.println("Class " + o.id + ": subclass of - " +

((OwlClass)i.next()).id);

 i = o.superClassOf.iterator();

 while (i.hasNext())

 System.out.println("Class " + o.id + ": super class of - " +

((OwlClass)i.next()).id);

 i = o.equivalentClass.iterator();

 while (i.hasNext()) {

251

 Object p = i.next();

 if ((p instanceof String) && (p != null))

 System.out.println("Class " + o.id + ": equivalent to - " + (String)p);

 else if ((p instanceof OwlClass) && (p != null))

 System.out.println("Class " + o.id + ": equivalent class of - " +

((OwlClass)p).id);

 }

 i = o.disjointWith.iterator();

 while (i.hasNext()) {

 OwlClass c = (OwlClass)i.next();

 if (c != null)

 System.out.println("Class " + o.id + ": disjoint with - " + c.id);

 }

 i = o.properties.iterator();

 while (i.hasNext())

 System.out.println("Class " + o.id + ": property - " +

((PropertyClass)i.next()).id);

 i = o.propertyRestrictions.iterator();

 while (i.hasNext())

 printPropertyRestriction(o.id, (PropertyRestriction)i.next());

 i = o.include.iterator();

 while (i.hasNext()) {

 OwlClass c = (OwlClass)i.next();

 if (c != null)

 System.out.println("Class " + o.id + ": includes - " + c.id);

 }

 i = o.partOf.iterator();

 while (i.hasNext()) {

 OwlClass c = (OwlClass)i.next();

 if (c != null)

 System.out.println("Class " + o.id + ": part-of - " + c.id);

 }

 i = o.implement.iterator();

 while (i.hasNext()) {

 OwlClass c = (OwlClass)i.next();

 if (c != null)

 System.out.println("Class " + o.id + ": implements - " + c.id);

 }

 i = o.implementedBy.iterator();

 while (i.hasNext()) {

 Implementor imp = (Implementor)i.next();

 System.out.print("Class " + o.id + ": implemented-by -");

 Iterator ii = imp.impl.iterator();

 while (ii.hasNext()) {

 OwlClass c = (OwlClass)ii.next();

 if (c != null) System.out.print(" " + c.id);

 }

 System.out.println();

 }

 }

 }

 void printProperties() {

 System.out.println("\nProperties:");

 Enumeration<String> j = currentOntology.propertyHash.keys();

 while (j.hasMoreElements()) {

 PropertyClass o = currentOntology.propertyHash.get(j.nextElement());

 if (o.namespace != null) System.out.println("Property " + o.id + ": namespace

- " + o.namespace);

 if (o.ontology != null && o.ontology.label != null)

System.out.println("Property " + o.id + ": ontology - " + o.ontology.label);

 if (o.propertyType != null) System.out.println("Property " + o.id + ":

property type - " + o.propertyType.name());

 if (o.domain != null) System.out.println("Property " + o.id + ": domain - " +

o.domain.id);

 if (o.propertyType != null && o.propertyType == PropertyType.DatatypeProperty)

{

 DatatypeProperty dp = (DatatypeProperty)o;

 if (dp.range != null) System.out.println("Property " + o.id + ": range - " +

dp.range);

252

 }

 else if (o.propertyType != null && o.propertyType ==

PropertyType.ObjectProperty) {

 ObjectProperty op = (ObjectProperty)o;

 if (op.range != null) System.out.println("Property " + o.id + ": range -

class " + op.range.id);

 if (op.inverseOf != null) System.out.println("Property " + o.id + ": inverse

of property " + op.inverseOf.id);

 }

 Iterator i = o.type.iterator();

 while (i.hasNext())

 System.out.println("Property " + o.id + ": type - " + i.next());

 }

 }

 void printPropertyRestriction(String className, PropertyRestriction o) {

 if (o.basePropertyName != null) System.out.println("Class " + className + ":

property restriction - base property name - " + o.basePropertyName);

 if (o.baseProperty != null) System.out.println("Class " + className + ":

property restriction - base property obj - " + o.baseProperty.id);

 if (o.type != null) System.out.println("Class " + className + ": property

restriction - type - " + o.type.name());

 if (o.value != null) System.out.println("Class " + className + ": property

restriction - value - " + o.value);

 if (o.valueType != null) System.out.println("Class " + className + ": property

restriction - value type - " + o.valueType);

 if (o.valueClass != null) System.out.println("Class " + className + ": property

restriction - value class - " + o.valueClass.id);

 }

 void printDataTypes() {

 System.out.println("\nData Types:");

 Enumeration<String> j = currentOntology.dataTypeHash.keys();

 while (j.hasMoreElements()) {

 DataType o = currentOntology.dataTypeHash.get(j.nextElement());

 if (o.about != null) System.out.println("Data type: about = " + o.about);

 if (o.subClassOf != null) System.out.println("Data type: subClassOf = " +

o.subClassOf);

 }

 }

 void printLearningOrders() {

 System.out.println("\nLearning Orders:");

 String[] ids = getLearningOrderIDs();

 for (int i = 0; i < ids.length; i++) {

 String[] names = getLearningOrderNames(ids[i]);

