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While the operations research community has been working on combinatorial 
optimization problems for over half a century, most of the problems considered so far 
have constant event costs. This dissertation is dedicated to efficient solutions to a class of 
real-world combinatorial optimization problems whose event costs are time-dependent. 

A class of time-dependent problems is first identified and abstracted into a mathematical 
model. Based on some critical observation on the model, a problem transformation 
algorithm is proposed to significantly shrink the solution space while maintaining 
equivalency to the original problem. This problem transformation can benefit any 
solution strategies for this class of problems. 

Since the class of problems is NP-hard, a comprehensive literature survey is conducted 
for the prevailing meta-heuristics for solving NP-hard problems, including local 
optimization, genetic algorithms, simulated annealing, and tabu search. Simulated 
annealing is adopted as the base of this research’s solution strategy due to its proven 
convergence to global optimum when its temperature is reduced slowly enough. 
Comprehensive experiments are conducted to study the sensitivity of the simulated 
annealing algorithm to the values and strategy of its multiple parameters including initial 
temperature, cooling schedule, stopping criteria for the same temperature, and stopping 
criteria for the algorithm. 

More than 70 problem instances are generated to evaluate the relative performance of the 
proposed simulated annealing algorithm against repeated random solutions and one of the 
published genetic algorithms for the same problem. The size of the problem instances 
ranges from 4 to 200. Considered performance categories include both solution quality 
and running time. Experiments show that the proposed simulated annealing algorithm 
outperforms the genetic algorithm by a factor of 5% to 116% while reducing the latter’s 
running time by a factor of 2 to 145. 
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Chapter  1 
 

Introduction 

During World War II, British military leaders asked scientists and engineers to analyze 

several military problems: the development of radar and the management of convoy, 

bombing, anti-submarine, and mining operations. The application of mathematics and the 

scientific methods to military operations was called operations research. Today, the term 

operations research (or, often, management science) means a scientific approach to 

decision making, which seeks to determine how best to design and operate a system, 

usually under conditions requiring the allocation of scarce resources. 

Combinatorial optimization is an active branch of operations research that focuses on 

finding the most cost effective solutions to real-world engineering problems in which 

solutions are made up of discrete objects or integer values. For example, one of such 

problems could be how to partition a large VLSI circuit into two or more sub-circuits so 

each of them can be implemented on a separate chip, the components of the circuit are 

evenly distributed to the chips, and the connection lines across the chips can be 

minimized. 

While combinatorial optimization problems are very common in the industry design and 

management problems, most of them are intrinsically hard (NP-hard [8]) to be solved by 

traditional mathematical approaches. As a matter of fact mathematicians and computer 
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scientists have proven that for the popular NP-hard problems, no algorithms can ever be 

designed to generate optimal solutions to real-world problem instances [8]. Therefore the 

industries have to turn to heuristics to find optimized solutions to these hard real-world 

problems. Computer scientists and mathematicians have abstracted the common patterns 

of these heuristics into several meta-heuristics as reusable knowledge in problem solving 

for intractable problems. 

Traditionally the costs of events in a combinatorial optimization problem are constants. 

However many of the real-world industry problems also have event costs whose value 

change with time. For example, the highway construction costs vary by season. In 2001 

Prof. Michael L. Gargano and Prof. William Edelson [1] described a set of combinatorial 

optimization problems in which the costs of events change with time. In 2002 Joseph 

DeCicco [2] developed in his dissertation a genetic algorithm solution to two of the 

problems in [1]. In this dissertation we further study these time-dependent combinatorial 

optimization problems and contribute to their efficient solutions. 

1.1 Problem Statement and Solution Strategies 

While there are many time-dependent combinatorial optimization problems, we can 

classify them into categories based on their common properties, and design a common 

mathematical model for each of these categories. As a result, any research results on such 

a mathematical model can be applied to all the problems in that particular category. We 

call such mathematical models our problem formulations. 
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In this section we informally specify a class of time-dependent problems that we are 

going to address in this dissertation, outline their example applications, and discuss our 

fundamental solution strategies.  

1.1.1 Problem Statement 

Table 1 Problem Statement 

 

The above generic problem statement can be used to model many real-world time-

dependent combinatorial optimization problems. For example, if we let building highway 

segments be the tasks, and the bidding companies be the workers, then we have the 

Highway Minimum Bidding Problem in [1] (refer to Sub-Section 3.1.2 on page 19 for 

details). If we define tasks to be placing a satellite receiver for each group of mutually 

reachable communications network backbone nodes, and define the involved 

communications network backbone nodes as the workers, w have the Minimum Cost 

Satellite Receiver Placement Problem in [1] (refer to Sub-Section 3.1.1 on page 18 for 

details). 

We have a set of tasks and a set of workers. Each task must be conducted by one 

worker. The tasks must be conducted in consecutive time units, one task in one 

time unit, but in any order.  Each worker can bid to work on one task only, but his 

bidding cost depends on the time unit in which the task will be conducted. Find an 

optimal assignment of the workers to the tasks and an optimal ordering to conduct 

these tasks so that the total cost to complete all of these tasks could be minimized. 
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1.1.2 Solution Strategies 

Given a combinatorial optimization problem, the most important work is to design a 

proper problem formulation (mathematical model). For the same problem, we may 

usually define many different problem formulations, each with its own solution space 

structure. A proper problem formulation is much more important than choosing the right 

solution strategies. 

In this research we first carefully study the properties of a class of time-dependent 

problems that fit in the specification in Sub-Section 1.1.1 and propose a unified proper 

problem formulation as the mathematical model for their design of solution strategies. 

We identify the unique property of this model that the choices for which worker to 

conduct a task are independent. This critical observation is the key to understand this 

class of problems, and the foundation of this dissertation research. We proposed two 

problem formulations, one is more straightforward but has a larger solution space, and 

the other can be derived from the first problem formulation and have a significantly 

smaller solution space. We proved that these two formulations are fundamentally 

equivalent, but the latter provides the base for any efficient solution strategies. 

Since the problem class at hand is NP-hard [1], we have to use heuristics to find their 

optimized solutions. We surveyed several prevailing meta-heuristics in the operations 

research domain including local optimization, genetic algorithms [7], simulated annealing 

[3][4], and tabu search [5]. We adopted simulated annealing as the base of our solution 

strategy because it is the only meta-heuristic that has been proven to converge to the 

global optimal solutions when its temperature is reduced slow enough [3]. 
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1.2 Research Contributions 

The major contributions of this research include 

• Abstracting and formulating a class of time-dependent problems; 

• Designing a problem transformation algorithm to significantly reduce the solution 

space, and proving the equivalence of the transformed problems to the original 

ones; 

• Designing solution space, solution moves, and solution neighborhood; 

• Designing and implementing exhaustive search and local optimization as 

reference algorithms for performance evaluation; 

• Implementing Joseph DeCicco’s genetic algorithm [2] as a reference algorithm 

for performance evaluation; 

• Designing a simulated annealing algorithm and studying its sensitivity to various 

cooling strategies and parameters 

• Designing experiments to evaluate both solution quality and run-time for various 

solution algorithms, and analyzing the resulting data to provide insights 

1.3 Dissertation Outline 

Chapter 2 surveys the major meta-heuristics for combinatorial optimization, and provides 

a base for understanding the key ideas of simulated annealing. Chapter 3 is the heart of 

this dissertation, and it proposes two problem formulations to a class of time-dependent 

combinatorial optimization problems, constructively prove their equivalence, and 
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demonstrate the advantages of the new problem formulation. Chapter 3 also provides our 

contributions in the design of solution moves and solution neighborhood as well as the 

incremental update of the objective function, which are the common base of most of the 

algorithms in this dissertation. Chapter 4 designs several reference algorithms for  

performance evaluation comparison of our simulated annealing algorithm. Chapter 5 

provides the design of our simulated annealing algorithm, and conduct sensitivity 

analysis of the algorithm to its various parameters. Chapter 6 designs experiments and 

systematically compare the solution quality and running time of all the algorithms 

designed and implemented in this dissertation. Chapter 7 concludes the dissertation with 

some observations. 
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Chapter  2 
 

Combinatorial Optimization Strategies 

This chapter surveys the fundamental concepts and meta-heuristics that have been proven 

effective in solving combinatorial optimization problems [11]. 

2.1 Fundamental Concepts 

2.1.1 Generic Formulation of Combinatorial Optimization 

A combinatorial optimization problem is typically specified with a solution space S, a 

cost function ℜ→Sf :  where ℜ  is the set of real numbers, and a constraint function 

}.,{: falsetrueSc →  In its general form, a combinatorial optimization problem looks for 

an optimal solution Ss∈  such that )(sc  is true and )(sf  is minimized. 

2.1.2 NP-hardness of a Problem 

If an algorithm has an exponential time complexity O(2n), the algorithm cannot be used 

when problem instance is larger than 100 or so. Since each decimal digit is represented 

roughly by three binary digits, 2100 is roughly equal to 1033. The fastest supercomputer 

today can process less than 1015 floating-point operations per second. Therefore, 1033 

operations will take 1033/1015 = 1018 seconds, or at least 1014 hours, or at least 1010 years. 

Even a supercomputer of the future wouldn’t be helpful. 
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Over the last 40 years computer scientists have identified a set of problems and proved 

that, with a high probability, no algorithms can solve these problems with a time 

complexity fundamentally different from O(2n) [8]. This is an unusual achievement in 

science since the claim applies to the intelligence of future human development. These 

problems are called NP-hard or intractable since there is no hope to come up with 

efficient algorithms to solve them for practical problem instances. 

Unfortunately, many interesting problems in science and engineering belong to this 

intractable category. The problems that we study in this dissertation are intractable. 

Even though we do not have efficient algorithms to solve these intractable problems, 

industries need good solutions to these types of problems. Any small improvement in the 

solution quality may imply significant benefits. So the problem becomes: within practical 

time limits, how can we find optimized, instead of optimal, solutions? 

2.1.3 Solution Space, Moves and Neighborhood 

Given any combinatorial optimization problem, a set consisting all of its potential 

solutions is called its solution space. Those solutions in the solution space that satisfy the 

constraint function are called feasible solutions.  

Given a current feasible solution, a move to the solution is an operation that will 

transform the current solution to another feasible solution.  

Give a solution in the solution space, a neighbor of the solution is another solution in the 

solution space that can be reached through the application of one of the defined moves. 

The neighborhood of a solution is made up of all neighbors of the solution. The 
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neighborhood structure is derived from the move design. A more flexible move set will 

lead to a larger solution neighborhood. 

2.1.4 Local vs. Global Optimal Solutions 

If a feasible solution has a cost function value smaller than those for all of its neighbors, 

this solution is called a local optimal solution. Those local optimal solutions having the 

smallest cost function values among all the local optimal solutions are called the global 

optimal solutions. 

2.2 Dominant Solution Meta-Heuristics 

For NP-hard problems, like the problems we are working on, we can only obtain optimal 

solutions for small problem instances. For practical problem instance sizes, heuristics 

must be used to find optimized solutions within reasonable time frame. A heuristic is an 

algorithm that tries to find good solutions to a problem but it cannot guarantee its success. 

Most heuristics are not based on rigid mathematical analyses, but on human intuitions, 

understanding of the properties of the problem at hand, and experiments. The value of a 

heuristic must be based on performance comparisons among competing heuristics. The 

most important performance metrics are solution quality and CPU running time. 

Over the last half a century people have studied combinatorial optimization heuristics in 

solving many practical NP-hard problems, and some common problem-solving strategies 

underlying these heuristics emerged as meta-heuristics.  A meta-heuristic is basically a 

pattern or main idea for a class of heuristics. Meta-heuristics represent reusable 

knowledge in heuristic design, and they can provide valuable starting points for us to 

design effective new heuristics in addressing new NP-hard problems. But meta-heuristics 
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are not based on theory. We should not limit ourselves to their guidelines and let them 

limit our own creativity. Meta-heuristics are not algorithms. To effectively solve a 

problem based on a meta-heuristic, we need to have deep understanding of the 

characteristics of the problem, and creatively design and implement the major 

components of the meta-heuristics. Therefore, using a meta-heuristic to propose an 

effective heuristic to solve an NP-hard problem is an action of research. 

2.2.1 Local Optimization 

Local optimization is also called greedy algorithm or hill-climbing. Starting from a 

random initial partition, the algorithm keeps migrate to better neighbors in the solution 

space. If all neighbors of the current partition are worse, then the algorithm terminates. 

This scheme can only find local optimal solutions that are better than all of their 

neighbors but they may not be the global optimal solutions. Table 2 shows the local 

optimization algorithm in pseudo-code. 

 

 

Figure 1  Local vs. Global Solutions 

Initial Global Local 
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Table 2  Local Optimization 

 

2.2.2 Genetic Algorithm 

Genetic algorithm is based on the analogy of combinatorial optimization to the mechanics 

of natural selection and natural genetics. Its application in combinatorial optimization 

area started back in early 1960s [7].  

In a genetic algorithm, a solution is represented by a coding. The algorithm starts with the 

generation of a pool of codings for random solutions. This pool is called generation 0. To 

generate the next generation, parents are randomly selected from the previous generation 

according to some selection criteria. Every pair of such parent codings could be randomly 

crossovered (mixed) to generate a new child coding in the new generation. Each such 

parent could also be randomly mutated (modified) to generate a new child coding. 

Hopefully the advantages of the parents could be combined to generate a better child, and 

a mutated parent could lead to unexplored area of the solution space. This generation 

production process will be repeated until some stopping criteria are met. 

Now we can describe a generic genetic algorithm with the following pseudo-code. 

