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Abstract 
 

After a software defect is reported with a title and a text description, a competent developer needs to 

be assigned to fix it. The accuracy of this assignment has big impact on the quality of the resulting 

software, and the speed of the debugging process. Traditionally this software defect assignment process 

is conducted by product managers based on his/her knowledge of the software and the developers, 

which is not very scalable. In the recent years, this defect assignment problem has been formulated as 

a problem of (1) feature extraction from the defect title and description, and (2) classification of the 

resulting feature sets to the developers. Machine learning has been used to automate this software defect 

assignment problem. 

The research improves the existing approaches in automatic defect assignment by (1) improving the 

feature extraction by NLP and Vector for Words technology, (2) introducing rule-based engine aka 

expert system to better character the strength of each developer, instead of the traditional characterizing 

a developer only by the descriptions of the bugs he/she has resolved; (3) combining the two layers 

model of our model (Layer 1, NLP and Vector for Words and Layer 2, Long Short-Term Memory and 

Rule-based Engine). 

The optimal results are achieved on the CHROME dataset based on our new model of Long Short-

Term Memory(LSTM) with Rule-based Engine in comparison with the traditional ML model - Naïve 

Bayes model.  

The proposed neural network model extracts text features on its own, considering not only the word 

order messages that the word bag model ignores, but also the grammatical and semantic characteristics 

of the text. Rule-based Engine has absorbed developers’ history data, and activity information. 

The structure of these two layers network model with Rule-based Engine is relatively simple, i.e. the 

model is parallel structure, ideal for parallel computing, plus a dedicated hardware processing 

accelerator GPU makes the model not only high accuracy, but also faster.  

The new approach that we introduced in the research shows that it has better accuracy than traditional 

Naïve Bayes model and pure LSTM model. 

The new model can expand and migrate the system to generic bug assignment problems. The model is 

expandable and migratable.  
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Chapter 1 Introduction 
 

As the complexity of software continues to increase, the probability of software defects will increase 

exponentially.  In order to ensure the quality of computer software and enhance the reliability and 

usability of software, software defects must be assigned accurately. 

1.1 Research Background 

 

The goal of software maintenance is to fix defects in the software or to develop new features for the 

software.  Software defects in production software each year can cause billions of dollars in losses. At 

the same time many software companies have spent huge amount of money on software maintenance 

and software evolution. Therefore, it is necessary to pay more attention to the research and practice of 

software defect fix.  Later part of the dissertation will use defect and bug interchangeably as in the 

software industry, they are the same. 

Moreover, in large software development projects, developers use bug repositories to manage and 

perform normal software development. At the heart of the defect tracking system are software artifacts, 

such as defect reports, source code, and change history. 

Those artifacts are important parts of the defect repairing task, because software developers in the 

project often use these software artifacts to manage and repair software defects.   

In the maintenance of large software projects, bug reporting in software products is an important tool 

to help software developers to fix defects. Users, developers, software test engineers, program 

managers and others can create and fill out a software defect report with what they have found,  and 

log them into bug database once they have discovered some defects in the software during the process 

of using or developing the software in order to facilitate software engineers to quickly verify and repair 

defects. In general, a complete defect report should consist of three parts: predefined fields like bug 



2 
 

 
 

title, owner fields, status, type of bug, priority, severity, release milestone, area path, resolution, fixes, 

and history, etc.  The second part is the bug description field including repro steps, which is natural 

language text, and the third party is the related attachments including repro picture, videos, crash dump 

or trace files, and etc.  The bug report’s fields can be configurable and system administrators of the bug 

database can define what fields are needed to satisfy all the software engineering process, as shown in 

Figure 1 and Figure 2. 

 

Figure 1 Bug Report Fields - Bug 1380991’s fields in Firefox Browser project 
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Figure 2 Bug Report Description - Bug 1380991 description text in Firefox Browser project 

 

The predefined fields of the defect report are primarily metadata describing the defect report. For 

example, status as "resolved by fix" means that the bug has been resolved. Importance as “P0” means 

is very high and developers need to drop everything and start to work on the bug now. Assignee is 

whom the defect shall be assigned to, Triage Owner is the person who is charge of triaging the bug, 

and Reporter is the person who initially reported the bug.  

All bug reports constitute the basic characteristics of the defect. The natural language text part can be 

divided into three parts: Summary, Description, and Comments. Summary is mainly to make a proper 

title for the defect content, so that others can browse and view it. Description will detail how to 

reproduce defects, as well as some basic analysis about defects. Comments are generally free 

discussions by relevant software developers on current bug, which are either long or short. 

In general, these discussions are very helpful in fixing defects. In addition, software developers provide 

attachments, such as repro videos, crash dumps, pictures, test cases, and others. 

As mentioned earlier, the bug fix process has a life cycle. It starts with bug creation, then to bug 

distribution, to bug fix and final resolution phase and bug close phase.  The process is also reflected in 

the predefined field status of the defect report, as shown in Figure 3. After the reporter submits a new 

bug report, the bug reviewer, who usually is the program manager or product manager, in Microsoft 

for instance, will verify the bug. After the bug reviewer has verified the bug is not a duplicate bug, the 

bug reviewer will change the status of the bug “unconfirmed” to “new defect”. Next, the bug reviewer 

will assign it to the appropriate software developer for a fix based on the content of the defect report 

and the relevant developer information.  After that, the bug status will be changed to “in progress” state. 

 If the bug is successfully fixed, the corresponding status in the bug report becomes “Resolved”. Finally, 

after the software test engineer verifies that the defect was successfully repaired, the corresponding 
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status in the bug report will become "closed". However, this does not mean the end of the life cycle of 

the bug.  

After that, if it is found that the defect has not been completely repaired, for example a regression has 

been found, then the corresponding state will be changed to "active" state again.  If the bug reviewer 

verifies the bug is a real bug, the bug will go to "new defect" state and repeat the above steps. 

 

Figure 3 Software defect life cycle 

 

From the perspective of the life cycle of bug management, the bug repair process is roughly divided 

into three stages: the bug understanding phase, the bug triage and assignment phase, and the bug fixing 

phase. When the bug report changes from the "unconfirmed" status to the "new defect" status, the bug 
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reviewer needs to fully understand the content of the bug report. By capturing important information 

of the bug, the bug reviewer can duplicate the bug to another bug, or simply add a bug hit count number 

to increase the bug’s frequency or file a new bug report.  

Some important feature fields (such as Priority, Severity, etc.) are ultimate relevant for future bug fix 

work, and the corresponding phase is called the bug understanding phase. After the bug is fully be 

understood, the bug will enter the triage and assignment stage.  

In the triage and assignment phase, usually the software development manager, senior software 

engineers will look into the bug report. They will manually assign the bug to software engineers based 

on the bug reviewers’ understanding of the report and the reviewers’ empirical experience and 

knowledge on relevant developers’ expertise.  Many times, those tribal knowledges are not accurate 

and results in assigning the bug to the wrong software engineer and leads to delaying of bug fix.  

The software developer who is assigned to the bug will perform the repair work based on the 

understanding of the bug report and his or her related experience.  Then the bug goes into the bug fixing 

phase.  

Finally, the bug fixing phase is further divided into two steps: the first step is to complete the root cause 

analysis of the bug aka, RCA work.  The second step is to come up a solution and create a service pack 

or patch for the bug and complete the bug fixing life cycle. 

1.2 Research Challenges 

 

The dissertation is designed to improve the automatic bug assignment accuracy for large software 

projects.  The improvement of the bug assignment accuracy and efficiency is of great significance to 

alleviate the burden of the bug assignment engineering staff and improving the quality of the software. 

Traditionally managers will assign the defects to their developers and assign the defects to the 

components according to managers’ experience. However, this method of manual assignment not only 
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consumes a lot of valuable time for managers, moreover, the accuracy of the assignment is bad.  Later 

on, researchers started automatic defect assignment models which mostly gives a general empirical 

estimation formula through empirical analysis. Such prediction methods often have certain limitations, 

and their accuracy is not ideal. With the emergence of machine learning and data mining techniques, 

these theories or methods are gradually used in software defect assignment prediction. The way of 

defect assignment prediction has also evolved from the early empirical formula estimation to the 

prediction of defect assignment classic data mining science.  

In order to improve the efficiency of defect assignment, it is necessary to fully understand the details 

of the bug report, understand the competency, capacity, and resources like tools and equipment of the 

relevant software developers have, and other necessary information like the environment and location 

he or she is at, for example, if the software engineer is trying to do a root cause analysis on a mobile 

phone bug with cellular issue in AT&T cellular network, but the engineer has no AT&T cellular signal 

in his or her location, so the bug reviewer needs to find a proper engineer with the access of the cellular 

network available to re-produce the bug.  Those requirements are the criteria for the bug to be root 

cause analysis (RCA), and be properly fixed and verified. 

From the above requirements, we can imagine we need to have a very experienced engineering manager 

and rich experienced engineers triage the bugs, while they have huge burden to triage the high volume 

of incoming bug reports. 

Even so, the accuracy of assigning bug reports to the right developers is difficult to guarantee. The bugs 

are often like hot potatoes being passed around and are never earned a chance to be fixed.  The study 

by Jeong et al. [1] shows that the more re-routing of the bugs, the less chance of the bug will be fixed.  

Sometimes, the bug has never found a right host to address its problem.  

In order to solve the above problems, the researcher began to propose various methods and models for 

automatically assigning bugs, and they hoped to use automated methods to recommend bugs to the 
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appropriate software engineers, thereby reducing the work pressure of the bug reviewers and software 

engineering managers and solving the low efficiency and inaccuracy of bug assignment problems.  

Undoubtedly, the existing models have achieved some reasonable and limited results on the automatic 

assignment of defects. It can also reduce the probability of multiple re-routing of bug 

assignments. However, some of the existing methods do not make full use of text information (such as 

word classification based on the word bag model), and some require a large amount of manual feature 

selection work (such as C4.5 based text classification method).  Therefore, there is still a long way to 

go to achieve efficient, accurate and smart automatic bug assignments. 

Firstly, the existing models are usually impossible to effectively deal with many mixed and irregular 

natural language texts in bug reports.  

Secondly, the existing methods are often based on the word bag model and its transformation of words 

usually cannot effectively deal with word order and the models are too sparse in terms of word hashing.  

Thirdly, the current traditional approach usually requires a large number of human interfered feature 

extraction or labor-intensive work on feature selections to achieve their bug assignment efficiency, 

which adds the burden of bug assignment engineering process. 

Recently thanks to the rapid development of artificial intelligence especially in the area of deep learning 

neural network, the field of natural language processing has undergone tremendous 

breakthroughs.  Deep learning has achieved remarkable results in many aspects of natural language 

processing (such as text modeling, text categorization, machine translation, etc.) and has gone beyond 

traditional methods.  

Therefore, with the idea of deep neural network (DNN) in combination of rule-based engine research, 

the dissertation introduces the successful experience of deep learning in the field of text classification 

into the field of automatic software bug assignment to improve many shortcomings of the previous 

automatic bug assignment models.  The rule-based engine on top of DNN further tunes the models.  
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With the hybrid of advanced deep learning neural networks with rule-based engine technology, the 

research actively explores how to make full use of the hybrid model to address the above shortcomings 

in order to achieve the high accuracy and high efficiency of smart automatic software bug assignments.  

The key is to incorporate and rate the right candidate developers for bugs through rule-based 

engine. After applying DNN model at the first layer, the research uses the rule-based engine in the 

second layer of the hybrid model to evaluate the developer's experience and rate the developers. Then 

the hybrid model gives out its recommended developer to be chosen based on rule-engine ranker to 

further modify the DNN’s preliminary suggested developer data.  

 

1.3 Research Problem Statement 

 
The research is aimed at improving the existing approaches in automatic defect assignment by (1) 

improving the feature extraction by NLP and Vector for Words technology, (2) introducing rule-based 

engine aka expert system to better character the strength of each developer, instead of the traditional 

characterizing a developer only by the descriptions of the bugs he/she has resolved; (3) combining two 

layers model (Layer 1, NLP and Vector for Words and Layer 2, LSTM and Rule-based Engine). 

 

1.4 Research Methodology 

 
How to improve the accuracy of automatic bug assignment process? Firstly, good training data must be 

collected. The researcher believes that the bug report can be used as the effective bug assignment basis 

for the bug assignment. It can be used as the training set. The text information in the bug report can 

provide insightful knowledge for bug assignment. The bug assignment prediction model learns these 

inside knowledge through training, the accuracy of bug assignment can be effectively improved.  
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How can we learn this insightful information that is crucial to the assignment of defects?  The question 

raises a challenge for us to find deep learning model with rule-based engine of the defect text for the 

bug assignment model. The current work is still far from meeting this challenge. The research has 

already clarified this point in Section 1.2.  

Therefore, this dissertation aims at the hybrid model of Layer 1: natural language processing (NLP) 

and Layer 2: deep learning neural network model, and rule engine method. The deep learning neural 

network is currently widely used in the field of natural language processing.  It is expected to learn 

from the well-developed text processing ideas and model methods. The combination of deep learning 

neural network with rule-based engine is the new methodology to try it on bug assignment area. The 

hybrid approach is introduced into the field of automatic bug assignment problem space and is 

developed as a more accurate model to fit the real engineering bug practice. The hybrid model includes 

the layer 1 – vector for words, and layer 2 – LSTM and rule-based engine. The new model is shown in 

Fig 4. 
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Figure 4 New Software Defect Assignment Hybrid Model 

 

Researchers found that deep neural networks such as FFN, CNN, RNN, especially long-short-time 

memory (LSTM) proposed by Dyer et al. [6][7]  LSTM has strong advantages in the field of natural 

language processing, especially in text classification.  

Firstly, it has the natural advantage of dealing with local features selection. Moreover, this advantage 

is more prominent in the field of natural language processing, a lot of work [2][3][4][5] indicates that 

texts are based on deep learning models based on RNN, and it variant LSTM. 

When classifying, the optimal effect can be achieved at that time. It can be also seen that DNN has a 

good ability to capture local text features. Moreover, LSTM operation can take full advantage of the 

text information, for example, the regional word order can be learned. LSTM can also have the ability 

to mine grammatical and semantic information, which cannot be achieved by the traditional word bag 

model. LSTM can automatically capture text features without any manual involvement, which can 

automatically assign the bugs to right owners.  

Secondly, the hybrid model of NLP, LSTM with rule engine runs reasonable fast by using modern GPU, 

and the neuron weight and bias computation can not only reduce a large number of network model 

parameters, but also make the model have parameter sharing characteristics, which helps to quickly 

train the model.   

Finally, there is also a special operation accelerator GPU to provide parallelized acceleration for neuron 

computation, SoftMax operations and cross entropy calculations in DNN in order to have the entire 

model built quickly and easily. 

After reading a large number of references and researches, the dissertation is aimed at designing a deep 

learning model based on natural language processing (NLP), LSTM neural network and rule-based 

engine.   
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In the research, a dependency syntax analysis model to create word representations using shallow neural 

network [61] is created to get the word vectors. It reconstructs linguistic contexts of words. It is named 

as Word2vec and used to produce word embeddings.  Word2vec uses the text corpus as input values to 

produce a vector space in serval hundred dimensions.  Each individual word in the corpus is assigned 

a specific vector in the space. Word vectors are positioned in the vector space, so the words share 

common contexts in the corpus are located in close to each other in the vector space.  

The accuracy is improved after adding Rule-based Engine on top of pure LSTM, for example, a bug 

with the real issue_title and description:  

{ 

"id" : 8942, 

 "issue_id" : 68953, 

"issue_title" : "Use after free in PepperPluginDelegateImpl::GetTextInputType on Mac OS", 

"reported_time" : "2008-08-31 02:47:11", 

 "owner" : "", 

"description": "\n[89950,1056861440:11:24:19.994000] Fatal error in file /Users/glider/src/chrome-

commit/src/ppapi/native_client/src/shared/ppapi_proxy/ppb_rpc_client.cc, line 

293: !(ppapi_proxy::PPBCoreInterface()->IsMainThrea\r\nd())\r\n[89950,1056861440:11:24: …EOF 

is received instead of response. Probably, the other side (usually, nacl module or browser plugin) 

crashed.\r\n[89947,2953392128:15:24:20.063623]…, freed by thread T0 here:\r\n    #0 0x7365 in 

AsanThread::Init() (in Chromium Helper) + 229\r\n    #1 0x964d15f9 in free (in libSystem.B.dylib) + 

261\r\n, previously allocated by thread T0 here:\r\n … [89950,1056861440:11:24:19.995000] 

ReleaseResourceMultipleTimes: PPAPI calls are not supported off the main thread\r\nLOG_FATAL 

abort exit\r\n … " 
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} 

Pure LSTM model assigns the bug’s owner field with email alias: scherkus@chromium.org, a wrong 

developer. The reason of why we know it is wrong is because the pre-collected data has the right 

answers(email aliases) in the owner field in the training set. LSTM is a supervised learning, and the 

training model gives a confusion matrix, and it shows that record has the wrong owner prediction 

scherkus@chromium.org. But after the Rule-based engine, since there are many words including nacl, 

browser, plugin, crashed, free, thread, PPAPI and abort in the bug’s description are matching the 

attributes aka keywords list of developer kinaba@chromium.org.  According to a preconfigured 

threshold value on overlapping of the bug’s title, description keywords with the developer’s attributed 

keywords, the Rule-based engine on top of LSTM correctly assigns it to kinaba@chromium.org, a 

correct developer. With more records running through Rule-based engine, the accuracy of confusion 

matrix becomes higher and higher for the hybrid model. 