 System.out.print("Learning Order " + ids[i] + ":");

 for (String s: names)

 System.out.print(" " + s);

 System.out.println();

 }

 System.out.println();

 }

 //===

 // SAX DocumentHandler methods

 //===

 public void setDocumentLocator(Locator l) {

 }

 public void startDocument() throws SAXException {

 }

 public void endDocument() throws SAXException {

 }

 // convert string names to values in enum OwlElement; improving efficiency and

maintainability

 OwlElement toEnum(String n) {

253

 if (n == null) return OwlElement.NULL;

 final OwlElement elem = OwlElement.valueOf(n.toUpperCase());

 if (elem == null) return OwlElement.NODEF;

 return elem;

 }

 // return the value of the attribute with name ending with value of "name"

 String attrValue(Attributes attrs, String name) {

 if (attrs == null || name == null) return "";

 for (int i = 0; i < attrs.getLength(); i++) {

 String aName = attrs.getQName(i); // Attr name

 if ("".equals(aName)) aName = attrs.getLocalName(i);

 if (aName.lastIndexOf(name) >= 0)

 return attrs.getValue(i);

 }

 return "";

 }

 // Reference to class name may not start with "#"

 // need revision to deal with general case like global classes with URIs

 public OwlClass findClass(String name) {

 if (name.startsWith("#")) name = name.substring(1);

 OwlClass o = currentOntology.owlClassHash.get(name);

 if (o == null) error ("Class " + name + " missing");

 return o;

 }

 // Reference to property name may not start with "#"

 // need revision to deal with general case like global properties with URIs

 public PropertyClass findProperty(String name) {

 if (name.startsWith("#")) name = name.substring(1);

 PropertyClass o = currentOntology.propertyHash.get(name);

 if (o == null) error("Property " + name + " missing");

 return o;

 }

 public DataType findDatatype(String name) {

 if (name.startsWith("#")) name = name.substring(1);

 DataType o = currentOntology.dataTypeHash.get(name);

 if (o == null) error("DataType " + name + " missing");

 return o;

 }

 static Object stack_at(Stack s, int i) { // index of stack top is 0

 return s.get(s.size() - i - 1);

 }

 // Current learning order being assembled, and its ID is on stack top

 Vector<OwlClass> learningOrderVector;

 public void startElement(String namespaceURI,

 String sName, // simple name

 String qName, // qualified name

 Attributes attrs)

 throws SAXException {

 OwlElement n = toEnum(sName);

 OwlClass aClass, bClass;

 if (pass == 1) { // solve the problem caused by use before declaration

 switch (n) {

 case CLASS:

 aClass = new OwlClass();

 aClass.namespace = currentOntology.base; // need be revised to the class's

namespace

 aClass.id = attrValue(attrs, "ID");

 aClass.name = attrValue(attrs, "name");

 aClass.ontology = currentOntology;

 currentOntology.owlClassHash.put(aClass.id, aClass);

 break;

 case DATATYPEPROPERTY:

 DatatypeProperty dp = new DatatypeProperty();

254

 dp.namespace = currentOntology.base; // of no use, set again in pass

2

 dp.id = attrValue(attrs, "ID");

 dp.ontology = currentOntology;

 dp.propertyType = PropertyType.DatatypeProperty;

 currentOntology.propertyHash.put(dp.id, dp); // generalize it to cover

namespace

 break;

 case DATATYPE:

 DataType dt = new DataType();

 dt.about = attrValue(attrs, "about");

 currentOntology.dataTypeHash.put(dt.about, dt);

 break;

 case OBJECTPROPERTY:

 ObjectProperty op = new ObjectProperty();

 op.namespace = currentOntology.base; // of no use, set again in pass 2

 op.id = attrValue(attrs, "ID");

 op.ontology = currentOntology;

 op.propertyType = PropertyType.ObjectProperty;

 currentOntology.propertyHash.put(op.id, op); // generalize it to cover

namespace

 break;

 default: break;

 }

 return;

 }

 // pass 2 starts here

 switch (n) {

 case RDF:

 stack_object.push(new Object());

 currentOntology.base = attrValue(attrs, "base");

 break;

 case ONTOLOGY:

 stack_object.push(currentOntology);

 currentOntology.about = attrValue(attrs, "about");

 break;

 case COMMENT: stack_object.push(new Object()); break;

 case LABEL: stack_object.push(new Object()); break;

 case VERSIONINFO: stack_object.push(new Object()); break;

 case CLASS:

 aClass = findClass(attrValue(attrs, "ID"));

 if (aClass == null) error("Class " + attrValue(attrs, "ID") + " missing");

 aClass.namespace = currentOntology.base; // need be revised to the class's

namespace

 stack_object.push(aClass);

 break;

 case SUBCLASSOF:

 if (attrValue(attrs, "resource").equals("")) { // base class is a

restriction

 stack_object.push(new Object());

 break;

 }

 if (stack_E.peek() == OwlElement.CLASS) {

 aClass = (OwlClass)stack_object.peek(); // subClassOf must be directly

nested in class or datatype

 bClass = findClass(attrValue(attrs, "resource"));

 aClass.subClassOf.add(bClass);

 bClass.superClassOf.add(aClass);