Get a random initial solution as the current solution. 
While there is an untested neighbor of the current solution 
        Find an untested neighbor of the current solution. 
        Evaluate the neighbor’s cost. 
        If the neighbor’s cost improves the current cost 
               Let the neighbor be the new current solution. 
               If the neighbor’s cost improves the best one seen so far, record it.
        End If. 
End While. 
Return the best solution visited.
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Table 3  Genetic Algorithm 

 

Generate 50 codings of random partitions, and sort them in the generation table according 
to their costs. 

While there are improvements to the best cost s 

      

 

 

2.2.3 Simulated Annealing 

In 1983 Kirkpatrick and his coauthors proposed to use the analogy of metal annealing 

process to design combinatorial optimization heuristics [4].  

The atoms in metal have their natural home positions. When they are away from their 

natural positions, they hold energy to pull them back. Metal will be in its softest state 

when most of its atoms are in their natural home positions and in its hardest state when 

most of its atoms are far away from their natural home positions. To make a sword with 

steel, we need first to put the steel in very high temperature so the atoms can randomly 

move around instead of getting stuck in some foreign positions. The natural force will 

pull the atoms back to their home positions. Little by little, we lower the temperature 

until most of the atoms are frozen in their home positions. If the temperature is lowered 

too fast, some atoms may get stuck in foreign positions. This is the annealing process. 

Kirkpatrick viewed the combinatorial optimization process analogous to the metal 

annealing process, and the optimal solutions analogous to metal in its softest state. Such 

analogies are not logically justifiable. Basically the physical metal annealing process 

gave Kirkpatrick some fresh ideas on combinatorial optimization. 

Generate codings of random solution as generation 0. 
While there are improvements to the best cost seen so far in the recent generations do 
       Use crossover to generate some children with randomly chosen parents. 
       Use mutation to generate some children with randomly chosen parents. 
       Let the new generation be made up of the best solutions we have now. 
       If the best coding improves the best cost seen so far, record it. 
End While. 
Return the best solution visited. 
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The simulated annealing heuristic starts with a random initial solution as its current 

solution and a high temperature t. The heuristic then goes through loop iterations for the 

same temperature. During each iteration, a random neighbor of the current solution is 

generated. If the neighbor improves the current cost, then the neighbor becomes the new 

current partition for the next iteration. If the neighbor worsens the current cost, it will be 

accepted as the new current solution with a probability. When the temperature is high, the 

probability is not sensitive to how bad the neighbor is. But when the temperature is low, 

the probability to accept a worsening neighbor will shrink with the extent of the 

worsening.  When no improvement in solution cost happens for a while, the temperature 

will be reduced by a very small amount, and the above looping repeats. The process will 

terminate when some termination criteria is met. 

Simulated annealing has been widely applied to solve many combinatorial optimization 

problems. Simulated annealing is unique among all the other meta-heuristics for 

combinatorial optimization in that it has been mathematically proven to converge to the 

global optimum if the temperature is reduced sufficiently slowly. But this theoretical 

result is not very interesting to practitioners since very few real world problems will be 

able to afford such excessive execution time. 

A simulated annealing heuristic can be described by the following pseudo-code.  
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Table 4  Simulated Annealing 

 

Let us have a look of the function of ∆ and t in the probability function ./ te ∆−  Since 

0>∆  and t > 0, .1
/

/
t

t

e
e ∆

∆− =  When t is much larger than ∆, t/∆  approaches 0, te /∆  

approaches to 1, and te /∆−  approaches to 1. This indicates that when the temperature is 

high, the heuristic has very high chance to accept worsening neighbors. But when t is 

much smaller than ∆, t/∆  approaches∞ , te /∆  approaches to∞ , and te /∆−  approaches to 

0. This indicates that when the temperature is very small, the heuristic has very small 

chance to accept worsening neighbors. 

When we compare local optimization and simulated annealing, we find they mainly differ 

in whether to accept worsening neighbors. For simulated annealing, it starts with random 

walk in the solution space. When a random neighbor is better, it always takes it. But if the 

neighbor is worsening, its chance of accepting it is reduced slowly. Simulated annealing 

is reduced to local optimization when the temperature is very low. 

Get a random initial solution π as the current solution. 
Get an initial temperature t > 0. 
While stop criteria not met do 
       Perform the following loop L times. 
            Let π’ be a random neighbor of π. 
            Let ∆ = cost(π’) – cost(π). 
            If  0≤∆  (downhill move), set  π = π’. 
            If   0>∆  (uphill move), set  π = π’ with probability ./ te ∆−  
       Set t = 0.95t (reduce temperature). 
End While. 
Return the best π visited. 
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2.2.4 Tabu Search 

Tabu search is another meta-heuristic for combinatorial optimization becoming very 

active in late 1980s [5]. The proponents of tabu search disagree with the analogy of 

optimization process to metal annealing process. They argued that when a hunter was put 

in an unfamiliar environment, he will not walk randomly first but zero in to the area that 

appears most promising in finding games. This is similar to the greedy local optimization 

process. Only when neighboring areas are all worse than the current area will the hunter 

be willing to walk through worsening neighboring areas in hope of finding a better local 

optimum. To avoid being trapped in a loop in the solution space (for example, accepting 

a worsening neighbor, then returning back to the better starting solution right away), tabu 

search uses a tabu list to remember the recent moves and avoids repeating them Tabu 

means prohibition here. 

Tabu search differs from simulated annealing in that it is more aggressive and 

deterministic. A tabu search heuristic starts by generating a random partition as the 

current partition. It then executes a loop until some stopping criteria are met. During each 

iteration, the current solution is replaced with its best neighbor that is not tabued on the 

tabu list.  

Theoretically the tabu list should record the solutions visited recently so we can avoid 

repeating them. But in practice checking each neighbor against each of the recorded 

solutions will take up too much execution time. Therefore in practice we usually only 

record some features of the recent solutions, or some features leading to these recent 

solutions.  
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A tabu search heuristic can be described by the following pseudo-code 

Table 5  Tabu Search.  

 

. 

Get a random initial solution π as the current solution. 
While stop criteria not met do 
       Let π’ be a neighbor of π minimizing ∆ = cost(π’) – cost(π)  
       and not visited in the last t iterations. 
       Set π = π’. 
End While. 
Return the best π visited. 
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Chapter  3 
 

Abstraction and Transformation of a Class of Time-Dependent 
Optimization Problems 

3.1 Real World Time Dependent Optimization Problems 

The traditional combinatorial optimization research focuses on problems in which the 

cost of each decision-making step is a constant that will not change with time. For 

example, in the famous Travel Salesperson Problem, the cost for the salesperson to travel 

from one city to another is fixed and does not dependent on the order in which the 

salesperson will make this trip. 

But in the real world there are many problems that do not fit into this category. For 

example, the cost of building a skyscraper depends on the construction season. Usually, 

building a skyscraper in the summer will be different from that in the winter due to 

different environmental working conditions. In the stock market, the sale of the same 

amount of stocks at different times will usually lead to different returns. 

In 2001 Prof. Michael Gargano and Prof. William Edeson [1] first formally introduced 

the problem of finding optimal solutions for problems in which the costs are time-

dependent, outlined five such problems with practical significance, and proposed their 

solutions based on a novel solution coding for genetic algorithms. The following are two 

of these five problems. 
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3.1.1 Minimal Cost Satellite Receiver Placement 

Given a directed communication network abstracted as nodes and directed edges, satellite 

receivers need to be installed on selected nodes to make sure that satellite signal can 

reach all nodes of the network. The satellite receivers must be installed in successive 

months, one for each month. The price to install a satellite receiver is a function of both 

the node and the month involved. Find a subset of nodes and decide on the order for their 

satellite receiver installation so that the satellite signal can reach all the nodes and the 

total cost is minimized.  

As an example, let us assume that we have a communication network consisting of 10 

nodes, as shown in Figure 2. 

 

Figure 2  Example Communications Network 
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Table 6 shows the cost of installing a satellite receiver on a node in four different months. 

For example, to install a satellite receiver on node 2 in month 3 will cost 86 millions of 

dollars. 

Table 6  Cost Table for Satellite Receiver Installation 

Cost (in millions of dollars) 
Node 

Month 1 Month 2 Month 3 Month 4 
1 24 45 91 38 
2 48 87 86 23 
3 60 34 94 71 
4 50 83 89 36 
5 22 51 51 91 
6 46 51 14 97 
7 47 26 11 93 
8 77 54 34 60 
9 64 38 21 35 
10 67 49 35 50 

 

The question now is how can we choose the smallest number of nodes to install satellite 

receivers and conduct the installations in a particular order so that the total cost for the 

project could be minimized? 

3.1.2 Highway Minimum Bidding 

There is a need to build s highway segments to connect some cities. There are n ( sn ≥ ) 

companies bidding to build the highway segments. The segments will be built in 

successive months, one in each month. Each bidding company can only bid on the 

construction of a particular highway segment, and the cost of the bid vary with months. 
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Assign the bidding companies to build the highway segments in a particular order so that 

the total cost is minimized. 

As an example, Figure 3 shows a highway network to be built. There are four highway 

segments involved. Due to budget limits, the four segments must be built in four 

consecutive months, one month for each segment, but the order of their construction is 

not important.  

 

Figure 3  Example Highway Network 

There are ten companies bidding on the construction of the four segments, each can only 

bid on a particular segment. Let us assign unique identification numbers 1, 2, …, 10 to 

these companies. Table 7 shows the costs for a bidding company to build a highway 

segment in a particular month. For example, for company 2 to build segment 1 in month 

3, the bidding cost is 86. Notice that we purposely used the same cost data as in Table 6 

to highlight the similarity of the two different real world problems. 
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Table 7  Cost Table for Highway Bidding 

Cost (in millions of dollars) Highway 
Segment 

Bidding 
Company Month 1 Month 2 Month 3 Month 4 

1 24 45 91 38 
2 48 87 86 23 1 
3 60 34 94 71 
4 50 83 89 36 
5 22 51 51 91 2 

6 46 51 14 97 
7 47 26 11 93 
8 77 54 34 60 3 
9 64 38 21 35 

4 10 67 49 35 50 

 

We can generalize from these two problems that in the real world there are many similar 

combinatorial optimization problems whose costs are time-dependent. Efficient solutions 

to these problems can bring us significant economic benefits. 

3.2 Abstraction of a Class of Time-Dependent Optimization Problems 

Instead of trying to solve each similar problem, in this section we will abstract a class of 

such problems into a general problem formulation. Providing efficient solutions to such a 

problem formulation will enable us to solve all problems that are based on the same 

abstraction. 
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3.2.1 Problem Formulation A 

Table 8  Problem Formulation A 

 

In a generic language, this mathematical model identifies a set of n workers (X) to work 

on s tasks. Each of the s tasks must be completed by one worker in a particular time slot. 

All the s tasks must be completed in s consecutive time slots. Each worker can only work 

on one of the s tasks. The cost for a worker x  to work in time slot i is c(x, i). Problem 

Formulation A tries to find one worker for each task (vector v) and an order π  for these 

workers to work on the tasks such that the total cost would be minimized. 

It has been proven that Problem Formulation A specifies a class of NP-hard problems [1]. 

Problem Formulation A: Let },,,{ 21 nxxxX K= be a set, ns ≤<1  an integer, 

},,,{ 21 sXXX K  a partition of ,X  s℘ the set of all permutations on set 

},,,2,1{ sS K= +ℜ  the set of all nonnegative real numbers, and +ℜ→× SXc :

a given function. Find a vector ss XXXxxxv ×××∈= KK 2121 ),,,(  and 

s∈℘π  such that the cost function 

∑
=

=
s

i
i ixcvf

1
))(,(),( ππ  

is minimized. 



 

 

23

3.2.2 Application of Problem Formulation A 

In this sub-section we show how we can use Problem Formulation A to model both of the 

two problems outlined in Section 3.1. Of course Problem Formulation A can also be used 

to model many other similar real world problems. 

3.2.2.1 Minimum cost satellite receiver placement  

We can first find strong components of the communication network so that signal can 

flow between any pair of two nodes in the same strong component, and no node in a 

strong component can be reached from nodes of another strong component. Let s be the 

number of the resulting strong components. Obviously we only need to install exactly s 

satellite receivers, one for each strong component. The problem is now which node in 

each strong component will be chosen to install a satellite receiver, and the receivers will 

be installed in which order.  

Let X be the set of all the nodes in the strong components, which is partitioned into 

subsets of nodes belonging to each partition. Let ),( ixc be the cost of installing a receiver 

on node x in month i. Then a solution to Problem Formulation A will find the subset of 

nodes to install satellite receivers and the order to install the receivers so that the total 

cost is minimized. 

Figure 4 shows the partition of the example communications network in Figure 3 into 

four strong components, which are represented by dotted ovals. 
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Figure 4  Strong Components of a Communications Network 

 

3.2.2.2 Highway minimum bidding 

Let X be the set of all bidding companies, and ),( ixc  the cost of letting company x build 

highway segment x in month i. Then a solution to Problem Formulation A will find the 

best subset of bidding companies to build the highway segments in a particular order so 

that the total cost is minimized. 

3.3 Problem Transformation 

In this section we first use the previous highway bidding example to observe some 

special properties of Problem Formulation A, and then propose a scheme to transform 

Problem Formulation A into an equivalent but simpler Problem Formulation B. Since the 

solution space for Problem Formulation B is significantly smaller than that for Problem 
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Formulation A, this transformation can benefit any solution strategies. Therefore this 

transformation represents a major research contribution of this dissertation. 

3.3.1 Critical Observation of Problem Formulation A 

The most important property of Problem Formulation A is the independence of the 

choice of a representative ix of a subset iX  in the solution vector v for any .1 si ≤≤  As a 

result, instead of focusing on both which workers will be chosen to complete the tasks 

and in which order, we only need to focus on in which order the tasks will be conducted. 

