

Mitigating Bring Your Own Device Risks by Static Analysis

Empowered by Knowledge Graphs from

Open Web Application Security Project

by

Suzanna Schmeelk

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Professional Studies

in Computing

at

Seidenberg School of Computer Science and Information Systems

Pace University

May 2020

ii

We hereby certify that this dissertation, submitted by Suzanna Schmeelk, satisfies the

dissertation requirements for the degree of Doctor of Professional Studies in Computing

and has been approved.

___-__4/27/2020_______

Dr. Lixin Tao Date

Chairperson of Dissertation Committee

___-__4/27/2020_______

Dr. Charles Tappert Date

Dissertation Committee Member

___-__4/27/2020_______

Dr. Ron Frank Date

Dissertation Committee Member

School of Computer Science and Information Systems

Pace University 2020

iii

iv

Abstract

Mitigating Bring Your Own Device Risks by Static Analysis

Empowered by Knowledge Graphs from

Open Web Application Security Project

by

Suzanna Schmeelk

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Professional Studies

in Computing

May 2020

Many organizations, to save costs, are moving to Bring Your Own Mobile Device

(BYOD). In these scenarios, organizations have a Mobile Device Management (MDM)

system in place. MDM solutions lower cyber security risks by providing remote wipe

procedures, geo-location fencing, among others. However, MDM systems are not yet

focused on application-level security with a fine-level of granularity. MDM systems

currently may not monitor for data loss prevention (DLP), or even standard web-

application vulnerabilities that a penetration tester would examine. In addition,

organizations around the world are adopting applications built by third-parties at an

unprecedented rate.

This research contributes an examination of mobile application security through the

construction of a knowledge graph for the OWASP Top 10 2014 and 2016 threats. The

knowledge graph contribution links threats from the different years to show changes in

time and to help determine security changes over time. Currently, only the National

Institute of Standards and Technology (NIST) Bug Framework has built any such graph

representation to inform analysis. This high-level graphic shows potential vulnerabilities

such as the insecure storage of sensitive data and insufficient cryptography, which

depending on how the code is utilized can occur heavy fines for the mismanagement of

sensitive information.

This research then contributes how specific mobile device source code, specifically

Android in this research, can useful to inform static analysis. In this research we focus on

source code analysis; however, the knowledge-graph can be connected to byte code or

entirely other mobile device application languages such as Swift, JavaScript, and C/C++.

We then make a contribution to analyze over 200 healthcare Android applications source

code from GitHub to learn what, if any, security concerns are being deployed to improve

v

secure source code development for sensitive data. Some of the applications analyzed

collect highly sensitive information such a body weight, body signals (e.g. blood pressure,

temperature), obstetrics/gynecology measurements, mental health measurements, among

others. Specifically, in this research, we analyzed applications for components of the

constructed-knowledge graphs, specifically, components of the confidentiality and

integrity of their sensitive information.

As our world moves more-and-more to the edges with the Internet of Things and mobile

application development, security concerns and the storage and transmission of sensitive

data is becoming a serious concern. In fact, recent regulatory changes are occurring at

unprecedented rates with adoptions of new laws at local, national and international levels.

Having a clearer picture of security on our mobile devices is now an industry necessity.

vi

Acknowledgements

This dissertation has been a crescendo on my work for cybersecurity software assurance of

mobile applications. This work began with deep mobile application software assurance

research during my fulltime career work with a former Bell Laboratories subsidiary, later

involved mobile application cybersecurity analysis for top New York City hospital(s) and

most recently with my industry (pro bono) work as a fulltime Assistant Professor of

Cybersecurity. Throughout my fulltime work with these organizations, I observed a lack

of cybersecurity completeness in research and practice, which was deeply disturbing. The

faculty at Pace University have helped me address many of these observed cybersecurity

gaps for the benefit of the research, industry, and general public communities-at-large.

I would like to first thank Dr. Lixin Tao, my adviser, for all his time, support and advice

during the years working on this dissertation thesis. Dr. Tao, Pace University Seidenberg

School of CSIS Professor and IEEE Senior Member, introduced me to the domain of the

Semantic Web Knowledge Graphs, which was a perfect cybersecurity fit for adapting and

building more complete representations and adaptable knowledge sets for cybersecurity

software assurance. Dr. Tao’s contributions to my own personal growth have been

consistently domain-enhancing, consistently encouraging, and will never be forgotten.

Thank you so much, Dr. Tao!

Thank you to my dissertation committee, especially Dr. Charles Tappert and Dr. Ron

Frank, who have been so generous with their technical experiences and teachings. Dr.

Tappert, Pace University Seidenberg School of CSIS Clinical Professor, has contributed to

every class we took in Pace University. He regularly facilitated discussions based on his

outstanding and long career at IBM and earlier professional experience at West Point

Military Academy. His contributions to his students’ learning are endless and will never

be forgotten. In fact, I recall an episode at an International Machine Learning conference,

where Dr. Tappert was generously helping all students from Pace University prepare and

present their research. He came to all their sessions and made sure session track chairs

were on schedule. Thank you, Dr. Tappert!

Dr. Ron Frank, Pace University Seidenberg School of CSIS Associate Professor, has been

so generous with his time and sharing his industry expertise. Dr. Frank spent his first career

working in industry at IBM before coming to Pace University. He has phenomenal

experience and an outstanding repertoire. His stories are extremely authentic and geared

to enlightening all his students to prepare them for the next steps in their careers. I recall

an episode where Dr. Frank taught all his students about maintaining research memoirs in

notebooks which could endure in intellectual property court disputes. This is one example

of many of his extremely forward-thinking teaching moments to prepare students to think

in advance about preserving their own intellectual property. Thank you, Dr. Frank!

vii

In addition, all the faculty at Pace University have been extremely supportive--especially

of their advice, time and industry expertise. I would like to thank our DPS classroom

faculty: Dr. Tilak Agerwala, Paul Dantzig, Dr. Sung-Hyuk Cha, Dr. Li-Chiou Chen, Dr.

Yegin Genc, Rinaldo DiGiorgio, and Istvan Barabasi. In addition, the Pace faculty and

staff, especially the Dean Dr. Jonathan Hill, Dr. Susan Feather-Gannon, Dr. Christelle

Scharff, Dr. Miguel Mosteiro, Dr. Thomas Schmidt, Michelle Lang, Jose Cueto, and Jill

Olimpieri have also been generous of their time, advice, and expertise. Finally, a big thank

you to Fred Grossman, Charles Tappert, Joe Bergin, Susan M. Merritt, Allen Stix, Judith

E. Sullivan, and David A. Sachs for working so hard to imagine and establish a research

doctoral program for fulltime working professionals in the first place.

Thank you to the other DPS Students, who are all fulltime working professionals and/or

industry veterans. First, I would like to thank my NYPD Cyber Detective industry veteran

colleague and peer, Denise Dragos, for our many research undertakings together. Second,

I would like to thank my amazing DPS Team 2 Cohort: Lisa R. Ellrodt, Tonya L. Fields,

Ion C. Freeman, and Ashley J. Haigler (including the founding group members Lynne

Larkin and Ronald Williams.) Thank you also to our entire DPS 2020 Cohort for sharing

their wealth of industry knowledge on our long Friday nights together and all day Saturdays

together. Our DPS 2020 Cohort consists of: Miguel Zhindon, Philip Ricciardi, Joseph

Porter, Edmund Miller, Paxton Louis, David Lasecki, Rajesh Khemraj, and Binu Jacob.

Lastly, many thanks to Dr. Ning Jiang for his work with me on Pace Protegee.

Finally, thank you to my family who have been extremely supportive especially when I

have missed family events due to my studies.

As the proverb says, “It takes a village to raise a child.” We have learned so much about

the computing industry, collaborated with our (invited) industry leading peers, and

expanded our own computing industry experience. We have spent many days together

both through in-person and virtual communications and conferences. Overall, the learning

experience has been extremely rewarding, enlightening, positive, and entirely

unforgettable.