 }

 else if (stack_E.peek() == OwlElement.DATATYPE) {

 DataType d = (DataType)stack_object.peek(); // subClassOf must be directly

nested in class or datatype

 d.subClassOf = attrValue(attrs, "resource");

 }

 else error("Misplaced subClassOf");

 stack_object.push(new Object());

 break;

 case DISJOINTWITH:

 if (stack_E.peek() != OwlElement.CLASS) error("Misplaced DisjointWith");

 aClass = (OwlClass)stack_object.peek();

 aClass.disjointWith.add(findClass(attrValue(attrs, "resource")));

255

 stack_object.push(new Object());

 break;

 case RESTRICTION:

 if (stack_E.peek() != OwlElement.SUBCLASSOF) error("Misplaced Restriction");

 PropertyRestriction pr = new PropertyRestriction();

 aClass = (OwlClass)stack_at(stack_object, 1);

 aClass.propertyRestrictions.add(pr);

 stack_object.push(pr);

 break;

 case EQUIVALENTCLASS:

 if (stack_E.peek() != OwlElement.CLASS) error("Misplaced EquivalentClass");

 aClass = (OwlClass)stack_at(stack_object, 0);

 if (attrValue(attrs, "resource").startsWith("http:"))

 aClass.equivalentClass.add(attrValue(attrs, "resource"));

 else

 aClass.equivalentClass.add(findClass(attrValue(attrs, "resource")));

 stack_object.push(new Object());

 break;

 case ONPROPERTY:

 if (stack_E.peek() != OwlElement.RESTRICTION) error("Misplaced onProperty");

 pr = (PropertyRestriction)stack_at(stack_object, 0);

 pr.basePropertyName = attrValue(attrs, "resource");

 pr.baseProperty = findProperty(pr.basePropertyName);

 stack_object.push(new Object());

 break;

 case SOMEVALUESFROM:

 if (stack_E.peek() != OwlElement.RESTRICTION) error("Misplaced

someValuesFrom");

 pr = (PropertyRestriction)stack_at(stack_object, 0);

 pr.valueClass = (OwlClass)findClass(attrValue(attrs, "resource"));

 pr.type = PropertyResctrictionType.SomeValuesFrom;

 stack_object.push(new Object());

 break;

 case HASVALUE:

 if (stack_E.peek() != OwlElement.RESTRICTION) error("Misplaced hasValue");

 pr = (PropertyRestriction)stack_at(stack_object, 0);

 pr.valueType = attrValue(attrs, "datatype");

 pr.type = PropertyResctrictionType.HasValue;

 stack_object.push(new Object());

 break;

 case ALLDIFFERENT: stack_object.push(new Object()); break; // have

not been worked on yet

 case DATATYPEPROPERTY:

 String name = attrValue(attrs, "ID");

 DatatypeProperty dp = (DatatypeProperty)findProperty(name);

 dp.namespace = currentOntology.base;

 stack_object.push(dp);

 break;

 case DOMAIN:

 if (stack_E.peek() != OwlElement.OBJECTPROPERTY && stack_E.peek() !=

OwlElement.DATATYPEPROPERTY) error("Misplaced domain");

 PropertyClass p = (PropertyClass)stack_at(stack_object, 0);

 OwlClass o = (OwlClass)findClass(attrValue(attrs, "resource"));

 p.domain = o;

 o.properties.add(p);

 stack_object.push(new Object());

 break;

 case RANGE:

 if (stack_E.peek() == OwlElement.OBJECTPROPERTY) {

 ObjectProperty op = (ObjectProperty)stack_at(stack_object, 0);

 op.range = (OwlClass)findClass(attrValue(attrs, "resource"));

 }

 else if (stack_E.peek() == OwlElement.DATATYPEPROPERTY) {

 dp = (DatatypeProperty)stack_at(stack_object, 0);

 dp.range = attrValue(attrs, "resource");

 }

 else

 error("Misplaced range");

 stack_object.push(new Object());

 break;

 case DATATYPE:

256

 DataType dt = findDatatype(attrValue(attrs, "about"));

 stack_object.push(dt);

 break;

 case TYPE:

 if ((stack_E.peek() != OwlElement.OBJECTPROPERTY) && (stack_E.peek() !=

OwlElement.DATATYPEPROPERTY)) error("Misplaced type");

 p = (PropertyClass)stack_at(stack_object, 0);

 p.type.add(attrValue(attrs, "resource"));

 stack_object.push(new Object());

 break;

 case OBJECTPROPERTY:

 name = attrValue(attrs, "ID");

 ObjectProperty op = (ObjectProperty)findProperty(name);

 op.namespace = currentOntology.base;

 stack_object.push(op);

 break;

 case INVERSEOF:

 if (stack_E.peek() != OwlElement.OBJECTPROPERTY) error("misplaced

inverseOf");

 op = (ObjectProperty)stack_at(stack_object, 0);

 ObjectProperty op2 = (ObjectProperty)findProperty(attrValue(attrs,

"resource"));

 op.inverseOf = op2;

 op2.inverseOf = op;

 stack_object.push(new Object());

 break;

 case DISTINCTMEMBERS: stack_object.push(new Object()); break; // have not been

worked on yet

 case LEARNINGORDER:

 String id = attrValue(attrs, "ID");

 if (id == null) id = "default";

 stack_object.push(id);

 learningOrderVector = new Vector<OwlClass>();

 break;

 case REF:

 String resourceName = attrValue(attrs, "resource");

 aClass = findClass(resourceName);

 if (stack_E.peek() == OwlElement.LEARNINGORDER)

 if (aClass != null) learningOrderVector.add(aClass);

 if (stack_E.peek() == OwlElement.IMPLEMENTEDBY) {

 Implementor imp = (Implementor)stack_at(stack_object, 0);

 imp.impl.add(aClass);

 }

 stack_object.push(aClass);

 break;

 case INCLUDE:

 aClass = (OwlClass)stack_object.peek();

 bClass = findClass(attrValue(attrs, "resource"));

 aClass.include.add(bClass);

 bClass.partOf.add(aClass);

 stack_object.push(new Object());

 break;

 case PARTOF:

 aClass = (OwlClass)stack_object.peek();

 bClass = findClass(attrValue(attrs, "resource"));

 aClass.partOf.add(bClass);

 bClass.include.add(aClass);

 stack_object.push(new Object());

 break;

 case IMPLEMENT:

 aClass = (OwlClass)stack_object.peek();

 bClass = findClass(attrValue(attrs, "resource"));

 aClass.implement.add(bClass);

 //bClass.implementedBy.add(aClass);

 stack_object.push(new Object());

 break;

 case IMPLEMENTEDBY:

 Implementor imp = new Implementor();

 String s = attrValue(attrs, "resource");

 bClass = null;

 if (s != null && !s.trim().equals("")) bClass = findClass(s);

257

 if (bClass != null) imp.impl.add(bClass);

 stack_object.push(imp);

 break;

 default:

 System.out.println("startElement(): undefined element: " +

sName);

 }

 stack_E.push(n);

 }

 public void endElement(String namespaceURI,

 String sName, // simple name

 String qName // qualified name

)

 throws SAXException {

 OwlElement n = toEnum(sName);

 if (pass == 1) return;

 // pass = 2 starts here

 Object o = stack_object.pop();

 if (n != stack_E.pop())

 error(sName + " occured at wrong location");

 switch (n) {

 case RDF: break;

 case ONTOLOGY: break;

 case COMMENT:

 if (stack_E.peek() != OwlElement.ONTOLOGY)

 error(sName + " occured at wrong location");

 currentOntology.comment = text();

 break;

 case LABEL:

 if (stack_E.peek() != OwlElement.ONTOLOGY)

 error(sName + " occured at wrong location");

 currentOntology.label = text();

 break;

 case VERSIONINFO:

 if (stack_E.peek() != OwlElement.ONTOLOGY)

 error(sName + " occured at wrong location");

 currentOntology.versionInfo = text();

 break;

 case CLASS:

 case SUBCLASSOF:

 case DISJOINTWITH:

 case RESTRICTION: break;

 case EQUIVALENTCLASS: break;

 case ONPROPERTY:

 case SOMEVALUESFROM: break;

 case HASVALUE:

 PropertyRestriction pr = (PropertyRestriction)stack_at(stack_object, 0);

 pr.value = text();

 break;

 case ALLDIFFERENT: // have not been worked on yet

 case DATATYPEPROPERTY:

 case DOMAIN:

 case RANGE:

 case DATATYPE:

 case TYPE:

 case OBJECTPROPERTY:

 case INVERSEOF:

 case DISTINCTMEMBERS:

 case INCLUDE:

 case PARTOF:

 case IMPLEMENT:

 case REF: break;

 case IMPLEMENTEDBY:

 if (stack_E.peek() == OwlElement.CLASS) {

 OwlClass c = (OwlClass)stack_object.peek();

 c.implementedBy.add((Implementor)o);

 }

 break;

 case LEARNINGORDER:

 currentOntology.learningOrderHash.put((String)o, learningOrderVector);

258

 break;

 default:

 System.out.println("startElement(): undefined element: " +

sName);

 System.exit(1);

 }

 }

 public void startPrefixMapping(String prefix, String uri) throws SAXException {

 currentOntology.nsPrefixHash.put(prefix, uri);

 }

 public void endPrefixMapping(String prefix) throws SAXException {

 }

 public void characters(char buf[], int offset, int len)

 throws SAXException {

 String s = new String(buf, offset, len);

 if (textBuffer == null) {

 textBuffer = new StringBuffer(s);

 } else {

 textBuffer.append(s);

 }

 }

 public void ignorableWhitespace(char buf[], int offset, int len) {

 }

 public void processingInstruction(String target, String data) {

 }

 void error(String message) {

 System.out.println(message);

 //System.exit(1);

 }

 //===

 // SAX ErrorHandler methods

 //===

 // treat validation errors as fatal

 public void error(SAXParseException e)

 throws SAXParseException {

 throw e;

 }

 // dump warnings too

 public void warning(SAXParseException err)

 throws SAXParseException {

 System.out.println("** Warning"

 + ", line " + err.getLineNumber()

 + ", uri " + err.getSystemId());

 System.out.println(" " + err.getMessage());

 }

 //===

 // LexicalEventListener methods

 //===

 public void comment(char[] ch, int start, int length)

 throws SAXException {

 }

 public void startCDATA()

 throws SAXException {

 text(); // echo anything we've seen before now

 //emit("START CDATA SECTION");

 }

 public void endCDATA() throws SAXException {

 text(); // echo the CDATA text

259

 //emit("END CDATA SECTION");

 }

 public void startEntity(java.lang.String name)

 throws SAXException {

 }

 public void endEntity(java.lang.String name)

 throws SAXException {

 }

 public void startDTD(String name, String publicId, String systemId) {

 }

 public void endDTD() throws SAXException {

 }

 //===

 // Utility Methods ...