We use the earlier highway bidding problem as an example, and refer to the cost data in 

Table 7. Suppose we decide to build the highway segments in the order of 2, 1, 3, and 4. 

As indicated by the shaded areas of Table 9, companies 4, 5, and 6 are bidding on 

segment 2 and their bidding prices for month 1 are 50, 22, and 46 respectively; 

companies 1, 2, and 3 are bidding on segment 1 and their bidding prices for month 2 are 

45, 87, and 34 respectively; companies 7, 8, and 9 are bidding on segment 3 and their 

bidding prices for month 3 are 11, 34, and 21 respectively;  and company 10 is bidding 

on segment 4 and its bidding price for month 4 is 50. Since we need to build the highway 

with the minimal total cost, for each segment we choose the bidding company asking for 

the minimal cost for the assigned month, as indicated by the darker cell in each of the 

shaded areas in Table 9. Obviously the decision of having company 5 to build segment 2 

in month 1 has nothing to do with the decision of having company 3 to build segment 1 in 

month 2. Therefore, based on the decision of building the highway segments in the order 

of 2, 1, 3, and 4, the implied solution to the problem is to assign company 5 to build 

segment 2 in month 1, company 3 to build segment 1 in month 2, and company 7 to build 
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segment 3 in month 3, and company 10 to build segment 4 in month 4. This assignment 

leads to a total cost of 22 + 34 + 11 + 50 = 117. We will see later that this solution is not 

optimal since the segment building order is not optimal. 

Table 9  Highway Segment Building Order Implies Solution 

Cost (in millions of dollars) Highway 
Segment 

Bidding 
Company Month 1 Month 2 Month 3 Month 4 

1 24 45 91 38 
2 48 87 86 23 1 
3 60 34 94 71 
4 50 83 89 36 
5 22 51 51 91 2 

6 46 51 14 97 
7 47 26 11 93 
8 77 54 34 60 3 
9 64 38 21 35 

4 10 67 49 35 50 

 

This is the critical observation leading to our introduction of Problem Formulation B and 

the Translation Theorem. If the minimal bidding cost in a shaded area has multiple 

occurrences, the company assignment will not be unique, but the minimal total cost is 

still unique. 

3.3.2 Simplified Problem Formulation B 

Based on our critical observation on Problem Formulation A, we introduce the following 

simplified Problem Formulation B. 
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Table 10  Problem Formulation B 

 

In a generic language, this mathematical model identifies a set of n workers (X) to work 

on s tasks. Each of the s tasks must be completed by one worker in a particular time slot. 

All the s tasks must be completed in s consecutive time slots. Each worker can only work 

on one of the s tasks. The cost for a worker x  to work in time slot i is c(x, i). For any 

,,1 sji ≤≤  where i represents a task and j represents a time slot, ),(' jic is the minimal 

cost for completing task i in time slot j. Problem Formulation B tries to find the best 

order to complete the s tasks to minimize the total cost, and it also provides an algorithm 

to derive from such an order the best task assignment to the workers.  

Problem Formulation B: Let +ℜ→× SSc :'  be a function such that for ,, Sji ∈

),(),( min' jxcjic
iXx∈

=  (if such x is not unique, choose the one with the smallest 

index in set X ). Find a s∈℘π  such that the cost function 

∑
=

=
s

i

iicf
1

' ))(,()(' ππ  

is minimized. A corresponding vector ss XXXxxxv ×××∈= KK 2121 ),,,( can 

be derived from π  by function ss XXXr K××→℘ 21:  such that for any ,s∈℘π

),,,,()( 21 sxxxr K=π  and for all ,Si∈  ,ii Xx ∈ and ))(,())(,( ' iicixc i ππ =  (if 

such x  is not unique, choose the one with the smallest index in set X ). 
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3.3.3 Problem Transformation Theorem 

The following Transformation Theorem explains that, given any problem instance in the 

form of Problem Formulation A, we can solve it by first solving its simpler version in 

Problem Formulation B. 

Table 11  Problem Transformation Theorem 

 

Proof:  Problem A seeks v  and π  that makes 

∑
=

℘∈
×××∈=

s

i
i

XXXxxxv
ixc

s

ss 1),,,(
))(,(min

2121

π

π
KK

 

true, which is equivalent to 

∑
= ∈℘∈

s

i Xx
ixc

is 1
))(,(minmin π

π
 

or  

∑
=℘∈

s

i
iic

s 1

' ))(,(min π
π

 

 which is exactly the specification for Problem B. □ 

Problem Transformation Theorem: Given any set },,,{ 21 nxxxX K= and 

function +ℜ→× SXc : . Any solution s∈℘π  to Problem Formulation B and its 

corresponding vector )(πrv =  provides a solution to the corresponding Problem 

Formulation A. 
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3.3.4 Transformation Example 

Given a highway bidding problem in Problem Formulation A with cost data in Table 7 on 

page 21, we can derive the following simpler cost table for function ),(' jic  shown in 

Table 12. 

Table 12  Simplified Cost Table for Highway Bidding 

Cost (in millions of dollars) Highway 
Segment Month 1 Month 2 Month 3 Month 4 

1 24 35 86 23 
2 22 51 14 36 
3 47 26 11 35 
4 67 49 35 50 

Based on Problem Formulation B, the solution space for this problem instance is made 

up of all permutations of numbers in {1, 2, 3, 4}, and the solution space has exactly 

241234!4 =×××=  feasible solutions. We can easily enumerate all these 24 feasible 

solutions and find (2, 4, 3, 1) is the optimal solution to the Problem Formulation B 

version of the problem instance at hand, and the cost of this optimal solution is 22 + 49 + 

11 + 23 = 105. The physical meaning of this solution means that to minimize the total 

project cost, we should build highway segment 2 in month 1, build  highway segment 4 in 

month 2, build highway segment 3 in month 3, and build highway segment 1 in month 4. 

Now we can recover the corresponding optimal bidding company assignment by referring 

to Table 7 on page 21. Companies 4, 5, and 6 bid for building highway segment 2 in 

month 1 for costs 50, 22, and 46 respectively. Since 22 is the minimal cost here, company 

5 should be assigned to build highway segment 2 in month 1. Company 10 is the only 

company bidding for building highway segment 4 in month 2 and it asks for a cost of 49. 
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Therefore company 10 should be assigned to build highway segment 4 in month 2. 

Companies 7, 8, and 9 bid for building highway segment 3 in month 3 for costs 11, 34, 

and 21 respectively. Since 11 is the minimal cost here, company 7 should be assigned to 

build highway segment 3 in month 3. Companies 1, 2, and 3 bid for building highway 

segment 1 in month 4 for costs 38, 23, and 71 respectively. Since 23 is the minimal cost 

here, company 2 should be assigned to build highway segment 1 in month 4. Again the 

total cost based on Table 7 is the same 22 + 49 + 11 + 23 = 105. 

3.4 Benefit of Problem Transformation 

3.4.1 Exhaustive Search 

Given a Problem Formulation A model with n workers and s tasks, each solution is made 

up of an element of sXXX L×× 21  and a permutation π  of numbers in {1, 2, …, s}. 

The former has |||||| 21 sXXX ⋅⋅⋅ L  possibilities. The latter has 

12)1(! ×××−×= Ksss  possibilities. Therefore, the solution space for Problem 

Formulation A has a size of !.|||||| 21 sXXX s ⋅⋅⋅⋅ L  

On the another hand, for the equivalent Problem Formulation B, each solution is made up 

of a permutation of s numbers in {1, 2, …, s}, so the corresponding solution space has a 

size of s!.  

Therefore, if we conduct exhaustive search to find an optimal solution, we can expect a 

speedup of ||||||
!

!||||||
21

21
s

s XXX
s

sXXX
⋅⋅⋅=

⋅⋅⋅⋅
L

L
 if we adopt Problem 

Formulation B instead of Problem Formulation A. 
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3.4.2 Heuristic Solution Searches 

As explained in Chapter 2, most heurist algorithms are based on searching a selected 

subset of a solution space to find an optimized solution. They mainly differ in which 

subset to look into. Without knowledge on the structure of a solution space, we have to 

assume each area of the same size has similar chance of containing the optimal solution. 

Under this assumption, if we adopt Problem Formulation B, the chance for a heuristic 

search algorithm to find an optimal solution is |||||| 21 sXXX ⋅⋅⋅ L  times of that based 

on the Problem Formulation A version of the same problem instance. 

3.5 Common Foundations for Solution Searches 

3.5.1 Solution Space Neighborhood Design 

Most algorithms for solving NP-hard problems are based on a loop and a current solution. 

During each iteration of the loop, we perturb the current solution a little to get a neighbor 

of it, and decide whether to accept the neighbor as the new current solution based on 

some criteria. Therefore it is important to design a solution neighborhood for a current 

solution. 

First we need to decide what moves (perturbations) are suitable for the problem solutions 

at hand. The moves are problem specific. There are some general guidelines for choosing 

moves for a problem: 

• The reachability property. The moves should allow the algorithm to visit any 

feasible solution in the solution space, through a series of steps, starting with any 

current solution 
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• The incrementally updateable property. Ideally, the moves should support the 

incremental update of the objective function. Evaluating the objective function is 

in general a time consuming process. Suppose we know the cost of the current 

solution. After we apply a local move or perturbation to the current solution, 

hopefully we can derive the cost of the resulting solution by some simple 

modifications to the current cost, instead of evaluating the objective function 

entirely. Such incremental cost update can benefit any solution techniques, and is 

one of the key factors for success. 

For Problem Formulation B, each solution is a permutation of numbers in {1, 2, …, s}. 

We choose to use swapping two values in the current permutation as our only move. It is 

easy to see that this swapping enjoys the reachability property. In the next subsection we 

will show that this move also supports incremental cost updates. 

Give a solution in the solution space, a neighbor of the solution is another solution in the 

solution space that can be reached through the application of one of the defined moves. 

The neighborhood of a solution is made up of all neighbors of the solution. The 

neighborhood structure is derived from the move design. A more flexible move set will 

lead to a larger solution neighborhood. 

3.5.2 Incremental Cost Update 

Most combinatorial optimization heuristics are based on a current solution and iterations. 

During each iteration, the current solution will be perturbed to obtain a neighboring 

solution, and the cost of this neighbor will decide the proper action of the heuristic. Since 

this cost evaluation has important impacts in heuristic running time, we hope to 
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incrementally update the old cost for the current solution to obtain the new cost for the 

neighboring solution. The following Incremental Cost Update Theorem tells us this is 

possible and how to do it. 

Table 13 Incremental Cost Update Theorem 

 

Proof:  Based on our Problem Formulation B, given any permutation π  on set {1, 2, …, 

s}, the cost function )(' πf is defined as  

∑∑
≠≠
≤≤=

++==

jkik
sk

s

i

kkcjjciiciicf

,
11

' ))(,('))(,('))(,('))(,()(' πππππ  

After swapping values at positions i and j, we effectively swapped values of )(iπ  and 

).( jπ  Therefore the only terms that need updating are ))(,(' iic π  and )),(,(' jjc π  which 

should be replaced by values of ))(,(' jic π and ))(,(' ijc π respectively.   □ 

For example, let π  = (2, 1, 4, 3) be the current solution for the example problem instance 

in Table 12 on page 29. We can check that )3,4(')4,3(')1,2(')2,1(')(' ccccf +++=π  = 

Incremental Cost Update Theorem: For Problem Formulation B, given a 

solution (permutation) s∈℘π  and its corresponding cost )(' πf , applying a 

perturbation of swapping values at positions i and j in solution π , where 

,1 sji ≤<≤  will result in a neighboring solution 'π  with cost )'(' πf  satisfying 

the following relationship 

)).(,('))(,('))(,('))(,(')()'(' ijcjicjjciicff ππππππ ++−−=  
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35 + 22 + 35 + 35 = 127. If we swap the values in positions 2 and 3 in π , the resulting 

solution will be 'π  = (2, 4, 1, 3), and its cost will be  

)3,4(')1,3(')4,2(')2,1(')'(' ccccf +++=π  = 35 + 36 + 37 + 35 = 143. But we can also 

obtain this new cost by applying incremental update 

))(,('))(,('))(,('))(,(')(')'(' ijcjicjjciicff ππππππ ++−−=   or 

)1,3(')4,2(')4,3(')1,2('127)'(' ccccf ++−−=π  = 127 – 22 – 35 + 36 + 47 = 143. 

The time complexity of evaluating the cost function )'(' πf  is )(sO  or linear function of 

s, but the time complexity for our incremental cost update is )1(O  or constant. When s is 

large, the benefit of our incremental update can be significant. 
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Chapter  4 
 

Reference Algorithms 

To evaluate the relative performance of our simulated annealing algorithm, we design 

and implement several reference algorithms including exhaustive search, repeated 

random solutions, and a genetic algorithm. This chapter describes the design of these 

algorithms. 

4.1 Enumeration of All Combinations 

For the implementation of exhaustive search, we need to systematically enumerating all 

permutations of elements of set {1, 2, …, s}. Our implementation is based on Jeffrey A. 

Johnson’s algorithm [10], which is outlined below. This algorithm is efficient, and it 

takes no extra auxiliary memory space, except for a few constant number of integer 

variables, for computing successive permutations in lexicographic order. 

 

 

 

 

 



 

 

36

Table 14  Return Next Permutation in Lexicographic Order 

 

4.2 Design and Implementation of Exhaustive Search 

For small problem instances of an NP-hard problem, we may still want to design 

algorithms to find optimal solutions. The optimal solutions found by such algorithms can 

serve as a comparison reference point for evaluating the effectiveness of heuristics. 