The dissertation adds LSTM and rule-based engine with expert system and fuzzy logic basic idea to 

design a new bug assignment model. LSTM uses deep neural networks to perform all encoding on such 

transition states as stack, cache, history transfer sequence state, and current dependent subtree collection 

state.  By this way, it makes full use of historical transfer information. More fine-grained modeling of 

words, stacks, caches, transfer sequences, etc. It has more flexible control of parameters tuning in a 

multitasking learning framework. 

With a little more complexity by adding additional memory gates storages and introducing Rule-based 

engine, the hybrid of Layer 1 and Layer 2 model proves that it has better accuracy and generalization 

in the experiment to compare with traditional ones. 

 

 

 

mailto:scherkus@chromium.org
mailto:scherkus@chromium.org
mailto:kinaba@chromium.org
mailto:kinaba@chromium.org
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1.5 Dissertation Roadmap 

 

The research is divided into six chapters, the content of each chapter is arranged as follows: 

Chapter 1 Introduction The research introduces the background of the field of software bug fix 

engineering system and process. It states the main problem space of this dissertation is addressing, the 

automatic defects assignment related work, and briefly introduces the main researches on how deep 

learning neural networks and Rule-based engine aka expert system can solve the automatic defect 

assignment challenges. 

Chapter 2 Software defect assignment traditional theory and approaches The traditional defect 

assignment models divides the current research work into four categories:  

1) Model Based on Fuzzy Logic  

2) Model based on Traditional Machine-learning  

3) Expert System Model  

4) Tossing-graph model  

5) Social-network model  

6) Topic-model.  

Chapter 3 New Software Defect Assignment Model – Layer 1: NLP and Vector for Words The chapter 

introduces the methods of automatic software defect assignment based on text classification aka natural 

language processing. The method of defect is assignment fundamentally based on the text classification 

and how to create word vector dictionary. Generally, the defect report is the main feature to be used for 

the text classification and the developer acts as a label, and then the defect assignment problem is 

converted into the text classification problem.   
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Chapter 4 New Software Defect Assignment Model – Layer 2: LSTM and Rule-based Engine Inspired 

by LSTM, decision trees, and expert systems theories on software defect assignment, the chapter 

decided to apply LSTM, rule engine approach to the automatic of defect assignment research areas. 

The combination of text classification training on LSTM with developer productivity rule architecture 

is discussed for bug assignment project.  

Chapter 5 Data Collection and Experiments Result Many comparative studies are presented. Through 

experiments, it is found that the hybrid model not only has a significant effect on text classification, but 

also has a higher accuracy rate than the traditional learning method for the problem of automatic defect 

assignment.  

Chapter 6 Summary and Future Work This paper summarizes the work of the dissertation, explains the 

main contribution of the research in the field of defect assignment field, and future looks to the next 

step (like BERT, GPT 2 system) based on the current research topics.  
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Chapter 2 Software defect assignment traditional theory and approaches 
 

It is the major and complex task for bug reviewers to assign defects to appropriate assignees in order 

to achieve the purpose of rapid repair defects.  Automating the distribution of bugs can reduce the 

probability of re-routing of bugs and save valuable time for bug fixing.  

However, how to identify candidates of bug assignee and the order of appropriate bug assignees will 

be a huge challenge. At present, there are a large number of methods based on segmentation and 

classification (such as traditional Machine-learning algorithm, social network matrix, etc.) to evaluate 

the experience of software developers, so that you can select the right candidate and pick the most 

suitable bugs for them. 

 The traditional defect assignment models divide the current research work into six categories: 1) Model 

Based on Fuzzy Logic 2) Model based on Traditional Machine-learning 3) Expert System Model 4) 

Tossing-graph model 5) Social-network model 6) Topic-model.  The details are as follows. 

 

2.1 Model Based on Fuzzy Logic 

 

The Bugzie method proposed by Tamrawi et al. [8][9] is a method for automatic bug assignment based 

on fuzzy set and Cache-based model. Bugzie extracts a number of technical aspects of the software 

system, each technical aspect has a number of technical terms (Technical terms).  

Technical capabilities are characterized by a fuzzy set of terminology. Specifically, for developers, 

fuzzy collections represent the expertise of a developer or the ability to resolve defects; for defect 

reporting, a fuzzy collection represents a defect report that requires the expertise of a software developer 

or the ability to resolve defects, and the matching relationship between them, is measured using the 
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membership score. Finally, sorting the candidate developers according to the value of the Membership 

score and selecting the most suitable developer. Experiments show that Bugzie is superior to other 

models in research.[10][11][12][13] For example, in the open source Eclipse dataset, when the 

recommended number is tops, Bugzie only reached it in 22 minutes. 72% accuracy, 49 times faster than 

SVM [12], and accuracy rate has increased by 19%. 

 

Fuzzy logic absorbs the ambiguity of human thinking, and uses the functions of membership function, 

fuzzy relationship and decision-making in fuzzy mathematics to obtain control actions, which are 

generally classified into functions, fuzzy reasoning and fuzzy decision making. Fuzzy logic technology 

has been widely used in the software and hardware industries. It has the following characteristics:      

1. Simple  

Human thinking has the characteristics of ambiguity, and fuzzy logic is similar to human thinking. 

It does not need to first analyze the mathematical model of the system like software bug assignment 

system and can directly use the opinions of experts. It allows designers to describe inputs, rules, 

and outputs with IF...THEN... statements. Its fuzzy subset and membership functions (such as cold, 

hot, etc.) are generally very intuitive. Each input requires only 3 to 8 fuzzy subsets. The membership 

function can also use a simple triangle or trapezoidal form, and often only it takes ten to dozens of 

rules. But using these simple modules can form a control system that performs very complex 

tasks.[14] 

 

2. The software for implementing fuzzy control is short and requires less storage space.  

The fuzzy control system generally requires only a short program and less storage space, which 

requires much less storage space than the control system using the look-up table method and 

requires less storage space than the control system using mathematical calculation methods. There 

are also fewer.[15] 
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3. High speed  

Fuzzy logic software systems can perform complex tasks in a short period of time, rather than 

requiring a large amount of mathematical calculations using mathematical methods. In this way, a 

simple 8-bit microcontroller can be used to perform functions that may require a 32-bit or RISC 

processor. It also performs tasks that were previously too complicated to complete due to 

mathematical calculations.     Moreover, since the fuzzy calculation itself is a parallel structure, 

each input can be fuzzified at the same time, or each rule can be reasoned. This allows fuzzy 

reasoning to be done at high speed using parallel processing hardware. For example, the existing 

fuzzy \ logic chip can complete a fuzzy control within tens of microseconds. 

 

4. Easy and fast development  

With fuzzy logic, you can start designing the approximate fuzzy subset and rules, and then adjust 

the parameters step by step to optimize the system. The various components of the fuzzy inference 

process are functionally independent, so that the system such defect assignment can be easily 

modified. For example, you can add rules or input variables without having to change the overall 

design. For a conventional software defect assignment, adding an input variable will change the 

overall algorithm. When developing a fuzzy bug assignment system, you can concentrate on 

functional goals rather than analyzing mathematical models, so you have more time to enhance and 

analyze the system. [16] 

 

5. Different from Neural Networks  

The basic unit of neural network is a neuron. The two layers of networks are connected by weights. 

Therefore, the knowledge information after learning is distributed in the middle of the weight, while 

the fuzzy logic system stores the knowledge in a regular way, as shown in Fig. 5.  The input in the 

figure is the fuzzy variable A, which is an n-dimensional vector, which is mapped to the 
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dimensional fuzzy vector B by m set of rules, and each rule gets a value like B1, …Bm.  The total 

decision vector B as shown below. The system has more human factors in the form of rule sets, the 

size of regional division and the formulation of rules. If the experience and expert knowledge are 

used, the structure and result of fuzzy logic software system are better than neural network. The 

neural network is obtained by learning by itself. The result is related to the sample set. If the sample 

set is atypical (i.e., the selection is unreasonable), the knowledge storage is not optimal. [17] 

 

Figure 5 Fuzzy Software Defect Assignment System Inputs and Output 

 
2.2 Model based on Traditional Machine-learning 

 
Traditional Machine-learning model, which is different from deep learning neural networks model, can 

learn from the data and create a model. Early work such as Naive Bayes, SVM, and etc. uses traditional 

machine learning methods to determine the appropriate defect assignment. 

The earliest work was a solution proposed by Murphy and Cubranic [18] to automate the distribution 

of software defects. Specifically, they regard the defect assignment task as a text classification problem, 

each defect assignee is a category, and each defect report corresponds to only one category. They used 

one of the most commonly used models in machine learning -the Naive Bayes model.  It is more 

appropriate to predict which software developers should be assigned to a bug. However, the accuracy 
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of their method is not very high. In the large open source software Eclipse, the accuracy of 859 defect 

reports is only 30%. 

To further improve the accuracy of automatic assignment of defect reports, Anvik and his colleagues 

used a variety of different Machine-learning models to predict and recommend defect assignment. They 

used the Naive Bayes model, the SVM model, and the C4.5 model. 

Experiments show that the SVM model is in the open source software Eclipse, Mozilla Fire x [19] is 

superior to the other two models in the data set. Specifically, in the literature [20], the Precision rate 

reached 57% and 64% on the Eclipse and FIREFOX datasets respectively. In the literature [21], they 

used the Component-based method to set the Precision index of the two datasets. They have increased 

to 97% and 70% respectively. 

Lin et al. [22] proposed two methods for automatic defect assignment models based on text information 

and developer recommendation based on non-text information. Non-text information mainly includes 

defect types, defect submission personnel, defect priority, and so on. It is worth mentioning that this is 

the first time that text in Chinese language is used to automatically assign software defects. They use 

SVM algorithm automatically assigns defects based on Chinese text while using C4 · 5 decision tree 

algorithm automatically assigned based on the bug’s non-text information. 

Ahsan et al. [23] used feature selection and Latent semantic indexing (LSI) to reduce the dimensions 

of the Term-to-document matrix. They used a variety of machine learning algorithms to recommend 

defect fixers. The final results show that the LSI-based SVM model achieves the best results with an 

average Precision and Recall values of 30% and 28%, respectively. 

 

Xuan et al. [24]proposed a semi-supervised text classification method. In order to effectively improve 

the inefficiency of defect  class labeling in supervised learning, they use the EM (Expectation-

Maximization) algorithm to improve the classification performance of the Naive Bayes classifier, using 
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a small number of marked bug reports and a large number of unmarked defect reports to complete the 

auto bug assignment task.  Experiments have shown that this semi-supervised model can improve the 

accuracy of 6% compared to the normal Naïve Bayes method. 

In order to filter the noise data reported by the defect filing process, Zou et al [25]. used the feature 

selection model and the instance selection model to reduce the scale of the training set and improve the 

quality of the training data. They use the Naive Bayes method to verify the effect of automatic defect 

assignment. The results show that the Naive Bayes method using the feature selection model is 5% 

better than the normal Naive Bayes, while the Naive Bayes method using the instance selection model 

is not as effective as the normal Ne Bayes. 

Xia et al. [26] proposed a precise assignment model called DevRec to implement the recommendations 

of defect repairers. DevRec comprises two analysis methods, one is based on the analysis method of 

Bug reporting, abbreviated as BR assay (BR- based analysis), the other is based on analysis of the 

Developer, referred to as D assay (D-based analysis). Using feature values in defect reports, such as 

Terms, Product, Component, Topics, etc., BR analysis can use Multi-Label KNN to find K historical 

defects related to newly found defects. D analysis uses the characteristics of Terms, Product, 

Component, and Topic to calculate the similarity between developers. Finally, the BR analysis method 

and the D analysis method are combined to complete the automatic assignment task of the defect report. 

Experiments show that the average Recall rate of the DevRec method is increased by 39.39% and 89.36% 

compared with the Bugzie [27] model and the DREX [28] model, respectively, under the 

recommendation of top 10 developers. 

 

2.3 Expert System Model 

 

Matter et al [29]. modeled the software developer's source code vocabulary and the vocabulary in the 

defect report and used the Cosine measure to calculate the similarity of two-word vectors.   Experiments 
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show that, in the case of the recommended number is top 1, Precision rate may reach 33.6%; in the case 

of the recommended number is top10, recall rate may reach 71%. 

Servant et al. [30] developed a tool for implementing the automatic bug assignment, which consists of 

bug line location, history mining, and expertise assignment. Specifically, the historical information of 

the source code change is combined with the diagnosis information about the defect location, and the 

candidate developers are sorted to achieve the recommendation purpose. Experiments show that under 

the condition that the recommended number is top3, the accuracy rate of 81.44% can be achieved. 

 

Expert system model and neural network system have different precision.  Both systems can map a 

nonlinear system, but their mapping surfaces are different. The neural network uses point-point 

mapping, so the functional relationship between its output and input is different, and the expert system 

is different. It is a reflection between the rule regions. If the regions are relatively coarse, the surface 

of the mirror output has low precision. For example, if each rule is a trapezoidal step, the output will 

be coarse. Therefore, for the mapping with higher precision, the artificial neural network is better, and 

for the lower precision requirement, the expert system can be used for mapping.  For software defect 

assignment, we need high precision, therefore neural network will work better. 

Neural networks need to calculate multiplication, accumulation, and exponential operations, while 

expert system calculations are relatively small, and the rules involved in each iteration are generally 

small. However, when the accuracy of the expert system needs to be improved, the number of rule 

subsets increases correspondingly, and the amount of calculation increases. 

Furthermore, the neural network is connected to the feed-forward network. For example, once the input 

and output and the hidden layer are determined, the connection structure is determined. After learning, 

almost every neuron is associated with the previous layer of neurons, so it is controlled. In each iteration 

of iteration, each weight and bias must be learned. In expert system model, each input may be related 

to only a few rules, so the connection is not fixed, and the rules for each input and output are changeable. 
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2 .4 Tossing-graph Model 

 
In general, the process of assigning a defect begins with the first assignee and then passes to the next 

developer until the last fixer. Each pass is called a Tossing step, and a set of pass steps is called a 

Tossing path.  Assuming that the transmission path of a defect is A-B-C-D, the goal of Jeong et al [31]. 

is to predict a shorter transit path from A to D will speed up the process of defect repair. Experiments 

show that on the open source software Eclipse and Mozilla datasets, compared to pure machine 

learning-based models (such as Naive Bayes and Bayesian Network [32]), the Tossing model can 

greatly improve the accuracy of automatic defect assignment. 

Bhattacharya and Neamtiu [33] use a variety of techniques to shorten the length of the delivery path , 

including the use of additional features for Refined classification and update model during real time 

training, using more accurate ranking methods, and Multi-features of Tossing graph, etc.  Experiments 

show that the accuracy rates of the open source software Eclipse and Mozilla datasets are 84% and 

82.59%, respectively.   

In the literature [34], Bhattacharya uses the Naive Bayes model based on the product-component feature 

and combines the Tossing graph and the incremental learning (Incremental learning) method to 

complete the task of automatic defect allocation. The accuracy rate on the Mozilla dataset has increased 

to 85 % and the accuracy rate on the Eclipse dataset has increased to 86%. Compared to the previous 

work, the automatic allocation effect is greatly improved. 

 
2 .5 Social-network model 

 

In recent years, social network (Social network) technology began to be used defect assignment 

research area. Usually people use the comment and social chat and rating activity in the defect web site 

or reports to build a social network, and then through the social network between the developers to 
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analyze, you can know which developers have a wealth of repair experience in solving certain defects. 

With that information, the model can give right defects to proper developer to fix. 

Wu et al. [35] use the KNN model to search for historical defect reports similar to newfound bugs.  

Then the reviewers involved in the historical defect report are used as candidates, and the last use 

frequency and other six social network indicators (In-degree centrality, Out-degree centrality, Degree 

centrality, PageRank, Betweenness centrality, Closeness centrality) to recommend a suitable defect 

repairer. After comparing the frequency and the distribution of the other six social network indicators, 

the authors believe that the frequency and Out-degree indicators can achieve the best results. 

Xu et al. [36] analyzed the social network to explore the developer prioritization information and then 

integrated it into the SVM model or Naive Bayes model to automatically assign defects. The results 

show that the analysis of the developer priority information obtained by the social network can 

effectively improve the accuracy of the SVM model and Naive Bayes model defect assignment. 

 

2.6 Topic-model 

 

The more similar topic the bugs have, the closer the bugs are related. Therefore, the topical modeling 

of the defect report (Topic model) can be used to evaluate the similarity between the new defect and 

the historically fixed defect. Researchers hope to further improve the accuracy of the defect assignment 

model by introducing relevant methods of topic modeling. 

Xie et al. [37] proposed a defect repairer recommendation method called DRETOM, which uses 

Stanford Topic Modeling Toolbox (TMT). [38] 

Given a new defect report, it is easy to confirm which set of topics the defect report should belong to, 

and then by analyzing the interests and experience of the developers in each set of topics, you can assign 

appropriate repairers to the new defects.  Experimental results show that the DRETOM method works 
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better than general machine-based learning (such as SVM model, KNN model) and social network-

based methods. 