 v

Table of Contents

Abstract .. iv

List of Tables ... viii

List of Figures ... x

Chapter 1 Introduction ... 1

1.1 Opportunities and Challenges in Mobile Security Analyses 2

1.2 Problem Statement .. 3

1.3 Expected Contributions ... 6

1.4 Approach Validation ... 7

1.5 Research Outline ... 7

Chapter 2 Review of Literature ... 9

2.1 Cybersecurity Ontologies.. 10

2.1.1 Ontologies for HIPAA/HITECH Data Breaches .. 11

2.1.2 Ontologies for Incident Response ... 11

2.2 Vulnerability and Security Discourse ... 13

2.2.1 NIST’s Bugs Framework (BF).. 14

2.2.2 MITRE’s Common Weakness Enumeration (CWE) 15

2.2.3 Malicious Application Detection (MITRE’s CAPEC) 16

2.3 Static Analysis of Mobile Applications .. 16

2.3.1 Confidentiality Techniques ... 17

2.3.2 Integrity Techniques ... 19

2.3.3 Availability Techniques .. 20

2.3.4 Generalizable Techniques ... 20

2.3.5 Other Polyhedral Techniques .. 21

2.3.6 Graphs of Domain Coverage Findings ... 22

2.4 Ontologies and Knowledge Graphs .. 26

 vi

2.4.1 Ontologies for Software Development ... 27

2.4.2 Knowledge Graphs for Software Development .. 28

Chapter 3 Mobile Application Client-Side Structure .. 29

3.1 Android Linux Sandbox Structure .. 31

3.2 Android Application Structure .. 36

3.3 Standard Android Application Security Management Coding Patterns 40

3.3.1 Android API .. 40

3.3.2 Vulnerable Libraries ... 43

3.3.3 Limitations .. 43

Chapter 4 Ontology of Mobile Application Security Threats 44

4.1 OWASP 2014 Mobile Threats Coding Patterns ... 44

4.1.1 Mobile 2014 Threat 1: Weak Server-Side Controls 45

4.1.2 Mobile 2014 Threat 2: Insecure Data Storage .. 46

4.1.3 Mobile 2014 Threat 3: Insufficient Transport Layer Protection 53

4.1.4 Mobile 2014 Threat 4: Unintended Data Leakage .. 56

4.1.5 Mobile 2014 Threat 5: Poor Authorization and Authentication 61

4.1.6 Mobile 2014 Threat 6: Broken Cryptography .. 64

4.1.7 Mobile 2014 Threat 7: Client-side Injection ... 65

4.1.8 Mobile 2014 Threat 8: Security Decisions Via Untrusted Inputs 67

4.1.9 Mobile 2014 Threat 9: Improper Session Handling 69

4.1.10 Mobile 2014 Threat 10: Lack of Binary Protections 72

4.2 OWASP 2016 Mobile Threats Coding Patterns ... 74

4.2.1 Mobile 2016 Threat 1: Improper Platform Usage... 74

4.2.2 Mobile 2016 Threat 2: Insecure Data Storage .. 76

4.2.3 Mobile 2016 Threat 3: Insecure Communication ... 77

4.2.4 Mobile 2016 Threat 4: Insecure Authentication ... 78

4.2.5 Mobile 2016 Threat 5: Insufficient Cryptography .. 78

 vii

4.2.6 Mobile 2016 Threat 6: Insecure Authorization ... 82

4.2.7 Mobile 2016 Threat 7: Poor Code Quality ... 83

4.2.8 Mobile 2016 Threat 8: Code Tampering .. 83

4.2.9 Mobile 2016 Threat 9: Reverse Engineering .. 84

4.2.10 Mobile 2016 Threat 10: Extraneous Functionality 84

4.3 Summary of OWASP Threat/Risk Findings ... 85

Chapter 5 Detectable Security Management Coding Patterns 87

5.1 Analysis of Android Health Source Code for OWASP Top Security Issues ... 87

5.2 Analysis 1 Summary: OWASP 2016 Threat 5 Insufficient Cryptography 88

5.3 Analysis 2 Summary: OWASP 2016 Threat 2 Insecure Data Storage 91

Chapter 6 Conclusion .. 103

6.1 Contribution Summary.. 103

6.1.1 Contribution #1: Android Mobile Application Knowledge Graph 103

6.1.2 Contribution #2: Evaluate Knowledge-Graph. ... 105

6.1.3 Contribution #3: Identify Unresearched Mobile Vulnerabilities 106

6.1.4 Contribution #4: Analyze Software Assurances in 200+ Applications 106

6.2 Future Research .. 106

 List of Android Healthcare Mobile Applications Analyzed 109

 Glossary of Terms .. 124

Reference .. 128

 viii

List of Tables

Table 1: CAPEC “Mechanisms of Attack” ... 22

Table 2: Android Java Code for File Storage [49] .. 49

Table 3: Android Java Code for Shared Preferences [53] .. 50

Table 4: Android Java Code for SQL Lite Database [55] .. 51

Table 5: Valid Android HTTPS Request [58] .. 54

Table 6: Android adding a Certifying Authority source code [58] 55

Table 7: Android Certificate Hostname Verifier source code [58] 55

Table 8: Android Static Certificate Pinning in manifest source code [59] 56

Table 9: Android Dynamic Certificate Pinning source code [59] 56

Table 10: Android custom keyboard source code [61] ... 58

Table 11: Android URL caching source code [62] ... 59

Table 12: Android caching source code [63] .. 59

Table 13: Android copy/paste from clipboard source code [64] 60

Table 14: Android screenshot source code [65] ... 61

Table 15: Android OAuth source code [66] ... 62

Table 16: Android credential source code [67] ... 62

Table 17: Android biometric authentication source code [63] ... 63

Table 18 Nikolay Elenkov Example [71] [72] .. 65

Table 19: Android running JavaScript [63] .. 66

Table 20: Android client-side injection source code [74]. .. 67

Table 21: Permissions between two+ co-owned applications source code [63] 69

Table 22: Android disallow export of Content Providers source code [63] 69

Table 23: Android API Cookie Flags [76] .. 71

Table 24: Android signing remnants source code [80] ... 74

Table 25: Android Implementation CheckServerTrusted source code [82] 77

Table 26 Nikolay Elenkov Example [71] [72] .. 81

 ix

Table 27: Relations Introduces in OWASP Mobile Threat Knowledge-Graph 85

Table 28: Analysis 1 OWASP 2016 Mobile Threat 5 Insufficient Cryptography 88

Table 29: Analysis 2 OWASP 2016 Mobile Threat 2 Insecure Data Storage (IDS) 94

Table 30: NIST SAMATE BF - Buffer Overflow (BOF) [93] 104

Table 31: Full List of Android Healthcare Mobile Applications Analyzed 109

 x

List of Figures

Figure 1: HIPAA Breach Ontology from Kafali et al. [4, p. 532] 10

Figure 2: Ontology of healthcare users Kafali et al. [4, p. 532] 11

Figure 3: NIST BF - Buffer Overflow (BOF) Class [11] ... 15

Figure 4: Fraction of CAPEC Categories Researched [14] .. 23

Figure 5: The fraction of NIST BF categories researched [15] .. 25

Figure 6: Protégé Interface [28] .. 26

Figure 7: ART vs DVM [34] .. 30

Figure 8: Android Operating System [40] .. 31

Figure 9: Android Mobile Device Software Stack [41] .. 33

Figure 10: File format comparison - APK vs. Jar [43]. .. 37

Figure 11: Android Application Basic Lifecycle [45]. ... 39

Figure 12: Android Cipher API [46] ... 41

Figure 13: OWASP Mobile Top Ten Threats of 2014 ... 45

Figure 14: OWASP Mobile 2014 Threat 1: Weak Server-Side Controls 45

Figure 15: OWASP Mobile 2014 Threat 2: Insecure Data Storage.................................. 47

Figure 16: OWASP Mobile 2014 Threat 3: Insufficient Transport Layer Protection 53

Figure 17: OWASP Mobile 2014 Threat 4: Unintended Data Leakage 57

Figure 18: OWASP Mobile 2014 Threat 5: Poor Authorization and Authentication....... 61

Figure 19: OWASP Mobile 2014 Threat 6: Broken Cryptography 64

Figure 20: OWASP Mobile 2014 Threat 7: Client-side Injection 66

Figure 21: OWASP Mobile 2014 Threat 8: Security Decisions Via Untrusted Inputs 68

Figure 22; OWASP Mobile 2014 Threat 9: Improper Session Handling 70

Figure 23: OWASP Mobile 2014 Threat 10: Lack of Binary Protections 72

Figure 24: Android Application Signing [80] ... 73

Figure 25: OWASP Mobile Top Ten Threats of 2016 ... 74

Figure 26: OWASP Mobile 2016 Threat 1: Improper Platform Usage 75

file:///C:/Users/suzan/Desktop/clean/New%20folder/pace/Dissertation/Schmeelk_Pace_CSIS_DPS_Dissertation_05032020_Final_Draft.docx%23_Toc39435042

 xi

Figure 27: OWASP Mobile 2016 Threat 2: Insecure Data Storage.................................. 76

Figure 28: OWASP Mobile 2016 Threat 3: Insecure Communication............................. 77

Figure 29: OWASP Mobile 2016 Threat 4: Insecure Authentication............................... 78

Figure 30: OWASP Mobile 2016 Threat 5: Insufficient Cryptography 79

Figure 31: OWASP Mobile 2016 Threat 6: Insecure Authorization 82

Figure 32: OWASP Mobile 2016 Threat 7: Poor Code Quality 83

Figure 33: OWASP Mobile 2016 Threat 8: Code Tampering .. 83

Figure 34: OWASP Mobile 2016 Threat 9: Reverse Engineering 84

Figure 35: OWASP Mobile 2016 Threat 10: Extraneous Functionality........................... 85

Figure 36: Application seeking permission to be entirely stored on external storage 92

Figure 37: The Google documentation guidance for install location 93

1

Chapter 1

Introduction

Many organizations, to save costs, are moving to Bring Your Own Mobile Device

(BYOD). In these scenarios, many organizations have a Mobile Device Management

(MDM) system in place. MDM solutions lower cyber security risks by providing remote

wipe procedures, geo-location fencing, among others. However, MDM systems are not

yet focused on application-level security with a fine-level of granularity. MDM systems

currently may not monitor for data loss prevention (DLP), or typically web-application

vulnerabilities that a penetration tester would examine.

In addition, the BYOD paradigm supports users installing personal, and professional

applications on the same work device. In such scenarios, penetration tests typically

perform tests on applications specific to the organization; however, they have no way of

knowing in advance which applications will be run on the device in addition to the work-

related application. Penetration tests of mobile devices traditionally may include both

static and dynamic application tests. Since mobile computing is relatively new, many

penetration testers and application developers have no way of knowing how best to analyze

the applications. Currently, penetration tests are ad hoc and can differ between

organizations. This dissertation research is significant as it introduces knowledge graphs

2

as a methodology to examines how mobile security is covers by static analysis and

identifies issues which have not been examined in academics. The OWASP knowledge

graphs can be used standalone, by penetration testers, by developers, by quality assurance

testing teams, by security community researchers (e.g. in industry and by government

standardizing organizations such as the National Institute of Standards and Technology

(NIST)), and by static analysis tool producers to further enhance their tools and coverage

representations. In this dissertation, we show how the knowledge graphs can be used

during static analysis to improve the overall mobile security code during development.

Over 200 Android Healthcare applications were reviewed from GitHub to improve their

mobile cybersecurity risks in accordance with OWASP.

1.1 Opportunities and Challenges in Mobile Security Analyses

Analysis mobile applications for security issues is extremely relevant to many

organizations; however, it comes with challenges. Specifically, typically tools developed

to test for security concerns have four types of findings: true positive, false positive, true

negative and false negative. A true positive security issue detection means that a tool

properly identified a security concern. A false positive security issue identified by the tool

has been improperly characterized by the tool as a security issue when in fact it is not a

security issue. The lower the false positive rate the more sound a tool is considered. A

true negative is when a tool properly labels an issue as a non-issue. A false negative, one

of the most serious cases, is when a tool improperly identifies a security issue as a non-

issue. The lower the false negatives the more complete a tool is considered to be.

3

Currently very little, if any research is properly working to identify false negative statistics

for security analysis tools. Generally standardizing bodies such as NIST work to help

develop benchmarks to help properly classify and analyze security analysis tools.

Two popular security analysis tools are built around static analysis or dynamic analysis or

the hybrid of the two. Static analysis examines source, intermediate, or machine code to

identify issues. Traditional static analysis applications are within compiler tools. Dynamic

analysis tools examine code during execution. There are many methodologies of dynamic

analysis such as code coverage, code behavior analysis and sandboxes. Finally, research

tools can combine methodologies such as in malware analysis to statically remove timers

or other obfuscating code before actually executing the code to examine the behavior.

As discussed in Chapter 2 Review of Literature the research community, especially in

mobile static analysis, is not systematically examining software issues. As explained in

the chapter literature, systematic analysis is transpiring over certain well-known security

issues leaving others entirely unresearched increasing security risks.

1.2 Problem Statement

Organizations around the world are adopting mobile technology and applications built by

third parties at an unprecedented rate. This research examines software assurance

methodologies specifically through source code analysis to improve mobile application

cybersecurity risks in accordance with OWASP best practices. Security analysis coverage

of static analysis in Android can be further implanted for malware prevention, mitigation,

4

and detection. This research examines current static analysis research of Android mobile

application to discover trends in analysis. Recent academic publications present the

coverage and distribution of current application of static analysis on Android detection,

mitigation, and prevention challenges. This research then develops a new knowledge-

graph for Android security based on OWASP best practices as contribution. This research

links the knowledge graphs with Android source code as empirical evidence that static

analysis techniques can be a useful methodology for threat detection, mitigation, and

prevention. The dissertation then presents compiles new vulnerabilities useful for

detection by static analysis methodologies and derives conclusions about the research

trend, which subareas are suitable for static analysis and needs more research. Finally, we

then make a contribution to analyze over 200 healthcare Android applications source code

from GitHub to learn what, if any, security concerns are being deployed to improve secure

source code development for sensitive data. Some of the applications analyzed collect

highly sensitive information such a body weight, body signals (e.g. blood pressure,

temperature), obstetrics/gynecology measurements, mental health measurements, among

others. Specifically, in this research, we analyzed applications for components of the

constructed-knowledge graphs, specifically, components of the confidentiality and

integrity of their sensitive information.