The basic approach for finding optimal solutions is exhaustive search. This is a brute 

force approach. We systematically enumerate all feasible solutions, evaluate the objective 

function value (cost) for each of them, and report the ones with the minimal (maximal) 

costs. 

The more advanced approach for finding optimal solutions is called branch-and-bound. It 

is similar to exhaustive search. It incrementally constructs all feasible solutions. It uses a 

bound function to find the best cost that may be produced from a partial solution. When 

the bound function finds that a partial solution cannot produce any solutions better than 

the best solution seen so far, that partial solution will not be further explored, thus saving 

1. Let p[] hold the current permutation. 

2. Find the key, the first index from right that points to a value smaller 
than its right neighbor. 

3. If no such key can be found, p[] is reversely sorted and represents the 
last permutation in lexicographic order, return. 

4. Find newKey so p[newKey] is the smallest value to the right of p[key] 
that is larger than p[key]. 

5. Swap p[key] and p[newKey]; p[newKey] is now the new key. 

6. Reverse the values to the right of the key. 

7. Return p[] holding the next permutation in lexicographic order. 
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time in generating and evaluating all solutions based on that partial solution. The bound 

function is problem specific and it is the key for the performance improvement of branch-

and-bound over exhaustive search.  

For the problems in this research, our exhaustive search algorithm is based on the 

following pseudo-code. 

Table 15  Exhaustive Search for Time-Dependent Problems 

 

 

 

 

Our experiments show that, on a computer with a 1.5 GH CPU, this exhaustive search 

algorithm can solve our time-dependent problem instances efficiently up to around s = 

15.  

4.3 Design and Implementation of Repeated Random Solutions 

For larger problem instances, the use of exhaustive search cannot produce optimal 

solutions as reference points for performance evaluation. However, we should expect any 

reasonable heuristic to perform better than randomly generated solutions since randomly 

generated solutions are not exploring any property or structure of the problem; it is 

mindless. 

Let π  = (1, 2, …, s) be the first permutation.  
do 
       Let cost = ).(' πf  
       If cost improves the best one seen so far, record it. 
       Let π  be the next permutation in lexicographic order. 
While π  still has next permutation 
Return the best partition visited.
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One possible basic performance evaluation for a heuristic could be repeatedly generating 

random solutions for as long as the heuristic does, and see which produces better 

solutions in the same amount of time. 

Our repeated random solution algorithm is based on the following pseudo-code. The 

running time of the algorithm depends on the value of parameter L. 

Table 16  Repeated Random Solutions for Time-Dependent Problems 

 

 

 

 

4.4 Implementation and Enhancement of Joseph DeCicco’s Genetic Algorithm 

 

Table 17 shows the outline of Joseph DeCicco’s genetic algorithm [2] to the highway 

bidding problem based on Problem Formulation A. Since the original implementation has 

no proper documentation and was not properly organized and designed for the best 

running time, it was re-implemented in this research with special attention to its 

efficiency in running time. Each solution has both the v and π  components of a solution 

to the Problem Formulation A. All parameter values, solution coding, algorithms for 

selection, crossover, and mutation as well as other algorithm details, not implementation 

details, strictly follow the original design in [2]. 

Repeat L times 
       Generate a random solution .π . 
       Evaluate its cost ).(' πf  
       If the cost improves the best one seen so far, record it. 
End Repeat. 
Return the best solution visited.
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Table 17  Joseph DeCicco's Genetic Algorithm 

 

In the original genetic algorithm described by Joseph DeCicco [2], the generation table 

allows duplicate codings. Experiments show that after a few generations the generation 

table may be filled up with many duplicate codings, thus significantly reducing the 

diversifying process of the algorithm. We use a Boolean variable to control the 

uniqueness of the generation table. For making this algorithm more competitive, we 

enforced a uniqueness of codings in the generation table when we make performance 

comparisons in Chapter 6. 

Generate 50 codings of random solutions, and sort them in the generation table 
according to their costs. 
While there are improvements to the best cost seen so far in the last 50 iterations do
       Use crossover to generate 40 children with randomly chosen parents, 
              and insert them into the generation table according to their costs. 
       Use mutation to generate 10 children with randomly chosen parents, 
              and insert them into the generation table according to their costs. 
       The generation table only keeps the best 50 codings. 
       If the best coding improves the best cost seen so far, record it. 
End While. 
Return the best partition visited. 
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Chapter  5 
 

Simulated Annealing: Algorithm Design and Sensitivity Analysis  

In this chapter we describe the design and implementation of our simulated annealing 

algorithm for time-dependent problems based on the simulated annealing meta-heuristic. 

We will also design experiments to conduct sensitivity analysis of the heuristic to its 

various parameter values. 

5.1 Simulated Annealing Algorithm 

The simulated annealing meta-heuristic described by David S. Johnson [3] will be used as 

the base of our solution to the class of time-dependent combinatorial problems that can be 

modeled with Problem Formulation B. Given a positive integer s for the number of tasks 

that need be conducted, we use ,s℘  the set of all permutations on set {1, 2, …, s}, as the 

solution space. Given a current solution ),,,,,,,( 21 sji xxxxx LLL=π  where skx ∈℘  

for all ∈k  {1. 2. …, s} and ,1 sji ≤<≤ ,  we define a move on it is to swap ix  and jx  

that lead to a neighboring solution ),,,,,,,(' 21 sij xxxxx LLL=π . A random neighbor 

of π  is obtained if the values of i and j are randomly chosen in the range 1 to s. The 

algorithm is described in Table 18. 
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Table 18  Simulated Annealing for Time-Dependent Problems 

 

There are four parameters that we need to configure: 

1. Initial temperature t0. A too large value for t0 will lead to wasted random walk in 

the solution space at the beginning of the algorithm execution thus prolong the 

algorithm’s running time without the benefits of improving the solution qualities. 

A too small value for t0 will let the algorithm get stuck in a local optimum. 

2. Temperature reduction ratio r. Ratio r should be a real number between 0.0 and 

1.0. If it is too small, the temperature will be lowed very slowly, leading to 

prolonged algorithm execution. On the other hand, if r is too large, the 

temperature will be reduced too fast and the current solution can get stuck in a 

local optimum. 

3. Number l of consecutive non-improvement iterations before the temperature is 

reduced. If l is too large, the algorithm may waste execution time in a prolonged 

Get a random initial solution π as the current solution. 
Let temperature t = t0, the initial temperature. 
While there are improvements of the best cost in the last k iterations do 
       While there are improvements of the best cost in the last l iterations do 
            Perform the following loop l times. 
                 Let π’ be a random neighbor of π. 
                 Let ∆ = f’(π’) – f’(π). 
                 If  0≤∆  (downhill move), set  π = π’. 
                 If   0>∆  (uphill move), set  π = π’ with probability ./ te ∆−  
       End While. 
       Set t = tr ⋅  (reduce temperature). 
End While. 
Return the best π visited.
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non-aggressive solution search. If l is too small, then the current solution may not 

have a chance to settle down to a stable good solution. 

4. Number k of consecutive non-improvement iterations before the algorithm is 

terminated. If k is too large, execution may be extended without quality benefit. If 

k is too small, then the algorithm may terminate too soon before better solutions 

could be obtained. 

These four parameters are not independent. As a matter of fact, they have close inter-

dependence. It is a big challenge to find optimized values for them so that the resulting 

algorithm can perform well on a large set of potential problem instances. 

5.2 Experiment Design on Parameter Sensitivity Analysis 

In Section 6.1 we describe a complete set of 70 benchmark problem instances used for 

performance evaluation across various solution algorithms. These problem instances have 

values of s ranging from 4 to 200. In this chapter, we choose the following seven files 

from that benchmark set for simulated annealing parameter sensitivity analysis. The best 

costs with an asterisk * have been proven optimal. 

Table 19  Simulated Annealing Parameter Training Data Set 

File Name s n Best Cost 

Data4c0 4 10 105* 

Data10c0 10 37 110* 

Data15c0 15 60 176 

Data20c0 20 94 213 

Data50c0 50 196 518 

Data100c0 100 423 1007 
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Data200c0 200 835 2001 

The objective of the remainder of this chapter is to find a single set of values for the four 

parameters of our simulated annealing algorithm so that it can perform competitively 

across all the 70 benchmark problem instances. Basically we are deriving general 

knowledge from the seven training problem instances, and then apply the knowledge to a 

ten-time large problem instance set to verify whether our derived knowledge is general 

and reusable. 

We run the SA algorithm with various parameter settings on a Pentium III PC with a 1.5 

GH CPU and a 512 MB main memory. 

5.3 Parameter Sensitivity Analysis 

We start with test runs of the SA algorithm on the seven training problem instances. We 

decided the effective ranges for the four parameters are as follows: 

Table 20 Simulated Annealing Parameter Value Ranges 

t0 r l k 
5, 10, 15, 20, 25, 30, 
35, 40, 45, 50 

0.9, 0.95, 0.99, 
0.995, 0.9995 

100, 200, 300, 400, 
500, 600, 700, 800, 
900, 1000, 1100, 
1200, 1300, 1400, 
1500, 1600, 1700, 
1800, 1900, 2000 

20, 40, 60, 80, 100, 
120, 140, 160, 180, 
200, 220, 240, 260, 
280, 300, 320, 340, 
360, 380, 400 

There are a total of 20,000 possible combinations for the values of these parameters. A 

driver was designed and implemented to use each of the parameter value combinations to 

run each of the seven training problem instances. A total of continuous 55 CPU hours 

were used to generate the best cost and running time for each of the seven problem 
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instances with each of the parameter value combinations. Table 21 shows for each 

training problem instance the best ten parameter combinations. 

Table 21  Sample Data for SA Parameter Tuning 

File Name Best 
Cost 

Time 
(ms) t0 r l k 

Data4c0 105 0 5 0.9 100 20 
Data4c0 105 0 5 0.99 100 40 
Data4c0 105 0 5 0.995 100 20 
Data4c0 105 0 5 0.9995 100 20 
Data4c0 105 0 10 0.9 100 20 
Data4c0 105 0 10 0.95 200 20 
Data4c0 105 0 10 0.99 100 20 
Data4c0 105 0 10 0.995 100 20 
Data4c0 105 0 10 0.9995 100 20 

 Data4c0 105 0 15 0.9 100 40 
Data10c0 110 0 15 0.9 100 20 
Data10c0 110 0 15 0.9995 100 40 
data10c0 110 0 20 0.95 100 20 
Data10c0 110 0 20 0.995 100 20 
Data10c0 110 0 20 0.995 100 40 
Data10c0 110 0 35 0.9 100 20 
Data10c0 110 0 40 0.9 100 20 
Data10c0 110 0 40 0.99 100 20 
Data10c0 110 0 40 0.9995 100 20 
Data10c0 110 0 50 0.95 100 20 
Data15c0 176 10 5 0.9995 100 20 
Data15c0 176 10 5 0.9995 200 20 
Data15c0 176 10 10 0.9 100 60 
Data15c0 176 10 10 0.995 100 40 
Data15c0 176 10 10 0.9995 100 20 
Data15c0 176 10 15 0.9 100 40 
Data15c0 176 10 15 0.95 100 60 
Data15c0 176 10 15 0.9995 100 40 
Data15c0 176 10 25 0.95 100 40 
Data15c0 176 10 25 0.9995 100 40 
Data20c0 213 20 30 0.9995 300 20 
Data20c0 213 40 5 0.9995 1000 20 
Data20c0 213 40 25 0.9995 100 180 
Data20c0 213 40 35 0.9995 800 20 
Data20c0 213 50 10 0.995 100 200 
Data20c0 213 50 15 0.9995 100 220 
Data20c0 213 50 35 0.95 300 60 
Data20c0 213 51 35 0.9995 100 200 
Data20c0 213 60 15 0.995 1200 20 
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Data20c0 213 70 15 0.9995 200 160 
Data50c0 519 911 35 0.9995 1200 320 
Data50c0 519 1402 35 0.995 1100 340 
Data50c0 520 150 35 0.9995 300 100 
Data50c0 520 371 20 0.9995 800 180 
Data50c0 520 981 10 0.9 700 240 
Data50c0 520 1112 50 0.9995 1700 280 
Data50c0 520 1682 30 0.95 2000 180 
Data50c0 520 1742 40 0.95 1700 220 
Data50c0 521 131 50 0.9995 1600 20 
Data50c0 521 150 10 0.9995 200 240 
Data100c0 1007 1452 25 0.9 1400 120 
Data100c0 1009 911 35 0.99 600 100 
Data100c0 1009 1372 5 0.9 600 160 
Data100c0 1009 1652 45 0.95 500 320 
Data100c0 1009 2053 45 0.9995 1300 260 
Data100c0 1009 2493 15 0.9 1000 380 
Data100c0 1009 3085 20 0.9 2000 160 
Data100c0 1010 431 10 0.9995 1600 40 
Data100c0 1010 601 50 0.9995 700 140 
Data100c0 1010 621 40 0.95 1300 20 
Data200c0 2001 2473 20 0.9995 500 400 
Data200c0 2001 2674 25 0.9995 700 280 
Data200c0 2001 3274 30 0.99 1000 220 
Data200c0 2001 3656 50 0.9995 800 340 
Data200c0 2001 3926 40 0.99 1300 160 
Data200c0 2001 4106 20 0.99 1000 180 
Data200c0 2001 4226 40 0.9995 2000 220 
Data200c0 2001 4246 30 0.9995 1400 380 
Data200c0 2001 4377 20 0.99 1400 180 
Data200c0 2001 4587 45 0.995 600 300 

 