The LDA [39] model is a probability generation model that generates different topics for discrete data. 

Naguib et al. [40] used the LDA model to classify defect reports into different topics, then created an 

activity profile for each developer by mining historical log records and topic models, and finally they 

used activity profiles and new defects information. The topic models and their own sorting algorithms 

are used to find the most appropriate defect fixers. Experiments show that the average hit rate (Hitrate) 

of this model can be reached 88%. 

Yang et al. [41] used TMT to model the defect assignment, and then extracted historical defect reports 

with the same subject as the new bug. Based on multiple features of the new bug such as Product, 

Component, Priority, the model re-screens those bugs.  Then it rebuilds the social network model based 

on the developers in the remaining historical defect reports. Finally, it uses the bugs’ comment activity 

related to the source code and the activity of change lists for defect assignment. Experimental results 

show that this method is better than DRETOM and social network-based methods. 

Zhang et al. [42] also used the LDA method to extract historical information from defects reports. It 

obtains information on whether developers are interested in a topic by understanding the code check-

in of activities of relevant developers under the same area. In addition, Zhang et al. analyzed the 

relationship between relevant developers (such as defect reporters and defect fixers) and then combined 

the topic model with the relationship model. Experiments show that on the open source software Eclipse 

dataset, this method is 3 % and 16.5% higher than the DRETOM and the previous mentioned activity 

summary-based models. 

2.7 Chapter summary 

 
The chapter mainly introduces the mainstream methods in the field of automatic assignment of software 

defects. They are the following six principal methods: 1) Model Based on Fuzzy Logic 2) Model based 



25 
 

 
 

on Traditional Machine-learning 3) Expert System Model 4) Tossing-graph model 5) Social-network 

model 6) Topic-model.   

Firstly, fuzzy logic methods are applied to bug assignments in the early stage of research topic.  

Secondly, the traditional machine learning method was the mainstream of defect assignment, many 

improved methods are based on it. 

Thirdly, feature selection or composite models can improve the accuracy of machine learning-based 

methods like Expert System Model and Tossing-graph model. 

Finally, the introduction of new technologies (such as social networks and topic models) can further 

enhance the effects of machine learning-based models. 

Next two chapters the paper will introduce a new software defect assignment model. It includes the 

layer 1 – vector for words, and layer 2 – LSTM and rule-based engine. The new model flow diagram 

is shown in Fig. 6.   

 

Figure 6 The model of new software defect assignment system 
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Chapter 3 New Software Defect Assignment Model – Layer 1: NLP and 

Vector for Words 
 

The method of defect assignment is fundamentally based on the text classification.  Generally, the 

defect report is the main feature to be used for the text classification and the developer acts as a label, 

and then the defect assignment problem is converted into the text classification problem. Therefore, in 

the following descriptions of text classification and defect assignment, the two problems of text 

classification and defect assignment are deemed as the same problem space we are addressing, we use 

the two wordings interchangeably. 

The traditional practice of text categorization is to use a bag model to represent text features and then 

use standard machine learning’s classification models (such as SVM models) for classification. As we 

all know, the word bag model does not contain the word order information of the text, and then lacks 

the representation of the grammatical and semantic aspects of the text, resulting in limited accuracy of 

the final classification model.  

The literature [43][44][45] use two-word phrases (Bi-grams) instead of single words (Unigrams) to 

make up for the lack of text on the lack of word order information.  

However, the work of the document [46] proves to use a multi-word phrase (N-Grams, the method of 

N>1) is not a very effective method. Although this method alleviates the problem of missing word order, 

it greatly increases the sparseness of text representation.  

Therefore, it is a challenge to make full use of the word order information of the text, and learn the 

grammatical and semantic knowledge of the text sequence, while at the same time cannot increase the 

sparseness of the text representation.  

 

3.1 Model Overview 
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In the text classification algorithm introduced in the previous chapter, most algorithms need to construct 

text features manually. Such feature construction is very labor-intensive, and the scalability is not good, 

and it is not easy to obtain during the process of feature extraction.  Therefore, the models presented in 

this chapter do not use these classic text features.  The paper is proposing two layers model to solve the 

problem.  

The word vector representation is the first layer in my software defect assignment problem space, 

followed by the second layer which is modeled with LSTM and rule-engine which will be discussed by 

Chapter 4 in details.  

The first layer for word vector model maps discrete words in each text into a fixed-dimensional feature 

vector to get the word direction. They are accessed by the second layer hierarchical LSTM to get a 

vectorized representation of the entire document.  

Chapter 3 will focus on my model research on the layer 1: Defect Reports and Vector for Whole Words 

areas. 

For our bug text reports, we need to build a word vector to feed into the LSTM described above so in 

the text, each word has its own probability and statistics.  Therefore, word vector representation, also 

named as Word Embedding needs to be introduced. Before elucidating the vector model, the first thing 

to determine is the size of the text and how to represent text sequences. The model that solves such 

problems is called a vector representation, because the process of text sequence representation is the 

process of vectorizing the text sequence. This paper is designed to explain it as much as possible, which 

is beneficial for later understanding of the LSTM neural network model. 

New model summary with focus on layer 1 is described in the following diagram Fig 7. 
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Figure 7 Defect Assignment Model Layer 1 

 

Algorithm 1: Dataset Preprocessing by word2vector 

Input: 

Untriaged bug set and triaged bug set 

Output: 

A set of unique words that occurred for at least k-times in the corpus  

 

1: BEGIN 

2: Set up the min_count, size, window of word2vec function 

3: Set up the batch_size, epoch, iteration of classifier hyper parameters 

4: Preprocess the untriaged bug set and extract the vocabulary and learn the word2vec representation 

5: FOR each sample in untriaged bug set 

6:           Remove the return character “\r” 

7:           Remove the URLs of online resource 

8:           Remove the stack trace 

9:           Remove the hex code 

10:         Change all letters to lower case 

11:         Handle the tokenize 

12:         Remove the punctuation marks 

13: END FOR 

14: PRINT a set of unique words 

15: Learn the word2vec model and extract vocabulary      

16: Preprocess the triaged bug set and use the extracted the vocabulary 

17: FOR each sample in triaged bug set 

18:          Remove the return character “\r” 

19:          Remove the URLs of online resource 
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20:          Remove the stack trace 

21:          Remove the hex code 

22:          Change all letters to lower case 

23:          Handle the tokenize 

24:          Remove the punctuation marks 

25: END FOR 

26: Add all values of label “owner” to array all_owner 

27: END 

 

Let’s go through the implementation of our approach. The necessary packages for the implementation 

are: Numpy, NLTK, Gensim, Keras and Scikit-learn. They can be imported into python as following: 

import numpy as np 

import warnings 

warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim') 

np.random.seed(1337) 

import json, re, nltk, string 

from nltk.corpus import wordnet 

from gensim.models import Word2Vec 

from keras.preprocessing import sequence 

from keras.models import Model 

from keras.layers import Dense, Dropout, Embedding, LSTM, Input, merge, Concatenate, 

concatenate 

from keras.optimizers import RMSprop 

from keras.utils import np_utils 

from sklearn.feature_extraction.text import CountVectorizer 

from sklearn.feature_extraction.text import TfidfTransformer 

from sklearn.naive_bayes import MultinomialNB 

from sklearn import svm 

from sklearn.linear_model import LogisticRegression 

from sklearn.multiclass import OneVsRestClassifier 

from sklearn.metrics.pairwise import cosine_similarity  

from keras.utils import to_categorical 

 

First, we hard-coded the dataset absolute path first to ensure our system could get the source of data 

needed to process. In this project, we use two datasets: 1. Untriaged bug dataset is used to learn the 

target deep learning model in an unsupervised manner. 2. Triaged bug dataset is used for classifier 

training and testing by cross validation. Another web data is used for bug triage improvement by custom 

rule engine. 
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open_bugs_json = 'C:\dataset\TestData.json' 

closed_bugs_json = 'C:\dataset\TrainData.json' 

web_data_address = 'C:\dataset\webData.json' 

 

Second, we set up the initialization of global variable, which divides into two parts. The parameters of 

first part is for word2vector function as following: 

min_word_frequency_word2vec = 5  

embed_size_word2vec = 200 

context_window_word2vec = 5 

 

min_word_frequency_word2vec means a set of unique words that occurred for at least specific times is 

extracted as the vocabulary. embed_size_word2vec means dimension of the embedding vector. 

context_window_word2vec means how many words to consider left and right. The parameter of second 

part is to define the number of cross validations, the number of iteration times and the batch size of 

parallel computing. 

numCV = 5 

max_sentence_length = 50 

min_sentence_length = 15 

rankK = 10 

batch_size = 32 

myEpochs = 5 

 

numCV means the number of cross validations, myEpochs means the number of iteration times for all 

the training examples, batch_size means the number of samples that will be propagated through the 

network. The higher the batch size, the more memory space you'll need. For instance, let's say you have 

1000 training samples and you want to set up a batch_size equal to 100. The algorithm takes the first 

100 samples (from 1st to 100th) from the training dataset and trains the network. Next, it takes the 

second 100 samples (from 101st to 200th) and trains the network again. We can keep doing this 

procedure until we have propagated all samples through of the network. rankK means the user can 

configure your own specific times for accuracy. min_sentence_length means the minimum processing 
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range of time steps in LSTM model. max_sentence_length means the maximum processing range of 

time steps in LSTM model. 

Third, there are id, issue id, issue title, reported time, owner and description options in each bug sample 

of the untriaged dataset, one case is shown in the following table. It is necessary to preprocess them so 

that we can process the valid data easier. For untriaged dataset, we only focus on the issue title and 

description. We removed the return character “\r”, the URLs of online resource, the stack trace, the hex 

code and so on, and store these scattered words into an array: all_data as following: 

[testing, if, chromium, id, works, what, steps, will, reproduce, the, problem, is, expected, output, do you 

see instead, please, use, labels, and, text, to, provide, additional, information ] 

{ 

 "id" : 1, 

 "issue_id" : 2, 

 "issue_title" : "Testing if chromium id works", 

 "reported_time" : "2008-08-30 16:00:21", 

 "owner" : "", 

 "description" : "\nwhat steps will reproduce the problem\n1\n2\n3\n\r\nwhat is the expected 

output what do you see instead\n\r\n\r\nplease use labels and text to provide additional information\n 

\n" 

} 

 

We use the Word2Vec method to learn a bug representation (Continuous Bag of Words) model, then 

extract vocabulary. The vocabulary is in the vocab field of the Word2Vec model's wv property, as a 

dictionary, with the keys being each token (word). 

wordvec_model = Word2Vec( all_data, min_count=min_word_frequency_word2vec, 

size=embed_size_word2vec, window=context_window_word2vec) 

vocabulary = wordvec_model.wv.vocab 

 

Fourth, to preprocess the triaged dataset is very similar to the operation of processing the untriaged 

dataset. We store the title and description of every bug into an array, and the owner into another array 

as well for the following computing. The use-case of triaged dataset is shown below.  
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{ 

 "owner" : "amit@chromium.org", 

 "issue_title" : "Scrolling with some scroll mice (touchpad, etc.) scrolls down but not up", 

 "description" : "\nProduct Version      : <see about:version>\r\nURLs (if 

applicable) :0.2.149.27\r\nOther browsers tested: Firefox / IE\r\nAdd OK or FAIL after other 

browsers where you have tested this issue:\nSafari 3:\n    Firefox 3: OK\r\n         IE 7:OK\r\n\r\nWhat 

steps will reproduce the problem?\n1. Open any webpage on compaq 6715s running vista.\r\n2. Try 

scrolling with the touchpad\r\n3. Scrolling down will work , but up will not.\r\n\r\nWhat is the 

expected result?\nThe page to scroll up.\r\n\r\nWhat happens instead?\nThe page doesn't 

move.\r\n\r\nPlease provide any additional information below. Attach a screenshot if 

\r\npossible.\r\nOnly a minor bug.\n " 

 } 

 

After preprocessing, the all_data and all_owner will be: 

All_data = [ scrolling, with, some, scroll, mice, touchpad, etc, scrolls, down, but, not, up, product, 

version, see about, if, applicable, other, browsers, tested, firefox, ie, add, ok, or, fail, after, other, 

browsers, where, you, have, tested, this, issue, safari, 3, 7, what, steps, will, reproduce, the, problem, 

open, any, webpage, on, cmpaq, 6715s, running, vista, 2, try, touchpad, down, but, is, expected, result, 

page, to, happens, instead, doesn't, provide, any, additional, information, below, attach, a, screenshot, 

possible, only, a,  minor, bug ] 

All_owner = [amit@chromium.org ] 

3.2 Word Vector Representation 

 

Text granularity is generally divided into characters, words, phrases, even paragraphs and even an 

article, which are theoretically acceptable. They correspond to character vectors, word vectors, and 

phrase vectors respectively (some papers are also called region vectors), paragraph vector and article 

vector. My paper uses a word vector model based on word granularity, which is also a commonly used 

vector model in the field of natural language processing. 

The first method for word embedding is one-hot method. The model treats words as an indivisible 

individual, and then use a dimension equal to the number of words, only the position corresponding to 
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the word is 1 and the rest of the sparse vector is 0. This representation is called a "one-hot 

representation". However, this method also has a serious flaw, that is, the words exist in isolation, and 

the similarity between two words cannot be quantified. 

For example, there are three words software, networking, kernel. Then generate a three-dimensional 

vector, each word occupies a position in the vector, software: [1,0,0] networking: [0,1,0] kernel: [0,0,1]. 

So if an article now has 1000 words, then each vocabulary will be represented by a 1000-dimensional 

vector, where only the position of the word is 1, and the rest of the positions are all 0, and each word 

vector is irrelevant.. The benefits of doing this are simple, but not very realistic. It ignores the 

correlation between words, ignoring the tense of English words, such as get and got have the same 

meaning, but the tense is different. 

The second method is n-gram method. N-gram refers to consecutive n items in the text (item can be 

phoneme, syllable, letter, word or base pairs). In n-gram, if n=1, it is unigram, n=2 is bigram, and n=3 

is trigram. After n>4, it is directly referred to by numbers, such as 4-gram, 5-gram. These are the linear 

relationships of the semantic space. We can do addition and subtraction. Moreover the language model 

for n-gram is to estimate the probability of word sequence, for a word sequence: W1, W2, W3, …., Wn, 

it can get the Probability of (W1, W2, W3, …., Wn ).  

For example, we have a sentence, “We are going to assign the UI crash bug to Peter”, if bigram is used, 

it will be: We are, are going, going to, to assign, assign the, the UI, UI crash, crash bug, bug to, to Peter. 

In Python code to implement bigram model:  

sent= “We are going to assign the UI crash bug to Peter” 

bigram = [] 

for i in range(len(sent)-1): 

   bigram.append(sent[i] + sent[i+1]) 

print(bigram) 

 

Output will be:  
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We are, are going, going to, to assign, assign the, the UI, UI crash, crash 

bug, bug to, to Peter 

 

and the language model for bi gram:  

P (“We are going to assign the UI crash bug to Peter”) =P(We|START) 

P(are|We) P(going|are) P(to|going) P(assign|to) P(the|assign) P(UI|the) 

P(crash|UI) P(bug|crash) P(to|bug) P(Peter|to) 

P(Peter|to) = Count (to Peter) / Count(to) 

 

It is easy to generalize to trigram and n-gram. If trigram is used, it will be: We are going, are going to, 

going to assign, to assign the, assign the UI, the UI crash, UI crash bug, crash bug to, bug to Peter. In 

Python code to implement trigram model:  

sent= “We are going to assign the UI crash bug to Peter” 

trigram = [] 

for i in range(len(sent)-2): 

   trigram.append(sent[i] + sent[i+1] + sent[i+2]) 

print(trigram) 

 

Output will be:  

We are going, are going to, going to assign, to assign the, assign the UI, 

the UI crash, UI crash bug, crash bug to, bug to Peter 

 

Finally, n-gram implementation will be as follows: 

def nGram(lst,n): 

    ngram = [] 

    for i in range(len(lst)-n+1): 

        ngram.append(lst[i:i+n]) 

print(ngram) 
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Call nGram(), sent==" We are going to assign the UI crash bug to Peter ", n can be a number less than 

len(lst). 

The challenge of n-gram is the estimated probability is not accurate, especially when we consider n-

gram with large n because of data sparsity, shortage of training data, and uncontrollable size of 

dictionary. Though there is some solution like language model smoothing by giving some small 

probability to address the challenge, the results are not ideal.  

There is a very successful view in the field of modern statistical natural language processing: the word 

can be well studied using only the words around the word. This provides a new idea: one of the easiest 

and quickest ways is to use a window-based co-occurrence matrix to represent text, using different 

window lengths to capture different syntax and semantics about text. The final co-occurrence matrix 

can get some generalized topics (such as software words, engineering words, etc.), which is equivalent 

to a shallow semantic analysis (Latin Semantic Analysis, LSA).  

However, as the size of vocabulary in the corpus continues to increase, the co-occurrence matrix will 

become larger and larger, which will not only cause large-scale storage problems, but also encounter 

large-scale sparse matrix problems during training, which is more important. The model is not robust 

enough and does not have good generalization capabilities. 