 //===

 // Return text accumulated in the character buffer

 private String text() throws SAXException {

 if (textBuffer == null) return null;

 String s = "" + textBuffer;

 textBuffer = null;

 return s.trim();

 }

}

260

Appendix C

OWLType.java

import java.util.*;

class Ontology {

 String about; // url for this ontology

 String comment; // comments for this ontology

 String label; // title of the ontology

 String fileName; // name of the ontology file

 String filePath; // path to the ontology file

 String versionInfo; // ontology version

 Hashtable<String, String> nsPrefixHash = new Hashtable<String, String>(); //

nsPrefix -> url

 Hashtable<String, OwlClass> owlClassHash = new Hashtable<String, OwlClass>(); // full

name -> class object

 Hashtable<String, PropertyClass> propertyHash = new Hashtable<String, PropertyClass>();

// name -> property object

 Hashtable<String, DataType> dataTypeHash = new Hashtable<String, DataType>();

 String base; // the base URL for the ontology

 Boolean allDifferent; // no shared objects among the classes in the ontology; default

to be false

 Vector<OrderClass> learningOrder = new Vector<OrderClass>(); // recommended learning

order lists

}

class OrderClass {

 Vector<OwlClass> list = new Vector<OwlClass>();

}

class OwlClass { // Each object represents an OWL class

 String id; // class tag name (no space)

 String name; // extended natural name allowing spaces

 String namespace; // class namespace

 Ontology ontology; // the ontology object containing this class

 Vector<OwlClass> subClassOf = new Vector<OwlClass>(); // list of super

classes

 Vector<OwlClass> superClassOf = new Vector<OwlClass>(); // list of subclasses

 Vector<Object> equivalentClass = new Vector<Object>(); // list of equivalent

classes

 Vector<OwlClass> disjointWith = new Vector<OwlClass>(); // list of disjoint

classes

 Vector<PropertyClass> properties = new Vector<PropertyClass>(); // list of

properties for this class

 Vector<PropertyRestriction> propertyRestrictions = new

Vector<PropertyRestriction>(); // list of restrictions on the properties

 Vector<OwlClass> includes = new Vector<OwlClass>(); // list of included

(reverse of part-of) classes

 OwlClass partof; // this class is part of which class

}

class PropertyRestriction { // Each instance represents an restriction on a property

 String basePropertyName;

 PropertyClass baseProperty;

 PropertyResctrictionType type;

 String value; // hasValue

 String valueType; // hasValue

 OwlClass valueClass; // someValuesFrom

261

}

class PropertyClass { // Each object represents an OWL property class

 String id; // name of the property

 String namespace; // property namespace

 Ontology ontology; // the ontology object containing this property

 PropertyType propertyType; // DatatypeProperty or ObjectProperty

 OwlClass domain; // Property domain

 Vector<String> type = new Vector<String>(); // list of properties like transitive,

symmetric, ...

}

class DatatypeProperty extends PropertyClass { // A data type property: the range is a

string

 String range; // Property range

}

class ObjectProperty extends PropertyClass { // An object property: the range is a class

 OwlClass range; // Property range

 ObjectProperty inverseOf; // if it is not null, it points to its inverse property

object

}

class DataType { // Declares a data type or its restriction

 String about; // what is a data type; hash key

 String subClassOf; // id is a subclass of which DataType

}

// The following enums are to be extended as needed

// The enums are for improving code reability and execution efficiency - replacing string

comparison with integer comparison

enum PropertyType {DatatypeProperty, ObjectProperty}

//enum Property {Inverse}

//enum ObjPropType {Transitive, Symmetric}

//enum ObjPropRelation {Inverse}

enum PropertyResctrictionType {SomeValuesFrom, HasValue}

enum OwlElement {RDF, ONTOLOGY, COMMENT, LABEL, VERSIONINFO, CLASS, SUBCLASSOF,

DISJOINTWITH, RESTRICTION,

 EQUIVALENTCLASS, ONPROPERTY, SOMEVALUESFROM, HASVALUE, ALLDIFFERENT,

DATATYPEPROPERTY, DOMAIN, RANGE,

 DATATYPE, TYPE, OBJECTPROPERTY, INVERSEOF, DISTINCTMEMBERS,

 NODEF, // no definition; probably new values need be added to the enum

 NULL, // the String version is null; for debugging

 INCLUDES,

 LEARNINGORDER, LIST,

 }

262

Appendix D

Web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>pace-jena</display-name>