Methodology Solution Statement

Neither a mobile cybersecurity knowledge graph nor its respective cybersecurity static

analysis knowledge graph currently exists. As such, there is considerable effort not only

5

in building a knowledge graph but also in graph justification. As a result, we have started

with the industry standard OWASP Top 10 Mobile Threats to construct initial components

of a security knowledge graph for one particular mobile platform, Android. The two most

current OWASP Top 10 Mobile Threats published on their main page are from 2014 and

2016. The OWASP frameworks are highly utilized by industry professionals to analyze

their code for vulnerabilities and to learn how to solve penetration test remediation

problems. We explore both years of OWASP Tope 10 Mobile Threats in more detail to

see the differences and similarities between the years to work towards building a

theoretically complete knowledge-graph to capture all known threats at a point in time.

This research examines mobile application security from the perspective of static analysis

to develop new security-focused software analysis methodologies by making three

contributions. First, this research contributes knowledge graphs for security threats in

mobile applications. These knowledge graphs can be employed by industry to detect

software weaknesses during software analysis (e.g. static, dynamic, penetration testing,

legal, etc.). Second, the knowledge graphs are connected directly with mobile Android

software code to provide real-world empirical evidence to the context of the analysis.

Third, the research contributes what static analysis techniques could be employed to

capture different categories of mobile application security threats that have previously not

been researched or identified in research. Specifically, the source code for 200+ Android

healthcare mobile applications are statically examined to improve their mobile

cybersecurity risks with OWASP. The field at large can apply and extend any of the

contributions to further guide their mobile application cybersecurity analysis.

6

Specifically, the solution methodology are as follows:

• Review the literature on current cybersecurity static analysis research trends

• Develop knowledge-graphs for Android mobile security based on OWASP

• Evaluate the knowledge-graph with Android source code to improve static analysis

techniques capable of detecting cybersecurity risks

• Analyze the mobile source code for 200+ open source Android healthcare applications

hosted on GitHub to improve their mobile cybersecurity risks with OWASP

1.3 Expected Contributions

Little systematic research exists for mobile cybersecurity software assurance. As such,

industry and academic experts find it difficult to compare and contrast assurance analyses.

In fact, penetration tests at one organization may not be equivalent to a penetration test at

another organization. Our expected contribution is to improve systematic mobile software

security research and to improve their mobile cybersecurity risks. Specifically, the

contributions are as follows:

• Develop knowledge-graphs for Android mobile application security based on both of

the current OWASP’s top ten mobile threats to identify similarities, identify differences

and discover longitudinal changes to the OWASP threats for more complete analyses.

• Evaluate knowledge-graph with Android source code connections to elicit types of

static analysis techniques capable of detecting

7

• Identify un-researched mobile software vulnerabilities detectable via static analysis.

• Analyze the software assurances in 200+ open source Android healthcare applications

hosted on GitHub to improve their cybersecurity risks with respect to OWASP.

1.4 Approach Validation

As empirical evidence we will examine both the developed OWASP 2014 and 2016

knowledge-graphs through the lens of Android mobile source code by examining 200+

open source healthcare applications which store inherently sensitive information for two

of the top ten threats. Future research can extend the developed OWASP knowledge-graphs

as known security issues develop.

1.5 Research Outline

This dissertation research examines through literature, building knowledge graphs, and

analyzing Android source code from GitHub, new classes of issues to be considered with

static analysis.

Chapter 2 reviews the related literature on mobile cybersecurity software assurance with

respect to static analysis. The chapter examines research use cases for cybersecurity

ontologies. It then examines methodologies to systematically identify and communicate

vulnerabilities. The next section explores current literature on mobile application security

analyses. Finally, the chapter explores current knowledge graph techniques and literature.

8

Chapter 3 introduces the Android mobile application structure focusing on the client-side

applications structure—the scope of this dissertation research. This section includes the

Android Linux sandbox structure, accessing mobile resources from within an application

and discusses additional client-side application features such as including external

packages and native code. In addition, this section includes an overview discussion on

mobile client-server architecture will be discussed to inform on client-side research scope.

Chapter 4 identifies current applications of static analysis to various mobile threats, and

argues/describes, based on the knowledge graph dependencies among the threats and

among the mobile application infrastructure components, what additional application of

static analysis could be used to other related threats.

Chapter 5 examines detectable security management coding patterns to improve their

mobile cybersecurity risks with the constructed OWASP knowledge-graph. The Android

source code for 200+ Android healthcare mobile applications is statically analyzed in

accordance with multiple OWASP Top 10 Threats to improve their risks. The applications

store and handle extremely sensitive healthcare information which have higher impact if

exposed through loss or theft.

The last chapter, Chapter 6, concludes the research with a summary of findings, limitations

and future work directions.

9

Chapter 2

Review of Literature

The mobile security field contains disjoint security concerns and best practices, which

originate from many geographic sources, many perspectives, and do not conform to a given

standardized language. One way to unify disjoint topics is through building ontologies and

knowledge graphs. Ontologies, or semantic models, have been successful in helping

people to assemble their knowledge to understand “their world by forming an abstract

description that hides certain details while illuminating others [1, p. 15]” Liyang Yu [2]

defines an ontology as, “An ontology formally defines a common set of terms that are used

to describe and represent a domain … An ontology defines the terms used to describe and

represent an area of knowledge. [3, p. 151]” Three traditional ways, according to

Allemang and Hendler [1, p. 15] that models assist with “understanding is through: (1)

communication, (2) explain and make predictions, and (3) mediate multiple viewpoints.

Ontologies traditionally are based on hierarchical relationships (e.g. “is a”, taxonomy).

Knowledge Graphs, however, support other relationships beyond simply hierarchical (e.g.,

partOf, comprisedOf, etc.). Figure 1 below shows an ontology reported by Kafali et al. [4,

10

p. 532]. As can be seen in this particular ontology, there are two relations, is-a and has-a,

and twelve nodes in the ontology.

Figure 1: HIPAA Breach Ontology from Kafali et al. [4, p. 532]

2.1 Cybersecurity Ontologies

Developing ontologies for cybersecurity has been done for specific issues such as incident

response and analyzing data breaches. Elçi [5] asked the security community “Isn’t the

time ripe for a standard ontology on security of information networks?” Elçi reviewed

the field certifications and literature and found a startling lack of cybersecurity

standardizations. This lack of standardizations—and arguably the entire understanding of

cybersecurity—leaves the field without a unified knowledge of how to secure assets. One

could argue that cybersecurity, without a standardization of knowledge, remains an art

rather than a science.

11

2.1.1 Ontologies for HIPAA/HITECH Data Breaches

Kafali et al. [4] reviewed known data breaches at entities covered under the Health

Insurance Portability and Accountability Act (HIPAA). Their research goal was to help

measure the gaps between security policies and reported breaches. They developed a

systematic process based on semantic reasoning and proposed a framework, known as

SEMAVER, for determining coverage of breaches by policies via comparison of individual

policy clauses and breach descriptions. They developed the ontology shown in Figure 1 as

one of their research contribution; and, they developed the ontology show Figure 2 as a

second research contribution. After developing the ontologies, they worked with the

SEMAVER framework to create breach similarity and policy clause coverage scores from

data reported to the United States Department for Health and Human Services Office of

Civil Rights (US HHS OCR), who maintains a breach portal of open cases.

Figure 2: Ontology of healthcare users Kafali et al. [4, p. 532]

2.1.2 Ontologies for Incident Response

Clive Blackwell [6] introduced a security ontology for incident analysis. Clive’s ontology

extended the work of Howard and Longstaff [7]. Howard and Longstaff followed the

12

model that “the attacker uses a tool to perform an action that exploits a vulnerability on a

target causing an unauthorized result that meets it objectives.” Thus, Blackwell reports

the following categories from Howard and Longstaff: attacker, tool, vulnerability, action,

target, unauthorized result and objectives. Blackwell, then, extends the taxonomy to

include: (1) social and physical aspects of systems using an architectural model, (2)

accidental incidents (therefore changing term to perpetrator from attacker), and (3)

defensive aspects.

Static analysis is a method to analyze programs without executing them (e.g., Aho et

al. [8]). It captures a different view of the code security than other analyses (e.g. embedded

credentials, leakage of data, input validation, leakage of resources, etc.). Static analysis can

be performed on either the source code or the object code. The more issues discovered

before software is released, the more secure the users. When code has already been

released, static analysis discovers other issues which cannot be easily addressed using other

analyses (e.g. dynamic, emulation, simulation, etc.). Static analysis can be done with a

variety of techniques (and tools) such as model checking, data-flow analysis, abstract

interpretation, among others. It can be designed to be automated and may require limited

resources. This paper examines the methods currently used in security research to

characterize what methodologies have been used over the past five years of research in this

domain to inform Android application developers, researchers and security analysts.

In order for analysis to be complete with respect to Android application security, all

threat vectors and attack surfaces must be analyzed. The National Institute of Standards

13

and Technology (NIST) National Vulnerability Database (NVD) [9] which is used to

inform technology users of vulnerabilities within their devices. A simple search in the NVD

on the term Android uncovers hundreds of matching entries indicating that people are

finding vulnerabilities in off-the-shelf Android devices. The breadth of devices, firmware,

vendors and Android operating system versions used over diverse geographic locations

makes detecting exact malware quantification and exploitation statistics difficult.

In order to map the threat vectors and attack surfaces to the current state-of- the-art

analysis techniques, we introduce the use of the Bug Framework (BF), Common Weakness

Enumeration (CWE), and the Common Attack Pattern Enumeration and Classification

(CAPEC) to aid in the discovery of analysis completeness. The intention is to provide a

wider overall analysis coverage and understanding. For example, if we only consider

Android permissions, we will miss other large threat vectors such as developers failing to

remove the storage of cryptographic keys in plain text from applications before they are

published and used at large. From a security perspective, researchers need to ensure that

their research not only contributes to better techniques in well-known security domains,

but they also need to ensure that their research is broadly considering many different

categories of security issues.

2.2 Vulnerability and Security Discourse

Industry relies on three pivotal vulnerability discourse frameworks developed

independently by MITRE and the National Institute of Standards and Technology (NIST).