This is because the dimensions of the model are too high. Is it possible to use a fixed, low-dimensional 

vector to store text information? In fact, this model is real, and this vector is generally called a dense 

vector. There are two main ways to get a dense vector: the first one, using dimensionality reduction to 

reduce the sparse high-dimensional data into dense low-dimensional data, the typical method is singular 

value decomposition (SVD); the second, direct learning can be used to represent dense vectors of words. 

In related models (including deep learning models), there are many models that can learn the dense 

vector of words by model training. This dense vector is not only very effective, but also plays an 

important role in the field of natural language processing. 
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To solve the above problems, many neural networks model uses the matrix factorization language 

model including the following Word2Vec method.   The following Figure 8 shows how matrix 

factorization works. From the table in the following diagram, the history of developer “Peter” and 

“Rob” can have similar hPeter and hRob. If vfix Kernel ∙ hRob is large, vfix Kernel ∙ hPeter would be large 

accordingly, even though we have never seen “Peter fixes Kernel bug”. The neural network has the 

smoothing automatically done. 

 

Figure 8 Bug Assigner Matrix Factorization 

 

Mainstream of NLP prediction method is based on neural network models. On the contrary to traditional 

Statistics Method such as N-gram model, the neural network models are based on many parameters, 

and a judgment model. It employs the word vectors of text context as inputs and compute the current 

word probability distribution through the neural network. The current popular method is the third one, 

Word2Vec, which my research has chosen for defect assignment model.  This is a method that Tomas 

Mikolov invented when working at Google and is also the name of a toolkit that is open sourced by 
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Google. Specifically, Word2Vec involves two algorithms, one is CBOW and the other is Skip-Gram. 

This is also the Word Embedding method based on neural networks after deep learning is popular. The 

reason why Word2Vec is so popular now is different from some previous Word Embedding methods, 

which can automatically implement: 1) the measurement of semantic similarity of words; 2) the analogy 

of semantics of vocabulary. Here, the semantic analogy reflects a relationship. Word2vec is a two-layer 

neural net that processes text. Its input is a text corpus and its output is a set of vectors: feature vectors 

for words in that corpus.  

While Word2vec is not a deep neural network, it turns text into a numerical form that deep nets can 

understand. Word2vec’s applications extend beyond parsing sentences in the wild. It can be applied 

just as well to genes, code, likes, playlists, social media graphs and other verbal or symbolic series. 

Because words are simply discrete states like the other data mentioned above, and we are simply 

looking for the transitional probabilities between those states: the likelihood that they will co-occur.  

The purpose and usefulness of Word2vec is to group the vectors of similar words together in vector 

space. That is, it detects similarities mathematically. Word2vec creates vectors that are distributed 

numerical representations of word features, features such as the context of individual words. It does so 

without human intervention. Given enough data, usage and contexts, Word2vec can make highly 

accurate guesses about a word’s meaning based on past appearances. Those guesses can be used to 

establish a word’s association with other words (e.g. “developer” is to “tester” what “coder” is to 

“verifier”), or cluster documents and classify them by topic. Those clusters can form the basis of search, 

sentiment analysis and recommendations in such diverse fields as scientific research, legal discovery, 

e-commerce and customer relationship management. 

The output of the Word2vec neural net is a vocabulary in which each item has a vector attached to it, 

which can be fed into a deep-learning net or simply queried to detect relationships between words. 

Measuring cosine similarity, no similarity is expressed as a 90-degree angle, while total similarity of 1 
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is a 0-degree angle, complete overlap. The detailed code for bug defect on word2vec in my project is 

implemented in the Table 1. Those noise words are removed from the model. 

 

from gensim.models import Word2Vec 

# Word2vec parameters 

min_word_frequency_word2vec = 5 

embed_size_word2vec = 200 

context_window_word2vec = 5 

wordvec_model = Word2Vec (all_data, 

min_count=min_word_frequency_word2vec, size=embed_size_word2vec, 

window=context_window_word2vec) 

# vocabulary 

vocabulary = wordvec_model.wv.vocab 

vocab_size = len(vocabulary) 

 

Table 1 Function to preprocess the text in bug report 

 

A vector representation refers to a multi-dimensional vector table for an objective natural language (eg, 

a word). It is usually characterized by low dimensionality, continuous, and dense properties. In fact, 

there are two definitions in the field of natural language processing for word distribution. First one is 

called " distributional representation " and can be traced back to Semantic distributional Hypothesis 

(Distributional Hypothesis) proposed last century Firth: "You shall know a word by the company it 

keeps” [48][50]. The hypothesis states that the meaning of a word is determined by its context. That is 

to say, words with similar contexts usually have similar meanings. The definition is called “distributed 

representation” was first proposed by Hinton [51]. 

Hinton considers the activation vector of the middle-hidden layer neurons in neural network as 

“distributed representation” of the input data. Bengio firstly uses the "word embedding" method, which 

maps words to their distributed representation vectors, and then passes the neural network language 
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model as Neural Network Language Model, referred NNLM., its iterative update [52]. Therefore, this 

lexical distribution representation is also known as word embedding. 

we first build a word-context (word-context) occurrence matrix, then using the matrix decomposition 

technique to reduce the dimension, to get the score of each word’s distributional representation vector.  

There are three important technical details:  

1. The choice of context. Different contexts determine the nature of the resulting word distributional 

representation. The more commonly used context is the documents model [53], or the model on words 

in the context of a certain window [54]. 

In general, if the context is a document or a disordered context, then the word representation is more 

inclined to show the subjective or semantic level characteristic. If the context is a word that is closer to 

the target word, or the word order information is preserved, then the word distributional representation 

will contain more syntactic properties.  

Feature on the context syntax tree constructs semantic spaces that take syntactic relations into 

account. [55] From the model, the word representation will contain more properties of the dependent 

syntactic relations.  

2. Determination of the median value of the co-occurrence matrix. It is generally necessary to weight 

the co-occurrence matrix to make the matrix’s every element able to express the better interaction 

between words and context.  Commonly used weighting methods are, Pointwise Mutual Information 

(PMI), logarithm, and so on. 

3. Dimension reduction. In the co-occurrence matrix, each word corresponds to a high-dimensional and 

sparse vector representation. Therefore, it is necessary to reduce the dimension. The most commonly 

used dimension reduction methods are SVD described before, Non-negative Matrix Factorization 

(Non-negative Matrix Factorization, NMF), Canonical Correlation Analysis (CCA), and Hellinger 
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PCA [56], etc. In addition, some nonlinear dimension reduction methods can also be used, such as self-

encoders Autoencoder.  

Dimension reduction can eliminate some of the noise contained in the original vector, and it will also 

lose some of the information that may be valuable. Therefore, in real practices, it needs to be properly 

adjusted for the vector dimension after dimension reduction. It is worth mentioning that 

the Glove model proposed by Pennington et al. [57] Glove model can be considered a matrix 

decomposition on word to word basis, which uses regression to fit the model on the weighted co-

occurrence matrix. Unlike other matrix decomposition methods, Glove only considers non-zero values 

in the matrix. 

For the following example, there is an article with 1000 words, but we don't need 1000-dimensional 

representation now, but map these 1000 words to 100-dimensional or other smaller dimensions, and 

then each word is a 100-dimensional vector. Each vector is not as sparse as the one-hot method but has 

specific values. We can see that the n words after mapping are similar in semantics, such as fix xml and 

fix kernel, which are verbs, and both developers Peter and Rob are software engineers. Then the word 

vector of the two words (the vector where the line where the word is located is connected to the origin) 

is relatively close. The advantage of doing this is that synonyms or words with different tenses will 

have their word vectors very close, preserving the semantics of the article.  

The following Figure 9 shows how neural network works for language modelling.  
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Figure 9 Neural network for Developer Assignment 

The model uses Maximum likelihood estimation, MLE or other proper loss function to train the network 

parameters. After training, every line in the matrix E has corresponding word vector distribution 

representation. 

If the model is used to train the text or description in bug report, the inputs are the words. If the model 

is aimed at obtaining distribution representation, the inputs can be anything, can be any words including 

predicting words, phrases before or after the training sentence, or other information. Word embedding 

concepts are applied to RNN language model (RNNLM). [58]RNNLM is a time sequence model that 

allows the language to be built by feedback from the hidden layer to the input layer. The model can 

take advantage of longer historical information. In addition, Mnih and Hinton propose log-

bilinear Introduction model (referred to LBL) [59][60], to remove the non-linear transformation 
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operation in hidden layer, at the same time, the output layer directly uses the word vector matrix as the 

weight matrix.  

LBL model’s training efficiency is significantly better than the feedforward neural network language 

model and the RNNLM. Based on similarity theory, Mikolov proposed word2vec [61], which greatly 

simplified the structure of the feedforward neural network language model and optimized the learning 

efficiency of the model, made the model easily train big data to obtain the distribution function of 

training words.  

Two important models are used in word2vec, one is Continuous Bag-of-Words Model, referred as 

CBOW and the other is Skip-gram Model. For the CBOW model, conditions on context, and generate 

center word as shown below, Figure 10. 

 

Figure 10 CBOW model in word2vec model 

Compared with the previous model, the CBOW model has simplified the networks in two 

ways: 1. Removed the nonlinear hidden Layer; 2. Compared with LBL , CBOW does not consider the 

word order information of the context, but sums the input context words’ vectors and averages, and 

gets the product of the vector and the target word vector.  

word2vec uses two distribution matrices, one for word vectors’ input and the other for output. In 

addition, word2vec actually is a directed graph, all of "context" to "word" connections are all directed 

edges. Therefore, it has different matrices for input and output, as in the LSA.  

In fact, similar to "counting" model, word2vec prediction model can also use richer contexts, such as 

the context of dependencies [62]. 
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For the Skip-Gram model, it is to generate each word in context given center word as shown below, 

Figure 11. The Skip-gram model can be considered as a special case of the CBOW model. In the Skip-

gram model, we only select one-word c from the context set C each time and use its word vector as a 

model to predict the target word.  

Similarly, maximum likelihood estimation can be used for training. So, in the Skip-gram model, 

actually it is directly modeling the context co-occurrence relationship between "word" and "word” and 

is similar to LSA. Since it is time inefficient to traverse the entire vocabulary in output 

layer, word2vec provides two methods in order to improve training efficiency. Firstly, 

hierarchical SoftMax [63], and secondly negative sampling technology. It has been proven that 

the Skip-gram model using negative sampling technique is equivalent to an implicit matrix 

decomposition [64]. 

 

 

Figure 11 Skip-Gram model in word2vec model 

 

In recent years, the academic community has been discussing the advantages of the "counting" model 

and the "prediction" model. For example, Baroni et al. demonstrated with experimental results on 

lexical semantic related tasks the fact that the "prediction" model is significantly better than the 

"counting" "Model" [65]. 

While Levy et al. prove that if similar technical methods in word2vec are applied to the “counting” 

model, there is no significant difference in the performance of the “predicting” and “counting” models 
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[66]. But overall, because "counting" model involves matrix decomposition operations with high 

memory overhead, it limits its extensibility to bigger data size. 

At the same time, the “counting” model generally requires detailed adjustments to the details in order 

to reach high efficiency, as comparable to “predicting” model.  Therefore, researchers are using more 

"predicting" models, especially such as word2vec. 

To get a closer look at Skip-Gram and CBOW, we will actually use Word2Vec in Python. Note that 

the corpus we use to train the model is the Brown corpus in NLTK. In practice, obtaining a higher 

quality model often means a larger corpus, which of course means more training time shows in Table 

2. Those noise words are removed from the model. 

Import gensim, logging, os 

logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s'

, level=logging.INFO) 

Import nltk 

Corpus = nltk.corpus.brown.sents() 

Fname = 'brown_skipgram.model' 

If os.path.exists(fname): 

    Model = gensim.models.Word2Vec.load(fname) 

Else: 

    Model = gensim.models.Word2Vec(corpus, size=10, min_count=5, 

workers=4, iter=30) 

    Model.save(fname)  

Now that we have the model, let's evaluate the quality of the model. 

We want to evaluate the similarity between the following words. 

Words = "kernel drivers sensor hardware gps location productivity 

bug".split() 

For w1 in words: 

    For w2 in words: 

        Print(w1, w2, model.similarity(w1, w2)) 
 

 

Table 2 Code to predict next word probability 

 

The output sample is as follows: 

 

Kernel kernel 1.0 

Kernel drivers 0.3451595268 

Kernel sensor 0.607956254336 

Kernel hardware 0.761190251497 

Kernel gps 0.55852293015 

Kernel location 0.24118403927 



45 
 

 
 

Kernel productivity 0.178044251325 

Kernel bug 0.0751838683173 

 

The output content is long, not all listed here, the reader can perform the experiment and observe the 

output. The Word2vec model can easily and quickly fuse new sentences and documents or add new 

words to the vocabulary. It not only encodes the similarity of words well, but also captures more 

complex text features. Such as grammatical features. More importantly, the trained word vector can 

enhance the effect of other text tasks and has a strong ability to generalize and migrate. 

In general, to get a good set of dense word vectors, we not only need good representation models and 

parameter debugging, but the model also uses a large amount of corpus data. This paper uses the pre-

trained word vector as the reference vector, that is, the word vector model trained on the Google News 

dataset (about 100 billion words) based on the CBOW model of Word2Vec (download URL: 

https://code.googIe.com/ Arch1ve/p/word2vec). 

Moreover, Distribution representation has a wide range of applications in natural language processing 

tasks. Firstly, the distribution representation is intended to comprehensively describe the semantics of 

natural language processing objects, so they can be easily used for semantic similarity evaluation.  

Secondly, the distribution representations learned from unlabeled text can be traditional statistical 

natural language processing model provides additional features. Those features can alleviate the 

discrete symbolic representations’ data sparse problem.  

Finally, the distribution representation can be combined with nonlinear models such as deep neural 

networks. With the powerful feature combination and learning ability of deep neural networks, the 

distribution of basic features can obtain a higher level, more abstract, and more related representation 

of target words. There are three perspectives are explained as follows. 

1. Semantic similarities characteristic 
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The low-dimensional, continuous vector representation of the distribution representation makes it 

ideal for word objects’ semantic similarity degree calculation (such as the most commonly 

used cosine distance). In fact, in the early vocabulary distribution study, semantic similarity degree 

calculation has been used to evaluate the quality of distributed representations [67][68]. Also, the 

commonly used evaluation sets are WordSim-353 [69] and the corresponding Chinese 

version [70] and so on. Moreover, the semantic similarity calculation of vocabulary can support 

many upper-level applications, such as language modelling, word meaning discrimination 

elimination, information retrieval, and rehearsal recognition, etc. [71].  

 

An interesting property derived from semantic similarity is the table of distribution representations 

for semantic relations. Mikolov et al. firstly discovered that for the two-word pairs satisfying the 

same semantic relationship, their distributions are also very close [72].  

For example, word embedding has a feature that can be analogized, such as 

V("worse") - V("bad") ≈ V("tougher") - V("tough") 

V("client") - V("server") ≈ V("frontend") - V("backend") 

 

It has also inspired the Relational Learning research study on the relationship between the 

distribution representation. For example, Fu et al found that the word contains a distribution which 

represents a hierarchic relationship between an entity and concept can be effectively used for the 

word embeddings [73].  

2. Semi-supervised learning model characteristic 

The vocabulary distribution representation is usually trained from unlabeled text, and the 

dependency on labeled text is very small. This characteristic makes semi-supervised linear learning 

low cost and exceptionally simple. Research has found that a number of natural language 
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processing tough problems are solved by semi-supervised linear learning from big unlabeled data 

to get word clustering such as Brown clustering [74] and related information. 

 

Specifically, great success has been achieved in the areas such as sequence labeling (word 

segmentation, Part-of-Speech tagging for online conversational text with word clusters, real 

name word recognition [75][76][77] and dependency syntax parsing and analysis [78] and so on.  

The basic idea of word clustering is to label a context similar word as a discrete label, equivalent 

to a fine-grained part of speech, but it limits the semantics information. However, the study of the 

distributional representation provides a semi-supervised linear learning model a new approach to 

look at the problem.  

 

For the first time, Turian et al. incorporated a word based on neural network language model in the 

sequence labeling model for distributional representation and achieved significant higher accuracy 

in the word entity recognition and chunking problem [79]. 

 

Their approach is to directly combine the original feature word vector (discrete, sparse, high-

dimensional) and distribution representation feature vectors (continuous, dense, low-dimensional) 

together to form a new set of feature vectors. 

 

Wang et al. have done much research on the comparative study of the linear representation and the 

nonlinear model [80]. Their experiments show that for the distributional representation of feature 

spaces, the nonlinear model is far superior to the linear model.  

If it is represented by a graph, it is as shown below Figure 12. 



48 
 

 
 

 

Figure 12 Bug words distribution distance map 

 

3. Non-linear model feature learning (FFN, CNN, RNN, LSTM, ELMo, BERT and GPT-2) 

Feature learning using nonlinear models is based on the collection of combined features. Natural 

language processing research, especially structural prediction problems on sequence labeling and 

syntax analysis use huge hypothesis space.  

 

Therefore, a good feature representation is crucial to learning for statistical models. In the traditional 

method, because the linear model cannot effectively express the combination of features, therefore, 

engineers has used their empirical knowledge and engineering practices to design complex combination 

feature models.  