 <!-- Spring MVC -->

 <listener>

 <listener-

class>org.springframework.web.context.ContextLoaderListener</listener-class>

 </listener>

 <servlet>

 <servlet-name>SpringDispatcher</servlet-name>

 <servlet-

class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>SpringDispatcher</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/spring-database.xml,

 /WEB-INF/spring-security.xml

 </param-value>

 </context-param>

 <!-- Spring Security -->

 <filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-

class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

 <session-config>

 <session-timeout>30</session-timeout>

 </session-config>

</web-app

263

Appendix E

Spring-database.xml

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="dataSource"

 class="org.springframework.jdbc.datasource.DriverManagerDataSource">

 <property name="driverClassName" value="com.mysql.jdbc.Driver" />

 <property name="url" value="jdbc:mysql://localhost:3306/pacejena"

/>

 <property name="username" value="root" />

 <property name="password" value="123456" />

 </bean>

</beans>

SpringDispatcher-servlet.xml

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:mvc="http://www.springframework.org/schema/mvc"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/mvc

 http://www.springframework.org/schema/mvc/spring-mvc.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd

 http://www.springframework.org/schema/util

http://www.springframework.org/schema/util/spring-util.xsd">

 <context:component-scan base-package="edu.pace.pacejena.*" />

 <bean

 class="org.springframework.web.servlet.view.InternalResourceViewResolver"

>

 <property name="prefix">

 <value>/WEB-INF/views/</value>

 </property>

 <property name="suffix">

 <value>.jsp</value>

264

 </property>

 </bean>

 <mvc:resources mapping="/resources/**" location="/resources/"/>

 <mvc:resources mapping="/webjars/**" location="classpath:/META-

INF/resources/webjars/"/>

 <bean id="jacksonMessageChanger"

 class="org.springframework.http.converter.json.MappingJacksonHttpMessageC

onverter">

 <property name="supportedMediaTypes" value="application/json" />

 </bean>

 <bean

 class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHan

dlerAdapter">

 <property name="messageConverters">

 <util:list id="beanList">

 <ref bean="jacksonMessageChanger" />

 </util:list>

 </property>

 </bean>

</beans>

265

Appendix F

PaceJenaAuthenticationSucessHandler.java

package edu.pace.pacejena.auth;

import java.io.IOException;

import java.util.List;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org.springframework.security.core.Authentication;

import org.springframework.security.core.context.SecurityContextHolder;

import org.springframework.security.web.DefaultRedirectStrategy;

import org.springframework.security.web.RedirectStrategy;

import org.springframework.security.web.WebAttributes;

import

org.springframework.security.web.authentication.AuthenticationSuccessHandler;

import edu.pace.pacejena.constants.PaceJenaConstants;

import edu.pace.pacejena.model.User;

import edu.pace.semweb.OntologyStructureBuilder;

import edu.pace.semweb.PaceJena;

import edu.pace.semweb.tree.OntologyNode;

public class PaceJenaAuthenticationSuccessHandler implements

AuthenticationSuccessHandler {

 protected Log logger = LogFactory.getLog(this.getClass());

 private RedirectStrategy redirectStrategy = new DefaultRedirectStrategy();

 @Override

 public void onAuthenticationSuccess(HttpServletRequest request,

 HttpServletResponse response, Authentication authentication) throws

IOException {

 clearAuthenticationAttributes(request);

 HttpSession session = request.getSession();

 User authUser = (User)

SecurityContextHolder.getContext().getAuthentication().getPrincipal();

 session.setAttribute("username", authUser.getUsername());

 session.setAttribute("authorities", authentication.getAuthorities());

 PaceJena paceJena = (PaceJena)session.getAttribute("PaceJena");

 if (paceJena == null) {

 //ServletContext sc = session.getServletContext();

 //String fullPath = sc.getRealPath("/WEB-

INF/owl/webTutorial.owl");

 //System.out.println(fullPath);

266

 paceJena = new PaceJena("/webTutorial.owl");

 session.setAttribute(PaceJenaConstants.PACE_JENA_SESSION_KEY,

paceJena);

 }

 loadOntologyTreeIntoSession(session, paceJena,

authUser.getLearningLevel());

 //set our response to OK status

 response.setStatus(HttpServletResponse.SC_OK);

 //since we have created our custom success handler, its up to us to

where

 //we will redirect the user after successfully login

 response.sendRedirect("/pace-jena/home");

 }

 protected void clearAuthenticationAttributes(HttpServletRequest request) {

 HttpSession session = request.getSession(false);

 if (session == null) {

 return;

 }

 session.removeAttribute(WebAttributes.AUTHENTICATION_EXCEPTION);

 }

 public static void loadOntologyTreeIntoSession(HttpSession session,

PaceJena parser, int learningOrder) {

 final List<String> rootClassNames = parser.getRootClassNames();

 final String parentName = rootClassNames.get(0);

 final OntologyNode rootNode = new OntologyNode(null, parentName);

 OntologyStructureBuilder.loadCurrentNode(parser, rootNode,

parser.getLearningOrderNames(PaceJenaConstants.LEARNING_LEVELS[learningOrder]))

;

 session.setAttribute(PaceJenaConstants.ONTOLOGY_ROOT_NODE_SESSION_KEY,

rootNode);

 }

}

267

References

[1] Carl Albing, and Michael Schwartz, “Java Application Development on Linux”,

Retrieved Nov 26, 2016

http://everythingcomputerscience.com/books/013143697X_book.pdf

[2] A. Altowayan, and L. Tao, “Simplified Approach for Representing Part-Whole

Relations in OWL-DL Ontologies.” In The IEEE International Symposium on Big

Data Security on Cloud, pages 1399–1405, New York, NY, USA, 2015. IEEE.