These frameworks attempt to unify industry into standardizing vulnerability language;

14

however, industry and research communities can still disagree with vulnerability specifics

such as actual ‘fault’ origins and problems (e.g. libraries can disagree on exact

interpretation of requirements). Many industry tools rely on these frameworks to convey

vulnerability details to developers, for example during static analyses. These frameworks

are either aimed at describing malware techniques or they are aimed at describing

developer techniques.

2.2.1 NIST’s Bugs Framework (BF)

The United States National Institute of Standards and Technology’s (NIST) Software

Assurance Metrics And Tool Evaluation (SAMATE) group introduced the Bugs

Framework (BF) a few years ago in Bojanova et al. [10] and Bojanova et al. [11]. NIST

SAMATE recently added three new classes of bugs to the BF: encryption bugs (ENC),

verification bugs (VRF), and key management bugs (KMN). The BF currently breaks

down bugs into four main elements: causes, attribute, consequences and sites of bugs. By

distinguishing bugs using this methodology provides more insight into how bugs occur and

what effect result from the bug. Currently, the BF employs a knowledge-graph; however,

the BF is not entirely mobile application security focused. The BF is referred to as a

Periodic Table for bugs. It tries to capture the essence of bugs rather than classify similar

patterns separately..

15

Figure 3: NIST BF - Buffer Overflow (BOF) Class [11]

2.2.2 MITRE’s Common Weakness Enumeration (CWE)

MITRE developed the CWE [12] to enable standardized discourse in this domain.

CWE’s list includes “flaws, faults, bugs, vulnerabilities, and other errors in software code,

design, architecture, or implementation that if left untreated could result in systems and

networks being vulnerable to attacks. [12]” CWE is a broad list that captures vulnerable

software paradigms across languages and operating systems for software assurance efforts.

The MITRE CWE taxonomy is useful for assessing which vulnerabilities have been

considered in analysis research enabling more security analyses.

The CWE is sponsored by the United States Computer Emergency Readiness Team

(US-CERT) in the office of Cybersecurity and Communications at the U.S. Department of

Homeland Security. It is a large online repository of software weaknesses known to aid the

code security assessment industry. Specifically, it is used for scoring in the U.S. NIST

National Vulnerability Database [9].

16

2.2.3 Malicious Application Detection (MITRE’s CAPEC)

Static analysis of live code can be beneficial to locate malware. Released code, or

“in-the-wild” code, can have built-in attacks embedded into the design. In such a case, the

software does not exactly contain weaknesses: it contains attack patterns. MITRE [13]

developed the Common Attack Pattern Enumeration and Classification (CAPEC)

taxonomy to enable standardized discourse in this domain. The MITRE CAPEC taxonomy

is useful to assess which attacks have been considered in detection analysis and mitigation

analysis research.

The CAPEC is sponsored by US-CERT in the office of Cybersecurity and

Communications at the U.S. Department of Homeland Security. One of the artifacts that

CAPEC provides is a list of standard attack patterns. CAPEC defines an attack pattern as

“an abstraction mechanism for helping describe how an attack against vulnerable systems

or networks is executed.” CAPEC defines each pattern with a description and a mitigation

recommendation. CAPEC’s motivation is that developing “attack patterns help[s]

categorize attacks in a meaningful way in an effort to provide a coherent way of teaching

designers and developers how their systems may be attacked and how they can effectively

defend them.”

2.3 Static Analysis of Mobile Applications

Static analysis research on mobile applications is adhoc and quite non-systematic.

Four major domains of research exist from a utility perspective, as described by Schmeelk

[14], Schmeelk [15], Schmeelk, Yang and Aho [16], and Schmeelk and Aho [17]. In

17

general, research exists for detecting vulnerabilities during development, detecting

malware at large, detecting specific application behavior in a sandbox, and sanitizing/re-

packing applications. Furthermore, Schmeelk [14], Schmeelk [15], Schmeelk, Yang and

Aho [16], and Schmeelk and Aho [17], showed that the mobile static analysis research can

be further categorized into five main security domains: confidentiality (C), integrity (I),

availability (A), generalizable (e.g. many different items occurring at once), and other

polyhedral (i.e. security concerns related to the CIA triad but at a higher-level such as

leaving secret keys hard coded in an application, improper certificate validation, etc.). This

section describes the five aforementioned papers. Lastly, we connect the current static

analysis research to MITRE’s CAPEC, MITRE’s CWE, and NIST’s BF to understand

where the research community is looking for bugs, as described in Schmeelk [14] and

Schmeelk [15].

2.3.1 Confidentiality Techniques

Confidentiality is the ability to hide information from those people unauthorized to

view it. Bishop [18] defines it as the “concealment of information or resources”; and

Whitman and Mattord [19] define confidentiality as “the quality or state of information

that prevents disclosure or exposure to unauthorized individuals or systems.” The goal of

confidentiality, according to Daswani et al. [20] is to “keep the contents of a transient

communication or data on temporary or persistent storage secret.” Confidentiality gives

rise to questions about privacy and the usage of collected information. Privacy, as defined

by Whitman and Mattord [19] , is the “state of being free from unauthorized observation”

and reflects the user’s ability to exercise control over how their collected personal

18

information is used by third-parties. Bellovin [21] [22] and Androulaki et al. [23] are well

known for their research in computing privacy.

Current confidentiality research encompasses applications’ leaking information

unknowingly to the user. Schmeelk [15] research domain studies applications that both

deliberately leak data as well as naively potentially leak data. If an application is malicious,

it will purposefully leak private data from the mobile device without receiving adequate

approval from the user. If an application does not require permissions to access its exported

activities, exported content providers and exported services, it may unknowingly support a

malicious application’s request to collect and/or leak private data. In addition, Android

allows multiple applications, if they are signed by the same certificate, to share the same

Linux User ID on an Android device allowing the applications to share information and

resources. In such a situation, a combination of applications can be used to collect and/or

leak private data unknowingly from the user.

Many static analysis research techniques exist for confidentiality malware detection

concerns. This category of attacks falls under the CAPEC category 118, "Gather

Information.” Schmeelk [15] found that some earlier tools were replaced with newer

research using either new techniques or more precise techniques for malware analysis.

Schmeelk [15] also examined research for confidentiality weakness detection.

Weakness detection can be used at compile time to identify vulnerabilities before the

application is released; or, it can be used by researchers to discover vulnerabilities in

released applications. Schmeelk [15] found six research papers in this category falling

19

mainly in the CWE category 200 “Information Exposure.” Schmeelk [15] analyzed the

papers by date of publication starting with the most recent publication first.

2.3.2 Integrity Techniques

Integrity is the ability to ensure that processed data is an accurate and an unchanged

representation of the original secure information. Bishop [24] defines integrity as the

“trustworthiness of data or resources, and it is usually phrased in terms of preventing

improper or unauthorized change”; and Whitman and Mattord [19] define integrity as “the

quality or state of being whole, complete, and uncorrupted.” The goal of integrity,

according to Daswani et al. [20], is to “not [let] a third party ... be able to modify the

contents.” In general, static analysis in this domain are either for malware abuse detection

or application weakness detection.

Static analysis with respect to malware detection contains category of attacks which

fall under the CAPEC category 233 “Privilege Escalation”. In privilege escalation,

adversaries exploit a weakness enabling them to elevate their privilege and perform an

action that they are not supposed to be authorized to perform. Some of the techniques used

in the earlier confidentiality category extend to integrity.

Static analysis research techniques exist for integrity concerns that can be done by

a developer during application development (i.e., pre-deployment) or after development to

discover if an application is susceptible to attack (e.g., security analysis). These techniques,

not aimed at finding malware, are usually geared at “hardening” applications to lower the

20

susceptibility of their being compromised by an adversary. This category of attacks falls

under the CWE category 441, "Unintended Proxy, Intermediary or Confused Deputy.”

2.3.3 Availability Techniques

Availability is the assurance that information systems are readily accessible to the

authorized viewer at all times. Bishop [24] defines availability as the “ability to use the

information or resource desired”; and Whitman and Mattord [19] define availability as,

“the quality or state of information characterized by being accessible and correctly

formatted for use without interference or obstruction.” The goal of availability, according

to Daswani et al. [20] is to “respond to users’ requests in a reasonable timeframe.”

Schmeelk [15] was unable to find any entire papers research focusing specifically

on Android application static analysis for availability. Schmeelk reported that a few papers

mentioned either a particular case where their technique found a particular availability

concern or stated they have done an analysis closely related to availability but without a

discussion of security. Availability concerns have not been the focus of any one paper to

date other than Schmeelk and Aho [17], which focus was at runtime but offered preliminary

insights into availability concerns from risky permissions.

2.3.4 Generalizable Techniques

Generalizable tools examine an Android application for more than one weakness

or malware patterns. Tools that typically fall into this category include sandboxes and well-

developed weakness analyses. Current general analysis research includes proprietary

static-analysis tools such as Coverity [25], Fortify [26] and Klocwork [27]. Coverity,

21

Klocwork, and Fortify all include CWE references in reports generated from code analysis.

In all cases, the tools have also found faults that are not, yet, labeled by the CWE. Research

in this domain is typically either geared for malware detection or weakness detection.

Static analysis for weakness detection covers different aspects of security: malware

frequently uses the same APIs, instrumenting applications can aid in the security analysis

process to help log data before it is encrypted, machine learning can be used by different

algorithms to identify malware on large-scale analysis, among others. Schmeelk [14] and

Schmeelk [15] analyzed the papers by date of publication.

2.3.5 Other Polyhedral Techniques

According to Daswani et al. [20] there are other security goals than simply the CIA-

triad. Authentication, authorization and accountability, among others, fall into this

category. After examining the research, typically research fall into two categories: abuse

detection and abuse weakness detection. For abuse detection, the category of attacks falls

under other CAPEC categories (e.g., CAPEC-225 “Exploitation of Authentication”,

CAPEC-232, “Exploitation of Authorization”, CAPEC-262, “Manipulate Resources”,

CAPEC-527 “Manipulate System Users”, etc.). Schmeelk [15] found only one tool geared

specifically for this category. Many static analysis research techniques exist for detecting

weaknesses in other polyhedral security concerns. Schmeelk [15] found four research

papers in this domain: CredMiner, PlayDrone, Static Analysis for Extracting Permission

Checks of a Large-Scale Framework, and PScout. This category of attacks falls under other

CWE categories (e.g., CWE-522 “Insufficiently Protected Credentials”, CWE-272 “Least

22

Privilege Violation”, etc.). Schmeelk [15] found three tools geared specifically for this

category (CredMiner, PlayDrone and PScout) and one paper. In one case, Schmeelk [15]

found that the open source tool is great for a static analysis reference; however, the crawler

no longer works with Google Play since Google has changed their API.

2.3.6 Graphs of Domain Coverage Findings

Understanding the security domains covered by existing static analysis techniques

and tools helps identify limitations and openings in attack vector research. Consequently,

Schmeelk [14] categorized each security paper using the analysis in the research as

determined by the definitions of MITRE’s vulnerability taxonomy and attack taxonomy.