 

Taking Semantic Role Labeling (SRL) as an example, the best system in CoNLL 2009 uses more 

than 50 features. [81]. This labor-intensive feature analysis engineering, which relies heavily on expert 

knowledge, is not only costly but also suffers from incomplete selection of high dimension features 

space, and inefficient feature extraction. 
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Therefore, for natural language processing, deep neural networks with the strength of nonlinear 

modelling provides huge advantages. The case, especially the neural network language model 

introduced before such as NNLM model which uses context distributional representation vector as an 

input, the vector goes through a nonlinear hidden layer tanh activation function and becomes 

intermediate vector. The probability distribution of the target word is calculated by the output layer 

with SoftMax - a generalized linear model.  

 

In the feedforward neural network (FFN), the intermediate distributional representation vector is 

obtained by the hidden layer to process context segment input vector and combine and abstract them. 

The same idea can be applied to other NLP areas such as syntactic analysis. In a dependency semantic 

parser system research, Chen and Manning has non-linear hidden layer cube activation function 

calculate the distributional representation of the transition state, and SoftMax is used to predict the 

transition action.  

 

Their model only needs to use a small number of basic features of the distributional representation as 

input, but in the hidden layer it implementation the aggregation of feature vectors, which greatly 

improves the efficiency of dependency parsing. It can process 1,000 sentences per second.  

 

In addition to the relatively simple structure of the feedforward neural network, the network structure 

commonly used in natural language processing are recurrent neural networks, convolutional neural 

networks (CNN) and recursive neural networks (RNN). 

CNN [86] is based on the simulation of biological neural networks’ local reception field effects. In 

CNN model, hidden neurons are connected to only a portion of input layer neurons are connected, while 
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the local connection weights of the different hidden layer neurons are shared. CNN is mainly composed 

of convolutional layer and pooling layer.  

The local connection property of CNN makes it change for the translation, scaling, and tilting of the 

data highly invariant and is now widely used in the field of image processing [87] .  

At the same time, this advantage of CNN can be applied in many natural language processing tasks, 

such as classifying the review text, the blog comments like Amazon book reviews which are often 

determined by some local phrases, without regard to the context or the position of these phrases in the 

text. Therefore, CNN has also been widely used in text classification related tasks in recent years and 

has achieved reasonable results [88][89][90].  

In fact, the earliest application of CNN in natural language processing was proposed by Collobert et 

al. to handle NLP by deep neural networks with multitasking learning. The framework is also known 

as the C&W model. [91][92] 

C&W model is mainly designed for word labeling tasks to use the distributional representation features 

such as words, word affixes, POS, etc. as multi-tasking deep neural network input, automatically learn 

the aggregation and interaction between features through CNN, then through the non-linear hidden 

layer fully connected layers, make the final prediction label at the output layer in the end.  

However, because word sequence labeling tasks are very sensitive to information such as word order, 

so CNN is not necessarily the most ideal feature learning model. The later research shows that a more 

ideal solution is to use the recursive neural network.  

RNN has achieved great success in natural language processing. As early as the last century, RNN 

was just proposed. At the time, researchers have successfully applied it to natural language processing 

such as word tagging and oral language analysis.   However, limited by the computing power at that 

time, RNN did not attract widespread attention. In recent years, with the excellent 
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performance of RNN on language model [82][83], researchers notice that RNN is highly applicable to 

text processing, which is sensitive to long-distance dependence.  

Currently, RNN is used in almost all-natural language processing problems, including traditional 

structural predictions (lexical, syntactic, semantic analysis, etc.) and hot topics like NLP - machine 

translation.  

Simultaneously, RNN also shed lights on many tough research areas that are difficult to achieve with 

traditional techniques, such as text summaries, poems generation, dialogue system, picture caption 

generation, and more. 

However, we found if RNN has too extreme deep layers, it has severe gradient vanish or gradient 

explosion problem during training process. It is not ideal for the RNN to capture long-distance 

dependence in practice. 

 

To solve the above issues, Hochreiter and Schmidhuber proposed Long Short-Term Memory 

(LSTM) which is a gated RNN, re-emphasize or forget a certain input vectors to a gate in a network. [84] 

These controlled inputs enable the flow of information in the RNN to be efficiently transmitted over 

long distances. Furthermore, coder-decoder framework is proposed [85] to solve a series of sequence-

to-sequence problems with a simple and effective end-to-end solution. The above two proposals have 

made great breakthroughs on solving gradient vanishing and explosion problems. 

In recent NLP development, a new model ELMo is created in 2018 by AllenNLP. [93] It employees a 

deep, bi-directional LSTM model to gain word representations. Instead of a dictionary of words and 

their corresponding vectors, ELMo studys words within the context that they are used and use the 

model to form representations of out-of-vocabulary words. 
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ELMo is used is quite different to word2vec or fast Text. Instead of having a dictionary ‘look-up’ of 

words and their corresponding vectors, ELMo builds vectors on-the-fly by passing text through the 

deep learning model. 

Google researchers create a deep bidirectional transformer model for 11 natural language processing 

tasks that surpasses human performance in the area of question answering. The system is called BERT 

which is a bidirectional encoder to capture long-distance dependencies compared to a RNN 

architecture.[94] It is an outstanding feature that differentiates BERT from OpenAI GPT (a left-to-right 

Transformer) and ELMo (a concatenation of independently trained left-to-right and right- to-left 

LSTM). 

BERT pre-trains a binarized next sentence prediction task that can be trivially generated from any 

monolingual corpus. It is a huge model, with 24 Transformer blocks, 1024 hidden layers, and 340M 

parameters.  Moreover, BERT pre-trains on 40 epochs over a 3.3-billion-word corpus, including 

BooksCorpus (800 million words) and English Wikipedia (2.5 billion words). 

In early 2019, OpenAI GPT-2 (Generative Pretrained Transformer-2) model recently achieved leading 

results across several language modeling benchmarks in a zero-shot setting. [95] The model has the 

ability to generate coherent text in areas of question answering, summarization, and etc. 

Word2vec is an algorithm used to obtain distributed representations of words. Unfortunately, it does 

not address polysemy, or the co-existence of many possible meanings for a given word or phrase. For 

example, go is a verb and it is also a board game. The meaning of a given word type such as go varies 

according to its context such as the words that surround it. 

ELMo, BERT and GPT-2 can obtain much better results in natural language processing tasks by 

encoding the context of a given word, by including information about preceding and succeeding words 

in the vector that represents a given instance of a word. 
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3.3 Chapter summary 

 
The chapter mainly introduces the mainstream methods in the field of natural language processing 

especially in the areas of word vector representation.  They are the following principals in word vector 

model: 1) CBOW and NGram 2) Skip Gram 3) LSA  

 

Firstly, word vectors form the basis in natural-language processing. Word2vec is an algorithm used to 

produce distributed representations of words. By that, the word types, for instance, any given word in 

a vocabulary, such as get or grab or go has its own word vector, and those vectors are stored in a lookup 

table or dictionary. 

Secondly, word2vec library is applied to bug assignments in the codes for my dissertation’s 

experiments. The model can be tuned with the following consideration: the choice of context, 

determination of the median value of the co-occurrence matrix, and dimension reduction. 

Thirdly, word distribution representation can be categorized as many characteristics, empirical, linear, 

and nonlinear models. Therefore, the chapter discusses semantic similarities characteristic, semi-

supervised learning model characteristic and non-linear model feature learning (FFN, CNN, RNN, 

LSTM, ELMo, BERT and GPT-2).   

Next chapter the paper will introduce a new software defect assignment model’s layer 2 – LSTM and 

rule-based engine.  
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Chapter 4 New Software Defect Assignment Model – Layer 2: LSTM and 

Rule-based Engine  
 

From Figure 4, the paper starts with defects reports analysis by building a vector for the defect report.  

We will analyze the defect report and choose the method to build the vector for word.  There are many 

methods below this paper presents. Then it finds the Word2Vec model built upon neural networks can 

have the best results.  

Our defect assignment LSTM Framework has two neural networks connected, the first one is the 

Word2Vec neural network, on top of Word2Vec neural network, is the LSTM for the final label 

prediction on assignment to developer. 

At present, the text classification field introduces a brand-new model-Recurrent neural network model. 

Recurrent neural networks (RNN) [47] have achieved great success in the field of natural language 

processing.  RNN has the recurrent feature in its network model and can store the relationship between 

the previous neuron and current neuron. It is a feedback structured neural network, which output not 

only depends on the value of current inputs and their weights, but the output also counts the weights 

and values of the previous neurons. By this way, RNN learns more and trains recurrently. 

In traditional neural networks, the model starts from input layer to hidden layer, then to output layer. 

The layers are connected but the nodes in each layer is not connected.  Because of the missing 

connections between nodes in each layer, the traditional neural networks are unable to handle many 

problems. For example, if you want to predict what next word the sentence is going to be, you need to 

know the previous words because the words before and after in a sentence are not independent.   

However, RNN can preserve the relationship between the previous node and current node in a sequence 

of words. Moreover, RNN calculates the output value with the consideration of previous hidden layer’s 

nodes’ interrelation.  RNN’s current hidden layer’s inputs capture not only the output of its input layer 
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information, but also the output of the previous hidden layer’s output information.  It can also handle 

unlimited length sentence’s weight and bias computation. 

Though feedforward neural network has good ability to fit the curve with nonlinear function, it has no 

state information.  RNN has FFN advantage but also can keep the signal from one neuron to another 

one, and will not lose it, and has the signal preserved for a period of time, like having memory capability.  

RNN has three categories, 1) Fully recurrent neural networks. 2) Locally recurrent neural network. 3) 

Long short-term memory neural networks.  Among the above three categories, LSTM has the great 

benefits, because it has solved other RNN’s shortcoming, which is not able to store the neuron to neuron 

relationship for a long term Error! Reference source not found.. 

LSTM structure has unparalleled natural advantages in extracting features such as natural language 

sentences. It is good at capturing local parts of words (can be easily understood). For a small part of 

phrases, such as short phrases, LSTM extract and combine these layers, from basic features to complex 

features, to finally identify its meaning, in other words, the local features of the extracted text sequence. 

The specific introduction is as follows. 

The biggest feature of LSTM model is to allow memory operations to quickly learn useful context 

features and filter out other useless words. Our auto bug assignment takes advantage of the context 

memorization operation. 

4.1 Model Overview – Layer 2: LSTM and Rule-based Engine  

 

 

The layer 1 - word vector representation is connected to layer 2 – LSTM and rule-based engine. The 

word vector model maps discrete words in each text into a fixed-dimensional feature vector to get the 

word direction. They are accessed by the layer 2 - LSTM to get a vectorized representation of the entire 

document.  



56 
 

 
 

In order to solve the problem that existing LSTM does not perform well in modeling long sequences 

and cannot describe the natural existence of documents. This paper improves the ordinary LSTM model 

with one additional rule engine layer. LSTM models text in the sentence level, meanwhile the weights 

of the LSTM model are shared with the additional rule engine layer in the evaluation of developers’ 

experience. 

The LSTM that models each sentence is to read the word direction of each sentence. The quantity then 

produces the sentence vector corresponding to each sentence, so that the entire text becomes a sequence 

of sentence vectors. Then, in this level of developers’ experience modeling, another rule engine will 

read the output of LSTM model, resulting in vectorized representation of the entire final output.  

In this process, the structural information between the words in each sentence is very good. The location 

is preserved, and the structural information between each sentence vectorization is expressed. 

After getting the vectorized representation of the bug report, the model begins text label classification 

of the document. One multi-label classification strategy is proposed, the first is a multi-label 

classification strategy based on label confidence ranking, which performs multiple logistic regression 

on bug report features after vectorization expression, and obtains a confidence level for each label. , 

representing the probability that the document belongs to the tag, on the basis of which a dynamic 

threshold is used to select those tags whose confidence is higher than the threshold as the prediction 

result. The dynamic threshold is obtained by the lease square multiplication regression, which can be 

dynamically adjusted according to the various confidence values obtained by multiple logistic 

regression.   

Then a classifier is trained on each non-leaf node on the hierarchical tag tree, and the classifier defines 

the overhead of moving from that node to each of its child nodes by the developer experience rule 

engine. In the prediction, similar to the classification method of the decision tree, the algorithm 
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gradually selects the child node from the root through the classifier on the non-leaf node, and finally 

obtains a path with the best cost, and all the nodes on the path serve as the output prediction.  

Chapter 4 will focus on my model research on the Layer 2: LSTM and Rule-based Engine areas. 

Layer 2 Model summary is described in the following diagram Fig 13: 

 

Figure 13 Software Defect Assignment Model Layer 2 

 

Algorithm 2: Construct deep learning model  

Input: 

The data set of the removed noise 

Output: 

The validation result of the untriaged data  

 

1: BEGIN 

2: Get the sample length of cross validation of each time 

3: FOR each cross validation 

4:          Divide triaged dataset into training set and testing set according to the concept of cross validation 

5:          FOR each sample of training data set 

6:                   IF the length of current train filter is larger than minimum sentence length 

7:                        Remove words outside the vocabulary from training data set 

8:                        Remove words outside the vocabulary from the owner array of training data set 
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9:                   END IF 

10:        END FOR 

11:        FOR each sample of testing data set 

12:                   IF the length of current test filter is larger than minimum sentence length 

13:                        Remove words outside the vocabulary from testing data set 

14:                        Remove words outside the vocabulary from the owner array of testing data set 

15:                   END IF 

16:        END FOR 

17:        FOR each sample of processed test_owner array 

18:                   IF the owner of testing sample doesn’t exist in (test_owner – train_owner)  

19:                        Remove data from test set that is not there in train set 

20:                        Remove owner of test set that is not there in train set 

21:                   END IF 

22:        END FOR 

23:        Create train and test data for deep learning model 

24:        Construct the deep learning model by LSTM 

25:        Test the testing data set and print out the test accuracy 

26: END FOR 

27: END 

 

According to the result of triaged dataset preprocessing, we can get the arrays all_data and all_owner. 

and the triaged dataset is split into training data and testing data with a specific number of cross 

validations you provide to remove training bias. Let’s say the number of cross validations is 3, the 

whole triaged bug dataset is divided into three parts, we can call them, sub1, sub2 and sub3. In the first 

iteration, we use sub1 as training data, in the meantime, use sub1 as testing data as well. In the second 

iteration, we use sub1 + sub2 as training data and use sub2 as testing data. In the third iteration, we use 

sub1 + sub2 + sub3 as training data and use sub3 as testing data. The process above is a classic concept 

of cross validation. 

train_data = all_data[:i * splitLength - 1] 

test_data = all_data[(i-1) * splitLength:i * splitLength - 1] 

train_owner = all_owner[:i * splitLength - 1] 

test_owner = all_owner[(i-1) * splitLength:i * splitLength - 1] 

 

For each bug of training data, we would remove words outside the vocabulary (generated by untriaged 

bug dataset) from training data, and also remove words outside the vocabulary from the owner array if 
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the length of current train filter is larger than minimum sentence length. For each bug of testing data, 

we will make the same operations as each bug of training data.  

The following block is for owner operations. We would remove invalid bugs from testing set that is not 

there in the training set, and also remove owners of testing set that is not there in the training set if the 

owner of testing bug doesn’t exist in (test_owner – train_owner). 

It’s time to create training and testing data for deep learning.  

## Trainning Data 

X_train = np.empty(shape=[len(updated_train_data), max_sentence_length, 

embed_size_word2vec], dtype='float32') 

Y_train = np.empty(shape=[len(updated_train_owner), 1], dtype='int32') 

 
## Testing Data 
X_test = np.empty(shape=[len(updated_test_data), max_sentence_length, 

embed_size_word2vec], dtype='float32') 

Y_test = np.empty(shape=[len(updated_test_owner), 1], dtype='int32') 

  

In this process, we create the empty storage space according the specific parameters individually, for 

example, embed_size_word2vec, max_sentence_length, for training and testing data. The next step is 

to store trained and tested sentence or content of training and testing dataset. 

The data is ready. We start to construct the deep learning model.  This model considers the word 

sequence both in forward direction and in back-ward direction so that a context of a particular word 

includes both the previous few words and following few words making the representation more robust. 

Long short-term memory (LSTM) cells are used in the hidden layer which have a memory unit that can 

remember longer word sequences and can solve the vanishing gradient problem. 

sequence = Input(shape=(max_sentence_length, embed_size_word2vec), dtype='float32') 

forwards_1 = LSTM(1024)(sequence) 

after_dp_forward_4 = Dropout(0.20)(forwards_1) 

backwards_1 = LSTM(1024, go_backwards=True)(sequence) 

after_dp_backward_4 = Dropout(0.20)(backwards_1) 

merged = concatenate([after_dp_forward_4, after_dp_backward_4], axis=-1) 

after_dp = Dropout(0.5)(merged) 

output = Dense(len(unique_train_label), activation='softmax')(after_dp) 



60 
 

 
 

model = Model(inputs=sequence, outputs=output) 

rms = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08) 

model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['accuracy']) 

 

 

 

4.2 Artificial Intelligence Neural Networks/Recurrent Neural Network 

 

Artificial intelligence neural networks are computational models that mimic the structure of biological 

nervous systems. The most basic structural unit in the biological nervous system is neurons, which 

mimic the structure of neurons in the biological nervous system. 