Figure 5 through Figure 22 show the trends of solution cost and running time as functions 

of r and l for all the combinations of t0 = 10, 15, 20 and k = 20, 40, 60. For each 

combination for t0 and k, r varies from 0.9, 0.95, 0.99, 0.995, to 0.9995, and l varies from 

100, 200, to 300. 
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 t 0 = 10, k = 20, l = 100, 200, 300 
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Figure 5   Cost as a Function of r and l (t0 = 10, k = 20) 
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Figure 6  Running Time as a Function of r and l (t0 = 10, k = 20) 
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t 0 = 10, k = 40, l = 100, 200, 300 
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Figure 7  Cost as a Function of r and l (t0 = 10, k = 40) 
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Figure 8  Running Time as a Function of r and l (t0 = 10, k = 40) 

 



 

 

48

t 0 = 10, k = 60, l = 100, 200, 300 
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Figure 9  Cost as a Function of r and l (t0 = 10, k = 60) 
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Figure 10  Running Time as a Function of r and l (t0 = 10, k = 60) 
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Figure 11  Cost as a Function of r and l (t0 = 15, k = 20) 

 

t 0  = 15, k  = 20, l = 100, 200, 300 

0
510

1520
25
3035
40
4550
5560
65
7075
8085
90
95100

105
110115
120125
130
135140
145150
155
160165
170
175180
185190
195
200205
210
215220
225230
235
240245
250255
260
265270
275
280285
290295
300

0.9000 0.9500 0.9900 0.9950 0.9995 0.9000 0.9500 0.9900 0.9950 0.9995 0.9000 0.9500 0.9900 0.9950 0.9995

T e mp e ra t u re  R e d u c t io n  R a t io  ( r )

Running Time
l

Trendline (Running Time)

 

Figure 12  Running Time as a Function of r and l (t0 = 15, k = 20) 
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t 0  = 15,  k  = 40, l = 100, 200, 300 
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Figure 13  Cost as a Function of r and l (t0 = 15, k = 40) 
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Figure 14  Running Time as a Function of r and l (t0 = 15, k = 40) 
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t 0  = 15, k  = 60, l = 100, 200, 300 
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Figure 15  Cost as a Function of r and l (t0 = 15, k = 60) 
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Figure 16  Running Time as a Function of r and l (t0 = 15, k = 60) 
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t 0   = 20, k  = 20, l = 100, 200, 300 
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Figure 17  Cost as a Function of r and l (t0 = 20, k = 20) 
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Figure 18  Running Time as a Function of r and l (t0 = 20, k = 20) 
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t 0  = 20, k  = 40, l = 100, 200, 300 
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Figure 19  Cost as a Function of r and l (t0 = 20, k = 40) 
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Figure 20  Running Time as a Function of r and l (t0 = 20, k = 40) 
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t 0   = 20, k  = 60, l = 100, 200, 300 
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Figure 21  Cost as a Function of r and l (t0 = 20, k = 60) 
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Figure 22  Running Time as a Function of r and l (t0 = 20, k = 60) 

After carefully balancing the solution quality and running time, we decided to adopt the 

following parameter values for the simulated annealing algorithm for performance 

evaluation with all of the 70 benchmark problem instances. 
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Table 22  Chosen Parameter Values for Simulated Annealing 

t0 r l   k 
15 0.9995 1000 40 
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Chapter  6 
 

Comparative Study 

Since heuristics for solving combinatorial optimization problems are not based on 

theoretical analysis, the only objective way to evaluate their performance is by 

conducting comparative study based on a large enough set of benchmark problem 

instances.  

In this chapter, we first define the experimental environment and problem instances. Then 

a thorough performance evaluation will be conducted to compare both the solution 

quality and running time for five different heuristics for solving the same time-dependent 

problems. 

6.1 Experiment Design 

All experiments will be conducted on a Pentium III PC with a 1.5 GH CPU and a 512 

MB main memory. 

The following 70 problem instances will be used for performance evaluations. Their 

value of s varies from 4 to 200; value of n varies from 10 to 835. There are ten problem 

instances for each combination of the values of s and n. 
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Table 23  Benchmark Problem Instances 

File 
Name s n Best 

Cost 
Algorithms 
leading to 
best cost 

data4c0 4 10 105* sa, es 
data4c1 4 20 70* es,sa,ga,rr,lo 
data4c2 4 16 68* es,sa,ga,rr 
data4c3 4 18 52* es,sa,ga,rr 
data4c4 4 17 65* es,sa,ga,rr,lo 
data4c5 4 19 67* es,sa,ga,rr,lo 
data4c6 4 23 62* es,sa,ga,rr,lo 
data4c7 4 17 61* es,sa,ga,rr 
data4c8 4 15 86* es,sa,ga,rr 
data4c9 4 16 62* es,sa,ga,rr,lo 
data10c0 10 37 110* es,sa 
data10c1 10 30 124* es,sa 
data10c2 10 40 122* es,sa 
data10c3 10 41 133* es,sa 
data10c4 10 38 129* es,sa 
data10c5 10 40 119* es,sa 
data10c6 10 42 131* es,sa 
data10c7 10 39 136* es,sa 
data10c8 10 46 122* es,sa 
data10c9 10 42 145* es,sa 
data15c0 15 60 176 sa 
data15c1 15 61 193 sa 
data15c2 15 53 192 sa 
data15c3 15 56 177 sa 
data15c4 15 51 183 sa 
data15c5 15 56 181 sa 
data15c6 15 62 169 sa 
data15c7 15 56 180 sa 
data15c8 15 64 183 sa 
data15c9 15 55 176 sa 
data20c0 20 94 213 sa 
data20c1 20 76 245 sa 
data20c2 20 74 229 sa 
data20c3 20 75 226 sa 
data20c4 20 73 241 sa 
data20c5 20 84 222 sa 
data20c6 20 81 219 sa 
data20c7 20 87 219 sa 
data20c8 20 71 240 sa 
data20c9 20 80 225 sa 
data50c0 50 196 518 sa 
data50c1 50 212 520 sa 
data50c2 50 202 529 sa 
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data50c3 50 182 535 sa 
data50c4 50 191 521 sa 
data50c5 50 200 534 sa 
data50c6 50 199 531 sa 
data50c7 50 205 530 sa 
data50c8 50 205 520 sa 
data50c9 50 197 528 sa 
data100c0 100 423 1007 sa 
data100c1 100 396 1034 sa 
data100c2 100 404 1029 sa 
data100c3 100 404 1027 sa 
data100c4 100 411 1031 sa 
data100c5 100 408 1036 sa 
data100c6 100 377 1030 sa 
data100c7 100 386 1037 sa 
data100c8 100 392 1030 sa 
data100c9 100 410 1026 sa 
data200c0 200 835 2001 sa 
data200c1 200 814 2027 sa 
data200c2 200 813 2033 sa 
data200c3 200 804 2041 sa 
data200c4 200 797 2039 sa 
data200c5 200 784 2047 sa 
data200c6 200 785 2040 sa 
data200c7 200 804 2041 sa 
data200c8 200 801 2030 sa 
data200c9 200 814 2037 sa 

In Table 23, the best costs are the costs for the corresponding problem instances ever 

found during this research. If the cost values are marked with asterisk *, then they are the 

optimal costs proven by exhaustive search. The rightmost column lists the heuristics that 

achieved the listed best costs. The following abbreviations for heuristic names are used in 

this chapter: 

Table 24  Heuristic Name Abbreviations 

Abbreviation Full Name 
ES Exhaustive Search 
LO Local Optimization 
RR Repeated Random 
SA Simulated Annealing 
GA Genetic Algorithm 
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6.2 Simulated Annealing vs. Genetic Algorithm 

For this experiment, we compare the performances of simulated annealing and genetic 

algorithm. For each of the 70 benchmark problem instances, we use each of the above 

two algorithms to run 10 times and report the best cost, standard deviation of the cost, 

percentage of cost deterioration from the best known cost for the problem instance; 

average running time, and standard deviation of the running time.  

Table 25 compares the solution quality between simulated annealing and genetic 

algorithm. We observe that the cost value of simulated annealing outperforms that for 

genetic algorithm, except for the trivial cases where s = 4, by a factor of 5% to 116%. 

The larger the problem instances, the more simulated annealing out performed genetic 

algorithm more improvement simulated annealing can provide. The standard deviation 

columns for simulated annealing shows that the algorithm is producing very stable 

solution quality for all problem instances. On the another hand, the standard deviation 

columns for genetic algorithm shows that each run of GA for the same problem instance 

has wide variation for the quality of the resulting solution. 

Table 25  Solution Quality Comparison between SA and GA 

File 
Name 

SA 
Best 
Cost 

Standard 
Deviation 

of SA Cost

SA Cost 
Deterioration 
Percentage 

GA 
Best 
Cost 

Standard 
Deviation 

of GA Cost 

GA Cost 
Deterioration 
Percentage 

data4c0 105 0 0% 105 0 0% 
data4c1 70 0 0% 70 6.42 0% 
data4c2 68 0 0% 68 0 0% 
data4c3 52 0 0% 52 0 0% 
data4c4 65 0 0% 65 0 0% 
data4c5 67 0 0% 67 0 0% 
data4c6 62 0 0% 62 0.32 0% 
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data4c7 61 0 0% 61 0 0% 
data4c8 86 0 0% 86 0 0% 
data4c9 62 0 0% 62 0 0% 
data10c0 110 0 0% 116 16.78 5.45% 
data10c1 124 0 0% 134 12.28 8.06% 
data10c2 122 0.95 0% 133 18.23 9.02% 
data10c3 133 0 0% 144 10.54 8.27% 
data10c4 129 0 0% 147 11.65 13.95% 
data10c5 119 0 0% 140 8.12 17.65% 
data10c6 131 0 0% 137 13.45 4.58% 
data10c7 136 0 0% 154 9.85 13.24% 
data10c8 122 0.63 0% 141 12.85 15.57% 
data10c9 145 0.32 0% 156 9.53 7.59% 
data15c0 176 0.63 0% 232 15.15 31.82% 
data15c1 193 2.86 0% 250 12.94 29.53% 
data15c2 192 2.71 0% 236 26.31 22.92% 
data15c3 177 2.11 0% 223 25.58 25.99% 
data15c4 183 2.13 0% 216 26.06 18.03% 
data15c5 181 2.22 0% 222 25.07 22.65% 
data15c6 169 3.37 0% 241 15.21 42.60% 
data15c7 180 1.16 0% 230 26.77 27.78% 
data15c8 183 2.37 0% 222 25.84 21.31% 
data15c9 176 0.82 0% 222 13.40 26.14% 
data20c0 215 2.41 0.94% 311 42.46 46.01% 
data20c1 245 2.49 0% 348 22.23 42.04% 
data20c2 229 3.96 0% 335 26.39 46.29% 
data20c3 226 2.90 0% 329 28.87 45.58% 
data20c4 241 3.79 0% 303 36.10 25.73% 
data20c5 222 2.91 0% 323 29.80 45.50% 
data20c6 219 2.56 0% 300 27.71 36.99% 
data20c7 219 3.37 0% 304 14.88 38.81% 
data20c8 240 3.89 0% 338 28.14 40.83% 
data20c9 225 4.14 0% 319 29.28 41.78% 
data50c0 529 6 2.12% 958 92.19 84.94% 
data50c1 520 7.44 0% 931 53.87 79.04% 
data50c2 529 5.87 0% 914 75.02 72.78% 
data50c3 535 6.45 0% 1013 48.72 89.35% 
data50c4 521 3.37 0% 999 40.04 91.75% 
data50c5 534 5.62 0% 930 87.40 74.16% 
data50c6 531 6.46 0% 922 78.40 73.63% 
data50c7 530 7.88 0% 977 46.30 84.34% 
data50c8 520 7.94 0% 952 61.16 83.08% 
data50c9 528 5.18 0% 919 74.26 74.05% 
data100c0 1025 7.44 1.79% 2021 126.31 100.70% 
data100c1 1034 5.28 0% 2151 84.73 108.03% 
data100c2 1029 8.80 0% 2203 82.15 114.09% 
data100c3 1027 8.93 0% 2127 128.10 107.11% 
data100c4 1031 4.70 0% 2016 175.76 95.54% 
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data100c5 1036 6.35 0% 1987 118.26 91.80% 
data100c6 1030 9.22 0% 2238 120.92 117.28% 
data100c7 1037 6.93 0% 2193 105.34 111.48% 
data100c8 1030 7.13 0% 2116 107.70 105.44% 
data100c9 1026 5.48 0% 2152 99.55 109.75% 
data200c0 2030 10.68 1.45% 4562 170.27 127.99% 
data200c1 2027 13.35 0% 4594 140.53 126.64% 
data200c2 2033 9.96 0% 4529 175.34 122.77% 
data200c3 2041 10.56 0% 4623 157.85 126.51% 
data200c4 2039 9.87 0% 4541 188.92 122.71% 
data200c5 2047 6.04 0% 4792 86.15 134.10% 
data200c6 2040 11.04 0% 4538 214.04 122.45% 
data200c7 2041 6.60 0% 4573 162.38 124.06% 
data200c8 2030 14.29 0% 4573 195.64 125.27% 
data200c9 2037 10.92 0% 4420 213.42 116.99% 

 

Table 26 compares the running time of simulated annealing and genetic algorithm for all 

the 70 benchmark problem instances. For each problem instances, we run each of the 

algorithms ten times and report the average running time and the standard deviation of 

these ten running times. It can be observed from the table that simulated annealing 

improves the running time of genetic algorithm by a factor of 2 to 145; the larger the 

problem instances, the more improvement in running time. It can also be observed from 

the table that the genetic algorithm has huge standard deviation of its running time, which 

implies very unstable performance. 