MITRE’s taxonomies were created to create a common dialog and number scheme for all

known security issues—both weaknesses and actual attacks. Schmeelk [15] extended the

work to categorize the research via the NIST’s BF described in the following subsections.

2.3.6.1 MITRE’s CAPEC

The CAPEC view on “Mechanisms of Attack” [13] lists sixteen categories shown

in Table 1. These categories are malware attack surfaces. Examining and expanding on the

categories of attacks given by CAPEC help developers, researchers and security analysts

secure all attack vectors associated with Android applications. Securing some attack

surfaces leaving other attack surfaces completely unanalyzed and potentially unsecured is

completely unacceptable from a security perspective.

Table 1: CAPEC “Mechanisms of Attack”

Mechanisms of Attack

Gather Information (118)

Deplete Resources (119)

23

Injection (152)

Deceptive Interactions (156)

Manipulate Timing and State (172)

Abuse of Functionality (210)

Probabilistic Techniques (223)

Exploitation of Authentication (225)

Exploitation of Authorization (232)

Manipulate Data Structures (255)

Manipulate Resources (262)

Analyze Target (281)

Gain Physical Access (436)

Malicious Code Execution (525)

Alter System Components (526)

Manipulate System Users (527)

Each of these high-level categories has additional sub-categories. Security research

in the static analysis domain would benefit with mapping their research to specific malware

discoveries as shown in Figure 4. Without a specific mapping of events knowledge of the

usefulness of a technique is limited to both ease of use for security analysts and importance.

In addition, the lack of both universally maintained benchmarks and open source projects

reduces the analysis comparison metrics.

Figure 4: Fraction of CAPEC Categories Researched [14]

24

Schmeelk [14] found that the majority of malware research fit within two of the above

categories with outlying research fitting into eight other categories seen Figure 4 from

Schmeelk [14]. Interestingly, most of the malware research is examining CAPEC-118 and

CAPEC-156. A few research studies have considered the following: CAPEC-225, CAPEC-

210, CAPEC-262, CAPEC-232, CAPEC-119, and CAPEC-526. Examining the research

analysis techniques shows that there is limited research of the following static analysis for

attack surfaces: CAPEC-172, CAPEC- 223, CAPEC-255, CAPEC-281, CAPEC-436, and

CAPEC-527. These statistics help inform the security research community to shape the

research into attack surface breadth and depth. The community should carefully consider

the MITRE attack surface taxonomy when designing analysis tools and techniques to

ensure that Android applications have coverage over more attack surfaces.

2.3.6.2 MITRE’s Common Weakness Enumeration (CWE)

There are over 1,000 CWE identifiers in existence, according to a MITRE

representative. Schmeelk [14] reported that the majority of vulnerability research of the

publications we analyzed, fell within eleven of the 1,000+ weakness categories. The eleven

weaknesses identified can be seen in Schmeelk [14].

2.3.6.3 NIST’s Bugs Framework (BF).

Research has shown that in the Bugs Framework, six current classes capture the

static analysis research, as seen in Error! Reference source not found. [15]. The static a

nalysis research raises some questions about five findings that may be of the BF four main

elements of a bug: causes, attribute, consequences and sites of bugs. The six current classes

25

captured in the research are: IEX (matching CWE-200: Information Exposure), CRY

(matching CWE-310 CATEGORY: Cryptographic Issues), AUT (matching CWE-441:

Unintended Proxy or Intermediary), PTR (matching CWE-476: NULL Pointer

Dereference), WOP (matching CWE-597: Use of Wrong Operator in String Comparison),

and ARG (matching CWE-628: Function Call with Incorrectly Specified Argument). The

non-matching CWE comparisons may not directly map into NIST BF as individual classes;

they may be another of four main elements. These are: CWE-798: Use of Hard-coded

Credentials, CWE-835: Loop with Unreachable Exit Condition (’Infinite Loop’), CWE-

500: Public Static Field Not Marked Final, CWE-561: Dead Code, and CWE-272: Least

Privilege Violation.

Figure 5: The fraction of NIST BF categories researched [15]

26

2.4 Ontologies and Knowledge Graphs

Ontologies and knowledge-graphs are essential model representations for

communicating system information resources to improve system understandings, usability

and durability. According to Allemang and Hendler [1], model representations “help

people communicate (p. 15),” “explain and make predictions (p.15),” and “mediate among

multiple viewpoints (p.15).” Models can be used “to help us through the mess on the web

(p. 16).”

Figure 6: Protégé Interface [28]

27

2.4.1 Ontologies for Software Development

Ontologies are defined, according to Arda Goknil and Yasemin Topaloglu [29], to be “a

formal explicit description of concepts in a domain of discourse, properties of each concept

describing various features and attributes of the concept, and restrictions of slots [30].”

Lacy [31] state that “ontologies serve a similar function to a database schemas by providing

machine-processable semantics of information sources through collections of terms and

their relationships. Ontologies can be useful for software development to make clear how

systems should operate at a fundamental level [29]. Liyang Yu [2] discusses how

ontologies are essential for software development to understand how data should flow and

how the software should interact. Yu describes the use of ontologies from the perspective

of software development through immense experience programming the transportation

systems of Delta Airlines.

There are different ways to describe relationships between entities using ontologies. One

methodology is to specify the ontologies through a specific language such as Resource

Description Framework Schema (RDFS) or Web Ontology Language (OWL). According

to Yu [3] a RDFS “is a language one can use to create a vocabulary (often the created

vocabulary is domain-specific), so when distributed RDF documents are created in this

domain, terms from this vocabulary can be used. Therefore, everything we say, we have a

reason to say it.” A different semantic and syntactical representation is OWL. According

to Goknil and Topaloglu [29], “OWL defines and instantiates Web Ontologies.” Other

methodologies are to graphically represent the ontologies. In fact, since both RDFS and

OWL follow a standardized textual specification, the textual representation can be

28

transformed into a graphical representations. One industry leading tool for such

transformations is Protégé, a tool developed at Stanford University [28]. Protégé is shown

in the Figure 6.

2.4.2 Knowledge Graphs for Software Development

Knowledge graphs communicate information with a different representation than an

ontology. An ontology formally describes the types, properties and interrelationships

between entities. A knowledge graph is a collection of entities where the types and

properties have values declared for them, and where the relationships between them are

connected. In a knowledge graph, the nodes are the types and properties and the edges are

the relationships between nodes.

K. Patel, I. Dube, L. Tao and N. Jiang [32] recently published work in this domain

proposing minimal syntax extension to OWL for declaring custom relations with special

attributes, and applying them in knowledge representation. Their work they present

additions to the OWL API for the declaration, application, and visualization of custom

relations. Their research paper outlines revisions and additions to the ontology editor

Protégé so its users could visually declare, apply and remove custom relations according

to their enriched OWL syntax. Their work describes the modification to the OWLViz

plugin for custom relations visualization also known as a knowledge graph.

29

Chapter 3

Mobile Application Client-Side Structure

In this chapter we introduce the Android operating system with respect to its mobile

application structure. This chapter includes the Android Linux sandbox structure,

accessing mobile resources from within an application and discusses additional client-side

mobile application functionality such as including external packages and native code. A

brief discussion on mobile client-server architecture will be discussed to inform on client-

side research scope.

Google’s Android operating system is a Linux-based variant. The operating system

acts as a middleware between phone the hardware-firmware and third-party mobile

applications. Mobile applications, in this model, are run on the operating system within a

sandboxed environment, the Android Runtime Environment (ART) and predecessor the

Dalvik Virtual Machine (DVM), where each mobile application is given its own unique

Linux system-level UID [33]. Figure 7 shows a comparison of ART and DVM [34].

30

Figure 7: ART vs DVM [34]

The ART is slightly different than Oracle’s Java Virtual Machine (JVM) [35]. First,

the ART supports 218 opcode instructions [36], [37], [38] versus JVM’s 256 instructions

[39]. Second, ART uses a register-based architecture as opposed to Oracle’s stack-based

architecture [36]. Third, ART’s SDK library is quite different than Oracle’s SDK library.

Fourth, the ART interacts with the underlying phone system through a mediated IPC

system Binder and the user via call-backs. Fifth, and Android Application package (APK)

31

is structured differently than a traditional Java archive file (JAR). In the following sub-

sections, we go into addition Android application design details.

3.1 Android Linux Sandbox Structure

The Android Operating System, seen in Figure 8 [40], is designed with a five-layer

software model.

Figure 8: Android Operating System [40]

Layer-1, the Linux Kernel, is where device driver software is integrated. Android employs

the Linux kernel with a few special additions such as a memory management system that

is more aggressive in preserving memory, a PowerManager system service, the Binder IPC

driver, and other features important for a mobile embedded platform.

32

Layer-2, the Hardware Abstraction Layer (HAL), which employs the HAL Interface

Definition Language (HIDL), is standard interface for hardware vendors to implement.

The HAL specification enables Android to be agnostic about lower-level driver

implementations and does not affect higher level system layers.

Layer-3, the Android Runtime and the Native Android Libraries, can be further visualized

in [41] also known as Android services (i.e. system services and media services). System

services are modular, focused components, which are exposed by the application

framework APIs to access the underlying Android functionality (e.g. Window Manager,

Search Service, or Notification Manager). Media services include playing and recording

media.

Between Layer-3 and Layer-4 are the Binder Inter Process Communications (IPC). The

Binder IPC libraries allow the application framework to cross process boundaries and call

into the Android system services code, which enables Layer-5 to interact with Android

system services. Layer-4, the Figure 9 Android Framework, is the developer APIs, which

can map directly to the underlying HAL interfaces.

Layer-5 is the Android Applications themselves.

At the application level, Layer-5, the Android platform follows the Linux user-based

protection to identify and isolate each Application resource. The process sandbox thus

isolates Applications from each other and somewhat protects Application and the system

from malicious Applications.

33

Figure 9: Android Mobile Device Software Stack [41]

To create a sandbox, Android assigns a unique user identifier (UID) to each Android

application and runs it in its own process [42]. Android uses the UID to set up a kernel-

level Application Sandbox. The kernel enforces security between the mobile applications

and the system at the process level through standard Linux facilities such as user and group

IDs that are assigned to apps. By default, mobile applications cannot interact with each

34

other and have limited access to the OS. If a mobile application tries to do something

malicious, such as read application B's data or dial the phone without permission, it's

prevented from doing so because it doesn't have the appropriate default user privileges.

The sandbox is simple, auditable, and based on decades-old UNIX-style user separation of

processes and file permissions.

Because the Application Sandbox is in the kernel, this security model extends to both native

code and OS applications. All of the software above the kernel, such as OS libraries,

application framework, application runtime, and all applications, run within the

Application Sandbox. On some platforms, developers are constrained to a specific

development framework, set of APIs, or language. On Android, there are no restrictions on

how an application can be written that are required to enforce security; in this respect,

native code is as sandboxed as interpreted code.