 In 1943, McCulloch and Pitts [96] abstracted biological neurons as “M-P neuron model” that has been 

used today. A single neuron accepts multiple inputs from other neurons and gives different weights to 

each input. The input is subtracted from the threshold of the neuron by summing the weights, and an 

activation function is used to generate the output of the neuron. Though a single neuron is calculated 

in such a simple way, artificial neural network with multiple neurons connected to each other can be 

used to fit complex function maps. 

Although the prototype of the neural network was proposed as early as 1943, it has never been popular 

until the Back Propagation [97] (referred to as the BP calculation) was proposed and BP’s successful 

application in neural network systems. In 1988, Hinton et al. successfully used BP algorithm to 

effectively trains some shallow networks [98], and then artificial neural network research has begun 

widely. 

Recurrent Neural Network is a special kind of neural network. In FFN network, the edges between 

nodes in the neural network could not form a loop, because if there is a loop, the nodes of the entire 
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network could not be topologically ordered, so that a logical calculation order cannot be defined for the 

network. RNN relaxes this restriction by allowing nodes to form loops through time steps.  

Moreover, the calculation process of the RNN is divided into multiple stages according to the time step. 

At time T, the network performs a calculation. The internal state of the network and the calculated 

result can be used as the input of the T+1 time. The calculation at time T+1 affects its outcome. Figure 

14 is an example of a time expanded RNN network. At each timed step, the network accepts an external 

input and accepts some calculations from the previous timed step to produce the output of the current 

time step. 

 

 

Figure 14 Time-expanded RNN Network 
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During the time expansion of the RNN, an output sequence is generated step by step by an input 

sequence. At any T+1 time, the output of the network is the interaction of all the inputs and outputs of 

the former T and the internal states of the nodes in the network. 

The results of such a feature allows the network can "see" the sequence of historical information that 

can be modeled RNN time series. 

There is no essential difference between training RNN and the training of ordinary neural networks. 

After the RNN is expanded based on time steps, the entire network becomes a common neural network.  

It has inputs sequences and output sequences.   

It can be trained by using the BP algorithm for this expanded network. From this perspective, RNN is 

just a common neural network that shares weights over multiple time steps while delivering network 

state between adjacent time steps.  RNN is more like a recursive call to a traditional neural network. 

4.3 LSTM 

 

Although RNN can “see” all the historical information before time T+1, it can get blurred when the 

recursive deep first traverse call to its network.  To be specific, when the network is trained by BP 

algorithm, the influence of these historical information on the network will gradually disappear with 

the network’s expansion. RNN’s such drawback is described as "vanishing gradient problem".[99] 

In practice, this flaw can cause the RNN network to be unable to learn events at a certain moment with 

an event that happens after more than 10 hours.[99] 

In order to solve this defect of RNN, many methods have been proposed like Time Delays [101],  

principle of history compression [102], etc.  But so far, the most effective solution is the Long Short-

Term Memory Artificial Neural Network Architecture as LSTM. Figure 15 shows the layer 2’s 

modified LSTM architecture.  
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Figure 15 LSTM connected with other part of network including rule engine 

 

One reason for the problem of gradient disappearance is that the network has no memory of the input 

data. Over time, the network "forgets" the previous input and the state of the network. LSTM introduces 

the concept of "memory block".  

The memory block can be regarded as a micro-version of the memory chip in the computer. Each 

memory block contains one or more memory units and three multiplicative units: input gate, output 

gate and forgetting gate, respectively corresponding to the computer storage block. The write controller, 

the read controller, and the reset controller, just as the controllers in the computer memory block.  

Those controllers’ functions are to control the reading, writing, and resetting of information stored in 

the LSTM memory block. After introducing the memory blocks, LSTM is a special RNN network with 

a replacement of ordinary neurons in RNN to memorable block. Memory blocks in LSTM can 

selectively remember a portion of historical information, thereby solved RNN’s "vanishing gradient 
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problem". The detailed code for bug defect on constructing LSTM layer in the project is implemented 

in the Table 3.  

sequence = Input(shape=(max_sentence_len, embed_size_word2vec), 

dtype='float32') 

forwards_1 = LSTM(1024)(sequence) 

after_dp_forward_4 = Dropout(0.20)(forwards_1)  

backwards_1 = LSTM(1024, go_backwards=True)(sequence) 

after_dp_backward_4 = Dropout(0.20)(backwards_1)          

merged = merge([after_dp_forward_4, after_dp_backward_4],  

                mode='concat', concat_axis=-1) 

after_dp = Dropout(0.5)(merged) 

output = Dense(len(unique_train_label), activation='softmax')(after_dp)                 

    model = Model(input=sequence, output=output)             

rms = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08) 

model.compile(loss='categorical_crossentropy', optimizer=rms, 

metrics=['accuracy'])     

hist = model.fit(X_train, y_train,  batch_size=batch_size, 

epochs=myEpochs)               

predict = model.predict(X_test)   

 

Table 3 The code of constructing LSTM for software bug assignment model 

With the increase of length of LSTM and limitation of inputs, its functionality decreases and is limited.  

To improve its accuracy, recall rate, and precision rate, the paper proposes a new component rule based 

engine with the consideration of developer’s experience and productivity.  Figure 16 shows the LSTM 

to connect with developer experience rule engine. 
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Figure 16 LSTM feeds into developer experience rule engine 

4.4 Rule Engines 

 

Knowledge representation is the area of A.I. concerned with how knowledge is represented and 

manipulated. Rule Engines use knowledge representation to facilitate the codification of knowledge 

into a knowledge base which can be used for reasoning, i.e., we can process data with this knowledge 

base to infer conclusions. Rule Engines are based on Expert Systems, which are also known as 

Knowledge-based Systems and Knowledge-based Expert Systems and are considered to be "applied 

artificial intelligence".  

Algorithm 3: Rule Engine Algorithm  

Input: 

The absolute path of target file 

Output: 

Generate 'Rule Prediction' result 

 

1: BEGIN 

2: Create the translation table 

3: IF exists target file 
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4:      Read this file by configure parser 

5: ELSE 

6:       return NULL 

7: Use rule table to define BI rules 

8: Read the new failure, new pattern and bug zero from dataset 

9: FOR each row of sample 

10:        IF it is a new failure  

11:             Update the final result according to rule result 

12:        END IF 

13:        IF it is a new pattern  

14:             Update the final result according to rule result 

15:        END IF 

16:        IF match set to "Infrastructure" issue 

17:             Update the final result according to rule result 

18:        END IF 

19:        Check if it belongs to an item in missed training set table 

20: END FOR 

21: Saving new failures and new patterns 

22: IF exclude new failure 

23:      Delete new failure. 

24: END IF 

25: IF exclude new pattern 

26:      Delete new pattern. 

27: END IF 

28: END 

 

The process of developing with an Expert System is Knowledge Engineering. EMYCIN was one of the 

first "shells" for an Expert System, which was created from the MYCIN medical diagnosis Expert 

System. Whereas early Expert Systems had their logic hard-coded, "shells" separated the logic from 

the system, providing an easy to use environment for user input. Drools is a Rule Engine that uses the 

rule-based approach to implement an Expert System and is more correctly classified as a Production 

Rule System. The algorithm for rule engine’s core runtime is listed in the Table 4. 

# Ruleset  

class TableRuleset(Rule): 

    def __init__(self, rules, translations=None): 

        self.rules = rules or {} 

        if translations: 

            translator = Translator(translations) 

            for rule in self.rules: 

                for key in rule.keys(): 

                    rule[key] = [translator.replace(item) for item in 

rule[key]] 

     

    def should_trigger(self, context): 



67 
 

 
 

        return True 

     

    def perform(self, context): 

        """Iterate and evaluate all rules in table set, execut 

corresponding action 

        Args: 

            context which has variables and target. 

             

        Returns: 

            Result in context (target).     

        """ 

        count = 0 

        for rule in self.rules: 

            # Check if all conditions are TRUE (Logcial AND) in one 

'if' clause 

            count = count + 1 

            if all([eval(condition, context.as_dict) for condition in 

rule['if']]): 

                self._current_ruleid = rule.get('id', count) 

                for action, target in zip(rule['then'], 

rule['target']): 

                    if context._translations: 

                        action = context._translations.replace(action) 

                        target = context._translations.replace(target) 

                    result = 

context[target.replace('context.','').strip()]=eval(action, 

context.as_dict) 

                    self.record(context, result)  

                # break on any matched rule in rules 

                break 

            else: 

                continue 

        else: 

            self._current_ruleid = None 

            return False 

        return True 

     

    @property 

    def ruleid(self): 

        if self._current_ruleid: 

            return "%s.%s" % (super(TableRuleset, self).ruleid, 

self._current_ruleid) 

        return super(TableRuleset, self).ruleid 

     

class RuleEngine(object): 

    def execute(self, ruleset, context): 

        for rule in ruleset: 

            if rule.should_trigger(context): 

                result = rule.perform(context) 

                rule.record(context, result) 

        return context 
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Table 4 Algorithm of Rule Engine Core 

There are two methods of execution for a rule system: Forward Chaining and Backward Chaining; 

systems that implement both are called Hybrid Chaining Systems. Understanding these two modes of 

operation is the key to understanding why a Production Rule System is different and how to get the best 

from it. Forward chaining is "data-driven" and thus reactionary, with facts being asserted into working 

memory, which results in one or more rules being concurrently true and scheduled for execution by the 

Agenda.  

 

Figure 17 Forward Chaining 

 

Backward chaining is "goal-driven", meaning that we start with a conclusion which the engine tries to 

satisfy. If it can't it then searches for conclusions that it can satisfy; these are known as sub-goals, that 

will help satisfy some unknown part of the current goal. It continues this process until either the initial 

conclusion is proven or there are no more sub-goals. Prolog is an example of a Backward Chaining 

engine. Drools can also do backward chaining, which we refer to as derivation queries. 
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Figure 18 Backward Chaining 

 

The proposed software defect assignment rule engine has used both forward chaining rule and backward 

chaining model, and captured the experience of developer, and developer’s productivity, developer’s 

context switching time, and dwelling time on the previous bugs. It uses the developers’ social 

networking, membership in technical areas, his/her relationship and decision-making in domain areas 
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to obtain rule engine actions. Their expertise is generally classified into their core competency, core 

capability, their reasoning and decision making. Rule engine has been effectively used in the 

experimental work for bug assignment.  

It has the following characteristics.  Firstly, just obtains the characteristics of developers’ activity. It 

does not need to first analyze the mathematical model of the system like software bug assignment 

system and can directly use the opinions of experts. It allows system to describe rules with IF...THEN... 

statements.  The rules are generally very intuitive. Inference rules are derived from the experience of 

experts. Its form is as follows: 

If X1 AND X2 AND ......Xn then Y1 AND Y2 AND ...... Ym 

 

Here n is equal to the number of system input variables, and m is equal to the number of system 

output variables. The sample code for rule engine’s rules is implemented in the Table 5.  

[rule] 

# To determine if it's new failure, check failure table 

db_newfailure_table = ChromeJob 

db_newpattern_table = FireFoxPattern 

# use RulesTable to correct result or not 

RulesTable = { 'if': ['DeveloperInBlog >= 1', 'rerun >= 1', 'staticset == 1'], \   

            'then' : ['Increase Defect Assignment by 50'],\ 

            'target':['rulepredict']\ 

           },\ 

          { 'if': ['EngineerinStackoverflow >= 1', 'rerun >= 1', 'staticset == 1'], \   

            'then' : ['Add Code Defect to dev more weight by 20'], \ 

            'target': ['rulepredict']\ 

           } 

 

Table 5 Rule Definition Format 

Secondly, the software for implementing rule engine is easy and requires less storage space and 

computation. Production rule system generally requires only a small number of code lines and less 

storage space such as using the look-up table method.  
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Using the detected information such as developers’ comments on stackoverflow.com sites, developers’ 

code snippets in git, developers’ tag in software engineering forum, developers’ interest groups, and so 

on, then the rule reasoning is performed according to the inference rule, and finally the rule engine 

makes decision according to the activated rules to assign bug to the appropriate developer.  

Each input variable is divided into three levels: 

    Developer degree of expertise in certain technical area: low, medium and high 

    Developer quantity of comments in stackoverflow.com site: less, medium and more 

    Developer quality of reviews in staockoverflow.com site: low, medium and high 

    Developer involvement in certain interest group: light, medium and heavy 

For the output variables, Confidence in assigning the right developer to the bug into 5 levels: very low, 

low, medium, high, very high; Name of developer to be assigned to the bug; List of candidate 

developers to be assigned to the bug. 

The algorithm of Rule Engine Initialization design is shown in the Table 6.  

import os 

import sys 

import pandas as pd 

  

class DictObject(object): 

    """class to convert dictionary access as object's members 

    """ 

    def __init__(self, initial=None): 

        self._data = {} 

        if initial: 

            self.update(initial) 

    def __getattr__(self, name): 

        return self._data.get(name) 

    def __setattr__(self, name, value): 

        if name.startswith('_'): 

            object.__setattr__(self, name, value) 

        else: 

            self.__dict__['_data'][name] = value 
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    def update(self, other): 

        for k in other: 

            self.__setattr__(k, other[k]) 

 

    def to_dict(self): 

        return self._data 

     

class Translator(object): 

    def __init__(self, translations): 

        self.translations = translations 

    def replace(self, input): 

        input = " %s " % input 

        for source, target in self.translations: 

            input = input.replace(" %s" % source, " %s " % target) 

        return input 

    def rreplace(self, input): 

        input = "%s" % input 

        for target, source in self.translations: 

            input = input.replace("%s" % source, "%s" % target) 

        return input 

 

 

Table 6 Algorithm of Rule Engine Initialization Design 

For bug assignment developer rules, firstly the rules, which have more data and fact supported by 

experts and more reasonable to be understood, will have higher precedence over those rules which are 

not vigorously verified. When the rules are used to calibrate the bug assignment system, their 

contribution to the accuracy, precision and recall rates can be more effective. 

Developers’ rules and other rules like bug-to-tech areas, bug-to-component lookup rules, etc. can be 

obtained based on the hierarchical set of input variables and output variables. For example, developer’s 

assignment can be expressed by the following 27 rules: 

Rule 1: If the bug report says UI, the bug has low priority, and the bug is not very severe, then a junior 

developer in UI area will be assigned. 

Rule 2: If the bug is critical, the bug is in kernel area, and it requires developers with a lot of experience, 

as the developers need to contribute 20K lines codes in git code repository, then a senior developer in 

Kernel area, and he has met the line of codes in git criteria will be assigned. 

    ...... 
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In the same way, the combination of the bug’s component area, which code path the bug is in, the 

developer’s activity requirement can obtain the rule representation of the bug assignment as well as the 

Layer1 and LSTM output evaluation. The combination of the degree of developers’ social networking 

and stack overflow comments, and other blog history property can obtain the rule representation of 

which area of the bug belongs to. 

Rule engine can perform complex tasks in a short period of time, rather than requiring a large amount 

of mathematical calculations using mathematical methods.  Moreover, since the rule engine 

calculation itself is a parallel structure, each input can be computed at the same time, or each rule can 

be reasoned. The algorithm of Rule Engine Execution design is shown in the Table 7. 

 

class RuleContext(DictObject): 

    """ 

    Rule context to store values and attributes (or any object). 

Used when applying rule engine 

    """ 

    def __init__(self): 

        super(RuleContext, self).__init__() 

        self._executed=[] 

    def __setitem__(self, item, value): 

        self.__setattr__(item, value) 

    def __getattr__(self, item): 

        if not item in self.__dict__ and not item in self._data: 

            return None 

        return super(RuleContext, self).__getattr__(item) 

     

    @property 

    def as_dict(self): 

        return {'context' : self} 

 

# Single rule     

class Rule(object): 

    """ 

    Rule class - virtual class for table rule set 

    """ 

    def should_trigger(self, context): 

        pass 

    def perform(self, context): 

        pass 

    def record(self, context, result): 

        context._executed.append((self.ruleid, result)) 

    @property 

    def ruleid(self): 

        return self.__class__.__name__.split('.')[-1] 
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Table 7 Algorithm of Rule Engine Execution Design 

With rule engine, the operators of the hybrid model can start designing the approximate rule subset and 

rules, and then adjust the parameters step by step to optimize the system. The various components of 

the rule inference process are functionally independent, so that the system such defect assignment can 

be easily modified. For example, you can add rules or input variables without having to change the 

overall design. For a conventional software defect assignment, adding an input variable will change the 

overall algorithm. When developing a rule engine bug assignment system, you can concentrate on 

functional goals rather than analyzing mathematical models, so you have more time to enhance and 

analyze the system. Figure 19 shows the End to End Bug Assignment with developer experience rule 

engine. 