[3] L. Aroyo, and D. Dicheva, “AIMS: Learning and Teaching Support for WWW-

Based Education,” International Journal of Continuing Engineering Education and

Life-Long Learning, vol. 11, pp. 152-164, 2001.

[4] Franz Baader, LuFg, “Logic Based Knowledge Representation”, Theoretical

Computer Science, RWTH, Aachen, AhonstraBe, 55, 52074 Aachen Germany

[5] M. Buchheit, Nutt, W.M. Jeusfeld, and M. Staudt, “Subsumption of Queries to

Object Oriented Databases. Information Systems”, 19(1):33-54, 1994.

[6] P. Devanbu, R. J. Brachman, P.G. Selfridge, and B.W. Ballard, “LASSIE: A

Knowledge-Based Software Information System”. Communications of the ACM,

34(5):34-49, 199

[7] Sandra Dominiek, Jan-Ola Östman, and Jef Verschueren, eds. “Cognition and

Pragmatics”, Vol. 3. John Benjamins Publishing, 2009.

[8] J. Falkner, K. Jones, “Servlets and JSP: The J2EE Web Tier”, Addison-Wesley Pub

Co., (2003)

[9] K. Gai, “A Report About Suggestions on Developing e-Learning in China.” In 2010

International Conference on E-Business and E-Government, pages 609–613,

Guangzhou, China, 2010. IEEE.

[10] K. Gai, M. Thuraisingham, B. Qiu, and L. Tao, “Proactive Attribute Based Secure

Data Schema for Mobile Cloud in Financial Industry.” In The IEEE International

Symposium on Big Data Security on Cloud; 17th IEEE International Conference on

High Performance Computing and Communications, pages 1332–1337, New York,

USA, 2015.

[11] James Garson, "Modal Logic", The Stanford Encyclopedia of Philosophy (Spring

2016 Edition), Edward N. Zalta (ed.), URL =

http://plato.stanford.edu/archives/spr2016/entries/logic-modal/.

[12] James Goshlang, and Bill Joy, “The Java Language Specification Language, Second

Edition”,

https://jcp.org/aboutJava/communityprocess/maintenance/JLS/jls2draft.pdf

[13] Sabine Grunwald, and K. Ramesh Reddy, "Concept Guide on Reusable Learning

Objects with Application to Soil, Water and Environmental Sciences." Retrieved on

July 28 (2007): 2011.

http://everythingcomputerscience.com/books/013143697X_book.pdf
http://plato.stanford.edu/archives/spr2016/entries/logic-modal/
https://jcp.org/aboutJava/communityprocess/maintenance/JLS/jls2draft.pdf

268

[14] Praveen Gupta, Bari Pacheri, and M. C. Govil. "Spring Web MVC Framework

for Rapid Open Source J2EE Application Development: A Case Study." Interface

2.6 (2010): 1684-1689.

[15] Elliote Rusty Harold, “Processing XML with Java”, Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2002.

[16] John, Hebeler, “Semantic Web Programming.” John Wiley & Sons, 2011.

[17] D. Hu, J. Yan, J. Zhao, and Z. Hua, “Ontology-Based Scenario Modeling and

Analysis for Bank Stress Testing.” Decision Support Systems,” 63:81–94, 2014.

[18] R. Hubscher, and S. Puntambekar, “Adaptive Navigation for Learners in

Hypermedia is Scaffolded Navigation,” in Proc. of Second International Conference

on Adaptive Hypermedia and Adaptive Web-Based Systems , May 29-31, 2002,

Malaga, Spain, pp. 184-192.

[19 David Hunter, Jon Rafter, Andrew Watt, and Linda McKinnon. Beginning XML.

John Wiley & Sons, 2011.

[20] Inderjeet, Singh and Sterns, Beth, “Design Entireprise Application”,

http://download.oracle.com/otn-

pub/java/designing_enterprise_apps/2.0/designing_enterprise_apps-2_0-

book.pdf?AuthParam=1483472529_ccd371a21a50885fa273f3f8fa7c7adc,

Retrieved on Nov 28, 2016

[21] L. Johnson, (2003). “Elusive Vision: Challenges Impeding the Learning Object

Economy”, San Francisco: Macromedia Inc. Retrieved May 22, 2011 from

http://www.nmc.org/pdf/Elusive_Vision.pdf

[22] J. Koehler, “An Application of Terminological Logics to Case-Based Reasoning”,

In Proceeding of the fourth International Conference on Principles of Knowledge

Representation and Reasoning, KR’94, pages 351 362, Bonn, Germany, 1994.