Generally, to break out of the Application Sandbox in a properly configured device, one

must compromise the security of the Linux kernel. However, similar to other security

features, individual protections enforcing the application sandbox are not invulnerable, so

defense-in-depth is important to prevent single vulnerabilities from leading to compromise

of the OS or other apps.

Android relies on a number of protections to enforce the application sandbox. These

enforcements have been introduced over time and have significantly strengthened the

original UID-based Discretionary Access Control (DAC) sandbox.

Android releases included the following protections:

35

• In Android 11 (API 30 release expected in 2020), this version is planned release in

2020; however, specific details have not, yet, been announced in length.

• In Android 10 (API 29 released in 2019), mobile applications have a limited raw

view of the filesystem, with no direct access to paths like /sdcard/DCIM. However,

mobile applications retain full raw access to their package-specific paths, as

returned by any applicable methods, such as Context.getExternalFilesDir().

• In Android 9 (API 28 released in 2018), all non-privileged mobile applications with

the target software development kit at least version 28 or higher (targetSdkVersion

>= 28) must run in individual SELinux sandboxes, providing MAC on a per-mobile

application basis. This protection improves mobile application separation, prevents

overriding safe defaults, and (most significantly) prevents mobile applications from

making their data world accessible.

• In Android 8.0 (API 26 released in 2017), all mobile applications were set to run

with a seccomp-bpf filter that limited the syscalls that mobile applications were

allowed to use, thus strengthening the app/kernel boundary.

• In Android 6.0 (API 23 released in 2015), the SELinux sandbox was extended to

isolate mobile applications across the per-physical-user boundary. In addition,

Android also set safer defaults for application data for mobile applications with the

target software development kit at least version 24 or higher (targetSdkVersion >=

24), default DAC permissions on an mobile application’s home directory changed

36

from 751 to 700. This provided safer default for private mobile application data

(although mobile applications may override these defaults).

• In Android 5.0 (API 21 released in 2014), SELinux provided mandatory access

control (MAC) separation between the system and apps. However, all third-party

mobile applications ran within the same SELinux context so inter-mobile

application isolation was primarily enforced by UID DAC.

3.2 Android Application Structure

The application structures of Google’s Application package code, file name extensions,

inflation, permissions and user interface screens are unique to code running inside the ART.

Figure 10 shows some top-level differences between a packaged Android Application

Package file (APK) and a packaged Java Archive file (JAR).

37

Figure 10: File format comparison - APK vs. Jar [43].

All the building blocks of an Android Application Package can be useful to inform a robust

static analysis system. An Android Application is comprised of many meta-elements and

its internal code is somewhat complex [44]. The more robust the analysis of the static

source/byte code, the more accurate the overall results. An Android Application APK file

consists of a manifest file, strings file, main file, R file, resource file, program code and

more.

• The manifest.xml file, located in the top-level directory, is written in xml and

explains what the application consists of, what the main building blocks are, what

permissions the Application requires, etc.

38

• The strings.xml file, located in the res/values directory, contains all the text that an

application uses, including names of buttons, labels, default text and other strings.

• The main.xml file, located in the res/layout/ folder, declares the layout of the mobile

user screen.

• The R.java file, located in the gen folder, transforms Java files with the resource

files such as images, video or audio.

• The resources.ap file, located at the top-level, is an archive of all the XML resource

files encoded in an efficient and easy-to-parse format.

• The Application Java byte code is stored in the classes folder and the complete

Application Dalvik byte code is stored in the classes.dex file.

Accurate static analysis techniques must also consider the life-cycle of an Android

Application. Android Applications are unique from regular Java applications in that they

support a life-cycle model, as can be seen in Figure 11. Android is unique from other

programming paradigms, as it initiates code in an Activity by invoking specific callback

methods that correspond to specific stages of its lifecycle rather than invoking a main()

method. When Activities start up or tear down, there is a sequence of callback methods

that take place [45]. In the Created state the application system initialization takes place.

In the Started state the activity becomes visible on the user screen. In the Paused state

the activity is partially obscured by another activity. “The other activity that is in the

foreground is semi-transparent or does not cover the entire screen [45].” In the Resumed

39

state “the activity is in the foreground and the user can interact with it.” A paused activity

cannot receive user input nor execute any code. In the Stopped state, the activity ”is

completely hidden and not visible to the user; it is considered to be in the background.

While stopped, the activity instance and all its state information such as member variables

is retained, but it cannot execute any code [45].”

Figure 11: Android Application Basic Lifecycle [45].

Flow in an Android Application is unique and must be correctly modeled for factual

internal representation during static analysis. Application components are considered the

basic building blocks of an Android mobile application. There are four types of

components: Activities, Services, Content Providers, and Broadcast Receivers. Activities

represent a single screen and single user interface. All Activities are implemented as sub-

classes of the SDK library Activity. Services are long-running operations, typically for

remote processes, that are done in the background. All Services are implemented as

subclasses of the SDK library Services. Content Providers manage sharing application data

such as the SQLite database or other persistent memory storage devices on the system. All

40

Content Providers are required to implement a standard set of API functions for other

applications to perform transactions. Content Providers are implemented as subclasses of

the SDK library ContentProvider. Broadcast Receivers respond to system-wide broadcast

announcements, including battery performance, light sources, picture taken, or screen

turned off. Broadcast Receivers are implemented as subclasses of the SDK library

BroadcastReceiver. Broadcasts are received as Intent objects [45]. All but one component

are activated by asynchronous messages called Intents. These are Activities, Services, and

Broadcast Receivers. Content Providers are the exception, as they interface with a

ContentResolover, which is how they are activated and through which all subsequent

transactions transpire. Finally, Intents can either be explicit (e.g. specifying component

class name) or implicit (e.g. ICC messages, broadcast messages or finding a certain

capability via a race) [45].

3.3 Standard Android Application Security Management Coding Patterns

This section discusses standard security management coding patterns which are structured

in fixed methodologies by the Android Programming Language. Chapter 4 goes into a

detailed discussion of the OWASP top mobile threats with respect to coding patterns.

3.3.1 Android API

Android has many versions. Each new version adds and subtracts features based on Google

mobile research. When an application accesses (manages) features related to security

through the use of API, then code analysis can detect weak coding patterns.

41

Figure 12: Android Cipher API [46]

42

3.3.1.1 Shared Space

Mobile applications can access device shared spaces using the standard mobile Android.

API. These API calls are discussed in Chapter 4.

3.3.1.2 Inter-Application Communication

Applications can communicate with other applications using the standard mobile Android

API. Specifically, communications can occur through: Intents, Android Interface

Definition Language (AIDL), and Bound Services. All three of these built in Android

features are developed into the Android API.

3.3.1.3 Data-At-Rest: Encryption/Decryption

Applications can apply cryptographic functions using the standard mobile API. Figure 12

shows the cryptographic functions enabled in the Android API.

3.3.1.4 Data-In-Motion: TLS Setup

Applications can specify TLS configurations using the standard mobile API. To enable

data-in-motion, Android API handles certificate validation and the instantiation of HTTPS

connections, among others.

3.3.1.5 Authentication

Applications can rely on OAuth and other authentication mechanisms (e.g. Biometrics)

using the standard mobile API.

43

3.3.2 Vulnerable Libraries

Applications can include libraries in their code for all system activities. Libraries are more

difficult to detect since they may not follow standardized coding methodologies such as

the API follows.

3.3.3 Limitations

Applications can include functionality (e.g. dynamic download and execution) which are

more challenging to analyze. In addition, obfuscated code and native code are also more

difficult (but not impossible) to analyze.

44

Chapter 4

Ontology of Mobile Application Security Threats

The Open Web Application Security Project (OWASP) is a nonprofit foundation that

works to improve the security of software. The non-profit is community-driven with

hundreds of local chapters and tens of thousands of members throughout the world. In

2015, OWASP performed a survey from local chapters and members to analyze and re-

categorize the OWASP Mobile Top Ten for 2016. The 2016 Mobile Top 10 were more

focused on the application rather than the server. OWASP claims the 2016 data collection

project goals were to: (1) update the wiki, cross-links to testing guides, and other

visualizations (2) collect more data and (3) create a releasable document. OWASP state,

“Based on feedback, we have released a Mobile Top Ten 2016 list following a similar

approach of collecting data, grouping the data in logical and consistent ways. [47]” To

date, the OWASP 2016 remains the most current version hosted in entirety on the OWASP

webservers; however, OWASP still links to the 2014 data collection. No newer version is,

yet, hosted in entirety on the OWASP portal.

4.1 OWASP 2014 Mobile Threats Coding Patterns

In this section examines top OWASP 2014 mobile threats through ontology and Android

source code. This OWASP Top Ten is still one (of two) listed on the main OWASP portal.

The community-developed OWASP Mobile Threats of 2014 can be seen in Figure 13.

45

Figure 13: OWASP Mobile Top Ten Threats of 2014

4.1.1 Mobile 2014 Threat 1: Weak Server-Side Controls

The first threat, the OWASP 2014 Mobile Threat 1, is for the category “Weak

Server-Side Controls” (M1_Weak_Server_Side_Controls), as seen in Figure 14. Weak

Server-Side Controls (WSSC) can potentially lead to the compromise of confidentiality,

integrity and availability. Many of the server-side controls cannot be identified within the

source code of a client mobile Android application since the exact source code

implementation is not present at the client-side. However, the client application may have

additional specific code (e.g. cookie flag checking), which does show-up at the client-side

source code by default.

Figure 14: OWASP Mobile 2014 Threat 1: Weak Server-Side Controls

WSSC resultsFrom insecure server configuration which changes from different

underlying operating systems and webservers. Considering best industry practices,

46

insecure server configuration resultsFrom the OWASP Top 10 Cloud and Web Application

threats, among others.

WSSC resultsFrom injection issues along with the OWASP Mobile Threat Security

Decision via Untrusted Inputs, explained in Section 4.1.8. Again, many of these

vulnerabilities are difficult to detect via the mobile client application source code.

Finally, WSSC resultsFrom two other OWASP Mobile Threat categories,

M9_Improper_Session_Handling, explained in Section 4.1.9 and, in Section 4.1.5, the

M5_Poor_Authorization_and_Authentication.

4.1.2 Mobile 2014 Threat 2: Insecure Data Storage

The OWASP 2014 Mobile Threat 2 is “Insecure Data Storage.” In our knowledge graphs

of, seen in Figure 15, we label this threat as M2_Insecure_Data_Storage. Insecure data

storage (IDS) can potentially lead to data compromise or the propagation of malware [48].

Our knowledge graph is based on industry best practices and industry news reports.