 

Figure 19 End to End Bug Assignment with developer experience rule engine 
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print('=====Deep learning + rule engine method=====') 

            for k in range(1, rankK + 1): 

                id = 0 

                user_index = 0 

                runs = 100 

                trueNum = 0 

                lableOwner = [] 

                lableOwnerId = [] 

                for sortedInd in sortedIndices: 

                    pred_classes.append(classes[sortedInd[:k]]) 

                    if Y_test[id] in sortedInd[:k]: 

                        trueNum += 1 

 

                    # store error data 

                    elif user_index < runs and k == rankK: 

                        lableOwner.append(classes[Y_test[id]]) 

                        lableOwnerId.append(id) 

 

                        # Base url setup 

                        #print('rule engine start') 

 

                        # u_email = 'abarth@chromium.org' 

 

                        u_email = ' '.join(map(str, 

lableOwner[user_index])) 

                        base_url = 'https://monorail-

prod.appspot.com/p/chromium/issues/list?can=1&q=' 

                        url = base_url + u_email 

 

                        try: 

                            # Get the webpage 

                            f = requests.get(url, timeout=5) 

                            soup = BeautifulSoup(f.content, "lxml") 

 

                            # Get the key words 

                            res = [] 

                            for keywords in soup.find_all('td', 

class_='col_8'): 

                                a = (keywords.find_all('span')) 

                                b = str(a[0].string).split() 

                                for val in b: 

                                    res.append(val) 

 

                            unique_result = list(set(res)) 

 

                            # Get test set 

                            test = 

testedContent[lableOwnerId[user_index]] 

 

                            # Get overlap percentage 

                            overlap = set(unique_result) & 

set(list(filter(None, test))) 

                            percentage_overlap = float(len(overlap) 

/ len(test)) 

 

                            # The customize rule 
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                            bar_percentage = 0.3 

                            rule_flag = True if percentage_overlap > 

bar_percentage else False 

                            if rule_flag: 

                                trueNum += 1 

                            #print('user_index:  ', user_index) 

                            #print('overlap percentage:::   ', 

percentage_overlap) 

                            #print('rule result:::  ', rule_flag) 

                            #print('rule engine end') 

                        except requests.exceptions.RequestException 

as e:  # This is the correct syntax 

                            print (e) 

 

                        user_index += 1 

 

                    else: 

                        lableOwner.append(classes[Y_test[id]]) 

                        lableOwnerId.append(id) 

 

                    id += 1 

                accuracy.append((float(trueNum) / len(predict)) * 

100) 

            print('Test accuracy:', accuracy[-1]) 

 

Table 8 Python Code of Rule Engine Web Request and Keyword Overlaps Design 

 

After the running of the LSTM model on the training set, and the model is applied to real data, and 

with the real data, a HTTP web request is called to retrieve the developer’s experience such as the 

bugs he has fixed and the bugs’ description.  From the HTTP content, the Python code is used to 

extract the keywords of the developers’ experience.  Meanwhile a configured value is used, such as 

bar percentage = 0.3, that means if the developers’ keywords has 30 percent overlap with the on-field 

bugs’ description, that the model overwrites the LSTM results with the developers’ experience values 

and reassign the bug to that developer.  Overall with the rule engine, the confusion matrix accuracy 

has drastically increased. 

overlap = set(unique_result) & set(list(filter(None, test))) 

percentage_overlap = float(len(overlap) / len(test)) 

bar_percentage = 0.3 

rule_flag = True if percentage_overlap > bar_percentage else False 

 



77 
 

 
 

We call the above process that is “online” mode. Sometimes, the user cannot connect the internet, we 

also provide a “offline” mode to ensure the efficiency of our system. First, we collect the valuable 

information of each bug owner by web crawler. Second, store them to a JSON file: webData.json, the 

reason that selecting JSON as storage format is the transition and searching speed is very fast between 

JSON and Python. Third, the system may get the information from the file webData.json directly, the 

processing speed is faster than getting data by HTTP requests. 

 

4.5 Chapter summary 

 
The chapter mainly introduces the hybrid model’s layer 2: LSTM and Rule-based Engine, 

Firstly, it gives an overview on Artificial Intelligence Neural Networks/Recurrent Neural Network. It 

describes the history of Artificial Intelligence Neural Networks and its evolution. FFN and RNN are 

illustrated briefly.  RNN’s shortcoming such as "vanishing gradient problem" is pointed out, and LSTM 

is introduced to solve the problem.  

Secondly, one reason for the problem of gradient disappearance is that the network has no memory of 

the input data. Over time, the network "forgets" the previous input and the state of the network. LSTM 

introduces the concept of "memory block".  

Thirdly, rule engine is the core of the Layer 2 of the paper’s hybrid model, and is based on Expert 

Systems, which are also known as Knowledge-based Systems.  Knowledge-based Expert Systems and 

are considered to be "applied artificial intelligence".  The proposed software defect assignment rule 

engine has used both forward chaining rule and backward chaining model, and captured the experience 

of developer, and developer’s productivity, developer’s context switching time, and dwelling time on 

the previous bugs. It uses the developers’ social networking, membership in technical areas, his/her 

relationship and decision-making in domain areas to obtain rule engine actions. 
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Fourthly, for bug assignment developer rules, the rules,  which have more data and fact supported by 

experts and more reasonable to be understood,  will have higher precedence over those rules which are 

not vigorously verified. When the rules are used to calibrate the bug assignment system, their 

contribution to the accuracy, precision and recall rates can be more effective. 

Finally, with rule engine, the operators of the hybrid model can start designing the approximate rule 

subset and rules, and then adjust the parameters step by step to optimize the system. The various 

components of the rule inference process are functionally independent, so that the system such defect 

assignment can be easily modified. 
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Chapter 5 Data Collection and Experiments Result 
 

Software defect assignment is a process of reporting that potentially contain defects, analyzing them, 

and assigning developers to fix potentially buggy code. Figure 20 presents a typical software defect 

assignment process which is commonly adopted. As the process shows, the first step is to collect source 

code files (instances) from software archives and label them as buggy or clean. The labeling process is 

based on the number of post-release defects of each file. A file is labeled as buggy if it contains at least 

one post-release bug. Otherwise, the file is labeled as clean. The second step is to extract features from 

each file. There are many traditional features defined in past studies, which can be categorized into two 

kinds: code metrics and process metrics. The instances with the corresponding features and labels are 

subsequently employed to train predictive classifiers using various machine learning algorithms such 

as SVM, Naive Bayes, and Dictionary Learning. Finally, new instances are fed into the trained classifier, 

which can predict whom the bug should be assigned to. In our case, it employs the hybrid model of 

NLP, LSTM and rule-based engine.  

The set of instances used for building the classifier is training set, while test set includes the instances 

used for evaluating the learned classifier. In this work, we focus on within-project defect assignment, 

i.e., the training and test sets belong to the same project. Following the previous work in this field, we 

use the instances from an older version of this project for training, and instances from a newer version 

for test. 
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Figure 20 The process of software defects prediction 

5.1 Data preparation and preprocessing 

 

In the software development process, once the software is found to be defective and needs to be repaired, 

the relevant personnel will submit it to the defect library in the form of a report to form a defect report. 

A defect report mainly consists of three parts: 1) the summary and predefined fields (mainly including 

status, product, component, etc.); 2) is a description, describes how to achieve the recurrence of defects, 

to help developers understand the occurrence of defects. The process is to find out the cause of the 

defect; 3) the comment, which mainly records some suggestions and suggestions from the developer 

for the defect.  

This paper selects the defect data of large open source software projects of Chrome as the experimental 

data set. TrainData.json file contains training sets for using training and validation. That file has 114750 

records which is downloaded from https://www.kaggle.com/crawford/deeptriage#classifier_data_0.csv. 

That file might be updated since last time downloaded. 

TrainData.json file has the following field descriptions for each row 

Email address Bug owner (person who will fix it) 

issue_title  Title of bug description 

https://www.kaggle.com/crawford/deeptriage#classifier_data_0.csv
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Description  Description of the bug 

For training set, an example of row in the JSON file as follows: 

{ 

  "owner" : "robhogan@chromium.org", 

  "issue_title" : "Alt texts are rendered horizontally in 

vertical writing mode", 

  "description" : "\nUserAgent: Mozilla/5.0 (Macintosh; Intel 

Mac OS X 10_9_4) AppleWebKit/537.36 (KHTML, like Gecko) 

Chrome/38.0.2107.2 Safari/537.36\r\n\r\nExample URL:\r\n\r\nSteps to 

reproduce the problem:\r\nOpen a page contains missing image in vertical 

writing mode.\r\n\r\nAlt texts for missing images are not rendered 

vertically in vertical writing mode and orientation of text is incorrect. 

\r\n\r\nAlt texts should be rendered vertically.\r\n\r\nWhat is the 

expected behavior?\r\n- Alt text: rendered vertically in vertical writing 

mode\r\n- Japanese characters (fullwidth): glyphs are not rotated\r\n- 

Latin characters (halfwidth): glyphs are rotated clockwise 90 

degrees\r\n\r\nWhat went wrong?\r\n- Alt text: rendered horizontally in 

vertical writing mode\r\n- Japanese characters (fullwidth): glyphs are 

rotated counter-clockwise 90 degrees\r\n- Latin characters (halfwidth): 

glyphs are not rotated\r\n\r\nDoes it occur on multiple sites: 

Yes\r\n\r\nIs it a problem with a plugin? No \r\n\r\nDid this work 

before? No \r\n\r\nDoes this work in other browsers? Yes \r\n\r\nChrome 

version: 38.0.2107.2  Channel: canary\r\nOS Version: OS X 10.9.4\r\nFlash 

Version: Shockwave Flash 14.0 r0\r\n\r\nSame issue in 

WebKit\r\nhttps://bugs.webkit.org/show_bug.cgi?id=135383\n " 

 } 

 

Cross validation number numCV is defined in our python code.   If numCV = 3, that means 33% of 

TrainData.json will be validation data to verify the model, 67% will be used in LSTM to build the 

model. 

After the running of the LSTM model on the training set in supervised training mode, and rule engine 

is coming into picture to validate the wrong assignment which is shown in the confusion matrix.  
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Since it is the supervised learning, the confusion matrix knows the wrong assignment. Rule engine is 

applied to real data, and with the real data. Rule Engine is set for using to correct the wrong owner 

assignment during the validation.  The more developers to be run and the more developers’ keywords 

info, the better of accuracy 

 

There are two modes of Rule Engines validation, one is the online mode, and the other is the offline 

mode.  If it is online mode, a HTTP web request is called to retrieve the developer’s experience such 

as the bugs he has fixed and the bugs’ description.  The code call the https://monorail-

prod.appspot.com/p/chromium/issues to get the owners’ keywords.  From the HTTP content, the 

Python code is used to extract the keywords of the developers’ experience from the training set.  

Meanwhile a configured value is used, such as bar percentage = 0.3, that means if the developers’ 

keywords has 30 percent overlap with the on-field bugs’ description, that the model overwrites the 

LSTM wrong prediction results with the developers’ experience values and reassign the bug to that 

developer.  Overall with the rule engine, the confusion matrix accuracy has drastically increased. 

 

Sometimes, the user cannot connect the internet, or we want to have consistent model benchmark, we 

also provide a “offline” mode to ensure the efficiency of our system. First, we collect the valuable 

information of each bug owner by web crawler. Second, store them to a JSON file permanently: 

webData.json, the reason that selecting JSON as storage format is the transition and searching speed 

is very fast between JSON and Python. Third, the system may get the information from the file 

webData.json directly, the processing speed is faster than getting data by HTTP requests. 

WebData.json is obtained by our data populator and get them from the https://monorail-

prod.appspot.com/p/chromium/issues for only one time and then we can train the data offline. 

getownerjson.py is the code to create the above WebData.json. 

 

https://monorail-prod.appspot.com/p/chromium/issues
https://monorail-prod.appspot.com/p/chromium/issues
https://monorail-prod.appspot.com/p/chromium/issues
https://monorail-prod.appspot.com/p/chromium/issues
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WebData.json has the following field descriptions for each row 

Email address Developer (person who will fix it) 

Keywords list Developer’s activity, technical ability and key attributes 

TestData.json contains all the bug reports, and Owner field is the developer’s email alias which is empty 

before running our model. Once our model is deployed in production to predict the Owner field, the 

model will predict which email alias and fill the email address in the Owner field. 

TestData.json has the following field descriptions for each row 

Id   Bug id 

issue_id  issue id 

issue_title  Title of bug description 

reported_time Time bug was reported 

Owner  email address of owner of the bug (person who will fix it) 

Description  Description of the bug 

Bug reports from the Google Chromium project were downloaded for the duration of 2008-09-02 

(Bug ID: 3) - 2013-09-05 (Bug ID: 633012).  

For test set to be predicted after using our bug assignment model, an example of row in the JSON file 

as follows: 

{ 

                "id" : 3, 

                "issue_id" : 5, 

                "issue_title" : "Java not working yet", 

                "reported_time" : "2008-09-02 19:04:27", 

                "owner" : "", 

fariie\r\nadd ok or fail after other browsers where you have tested this 

issue\n     safari 3 ok\r\n    firefox 3 ok\r\n         ie 7 ok\r\n\r\nwhat 
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steps will reproduce the problem\n1 go to any site using java 

technology\r\n2 it will tell you there is no plugin yet\r\n\r\nwhat is the 

expected result\njava to run\r\n\r\nwhat happens instead\ngives an error 

for plugin\r\n\r\nplease provide any additional information below attach a 

screenshot if \r\npossible\r\n \n"         

} 

 

 

First, the English text of each defect report is extracted, and a series of texts such as word segmentation, 

stop words, stemming, and word vectorization are preprocessed to obtain a relatively "normative" text. 

Second, assuming the length of a text is S, where each word can be represented by the vector of 

Word2Vec training (or vector representation using random numbers) as D dimensions.  Therefore, the 

text can be represented as a vector matrix of S × D.  

The high-level text data process can be summarized in Figure 21. I have to build the data pipeline and 

extract data from the documents and transform the text into the right format by building the dictionary, 

and load preprocessed text into the next step of LSTM network and rule engine to do the training and 

gain the prediction model.  
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Figure 21 High-level Text Data Process 

Since the original text contains irregular words, extra punctuation marks, and meaningless pause words, 

the algorithm first needs to filter the noise in the text. When filtering the noise, it also needs to perform 

sentence segmentation and word segmentation on the text. The model in my research treats the 

document as a sequence of sentences. For each sentence, the model is processed separately, so the 

process of clauses is necessary. After the clauses and participles are completed, each word needs to be 

processed and becomes case-insensitive, and the number of times they appear is counted, and a 

dictionary is constructed. The words with very low number of occurrences in the dictionary are 

considered to be low-frequency noise words. Those noise words are removed from the model. The 

detailed code is implemented in the Table 9.  

with open(closed_bugs_json) as data_file: 

    data = json.load(data_file, strict=False) 

all_data = [] 

all_owner = []     
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for item in data: 

    # Step 1. Remove \r  

    current_title = item['issue_title'].replace('\r', ' ') 

    current_desc = item['description'].replace('\r', ' ') 

    # Step 2. Remove URLs 

    current_desc = re.sub(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-

_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', current_desc) 

    # Step 3. Remove Stack Trace 

    start_loc = current_desc.find("Stack trace:") 

    current_desc = current_desc[:start_loc] 

    # Step 4. Remove hex code 

    current_desc = re.sub(r'(\w+)0x\w+', '', current_desc) 

    current_title= re.sub(r'(\w+)0x\w+', '', current_title) 

    # Step 5. Change to lower case 

    current_desc = current_desc.lower() 

    current_title = current_title.lower() 

    # Step 6. Tokenize 

    # A sentence or data can be split into words using the method 

word_tokenize() 

    current_desc_tokens = nltk.word_tokenize(current_desc) 

    current_title_tokens = nltk.word_tokenize(current_title) 

   # Step 7. Strip punctuation marks 

    current_desc_filter = [word.strip(string.punctuation) for word in 

current_desc_tokens] 

    current_title_filter = [word.strip(string.punctuation) for word in 

current_title_tokens]        

    # Step 8. Join the lists 

    current_data = current_title_filter + current_desc_filter 

    ########################### 

    # current_data = filter(None, current_data) 

    current_data = list(filter(None, current_data)) 

    ########################### 

    all_data.append(current_data) 

    all_owner.append(item['owner']) 

 

Table 9 Function to preprocess the text in bug report 
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In this paper, only the words in the dictionary after removing the low frequency words mentioned above 

are vectorized, and other words are represented by vectors of all 0s. In the subsequent processing, the 

model is implemented to automatically ignore all 0s. Text entered into the subsequent model is the 

word after all low frequency words are removed. The specific process can be summarized in Figure 22. 

 



88 
 

 
 

 

Figure 22 Text Extracting, Transforming, and Loading Process 

 

5.2 Experimental design 

 

The experiment in this paper is carried out on the Surface Book 2, and its configuration is listed in 

Table 10.  

 

 

Table 10 Hardware specification for experiments 

 

The operating system is Window 10, the software requirements: Python 3.6.5, “Visual Studio 

Community 2015 with Update 3”, and NVIDIA® GPU drivers —CUDA 9.0 requires 384.x or higher, 

CUDA® Toolkit, TENSORFLOW, and Keras. 

The increment (ten-fold incremental) method is used for training. The data sets are ordered by time and 

they are equally divided into 11 copies. First, in the first round, the first fold is used as the training set, 
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the second fold is used as the test set. In the second round, the first and second data are used as the 

training set, and the third fold is used as the test set, and so on. In the 10th round, the data from 1st fold 

to the 10th fold is used as the training set, and the 11th data is used as the test set.  By this way, different 

training sets can be trained N times, Finally, the average of the N round results is used as the end result. 