Morgan Kaufmann.

[23] F. Liu, H. Chen, L. Lo, and W. Lee, “Comprehensive Security Integrated Model and

Ontology within Cloud Computing.” J. of Internet Technology, 14(6):935–946,

2013.

[24] Marvin Minsky, “Framework for Representing Knowledge”, MIT-AI Laboratory

Memo 306, June, 1974

[25] N.J. Nilsson, “Logic and Artificial Intelligence”, Artificial Intelligence 47 (1990)

31-56

[26] J. Quantz, and B. Schmitz, “Knowledge-Based Disambiguation for Machine

Translation”, Minds and Machines, 4:39-57, 1994

[27] M. Qiu, K. Gai, B. Thuraisingham, L. Tao, and H. Zhao. Proactive “User-Centric

Secure Data Scheme Using Attribute-Based Semantic Access Controls for Mobile

Clouds in Financial Industry.” Future Generation Computer Systems, PP:1, 2016.

[28] H. Song, L. Zhong, Wang, H., Li, R. and Xia, H., “Constructing An Ontology for

Web-Based Learning Resource Repository,” in Proc. Of Workshop on Applications

of Semantic Web Technologies for e-Learning, October 2-5, 2005, Banff, Canada.

[29] Barbara Starr, “A Layman’s Visual Guide to Google’s Knowledge Graph Search

API”, from http://searchengineland.com/laymans-visual-guide-googles-knowledge-

graph-search-api-241935

http://download.oracle.com/otn-pub/java/designing_enterprise_apps/2.0/designing_enterprise_apps-2_0-book.pdf?AuthParam=1483472529_ccd371a21a50885fa273f3f8fa7c7adc
http://download.oracle.com/otn-pub/java/designing_enterprise_apps/2.0/designing_enterprise_apps-2_0-book.pdf?AuthParam=1483472529_ccd371a21a50885fa273f3f8fa7c7adc
http://download.oracle.com/otn-pub/java/designing_enterprise_apps/2.0/designing_enterprise_apps-2_0-book.pdf?AuthParam=1483472529_ccd371a21a50885fa273f3f8fa7c7adc
http://www.nmc.org/pdf/Elusive_Vision.pdf
http://searchengineland.com/laymans-visual-guide-googles-knowledge-graph-search-api-241935
http://searchengineland.com/laymans-visual-guide-googles-knowledge-graph-search-api-241935

269

[30] M. Tan, and A. Goh, “The Use of Ontologies in Web-Based Learning,” in Proc.

Of Workshop on Applications of Semantic Web Technologies for e-Learning,

November 8, 2004, Hiroshima, Japan.

[31] L. Tao, S. Golikov, K. Gai, and M. Qiu, “A Reusable Software Component for

Integrated Syntax and Semantic Validation for Services Computing.” In 9th Int’l

IEEE Symposium on Service-Oriented System Engineering, pages 127–132, San

Francisco Bay, USA, 2015.

[32] J.R.Wright, E.S. Brown, K.Weixelbaum, G.T. Vesonder, S.R. Palmer, J.T. Berman,

and H.H. Moor, “A Knowledge-Based Configurator that Supports Sales,

Engineering, and Manufacturing at AT&T Network Systems”, AI Magazine,

14(3):69-80, 1993

[33] M V Uttam Tej, Dhanaraj Cheelu, Babu M.Rajasekhara, and P Venkata Krishna,

“Analyzing XML Parsers Performance for Android Platform”.VIT University,

Tamil Nadu, 2011.

[34] Aleksa Vukotic, and James Goodwill, "Apache Tomcat 7", Chapter 7, Apress, Sept

5, 2011

[35] Fangju Wang, Jing Li, and Hooman Homayounfar, “A Space Effcient XML DOM

Parser. Data & Knowledge Engineering,” 60(1):185{207, 2007.

[36] J.T. Yao, and Y.Y. Yao, “Web-Based Support Systems”, Proceedings of the WI/IAT

Workshop on Applications, Products and Services of Web-based Support Systems,

pp. 1-5, 2003.

[37] Dublin Core Metadata Initiative. "DCMI Metadata Basics." Dublin Core Metadata

Initiative (2014).

[38] IMS Global Learning Consortium. "IMS Meta-data Best Practice Guide for IEEE

1484.12. 1-2002 Standard for Learning Object Metadata." (2006).

[39] IMS Global Learning Consortium. "IMS Learning Resource Meta-data

Specification." (2001).

[40] “Java Server-Side Programming”

https://www.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html,

Retrieved on Nov 30, 2016

[41] Mozzila Development Network, https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Introduction, Retrieved on Nov 26, 2016

[42] Oracle “Asynchronous JavaScript Technology and XML (Ajax) With the Java

Platform”, http://www.oracle.com/technetwork/articles/java/ajax-135201.html,

Retrieved on Nov 29, 2016

[43] SCORM, ADL. "Advanced Distributed Learning." SCORM Overview (2004).

[44] Summernote, license under MIT, http://summernote.org/, Retrieved on Sept 6,

2016.

https://www.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
http://www.oracle.com/technetwork/articles/java/ajax-135201.html
http://summernote.org/