 Table 26  Running Time Comparison between SA and GA 

File 
Name 

SA Ave 
Time 

Standard 
Deviation 

of SA 
Time 

GA Ave 
Time 

Standard 
Deviation 

of GA 
Time 

data4c0 8 6.32 20 14.91 
data4c1 7 4.83 17 6.75 
data4c2 5 5.27 14 5.16 
data4c3 6 5.16 14 5.30 
data4c4 6 5.16 15 5.27 
data4c5 8 4.22 18 6.32 
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data4c6 7 4.91 16 5.16 
data4c7 8 4.22 16 5.26 
data4c8 7 4.83 12 4.22 
data4c9 5 5.27 15 5.27 
data10c0 10 0 45 13.50 
data10c1 11 3.16 70 54.33 
data10c2 12 4.43 89 70.78 
data10c3 12 4.22 89 64.39 
data10c4 11 5.68 52 13.15 
data10c5 7 6.75 61 23.69 
data10c6 11 3.16 56 34.69 
data10c7 13 4.77 52 35.53 
data10c8 11 3.16 64 34.31 
data10c9 11 5.68 141 233.25 
data15c0 15 5.27 97 59.52 
data15c1 15 7.07 315 373.41 
data15c2 14 5.16 165 93.14 
data15c3 15 5.27 112 51.55 
data15c4 14 5.16 298 245.26 
data15c5 15 5.27 248 171.24 
data15c6 14 5.30 135 76.70 
data15c7 14 5.16 162 94.64 
data15c8 17 4.83 138 170 
data15c9 15 5.27 134 137.92 
data20c0 18 4.28 303 209.88 
data20c1 18 4.22 524 464.56 
data20c2 18 4.22 380 235.80 
data20c3 15 5.38 278 131.87 
data20c4 15 5.27 390 296.54 
data20c5 18 4.22 321 187.26 
data20c6 18 4.22 369 265.18 
data20c7 18 4.28 709 1258.21 
data20c8 17 4.83 379 336.31 
data20c9 19 5.68 319 233.76 
data50c0 33 4.77 4368 3461.11 
data50c1 32 9.19 3338 5154.31 
data50c2 35 7.00 2826 1766.25 
data50c3 32 7.89 3144 5306.64 
data50c4 33 9.57 4084 6741.39 
data50c5 33 8.23 4005 5489.07 
data50c6 35 8.57 2782 1056.25 
data50c7 39 11.12 5387 8880 
data50c8 34 5.16 3036 1229.09 
data50c9 31 7.37 2909 1585.80 
data100c0 73 17.65 14261 12070.83 
data100c1 82 13.24 8115 6465.45 
data100c2 82 12.19 10660 5501.57 
data100c3 78 18.15 12896 5836.05 
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data100c4 82 12.19 6840 3997.60 
data100c5 72 21.80 16038 19472.37 
data100c6 84 15.96 9987 8308.54 
data100c7 86 30.64 11865 9382.15 
data100c8 78 25.83 7008 2369.92 
data100c9 74 9.73 11789 9600.68 
data200c0 198 45.89 31768 17982.08 
data200c1 179 36.30 27262 10885.68 
data200c2 192 28.81 38870 24670.55 
data200c3 167 27.82 34574 29842.35 
data200c4 205 42.38 47288 41698.07 
data200c5 183 23.60 48851 32810.93 
data200c6 195 39.64 32730 44931.52 
data200c7 185 33.20 51656 70257.49 
data200c8 206 80.50 51656 22993.9 
data200c9 229 87.98 33423 38083.9 

 

6.3 Comparison between Simulated Annealing and Repeated Random Solutions 

For a heuristic to prove its value in combinatorial optimization, it must show that it can 

produce better solutions than repeatedly generated random solutions in the same amount 

of running time. In this and the following two sections, we conduct this type of 

performance evaluation for both simulated annealing and genetic algorithm. 

 

Table 27 shows the comparison of solution quality of simulated annealing in Table 25 

with the Repeated Random heuristic, for each problem instance.  

Table 27  Comparison between Simulated Annealing and Repeated Random Solutions 

File 
Name 

SA Best 
Cost 

RR Cost 
for Same 

Time 
SA Cost 

Improvement
SA Cost 

Improvement % 

data4c0 105 105 0 0 
data4c1 70 70 0 0 
data4c2 68 68 0 0 
data4c3 52 52 0 0 
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data4c4 65 65 0 0 
data4c5 67 67 0 0 
data4c6 62 62 0 0 
data4c7 61 61 0 0 
data4c8 86 86 0 0 
data4c9 62 62 0 0 
data10c0 110 124 14 11.29 
data10c1 124 144 20 13.89 
data10c2 122 155 33 21.29 
data10c3 133 157 24 15.29 
data10c4 129 152 23 15.13 
data10c5 119 155 36 23.23 
data10c6 131 142 11 7.75 
data10c7 136 153 17 11.11 
data10c8 122 131 9 6.87 
data10c9 145 164 19 11.59 
data15c0 176 246 70 28.46 
data15c1 193 240 47 19.58 
data15c2 192 267 75 28.09 
data15c3 177 250 73 29.20 
data15c4 183 261 78 29.89 
data15c5 181 218 37 16.97 
data15c6 169 229 60 26.20 
data15c7 180 241 61 25.31 
data15c8 183 243 60 24.69 
data15c9 176 227 51 22.47 
data20c0 215 318 103 32.39 
data20c1 245 382 137 35.86 
data20c2 229 380 151 39.74 
data20c3 226 374 148 39.57 
data20c4 241 351 110 31.34 
data20c5 222 331 109 32.93 
data20c6 219 336 117 34.82 
data20c7 219 323 104 32.20 
data20c8 240 319 79 24.76 
data20c9 225 346 121 34.97 
data50c0 529 1039 510 49.09 
data50c1 520 1037 517 49.86 
data50c2 529 1035 506 48.89 
data50c3 535 1087 552 50.78 
data50c4 521 1016 495 48.72 
data50c5 534 1059 525 49.58 
data50c6 531 1025 494 48.20 
data50c7 530 1032 502 48.64 
data50c8 520 1028 508 49.42 
data50c9 528 1029 501 48.69 
data100c0 1025 2164 1139 52.63 
data100c1 1034 2232 1198 53.67 
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data100c2 1029 2218 1189 53.61 
data100c3 1027 2250 1223 54.36 
data100c4 1031 2160 1129 52.27 
data100c5 1036 2189 1153 52.67 
data100c6 1030 2253 1223 54.28 
data100c7 1037 2236 1199 53.62 
data100c8 1030 2291 1261 55.04 
data100c9 1026 2143 1117 52.12 
data200c0 2030 4683 2653 56.65 
data200c1 2027 4485 2458 54.80 
data200c2 2033 4580 2547 55.61 
data200c3 2041 4631 2590 55.93 
data200c4 2039 4595 2556 55.63 
data200c5 2047 4669 2622 56.16 
data200c6 2040 4702 2662 56.61 
data200c7 2041 4668 2627 56.28 
data200c8 2030 4695 2665 56.76 
data200c9 2037 4682 2645 56.49 

 

6.4 Comparison between Genetic Algorithm and Repeated Random Solutions 

Table 28 compares the solution quality between genetic algorithm and repeated random 

solutions. The repeated random heuristic was executed for as long as the average running 

time of the genetic algorithm for each particular problem instance. The table reports for 

each problem instance the best GA cost for ten runs, the repeated random cost for the 

same running time, cost improvement by GA over repeated random, and percentage of 

cost improvement of GA over repeated random. It can be seen from the table that genetic 

algorithm is slightly worse than repeated random for most of the problem instances. 

Table 28  Comparison between Genetic Algorithm and Repeated Random Solutions 

File 
Name 

GA Best 
Cost 

RR Cost 
for Same 

Time 
GA Cost 

Improvement 
GA Cost 

Improvement %

data4c0 105 105 0 0.00 
data4c1 70 70 0 0.00 
data4c2 68 68 0 0.00 
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data4c3 52 52 0 0.00 
data4c4 65 65 0 0.00 
data4c5 67 67 0 0.00 
data4c6 62 62 0 0.00 
data4c7 61 61 0 0.00 
data4c8 86 86 0 0.00 
data4c9 62 62 0 0.00 
data10c0 116 127 11 8.66 
data10c1 134 143 9 6.29 
data10c2 133 125 -8 -6.40 
data10c3 144 139 -5 -3.60 
data10c4 147 153 6 3.92 
data10c5 140 133 -7 -5.26 
data10c6 137 142 5 3.52 
data10c7 154 148 -6 -4.05 
data10c8 141 130 -11 -8.46 
data10c9 156 156 0 0.00 
data15c0 232 231 -1 -0.43 
data15c1 250 236 -14 -5.93 
data15c2 236 265 29 10.94 
data15c3 223 225 2 0.89 
data15c4 216 237 21 8.86 
data15c5 222 262 40 15.27 
data15c6 241 226 -15 -6.64 
data15c7 230 238 8 3.36 
data15c8 222 225 3 1.33 
data15c9 222 237 15 6.33 
data20c0 311 297 -14 -4.71 
data20c1 348 337 -11 -3.26 
data20c2 335 337 2 0.59 
data20c3 329 333 4 1.20 
data20c4 303 332 29 8.73 
data20c5 323 323 0 0.00 
data20c6 300 326 26 7.98 
data20c7 304 290 -14 -4.83 
data20c8 338 341 3 0.88 
data20c9 319 316 -3 -0.95 
data50c0 958 946 -12 -1.27 
data50c1 931 919 -12 -1.31 
data50c2 914 945 31 3.28 
data50c3 1013 984 -29 -2.95 
data50c4 999 921 -78 -8.47 
data50c5 930 964 34 3.53 
data50c6 922 934 12 1.28 
data50c7 977 933 -44 -4.72 
data50c8 952 951 -1 -0.11 
data50c9 919 963 44 4.57 
data100c0 2021 1991 -30 -1.51 
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data100c1 2151 2140 -11 -0.51 
data100c2 2203 2082 -121 -5.81 
data100c3 2127 2082 -45 -2.16 
data100c4 2016 2014 -2 -0.10 
data100c5 1987 2043 56 2.74 
data100c6 2238 2157 -81 -3.76 
data100c7 2193 2135 -58 -2.72 
data100c8 2116 2081 -35 -1.68 
data100c9 2152 2019 -133 -6.59 
data200c0 4562 4346 -216 -4.97 
data200c1 4594 4431 -163 -3.68 
data200c2 4529 4411 -118 -2.68 
data200c3 4623 4497 -126 -2.80 
data200c4 4541 4453 -88 -1.98 
data200c5 4792 4547 -245 -5.39 
data200c6 4538 4550 12 0.26 
data200c7 4573 4493 -80 -1.78 
data200c8 4573 4453 -120 -2.69 
data200c9 4420 4395 -25 -0.57 
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Chapter  7 
 

Conclusion 

This research focused on efficient solutions for a class of time-dependent combinatorial 

optimization problems. The major contributions of this research include: 

1. Mathematical modeling of a class of time-dependent combinatorial optimization 

problems described in [1]; 

2. Reducing problem complexity by problem transformation; 

3. Designing an efficient simulated annealing algorithm that outperforms the best 

existing algorithm for this class of problems with significant improvement in 

solution quality and phenomenal reduction in running time. 

The following are potential future work to extend on this research: 

1. Generalizing the problem class to include problems that don’t exhibit the 

independency property described in Subsection 3.3.1; 

2. Improving the simulated annealing algorithm by taking advantage of the latest 

research advancement for this approach; 

3. Investigating alternative meta-heuristics, including tabu search, in solving this 

class of problems. 
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Appendix   A   
 

Java Source Code for All Algorithms 

SimulatedAnnealing.Java 

public class SimulatedAnnealing { 
 
  int run(int bestSolution[], Utilities u) { 
    int p[] = new int[u.linkNbr+1];       // current solution 
    // retrieve the Random object in class Utilities 
    java.util.Random ro = u.getRandom();   
    int debugLevel = u.getDebugLevel(); 
    // use a random solution as the current solution 
    u.randomSolution(p);                   
    int currentCost = u.cost(p); 
    int bestCost = currentCost; 
    u.copyArray(p, bestSolution); 
    int neighbor[] = new int[p.length]; 
    double t = t0;   // initial temperature; parameter to adjust 
    int nonImprovementTemperatureNbr = 0; 
    while (nonImprovementTemperatureNbr < k) { // while not yet frozen   
      nonImprovementTemperatureNbr++; 
      int nonImprovementIterationNbr = 0; 
      while (nonImprovementIterationNbr < l) {   
        nonImprovementIterationNbr++; 
        u.copyArray(p, neighbor); 
        // make a random swap; neighbor[] is now a neighbor of p[];    
        // return updated cost 
        int newCost = u.randomSwap(neighbor, currentCost);  
        int delta = newCost - currentCost; 
        double acceptProbability = Math.exp(-delta/t); 
        if ((delta <= 0) || (ro.nextDouble() < acceptProbability)) { 
           // take neighbor as new current solution 
           u.copyArray(neighbor, p);   
           currentCost = newCost; 
           if (currentCost < bestCost) {  
             // update the best solution seen so far 
             bestCost = currentCost; 
             u.copyArray(p, bestSolution); 
             nonImprovementTemperatureNbr = 0; 
             nonImprovementIterationNbr = 0; 
           } 
        } 
      } 
      t = r*t;   // reduce temperature } 
    } 
    return bestCost; 
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  } 
 
  public static void main(String args[]) { 
    String dataFileName = "data4.txt";   // default data file name 
    if (args.length == 1) 
      dataFileName = args[0];            // command-line data file name 
    Utilities u = new Utilities(); 
    u.setDebugLevel(0);                  // how much debug info to 
                                         // print; 0 means nothing 
    u.readData(dataFileName);            // read data for a problem  
                                         // instance 
    u.problemTransformation();           // transform the problem to a  
                                         // simpler one 
    int bestCost; 
    int bestSolution[] = new int[u.linkNbr + 1]; 
    SimulatedAnnealing sa = new SimulatedAnnealing(); 
    u.startRun(); 
    bestCost = sa.run(bestSolution, u); 
    u.endRun(); 
    u.report("Simulated annealing", bestCost, bestSolution); 
  } 
} 
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GeneticJoe.Java (Genetic Algorithm)  