The following is Tensorflow GPU Installation tutorial. 

1. Prerequisite 

 

a. “Visual Studio Community 2015 with Update 3”    link 

b. Python 3.6.5 [x64]   link 

Choose” Windows x86-64 executable installer”,  

and check the box ”add to the path” when install 

 

2. GPU Config  

 

a. NVIDIA® GPU drivers —CUDA 9.0 requires 384.x or higher (use latest version). 

Chose `Custom install` and check the box `clean install`. 

 

b. CUDA® Toolkit —TensorFlow supports CUDA 9.0 

Also, install all the upgrade packages (if patch_1 cannot install, delete the folder  

C:\Program Files\NVIDIA Corporation\Installer2, and reinstall) 

 

c. cuDNN SDK (latest) with CUDA 9.0 

Extract the files create a folder “tool” in C:\, put the cuba folder into to C:\tool\ 

Copy the file C:\tool\cuba\bin\cudnn64_7.dll 

Paste it into C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin 

 

d. Edit environment path, make sure these four exist in your path, if not add it. 

 

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin 

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\libnvvp 

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\extras\CUPTI\libx64 

C:\tools\cuda\bin 

e. Test GPU installation 

 

Open CMD, type nvcc -V 

If you can see the cuda version, you’re good to go. 

https://visualstudio.microsoft.com/vs/older-downloads/
https://www.python.org/downloads/windows/
https://www.nvidia.com/drivers
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn
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3. virtual environment 

 

a.  install virtualenv, Open CMD as administrator 

 

pip install virtualenv 

 

b. Create a new virtual environment by choosing a Python interpreter and making a 

C:\tensorflow directory to hold it: 

 

In CMD type 

virtualenv --system-site-packages -p python C:\tensorflow 

 

 

4. Install tensorflow and keras 

 

a. Activate the virtual environment: (Every time you start use tensorflow) 

 

In CMD type 

C:\tensorflow\Scripts\activate 

 

b. Install packages, In CMD type 

 

pip install --upgrade pip 

pip list   

# Installing tensorflow 

pip install --upgrade tensorflow-gpu==1.11.0 

# Verify the install: 

python -c "import tensorflow as tf; 

tf.enable_eager_execution();print(tf.reduce_sum(tf.random_normal([1000, 1000])))" 

# Installing keras, genism, punkt, scikit-learn, beautifulsoup4, lxml 

pip install keras==2.2.4 

pip install gensim==3.6.0  

pip install nltk==3.3 

pip install scikit-learn==0.20.0 

pip install beautifulsoup4  

pip install lxml  

python >>> import nltk 

python >>> nltk.download(‘punkt’) 

 

c. When you finish using tensorflow to exit environment 

 

In CMD type 
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deactivate 

 

5.3 Experiment Results 

This section conducts experiments and compares bug assignment models using Naïve Bayes, LSTM 

and “LSTM + Rule Engine”. 

1) Bag of words (BOW) + Naïve Bayes (NB) 

The bag of words (BOW) feature representation of the bug report creates a Boolean array marking 

true or false for each vocabulary word in the bug report. During training, the Naïve Bayes classifier 

will learn this representation to the corresponding owner label. The Naïve Bayes classifier uses 

only the classifier training and testing data and do not use the un-triaged bug reports and is 

implemented using the Python scikit-learn package.  

Naïve Bayes algorithm is implemented using the scikit package of python. It is implemented as  

following: 

classifierModel = MultinomialNB(alpha=0.01) 

classifierModel = OneVsRestClassifier(classifierModel).fit(train_feats, updated_train_owner) 

predict = classifierModel.predict_proba(test_feats) 

classes = classifierModel.classes_ 

 

 accuracy = [] 

 sortedIndices = [] 

 pred_classes = [] 

 

 

 for ll in predict: 

     sortedIndices.append(sorted(range(len(ll)), key=lambda ii: ll[ii], reverse=True)) 

 

 for k in range(1, rankK + 1): 

      id = 0 

      trueNum = 0 

      for sortedInd in sortedIndices: 

          pred_classes.append(classes[sortedInd[:k]]) 

          if(id < len(Y_test)): 

              if Y_test[id] in sortedInd[:k]: 

                  trueNum += 1 

              id += 1 

      accuracy.append((float(trueNum) / len(predict)) * 100) 
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 print ('Naive Bayes accuracy:', accuracy) 

 

The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., 

word counts for text classification). The multinomial distribution normally requires integer 

feature counts. Firstly, we create a classifier model for multinomial Naïve Bayes. Secondly, we 

use OneVsRestClassifier strategy to fit underlying estimators. This strategy consists in fitting one 

classifier per class. For each classifier, the class is fitted against all the other classes. In addition 

to its computational efficiency, one advantage of this approach is its interpretability. Since each 

class is represented by one and one classifier only, it is possible to gain knowledge about the class 

by inspecting its corresponding classifier. Third, according to term frequency-based bag-of-words 

model features, we will make the probability estimates. Finally, we use the real data to get test 

accuracy. The experiment result is shown in the following table. 

2) LSTM 

Our deep learning model can learn sentence representation to keep the sequence and syntax of 

words (title + description), also retain the semantic relationship using LSTM, which are used in the 

hidden layer of the whole model. At the same time, LSTM also can solve the vanishing gradient 

problem. The model is implemented using the Python keras package. The experiment result is 

shown in the following table. 

3) LSTM + Rule Engine 

Comparing with traditional method, we have obtained the remarkable experiment results.  But 

there is still a lot of room to improve the accuracy of recognition. We provide a rule engine over 

our deep learning model to add the customize rules and improve the test accuracy. In our first use 

cases (only process first 1000 incorrect owners), we use web crawler to collect the additional 

information of owners and calculate the overlapping between collected information of owners and 

the content of predicted sentences. The customize rule uses the parameter bar_percentage. The 
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rule is “if the overlapping rate is greater than 0.35”( bar_percentage = 0.35), we would assign the 

correct owner to the bug report.  

   The experiment results are shown in two categories, offline and online.  As the research mentions 

before, the offline is using all data locally, and can be rerun and achieve the similar number except some 

minor randomness, but it is reproducible.  The online result is more dynamic depending on the latest http 

web request to get the developers’ keywords data.  

The first one is the benchmark for how to do just run one number of cross validation, and one 

epoch, and is run as offline. The second result table is also run as offline but number of cross validation is 

5 and number of epochs is also 5, other parameters are listed as well.  The third one is run as online mode, 

and other parameters are listed in the configuration table as well. 

   The following experiment configuration arguments are following and run offline: 

 

numCV = 1 

max_sentence_length = 50 

min_sentence_length = 15 

rankK = 10 

batch_size = 32 

myEpochs = 1 

bar_percentage = 0.3 

 

In the following use case, we processed 16000 incorrect owners and it takes about 30 minutes to 

finish. The experiment result is shown in the following table. 

Classifier BOW + NB LSTM LSTM + Rule Engine 

1st Cross Validation 13.64 27.41 29.74 
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The above graph shows that in offline mode, pure LSTM has a better result than BOW+NB 

model, the hybrid LSTM+Rule Engine has the best accuracy overall. 

 

The following experiment configuration arguments are following and run offline: 

 

numCV = 5 

max_sentence_length = 50 

min_sentence_length = 15 

rankK = 10 

batch_size = 32 

myEpochs = 5 

bar_percentage = 0.3 

 

In the following use case, we processed 16000 incorrect owners and it takes about 10 hours to 

finish. The experiment result is shown in the following table. 

Classifier BOW + NB LSTM LSTM + Rule Engine 

1st Cross Validation 22.12 65.71 70.88 

2nd Cross Validation 20.76 49.20 57.50 

3rd Cross Validation 17.39 30.58 41.32 
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4th Cross Validation 23.99 27.07 38.98 

5th Cross Validation 8.99 27.29 38.86 

 

 

 

     The above graph shows that in offline mode for 5 cross validations, pure LSTM has a better result 

than BOW+NB model, the hybrid LSTM+Rule Engine has improved the accuracy over pure LSTM 

further. 

     The following experiment configuration arguments are following and run online: 

 

numCV = 10 
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max_sentence_length = 50 

min_sentence_length = 15 

rankK = 10 

batch_size = 32 

myEpochs = 10 

bar_percentage = 0.35 

 

 

In the first use case, we processed 1000 incorrect owners. The experiment result is shown in the 

following table. 

Classifier BOW + NB LSTM LSTM + Rule Engine 

1st Cross Validation 20.56 35.63 36.78 

2nd Cross Validation 21.93 36.12 37.52 

3rd Cross Validation 26.38 38.74 39.99 

4th Cross Validation 22.69 35.92 37.15 

5th Cross Validation 23.14 36.53 37.85 

6th Cross Validation 26.57 38.11 39.15 

7th Cross Validation 27.89 39.56 40.89 

8th Cross Validation 28.42 40.25 41.32 

9th Cross Validation 29.67 39.68 40.36 

10th Cross Validation 31.29 39.70 40.88 

Average 25.85 38.02 39.19 
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The above graph shows that in online mode for 10 cross validations, pure LSTM has a better 

result than BOW+NB model, the hybrid LSTM+Rule Engine has applied its rules to 1000 incorrect 

owners and has improved the accuracy over pure LSTM further. 

In the second use case, we processed 2000 incorrect owners. The experiment result is shown in 

the following table. 

Classifier BOW + NB LSTM LSTM + Rule Engine 

1st Cross Validation 20.12 33.25 35.12 

2nd Cross Validation 22.34 34.63 36.21 

3rd Cross Validation 25.94 37.98 39.34 

4th Cross Validation 22.78 36.13 37.43 

5th Cross Validation 22.97 36.72 37.98 

6th Cross Validation 25.37 38.45 39.76 

7th Cross Validation 27.18 39.26 40.57 
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8th Cross Validation 27.45 41.26 42.67 

9th Cross Validation 28.59 39.32 40.47 

10th Cross Validation 30.13 40.12 41.65 

Average 25.29 37.71 39.12 

 

 

The above graph shows that in online mode for 10 cross validations, pure LSTM has a better 

result than BOW+NB model, the hybrid LSTM+Rule Engine has applied its rules to 2000 incorrect 

owners and has improved the accuracy over pure LSTM further. 

In the next use case, we processed 3000 incorrect owners. The experiment result is shown in the 

following table. 

Classifier BOW + NB LSTM LSTM + Rule Engine 

1st Cross Validation 20.63 31.95 33.58 

2nd Cross Validation 22.08 36.34 37.92 
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3rd Cross Validation 26.45 38.92 40.59 

4th Cross Validation 23.74 36.13 37.76 

5th Cross Validation 23.98 37.32 38.99 

6th Cross Validation 26.56 38.45 40.07 

7th Cross Validation 28.04 39.88 41.43 

8th Cross Validation 28.43 40.12 41.48 

9th Cross Validation 29.21 39.54 41.23 

10th Cross Validation 30.88 39.92 41.84 

Average 26.01 37.86 39.49 

 

 

The above graph shows that in online mode for 10 cross validations, pure LSTM has a better 

result than BOW+NB model, the hybrid LSTM+Rule Engine has applied its rules to 3000 incorrect 

owners and has improved the accuracy over pure LSTM further. 
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In the fourth use case, we processed 4000 incorrect owners. The experiment result is shown in the 

following table. 

Classifier BOW + NB LSTM LSTM + Rule Engine 

1st Cross Validation 20.34 33.38 35.45 

2nd Cross Validation 22.12 35.24 37.19 

3rd Cross Validation 26.45 38.35 40.38 

4th Cross Validation 22.57 36.03 38.03 

5th Cross Validation 23.56 37.02 39.11 

6th Cross Validation 26.13 38.43 40.46 

7th Cross Validation 27.76 39.42 41.43 

8th Cross Validation 28.58 40.66 42.67 

9th Cross Validation 29.45 39.45 41.56 

10th Cross Validation 31.12 39.54 41.68 

Average 25.81 37.75 39.80 
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The above graph shows that in online mode for 10 cross validations, pure LSTM has a better 

result than BOW+NB model, the hybrid LSTM+Rule Engine has applied its rules to 4000 incorrect 

owners and has improved the accuracy over pure LSTM further. 

In the fifth use case, we processed 5000 incorrect owners. The experiment result is shown in the 

following table. 

Classifier BOW + NB LSTM LSTM + Rule Engine 

1st Cross Validation 20.31 34.78 37.12 

2nd Cross Validation 22.08 35.98 38.27 

3rd Cross Validation 26.32 38.46 40.79 

4th Cross Validation 22.48 35.17 37.50 

5th Cross Validation 23.57 36.32 38.65 

6th Cross Validation 26.12 38.45 40.73 
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7th Cross Validation 27.97 39.76 42.03 

8th Cross Validation 28.23 40.33 42.67 

9th Cross Validation 29.85 39.54 41.84 

10th Cross Validation 31.12 39.88 42,15 

Average 25.80 37.88 40.18 

 

 

The above graph shows that in online mode for 10 cross validations, pure LSTM has a better 

result than BOW+NB model, the hybrid LSTM+Rule Engine has applied its rules to 5000 incorrect 

owners and has improved the accuracy over pure LSTM further. 

 

5.4 Chapter summary 

 

This chapter conducts experiments and comparative analysis of the performance of three models, Naïve 

Bayes, LSTM and Hybrid model proposed in the paper.  It introduces the hybrid NLP, LSTM and Rule-
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based Engine model into the experimental verification flied of defect automatic assignment software 

engineering. Use the textual information such as summary, description, and commentary of the defect 

report to train the developer to predict the model for Chromium.  

Experiments data show that the proposed hybrid model has obvious advantages in accuracy compared 

with the machine learning NB algorithm and the pure deep learning LSTM model. It proves the validity 

of the hybrid model and provides a new solution for automatic defect assignment problem. 
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Chapter 6 Conclusion 
 

6.1 Major Achievements and Research Contributions 

 

In this research we have designed and implemented a reusable software two-layer new model to assign 

bugs to right developers. The combination of both layers Layer 1: NLP and Vector for Words and Layer 

2: LSTM and Rule-based Engine cover a wide spectrum of validation requirements making our model 

a versatile research or business value. For the problem of software defects and AI assignment based on 

text classification, below is a bulleted list of these contributions: 

• Leveraged the combination of both layers Layer 1: NLP and Vector for Words and Layer 2: LSTM and 

Rule-based Engine is successfully introduced into the field of defect self-assignment. The traditional 

method of defect self-assignment is based on the traditional text word bag model and the machine 

learning model, which is not only inefficient, but also labor-intensive. If you use deep learning models 

such as LSTM-based networks, you don't need to spend a lot of time and effort on the feature extraction 

engineering required for a machine study model, you just need to put text into a simple line, and then 

enter the model.  

• The proposed neural network model extracts text features on its own, taking into account not only the 

word order messages that the word bag model ignores, but also the grammatical and semantic 

characteristics of the text, improving the effect of the defect allocation model.  Moreover, more 

importantly, the structure of these two layers network models with rule-based engine is relatively 

simple, i.e. the model, with only NLP network architecture, word2Vec, LSTM, Rule-based engine 

parallel structure, ideal for parallel computing, plus a dedicated hardware processing accelerator GPU 

the use of this paper makes the model not only high accuracy, but also faster.  
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• My work contributes three different model comparison Naïve Bayes, LSTM and LSTM with Rule-

based Engine neural network model structures. LSTM model is more effective than the Naïve Bayes 

algorithm commonly used in machine learning for bug assignment. Rule Engine is a new attempt, and 

the model works well, and has been designed on the basis of LSTM model. The optimal results were 

achieved on both the CHROME dataset. In general, the three models, from simple to complex, from 

traditional to more advanced hybrid approach gradually increase the accuracy of the bug assignment.  

• The model based on the combination of both layers Layer 1: NLP and Vector for Words and Layer 2: 

LSTM and Rule-based Engine proposed in this paper is simple, but highly effective in defect self-

assignment and has the ability to expand and migrate the system to other datasets. The model simply 

relies on defect text, does not use other complex techniques and tribal knowledge of defect analysis, 

and the traditional method is based on feature extraction engineering approach, which is only valid for 

special datasets, making it difficult to be applied to other datasets. The model is expandable and 

migratable.  

6.2 Future Work 

The research can still be improved to allow it to stay relevant with the changing technology trends. 

Below is a list of potential future work examples. 

• Although the text classification method based on convolutional neural network proposed in this paper 

has achieved great results in the automatic assignment of defects, this method still has certain 

limitations, such as only considering the text keywords features of defect reports overlapping with 

developers’ keywords, but ignoring other possible data source such as developers’ blogging activities, 

their Facebook, and other data.  

• Although the two layers models training has achieved some achievements, it does not involve the latest 

methods in the field of natural language processing, such as BERT (Bidirectional Encoder 

Representations from Transformers) is a recent paper published by researchers at Google AI Language. 
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Moreover, it can include GPT-2[103], a powerful NLP model in the layer 1 in the future study as well.  

For training models, there are new models such as GAN and Transfer Learning are recently proposed 

as well.  It indicates that there is room for further improvement in the methods proposed in this paper. 
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