From an application level, storing data insecurely can potentially resultFrom storing data

in a vulnerable location. The resultFrom relation is necessary to describe risk associated

with storing data in a vulnerable location. As such, it is not an isA relationship, which

indicates hierarchy. Risk is traditionally measured using a likelihood and impact model

(NIST, 2012). In such a model, the likelihood is the probability of threat being exploited

along with the underlying impact, if exploited, to the end users, organization(s) and

potential customers.

47

Figure 15: OWASP Mobile 2014 Threat 2: Insecure Data Storage

Android offers at least four locations to store data: internal file storage, external file

storage, shared preferences, and databases [49]. Common VulnerableLocations on mobile

devices are (i.e. isA) Shared Spaces [50]. All of the android data storage locations are

shared spaces under certain conditions. SharedSpaces are vulnerable to all CIA concerns

since multiple applications have access to information stored in this space by default [50].

Common shared spaces are (i.e. isA) MemoryCards and are (i.e. isA) DefaultSettings. On

onA RootedDevice they are (i.e. isA) application Databases and (i.e. isA) AppSandbox.

Android has specified that an external storage MemoryCard isA SDCard [50].

Table 2 shows the Android Java code for storing a file. Specifically, the method calls to

write a file to external file storage can be analyzed by first identifying the external storage

home directory using the Android API call getExternalStoragePublicDirectory.

Additionally, the file can have basic permission set during creation. The developer can

calculate the integers directly to set permissions when a file is opened. In addition, the

Android API offers fixed standard values stored in the API Context Interface. Four

standard API examples are as follows: MODE_PRIVATE, MODE_WORLD_READABLE,

MODE_APPEND, and MODE_WORLD_WRITEABLE. In either case, static analysis can

48

detect risky file permissions at different static analysis granularities. As a definition used

in the field-at-large, a complete static analysis technique guarantees no “false negatives;”

and, a sound static analysis technique guarantees no “false positives.”

First, with a source code one-pass text analysis, static analysis can determine if any risky

Context API values are used within the application (e.g. locating the external storage home

directory (i.e. getExternalStoragePublicDirectory), or any public API Context values)

[51]. This technique is neither sound nor complete. Second, a complete static analysis

technique could be employed by using a context-sensitive control flow analysis examine

every potential Android API call to class methods where a file is opened for writing. This

technique would identify every risky methodology for writing a file using the Android API.

Third, to improve the soundness from the second technique, data flow analysis could be

employed to help determine if sensitive data may, in fact, be stored into the file by

employing data propagation and taint analysis static analysis techniques.

/* Checks if external storage is available for read and write */

public boolean isExternalStorageWritable() {

 String state = Environment.getExternalStorageState();

 if (Environment.MEDIA_MOUNTED.equals(state)) {

 return true;

 }

 return false;

}

/* Checks if external storage is available to at least read */

public boolean isExternalStorageReadable() {

 String state = Environment.getExternalStorageState();

 if (Environment.MEDIA_MOUNTED.equals(state) ||

 Environment.MEDIA_MOUNTED_READ_ONLY.equals(state)) {

 return true;

 }

 return false;

}

public File getPublicAlbumStorageDir(String albumName) {

49

 // Get the directory for the user's public pictures directory.

 File file = new File(Environment.getExternalStoragePublicDirectory(

 Environment.DIRECTORY_PICTURES), albumName);

 if (!file.mkdirs()) {

 Log.e(LOG_TAG, "Directory not created");

 }

 return file;

}

//At the file level

String filename = "myfile";

String fileContents = "Hello world!";

FileOutputStream outputStream;

try {

 outputStream = openFileOutput(filename, Context.MODE_PRIVATE);

 outputStream.write(fileContents.getBytes());

 outputStream.close();

} catch (Exception e) {

 e.printStackTrace();

}

Table 2: Android Java Code for File Storage [49]

Android specifies at least two types of Default Settings [52]. DefaultSettings are (i.e. isA)

User Default Settings or Shared Preferences. SharedPreferences are just plain XML files

in an application directory on internal storage. Table 2 shows an example of accessing the

Shared Preferences. Static analysis on the source code can identify the type of Shared

Preferences employed on the code.

First, with a source code one-pass text analysis, static analysis can determine if any risky

context API values are used within the application [51]. This technique is neither sound

nor complete. Second, a complete static analysis technique could be employed by using a

context-sensitive control flow analysis examine every potential Android API call where

SharedPreferences methods are accessed for writing [53]. This technique would identify

every risky methodology for writing a file using the Android API. Keep in mind that

50

complete static analysis technique guarantees no “false negatives.” Third, to improve the

soundness from the second technique, data flow analysis could be employed to help

determine if sensitive data may in fact be stored into the file or used by the application for

configuration after retrieving information from the SharedPreferences.

Context context = getActivity();

SharedPreferences sharedPref = context.getSharedPreferences(

 getString(R.string.preference_file_key), Context.MODE_PRIVATE);

Table 3: Android Java Code for Shared Preferences [53]

Another SharedSpace isA Database onA Rooted device in the Android API is SQLite [54].

This database may have tables, which may not have permissions correctly set to restricted

to accessing only the files for which they are privileged [55]. The Android API offers fixed

standard values stored in the API context interface [56]. Five standard API permission

examples are as follows: MODE_PRIVATE, MODE_WORLD_WRITEABLE,

MODE_ENABLE_WRITE_AHEAD_LOGGING, MODE_WORLD_READABLE or

MODE_NO_LOCALIZED_COLLATORS. In addition, on a rooted device the Database is

entirely exposed to any application on the device.

Table 4 shows Android application code for interacting with the Android SQLite database

using the Android API [54]. First, with source code one-pass text analysis, static analysis

can determine if any risky context API values are used within the application [51]. This

technique is neither sound nor complete. Second, a complete static analysis technique

could be employed by using a context-sensitive control flow analysis examine every

potential Android API call where the database access methods are accessed for writing.

This technique would identify every risky methodology for creating a table using the

51

Android API. Keep in mind that complete static analysis technique guarantees no “false

negatives” from an Android API perspective. If a developer were to import database code

not native to the Android API, the static analysis would need to be updated accordingly.

Third, to improve the soundness from the second technique, data flow analysis could be

employed to help determine if sensitive data may in fact be stored into the database or

retrieved from the database to be used for application configuration.

public class FeedReaderDbHelper extends SQLiteOpenHelper {

 // If you change the database schema, you must increment the database version.

 public static final int DATABASE_VERSION = 1;

 public static final String DATABASE_NAME = "FeedReader.db";

 public FeedReaderDbHelper(Context context) {

 super(context, DATABASE_NAME, null, DATABASE_VERSION);

 }

 public void onCreate(SQLiteDatabase db) {

 db.execSQL(SQL_CREATE_ENTRIES);

 }

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)

 {

 // This database is only a cache for online data, so its upgrade policy is

 // to simply to discard the data and start over

 db.execSQL(SQL_DELETE_ENTRIES);

 onCreate(db);

 }

 public void onDowngrade(SQLiteDatabase db, int oldVersion, int newVersion)

 {

 onUpgrade(db, oldVersion, newVersion);

 }

}

// Gets the data repository in write mode

SQLiteDatabase db = mDbHelper.openDatabase(File, SQLiteDatabase.OpenParams)

// Create a new map of values, where column names are the keys

ContentValues values = new ContentValues();

values.put(FeedEntry.COLUMN_NAME_TITLE, title);

values.put(FeedEntry.COLUMN_NAME_SUBTITLE, subtitle);

// Insert the new row, returning the primary key value of the new row

long newRowId = db.insert(FeedEntry.TABLE_NAME, null, values);

Table 4: Android Java Code for SQL Lite Database [55]

Another SharedSpace in Android onA RootedDevice isA ApplicationSandbox [52]. The

relationship onA is needed to show that the ApplicationSandbox becomes a SharedSpace

52

once a devices is rooted and not before. A rooted device is not in itself a SharedSpace.

Thus, the relationship is not hierarchical. Both the ApplicationSandbox and SharedStorage

may have (i.e. hasA) file(s) on them. In either case, files stored in the location are

vulnerable if they are without proper FileBasedEncryption (FBE). The without relation is

necessary as FBE is not (i.e. isA) a hierarchal relationship. If this File is without File Based

Encryption (FBE), it is then vulnerable to use by other Android applications as it is in a

default common space [50]. The relationship without is important to show a missing

property for secure data storage.

In addition to the above, application developers can choose to specify where they prefer

that their application can be installed. Android currently permits developers to specific

applications to PreferInstallation entirely onto external storage. This is a popular choice

when applications are extremely large. Applications can be stored on external storage, a

SharedSpace, by specifying the string android:installLocation attribute in the application

manifest [57]. A static analysis of the application manifest can detect this storage choice

in simply a string analysis of the manifest. Applications stored entirely in SharedSpace are

subject to more concerns than other applications as their ApplicationSandbox is also on

SharedSpace. The device can further be rooted; however, rooting is an entirely separate

concern.

In summary, we have identified at least six sub-areas where the static analysis of developer

Android application source code can be examined for standard risky Android API calls

which are subjects to the risk of OWASP Mobile Threat 2 is “Insecure Data Storage”

53

(MD_IDS). The threat of insecure data storage (IDS) can potentially lead to data CIA

compromise or the propagation of malware. The standard Android API calls include

reading and writing from the internal file storage, external file storage, shared preferences,

prefer installLocation, databases, and the underlying stored files themselves. As our

cybersecurity knowledge expands, so further can our knowledge-graph. This dynamic

representation provides a standardized methodology to reason about mobile software

assurance.

4.1.3 Mobile 2014 Threat 3: Insufficient Transport Layer Protection

The OWASP 2014 Mobile Threat 3 is “Insufficient Transport Layer Protection”

(M3_Insufficient_Transport_Layer_Protection), as seen in Figure 16. Insufficient

Transport Layer Protection (ITLP) can potentially lead to unauthorized compromise of the

service confidentiality, integrity, and availability. Two main drivers of the OWASP

Mobile Threat 3 are improper certificate validation and weak negotiated transport

protection, as seen in the knowledge-graph below.

Figure 16: OWASP Mobile 2014 Threat 3: Insufficient Transport Layer Protection

Improper certificate validation can occur at the mobile client when it receives the

certificate from the server for which the client would like to negotiate transport layer

security. The certificate houses a server’s public key; and, the certificate is signed by a

54

certifying authority (CA). Improper certificate validation resultsFrom three closely related

client-side weaknesses: disability certificate validation, not validating certificate

expiration, and not validating the domains for which the certificate is valid. Valid Android

mobile application code for making HTTPS request is show in Table 5.

URL url = new URL("https://wikipedia.org");

URLConnection urlConnection = url.openConnection();

InputStream in = urlConnection.getInputStream();

copyInputStreamToOutputStream(in, System.out);

Table 5: Valid Android HTTPS Request [58]

 Valid Android mobile application code [58] for checking the domain is shown in

Table 6.

// Load CAs from an InputStream

// (could be from a resource or ByteArrayInputStream or ...)