// Implement the GA algorithm described in Joseph DeCicco's DPS 2002 
// dissertation "Sensitivity Analysis of Certain Time Dependent Matroid 
// Base Models Solved by Genetic Algorithms" 
import java.util.Random; 
 
public class GeneticJoe { 
 
  // objects/values to be retrieved from Utilities object 
  Utilities u;       // Utility object 
  Random r;          // Random object 
  int bidAlloc[][];  // Each row corresponding to a link. 
                     // Links are numbered 1, 2, ... 
                     // Each row specifies number of bids for a link, 
                     // and the corresponding successive starting and 
                     // ending bid IDs 
  int cost[][];      // cost[i][j] is the cost for letting bid i build  
                     // its bidding link at stage j 
  int linkNbr;       // number of highway links to build 
 
  // global objects for GA 
  int p[];           // a generic array for permutations of time stages 
                     // or selected bid IDs 
  Object generation[] = null;  // table of members of a generation 
  int debugLevel = 0;  // volume of debug info printed; 0 means minimal 
 
  // GA parameters for adjustment 
  int generationSize = 50;          // number of code members in a  
                                    // generation 
  int childrenNumber = 50;          // number of new children in a new  
                                    // generation 
  int crossoverNumber = 40;         // number of children generated by  
                                    // crossover 
  int mutateNumber = 10;            // number of children generated by  
                                    // mutation 
  int selectBestNumber = 50;        // number of best members selected  
                                    // as parents 
  int maxMutatePositions;           // max number of mutation positions  
                                    // for a member 
  int nbrNoGainGen4terminate = 50;  // number of non-improvement  
                                    // generations before the algorithm  
                                    // ends 
 
  boolean banDuplicate = true;      // false: allow duplicate child  
                                    // during crossover and mutation 
                                    // true:  don't allow duplicate  
                                    // child during crossover and  
                                    // mutation 
                                    // To truely follow Joe's  
                                    // dissertation, use false 
   
  int run(int bestSolution[], Utilities u1) { 
    u = u1; 
    debugLevel = u.getDebugLevel(); 
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    r = u.getRandom();                  // retrieve Random object 
    linkNbr = u.getLinkNbr();           // retrieve highway link number 
    maxMutatePositions = linkNbr;       // max number of positions of a  
                                        // member for mutation 
    // [0] for cost, [1..linkNbr] for bid IDs, [linkNbr+1..2*linkNbr]  
    // for permutation 
    // allocate space for best member seen so far 
    int gaBestMember[] = new int[2*linkNbr+1];  
    bidAlloc = u.getBidAlloc();         // retrieve bid allocation  
                                        // table 
    cost = u.getCost();                 // retrieve original (Problem  
                                        // A) cost table 
    p = new int[u.linkNbr+1]; 
     
    int bestCost = 9999;                // impossible bad cost to be  
                                        // replaced right away 
    int noGainIterations = 0;           // number of no-improvement  
                                        // successive generations seen  
                                        // now 
    generation = new Object[generationSize]; 
    int generationSeqNumber = 0;        // initial one is generation 0 
    int generation4lastImprovement = 0; // the generation in which the  
                                        // last cost reduction was made 
    generateInitialGeneration(); 
    while (noGainIterations <= nbrNoGainGen4terminate) {   
      generationSeqNumber++; 
      if (debugLevel > 0) { 
        System.out.println("Start generation " + generationSeqNumber); 
        printGeneration(10);  // print the best 10 members of the  
                              // current generation 
      } 
      crossover(crossoverNumber);   
      mutate(mutateNumber);  
      int bestMember[] = (int[])generation[0];  // retrieve the best  
                                                // member in current  
                                                // generation 
      int cost = bestMember[0]; 
      if (cost < bestCost) { 
        bestCost = cost; 
        u.copyArray(bestMember, gaBestMember); 
        generation4lastImprovement = generationSeqNumber; 
        noGainIterations = 0;     // reset the count for successive  
                                  // non-improvement iterations 
      } 
      else 
        noGainIterations++; 
    } 
    System.out.print("GA best cost = " + bestCost + ", bid-ID  
                     permutation "); 
    member2permutation(gaBestMember, bestSolution, false); 
    u.printSolution(bestSolution); 
    System.out.println("GA finished " + generationSeqNumber + 
       " generations. The best cost was found in generation " + 
       generation4lastImprovement); 
    // the returned cost and solution may be better than the ones found 
    // by GA 
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    // since multiple different GA members may be converted into the  
    // same permutation 
    member2permutation(gaBestMember, bestSolution, true); 
    return u.cost(bestSolution);  
  } 
 
 
  // print the first (best) n members of the current generation 
  // order: member sequence number, cost, coding 
  void printGeneration(int n) { 
    System.out.println("Best " + n + " member(s) in current  
       generation:"); 
    for (int i = 0; i < n; i++) { 
      int temp[] = (int[])generation[i]; 
      System.out.print(i + ": cost= " + temp[0] + " : "); 
      for (int j = 1; j <= 2*linkNbr; j++) 
        System.out.print(temp[j] + ", "); 
      member2permutation(temp, p, false); 
      System.out.print(": "); 
      for (int j = 1; j <= linkNbr; j++) 
        System.out.print(p[j] + ", "); 
      System.out.println(); 
    } 
  } 
 
  // If permuteTimeStage is true, return in p[] the permutation of time  
  // stages according to code[] 
  // Otherwise, return in p[] the permutation of bid IDs in  
  // code[1..linkNbr] according to code[] 
  void member2permutation(int code[], int p[], boolean   
                          permuteTimeStage) { 
    for (int i =0; i <= linkNbr; i++) 
      p[i] = 0; // reset p[] 
    for (int i = 1; i <= linkNbr; i++) {   
      int j = 0;                    // index for empty position in p[];  
                                    // properly set in do loop 
      int count = code[linkNbr+i];  // count = number of empty  
                                    // positions in p[] from left 
      do { 
        j++; 
        while (p[j] > 0) 
          j++; 
        count--; 
      } while ((count > 0) && (j < linkNbr)); 
      if (j > linkNbr) { 
        System.out.println("member2permutation() generates invalid  
           permutation"); 
        System.exit(-1); 
      } 
      if (permuteTimeStage == false) 
        p[j] = code[i];  // generate permutation of selected bid IDs 
      else 
        p[j] = i;        // generate permutation of highway links {1,  
                         // 2, ..., linkNbr} 
    } 
    if (permuteTimeStage == false) 
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      return; 
    int temp[] = new int[linkNbr+1]; 
    for (int i = 0; i <= linkNbr; i++) 
      temp[i] = p[i]; 
    // p[i] = j : hihgway link j will be built in time stage i 
    for (int i = 1; i <= linkNbr; i++) 
      p[temp[i]] = i; 
    // p[i] = j : hihgway link i will be built in time stage j 
  } 
 
  // objective function of the original Problem A 
  int codeCost(int code[]) { 
    int temp[] = new int[linkNbr+1]; 
    member2permutation(code, temp, false); // generate permutation of  
                                           // time stages 
    int totalCost = 0; 
    for (int i = 1; i <= linkNbr; i++) 
      totalCost += cost[temp[i]][i]; 
    return totalCost; 
  } 
 
  // allocate member space and generate random value for generation 0;  
  // duplicates not allowed 
  // sort the members based on costs 
  void generateInitialGeneration() { 
    for (int i = 0; i < generationSize; i++) { 
      // generation[*][0] is the cost of solution generation[*] 
      int temp[] = new int[2*linkNbr+1]; 
      do { 
        generateRandomeCode(temp); 
      } while (isDuplicate(temp, 0, i-1));  // generate a new member 
      temp[0] = codeCost(temp); 
      insert(temp, i); 
    } 
  } 
 
  // return true iff code[] duplicates a member in generation[from..to] 
  boolean isDuplicate(int code[], int from, int to) { 
    if (to < 0 || from > to) 
      return false;  // table generation[from..to] is empty 
    int cost = codeCost(code); 
    boolean foundDuplicate = false; 
    for (int i = from; i <= to; i++) { 
      int temp[] = (int[])generation[i]; 
      if (temp[0] != cost) 
        continue;                 // if generation[i] has different  
                                  // cost, it cannot be a duplicate 
      int j; 
      for (j = 1; j <= 2*linkNbr; j++) 
        if (temp[j] != code[j]) 
          break; 
      if (j > 2*linkNbr) { 
        foundDuplicate = true; 
        break; 
      } 
    } 
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    return foundDuplicate; 
  } 
 
  // generate the coding of a random solution 
  void generateRandomeCode(int c[]) { 
    // generate the first linkNbr random link IDs 
    for (int i = 1; i <= linkNbr; i++) { 
      int start = bidAlloc[i][1]; 
      int end = bidAlloc[i][2]; 
      c[i] = r.nextInt(end-start+1) + start;  // c[i] is the random bid  
                                              // ID for building link i 
    } 
    // Generate the next linkNbr of permutation numbers 
    // First number is in 1..linkNbr, next in 1..linknbr-1, ... The  
    // last must be 1. 
    for (int i = 1; i <= linkNbr; i++) { 
      c[linkNbr+i] = r.nextInt(linkNbr + 1 - i) + 1; 
    } 
  } 
 
  // generation[0..i-1] is already sorted relative to generation[][0] 
  // insert member c and make generation[] remain sorted 
  void insert(int c[], int i) { 
    generation[i] = c; 
    while ((i > 0) && ((int[])generation[i-1])[0] > 
      ((int[])generation[i])[0]) { 
      // swap generation[i-1] and generation[i] 
      Object temp = generation[i-1]; 
      generation[i-1] = generation[i]; 
      generation[i] = temp; 
      i--; 
    } 
  } 
 
  // conduct crossover n times to generate n new unique children 
  void crossover(int n) { 
    int child[]; 
    int parent1, parent2; 
    int from, to; 
    int parent1code[], parent2code[]; 
    for (int i = 0; i < n; i++) { 
      do { 
        parent1 = r.nextInt(selectBestNumber); 
        // parent1 and parent2 always differ: this is different from  
        // Joe's dissertation 
        do {   // I made this change to avoid generation of duplicate  
               // members 
               // To truely implement Joe's algorithm, reset variable  
               // banDuplicate to false 
          parent2 = r.nextInt(selectBestNumber); 
        } while (parent1 == parent2); 
        parent1code = (int[])generation[parent1]; 
        parent2code = (int[])generation[parent2]; 
        from = r.nextInt(linkNbr*2-1) + 1;          // from is in  
                                                    // [1..2*linkNbr-1] 
        to = r.nextInt(linkNbr*2-from) + from + 1;  // to is in                     
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                                                    // [from+1..2*  
                                                    // linkNbr] 
        child = (int[])generation[generationSize-1]; // reuse the space  
                                                    // of the worst  
                                                    // member 
        u.copyArray(parent1code, child); 
        for (int j = from; j <= to; j++) 
          child[j] = parent2code[j]; 
        child[0] = codeCost(child); 
      } while (isDuplicate(child, 0, generationSize-2) &&  
               banDuplicate); 
      // if banDuplicate = false, crossover may generate duplicate  
      // members in generation 
      insert(child, generationSize-1); // insert child[] into  
                                       // generation[] 
      if (debugLevel > 0) { 
        System.out.println("Mate " + parent1 + " and " + parent2 + 
                           " from " + from + " to " + to + ", child  
                           cost = " + child[0]); 
        System.out.println("parent1 " + parent1 + ":"); 
        u.printArray(parent1code); 
        System.out.println("parent2 " + parent2 + ":"); 
        u.printArray(parent2code); 
        System.out.println("child:"); 
        u.printArray(child); 
      } 
    } 
  } 
 
  // conduct mutatation n times to generate n new unique children 
  void mutate(int n) { 
    for (int i = 0; i < n; i++) { 
      // reuse the space of the worst member 
      int child[] = (int[])generation[generationSize-1];  
      int parent = r.nextInt(selectBestNumber); 
      int parentCode[] = (int[])generation[parent]; 
      u.copyArray(parentCode, child); 
      int mutateTime = r.nextInt(maxMutatePositions) + 1; 
      do {  // new child must not duplicate any current member; differ  
            // from Joe's dissertation 
            // To truely implement Joe's algorithm, reset variable  
            // banDuplicate to false 
        for (int j = 0; j < mutateTime; j++) { 
          int k = r.nextInt(2*linkNbr) + 1;  // allow the same  
                                             // position chosen  
                                             // multiple times 
          if (k <= linkNbr) 
            perturbBidID(child, k); 
          else 
            perturbPermutation(child, k); 
        } 
        child[0] = codeCost(child); 
      } while (isDuplicate(child, 0, generationSize-2) &&  
               banDuplicate); 
      // if banDuplicate = false, mutate may generate duplicate members  
      // in generation 
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      if (debugLevel > 0) { 
        System.out.println("Mutate parent " + parent + " at " +  
                           mutateTime + " position(s)," + 
                          " child cost = " + child[0]); 
        System.out.println("parent " + parent + ":"); 
        u.printArray(parentCode); 
        System.out.println("child:"); 
        u.printArray(child); 
      } 
      insert(child, generationSize-1);  // insert new child 
    } 
  } 
 
  // perturb the left half of code for bid IDs 
  void perturbBidID(int code[], int k) { 
    int from = bidAlloc[k][1];   // starting bid ID for building link k 
    int to = bidAlloc[k][2];     // ending bid ID for building link k 
    code[k] = r.nextInt(to - from + 1) + from;  // choose a random bid  
                                                // for building link k 
  } 
 
  // perturb the right half of code for permutation 
  void perturbPermutation(int code[], int k) { 
    int i = k - linkNbr; 
    code[k] = r.nextInt(linkNbr - i + 1) + 1; // code[linkNbr + i] is  
                                              // in {1, 2, ...,  
                                              // linkNbr-i+1} 
  } 
 
 
  public static void main(String args[]) { 
    String dataFileName = "data4.txt";           // default data file 
                                                 // name 
    if (args.length == 1) 
      dataFileName = args[0];                    // command-line data  
                                                 // file name 
    Utilities u = new Utilities(); 
    u.readData(dataFileName);                    // read data for a  
                                                 // problem instance 
    u.problemTransformation();                   // transform the  
                                                 // problem to a 
                                                 // simpler one 
    u.setDebugLevel(1);                          // print some debug  
                                                 // info 
    GeneticJoe ga = new GeneticJoe(); 
    int bestCost; 
    int bestSolution[] = new int[u.linkNbr + 1]; 
    u.startRun(); 
    bestCost = ga.run(bestSolution, u); 
    u.endRun(); 
    u.report("Genetic (solution transformed)", bestCost, bestSolution); 
  } 
} 
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Random Repeat.Java 

public class RepeatRandom { 
 
  int run(int bestSolution[], int times, Utilities u) { 
    int p[] = new int[u.linkNbr+1]; 
    int bestCost = 9999;                  // impossible bad cost, to be 
                                          // replaced 
    for (int i = 0; i < times; i++) { 
      u.randomSolution(p); 
      int cost = u.cost(p); 
      if (cost < bestCost) { 
        bestCost = cost; 
        u.copyArray(p, bestSolution); 
      } 
    } 
    return bestCost; 
  } 
 
  public static void main(String args[]) { 
    String dataFileName = "data4.txt";           // default data file  
                                                 // name 
    if (args.length == 1) 
      dataFileName = args[0];                    // command-line data  
                                                 // file name 
    Utilities u = new Utilities(); 
    u.readData(dataFileName);                    // read data for a  
                                                 // problem instance 
    u.problemTransformation();                   // transform the  
                                                 // problem to a  
                                                 // simpler one 
    int bestCost; 
    int bestSolution[] = new int[u.linkNbr + 1]; 
    RepeatRandom rr = new RepeatRandom(); 
    u.startRun(); 
    bestCost = rr.run(bestSolution, 100, u);    // 100 will be adjusted 
    u.endRun(); 
    u.report("Repeat random solution 100 times", bestCost,  
       bestSolution); 
  } 
} 
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Exhaustive Search.Java 

public class ExhaustiveSearch { 
 
  int run(int bestSolution[], Utilities u) { 
    int p[] = new int[u.linkNbr+1]; 
    p[0] = 999;   // p[0] is not used; 999 is a dummy value for  
                  // permute() to avoid p[0] 
    for (int i = 1; i <= u.linkNbr; i++)  // generate the first  
                                          // permutation of {1, 2, ...,  
                                          // linkNbr} 
      p[i] = i; 
    u.copyArray(p, bestSolution); 
    int bestCost = 9999;   // an impossible bad cost so it will be  
                           // replaced 
    do { 
      int cost = u.cost(p); 
      if (cost < bestCost) { 
        bestCost = cost; 
        u.copyArray(p, bestSolution); 
      } 
    } while (Permutator.permute(p));   // p becomes the next  
                                       // permutation in lexicographic  
                                       // order 
    return bestCost; 
  } 
 
  public static void main(String args[]) { 
    String dataFileName = "data4.txt";    // default data file name 
    if (args.length == 1) 
      dataFileName = args[0];             // command-line data file 
                                          // name 
    Utilities u = new Utilities(); 
    u.readData(dataFileName);             // read data for a problem  
                                          // instance 
    u.problemTransformation();            // transform the problem to a  
                                          // simpler one 
    int bestCost; 
    int bestSolution[] = new int[u.linkNbr + 1]; 
    ExhaustiveSearch es = new ExhaustiveSearch(); 
    u.startRun(); 
    bestCost = es.run(bestSolution, u); 
    u.endRun(); 
    u.report("Exhaustive search", bestCost, bestSolution); 
  } 
} 
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Utilities.Java 

import java.io.*; 
import java.util.StringTokenizer; 
import java.util.Random; 
 
public class Utilities { 
 
  int linkNbr;   //  Number of links 
  int bidNbr;    //  Number of bids 
  int bidAlloc[][];  // Each row corresponding to a link. 
                     // Links are numbered 1, 2, ... 
                     // Each row specifies number of bids for a link, 
                     // and the corresponding successive starting and 
                     // ending bid IDs 
  int cost[][];  // cost[i][j] is the cost for letting bid i build its  
                 // bidding link at stage j 
  int cost1[][]; // cost1[i][j] is the lowest cost for building link i  
                 // at stage j 
  int cost2[][]; // cost2[i][j] is the bid ID corresponding to  
                 // cost1[i][j] 
  Random r = null;   // Random number generator 
  long startTime;    // mark the start of a run 
  long endTime;      // mark the end of a run 
  int debugLevel = 0;  // control the amount of idebug info to be  
                       // printed; 0 means minimal 
   
  public Utilities() {  // constructor 
    // Initialize random number generator with current time 
    long randomSeed = System.currentTimeMillis(); 
    r = new Random(randomSeed); 
  } 
 
  public int getDebugLevel() { 
    return debugLevel; 
  } 
 
  public void setDebugLevel(int v) { 
    debugLevel = v; 
  } 
   
  public Random getRandom() { 
    return r; 
  } 
 
  public int getLinkNbr() { 
    return linkNbr; 
  } 
 
  public int[][] getBidAlloc() { 
    return bidAlloc; 
  } 
 
  public int[][] getCost() { 
    return cost; 
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  } 
 
  void startRun() { 
    startTime = System.currentTimeMillis(); 
  } 
 
  void endRun() { 
    endTime = System.currentTimeMillis(); 
  } 
 
  long elapsedTime() { 
    return endTime - startTime; 
  } 
 
  // print the contents of a 1-D array 
  void printArray(int d[]) { 
    for (int i = 0; i < d.length; i++) 
      System.out.print(d[i] + ", "); 
    System.out.println(); 
  } 
 
  // prints p[1..linkNbr]; avoids p[0] 
  void printSolution(int p[]) { 
    for (int i = 1; i < p.length; i++) 
      System.out.print(p[i] + " "); 
    System.out.println(); 
  } 
 
 
  // exchange the value of p[l] and p[r] 
  void swap(int p[], int l,int r) { 
    int temp = p[l]; 
    p[l] = p[r]; 
    p[r] = temp; 
  } 
 
  // copy values of from[] into to[] 
  void copyArray(int from[], int to[]) { 
    for (int i = 0; i < to.length; i++)  
      to[i] = from[i]; 
  } 
 
  // cost of a permutation of highway build sequence; objective  
  // function for Problem B 
  int cost(int p[]) { 
    int cost = 0; 
    for (int i = 1; i <= linkNbr; i++) { 
      cost += cost1[i][p[i]]; 
    } 
    return cost; 
  } 
 
  // incrementally update cost after swapping values of p[] in  
  // positions i and j 
  int updateCost(int p[], int cost, int i, int j) { 
    return cost - cost1[i][p[i]] - cost1[j][p[j]] + cost1[i][p[j]] +  
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            cost1[j][p[i]]; 
  } 
 
  // print to screen the execution results of an algorithm 
  void report(String message, int bestCost, int bestSolution[]) { 
    System.out.print(message + ", best cost = " + bestCost); 
    System.out.print(", solution: "); 
    int bidSequence[] = new int[linkNbr+1]; 
    for (int i = 1; i <= linkNbr; i++) 
      bidSequence[bestSolution[i]] = cost2[i][bestSolution[i]]; 
    for (int i = 1; i <= linkNbr; i++) 
      System.out.print(bidSequence[i] + " "); 
    System.out.println(); 
    System.out.println("Elapsed time = " + elapsedTime()); 
    System.out.println("-------------------------------------"); 
  } 
 
  // transform Problem A to simpler Problem B 
  void problemTransformation() { 
    cost1 = new int[linkNbr+1][linkNbr+1]; 
    cost2 = new int[linkNbr+1][linkNbr+1]; 
    for (int i = 1; i <=linkNbr; i++) {     // i for link 
      for (int j = 1; j <= linkNbr; j++) {  // j for time stage 
        int from = bidAlloc[i][1]; 
        int to = bidAlloc[i][2]; 
        int minimum = 99999;                // an impossibly large  
                                            // number 
        int minBidID = linkNbr + 1;         // bid miniBidNbr should  
                                            // have minimum bid 
        for (int k = from; k <= to; k++) { 
          if (cost[k][j] < minimum) { 
            minimum = cost[k][j]; 
            minBidID = k; 
          } 
        } 
        cost1[i][j] = minimum; 
        cost2[i][j] = minBidID; 
      } 
    } 
  } 
 
  // read the data for a problem instance 
  void readData(String fileName) { 
    BufferedReader file = null; 
    String line;  // Current input line 
    try { 
      file = new BufferedReader(new FileReader(fileName)); 
      // Read bid number and link number on line 1 
      line = file.readLine().trim(); 
      StringTokenizer st = new StringTokenizer(line); 
      bidNbr = Integer.parseInt(st.nextToken().trim()); 
      linkNbr = Integer.parseInt(st.nextToken().trim()); 
      // Allocate space for bidAlloc[][] and cost[][] 
      bidAlloc = new int[linkNbr+1][3];    // link ID starts from 1. 
                                           // bidAlloc[0][] is not used 
      cost = new int[bidNbr+1][linkNbr+1]; // cost[0][] and cost[][0]  
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                                           // are not used 
      // Skip the blank line 2 
      line = file.readLine(); 
      // Start to read the bid allocation table 
      for (int i = 1; i <= linkNbr; i++) { 
        line = file.readLine().trim(); 
        st = new StringTokenizer(line); 
        for (int j = 0; j < 3; j++)  
          bidAlloc[i][j] = Integer.parseInt(st.nextToken().trim()); 
      } 
      // Skip the blank line 
      line = file.readLine(); 
      // Start to read the cost table 
      for (int i = 1; i <= bidNbr; i++) { 
        line = file.readLine().trim(); 
        st = new StringTokenizer(line); 
        for (int j = 1; j <= linkNbr; j++)  
          cost[i][j] = Integer.parseInt(st.nextToken().trim()); 
      }      
    } 
    catch(Exception e) {} 
    finally { 
      try { 
        if (file != null) 
          file.close(); 
      } 
      catch (Exception e) {} 
    }    
  } 
 
  // print to screen the contents of problem instance data 
  // as well as the derived data in cost1[][] and cost2[] 
  void printCosts() { 
    System.out.println("bidNbr = " + bidNbr + ", linkNbr = " +  
                       linkNbr); 
    System.out.println(); 
    System.out.println("Bid Allocation Table:"); 
    System.out.println(); 
    for (int i = 1; i <= linkNbr; i++) { 
      for (int j = 0; j < 3; j++)  
        System.out.print(bidAlloc[i][j] + " "); 
      System.out.println(); 
    } 
    System.out.println(); 
    System.out.println("Cost Table:"); 
    System.out.println(); 
    for (int i = 1; i <= bidNbr; i++) { 
      for (int j = 1; j <= linkNbr; j++)  
        System.out.print(cost[i][j] + " "); 
      System.out.println(); 
    } 
    System.out.println(); 
    System.out.println("Cost1 Table:"); 
    System.out.println(); 
    for (int i = 1; i <= linkNbr; i++) { 
      for (int j = 1; j <= linkNbr; j++)  
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        System.out.print(cost1[i][j] + " "); 
      System.out.println(); 
    } 
    System.out.println(); 
    System.out.println("Cost2 Table:"); 
    System.out.println(); 
    for (int i = 1; i <= linkNbr; i++) { 
      for (int j = 1; j <= linkNbr; j++)  
        System.out.print(cost2[i][j] + " "); 
      System.out.println(); 
    } 
    System.out.println(); 
  } 
 
  // Randomly swap two values of p[1..linkNbr]], and return the updated  
  // cost 
  int randomSwap(int p[], int cost) { 
    int x = r.nextInt(linkNbr) + 1; 
    int y; 
    do { 
      y = r.nextInt(linkNbr) + 1; 
    } while (x == y); 
    cost = updateCost(p, cost, x, y); 
    swap(p, x, y); 
    return cost; 
  } 
 
 
 
  // generate in p[] a random solution 
  void randomSolution(int p[]) { 
    p[0] = 999;  // p[0] is not used, and 999 is a dummy value 
    for (int i = 1; i <= linkNbr; i++) 
      p[i] = i; 
    for (int i = 0; i < 5*linkNbr; i++) { // randomly sway values in  
                                          // p[] 
    // swap number is a parameter and can be adjusted; larger the  
    // better but slower 
      int x = r.nextInt(linkNbr) + 1; 
      int y = r.nextInt(linkNbr) + 1; 
      swap(p, x, y); 
    } 
  } 

} 
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