CertificateFactory cf = CertificateFactory.getInstance("X.509");

// From https://www.washington.edu/itconnect/security/ca/load-der.crt

InputStream caInput = new BufferedInputStream(new FileInputStream("load-

der.crt"));

Certificate ca;

try {

 ca = cf.generateCertificate(caInput);

 System.out.println("ca=" + ((X509Certificate) ca).getSubjectDN());

} finally {

 caInput.close();

}

// Create a KeyStore containing our trusted CAs

String keyStoreType = KeyStore.getDefaultType();

KeyStore keyStore = KeyStore.getInstance(keyStoreType);

keyStore.load(null, null);

keyStore.setCertificateEntry("ca", ca);

// Create a TrustManager that trusts the CAs in our KeyStore

String tmfAlgorithm = TrustManagerFactory.getDefaultAlgorithm();

TrustManagerFactory tmf = TrustManagerFactory.getInstance(tmfAlgorithm);

tmf.init(keyStore);

// Create an SSLContext that uses our TrustManager

SSLContext context = SSLContext.getInstance("TLS");

context.init(null, tmf.getTrustManagers(), null);

// Tell the URLConnection to use a SocketFactory from our SSLContext

55

URL = new URL("https://certs.cac.washington.edu/CAtest/");

HttpsURLConnection urlConnection =

 (HttpsURLConnection)url.openConnection();

urlConnection.setSSLSocketFactory(context.getSocketFactory());

InputStream in = urlConnection.getInputStream();

copyInputStreamToOutputStream(in, System.out);

Table 6: Android adding a Certifying Authority source code [58]

Valid Android mobile application code [58] for trusting a certifying checking the

domain as shown in Table 7.

// Create an HostnameVerifier that hardwires the expected hostname.

// Note that is different than the URL's hostname:

// example.com versus example.org

HostnameVerifier hostnameVerifier = new HostnameVerifier() {

 @Override

 public boolean verify(String hostname, SSLSession session) {

 HostnameVerifier hv =

 HttpsURLConnection.getDefaultHostnameVerifier();

 return hv.verify("example.com", session);

 }};

// Tell the URLConnection to use our HostnameVerifier

URL url = new URL("https://example.org/");

HttpsURLConnection urlConnection =

 (HttpsURLConnection)url.openConnection();

urlConnection.setHostnameVerifier(hostnameVerifier);

InputStream in = urlConnection.getInputStream();

copyInputStreamToOutputStream(in, System.out);

Table 7: Android Certificate Hostname Verifier source code [58]

There is conflicting security advice on certificate pinning. In pinning, the

application is restricted to only allowing the application trusted or pinned certifying

authorities. If an invalid certificate is pinned, then, the application is vulnerable to

interception; however, the inclusion is to allow the mobile application to specify which

certifying authority to use. Valid Android mobile application code for certificate pinning

is shown in Table 8.

56

<?xml version="1.0" encoding="utf-8"?>

<network-security-config>

 <domain-config>

 <domain includeSubdomains="true">appmattus.com</domain>

 <pin-set>

 <pin digest="SHA-256">***</pin>

 <pin digest="SHA-256">***</pin>

 </pin-set>

 </domain-config>

</network-security-config>

Table 8: Android Static Certificate Pinning in manifest source code [59]

TrustManagerFactory trustManagerFactory =

 TrustManagerFactory.getInstance(

 TrustManagerFactory.getDefaultAlgorithm());

trustManagerFactory.init((KeyStore) null);

// Find first X509TrustManager in the TrustManagerFactory

X509TrustManager x509TrustManager = null;

for (TrustManager trustManager : trustManagerFactory.getTrustManagers()) {

 if (trustManager instanceof X509TrustManager) {

 x509TrustManager = (X509TrustManager) trustManager;

 break;

 }}

X509TrustManagerExtensions trustManagerExt =

 new X509TrustManagerExtensions(x509TrustManager);

...

URL url = new URL("https://www.appmattus.com/");

HttpsURLConnection urlConnection =

 (HttpsURLConnection) url.openConnection();

urlConnection.connect();

Set<String> validPins = Collections.singleton

 ("***

validatePinning(trustManagerExt, urlConnection, validPins);

Table 9: Android Dynamic Certificate Pinning source code [59]

4.1.4 Mobile 2014 Threat 4: Unintended Data Leakage

The OWASP 2014 Mobile Threat 4 is “Unintended Data Leakage”

(M4_Unintended_Data_Leakage), as in Figure 17. Unintended Data Leakage (UDL) can

potentially lead to data compromise of sensitive information [48]. From the application

level, the leaking of sensitive data can potentially resultFrom, storing data insecurely, using

57

untrusted application plugins, insecure logging application activities, and allowing

screenshots can potentially resultFrom storing data in a vulnerable location.

Figure 17: OWASP Mobile 2014 Threat 4: Unintended Data Leakage

Android application can accept the usage of third-party keyboards. These third-

party keyboards could contain any set of threats. An April 2019 article lists some top

Android keyboards as: Gboard, SwiftKey, Chrooma, and Fleksy [60]. The Android

custom keyboard source code [61] can be seen in Table 10.

Additional issues with third-party application keyboards resultsFrom storing

sensitive information into the shared dictionary, enables networked connected keyboards,

storing sensitive information into the shared autocorrect tables, storing sensitive

information into the shared autocomplete tables. In addition, one or more Android

applications may be susceptible to a vulnerable/malicious keyboard depending on how it

is installed on the client-side.

58

public class MyInputMethodService extends InputMethodService implements

KeyboardView.OnKeyboardActionListener {

 private KeyboardView ;

 private Keyboard keyboard;

 private boolean caps = false;

 @Override

 public View onCreateInputView() {

 keyboardView =

 (KeyboardView)getLayoutInflater().inflate(R.layout.keyboard_view, null);

 keyboard = new Keyboard(this, R.xml.keys_layout);

 keyboardView.setKeyboard(keyboard);

 keyboardView.setOnKeyboardActionListener(this);

 return keyboardView;}

 …

 @Override

 public void onKey(int primaryCode, int[] keyCodes) {

 InputConnection inputConnection = getCurrentInputConnection();

 if (inputConnection != null) {

 switch(primaryCode) {

 case Keyboard.KEYCODE_DELETE :

 CharSequence selectedText = inputConnection.getSelectedText(0);

 if (TextUtils.isEmpty(selectedText)) {

 inputConnection.deleteSurroundingText(1, 0);

 } else {

 inputConnection.commitText("", 1);

 }

 case Keyboard.KEYCODE_SHIFT:

 caps = !caps;

 …

 break;

 case Keyboard.KEYCODE_DONE:

 inputConnection.sendKeyEvent(new KeyEvent(KeyEvent.ACTION_DOWN,

KeyEvent.KEYCODE_ENTER));

 break;

 default :

 char code = (char) primaryCode;

 …

 }}}…}

Table 10: Android custom keyboard source code [61]

 Another form of caching which can result in unintended data leakage resultsFrom URL

caching. In this caching, certain URL parameters may be cached. An Android source

code can be seen in Table 11 [62].

59

public class MainActivity extends ActionBarActivity {

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 ImageView imageView =

 (ImageView)findViewById(R.id.imageView);

 // Configure image loader

 ImageLoaderConfiguration config = new

 ImageLoaderConfiguration.Builder(getApplicationContext())

 // Thread priority

 .threadPriority(Thread.NORM_PRIORITY)

 // Deny cache multiple image sizes on memory

 .denyCacheImageMultipleSizesInMemory()

 // Processing order like a stack (last in, first out)

 .tasksProcessingOrder(QueueProcessingType.LIFO)

 // Max image size to cache on memory

 .memoryCacheSize(1*1024*2014)

 // Max image size to cache on disc

 .diskCacheSize(2*1024*1024)

 // Write log messages

 .writeDebugLogs()

 .build();

 ImageLoader.getInstance().init(config);

 // Get ImageLoader instance

 ImageLoader imageLoader=ImageLoader.getInstance();

 // Define image display options

 DisplayImageOptions options = new DisplayImageOptions.Builder()

 // Cache loaded image in memory and disc

 .cacheOnDisk(true)

 .cacheInMemory(true)

 // Show Android icon while loading

 .showImageOnLoading(R.drawable.ic_launcher)

 .build();

 String imgUrl="http://www.***/test.jpg";

 imageLoader.displayImage(imgUrl, imageView, options);}}

Table 11: Android URL caching source code [62]

Another source of potential unintended data leakage ResultsFrom cashing. Cashing

in general should only be used for non-sensitive data. An example of caching a file can be

seen in Table 12.

File cacheDir = getCacheDir();

File fileToCache = new File(myDownloadedFileUri);

String fileToCacheName = fileToCache.getName();

File cacheFile = new File(cacheDir.getPath(), fileToCacheName);

Table 12: Android caching source code [63]

60

Another source of potential unintended data leakage ResultsFrom clipboard

caching. In this caching, certain sensitive data may be cached. An Android source code

[64] can be seen in Table 13.

//Get System Clipboard

//if the user selects copy

case R.id.menu_copy:

// Gets a handle to the clipboard service.

ClipboardManager clipboard = (ClipboardManager)

 getSystemService(Context.CLIPBOARD_SERVICE);

//Copy the data to a new ClipData object

//text

// Creates a new text clip to put on the clipboard

ClipData clip = ClipData.newPlainText("simple text", "Hello, World!");

//URI

// Creates a Uri based on a base Uri and a record ID based on the contact's last

name

// Declares the base URI string

private static final String CONTACTS = "content://com.example.contacts";

// Declares a path string for URIs that you use to copy data

private static final String COPY_PATH = "/copy";

// Declares the Uri to paste to the clipboard

Uri copyUri = Uri.parse(CONTACTS + COPY_PATH + "/" + lastName);

// Creates a new URI clip object. The system uses the anonymous

getContentResolver() object to

// get MIME types from provider. The clip object's label is "URI", and its data is

// the Uri previously created.

ClipData clip = ClipData.newUri(getContentResolver(), "URI", copyUri);

//Intent

// Creates the Intent

Intent appIntent = new Intent(this, com.example.demo.myapplication.class);

// Creates a clip object with the Intent in it. Its label is "Intent" and its data is

// the Intent object created previously

ClipData clip = ClipData.newIntent("Intent", appIntent);

//Put Clip Object on the Clipboard

// Set the clipboard's primary clip.

clipboard.setPrimaryClip(clip);

//Paste from clipboard

ClipboardManager clipboard = (ClipboardManager)

getSystemService(Context.CLIPBOARD_SERVICE);

String pasteData = "";

Table 13: Android copy/paste from clipboard source code [64]

 Another source of unintended data leakages potentially results from application

screenshots. Screenshots can be taken from other running application or even by the user.

61

Screens containing sensitive identifiers should not permit screenshots. Android source

code for executing a screenshot from an application [65] shown in Table 14.

public class ScreenShotActivity extends Activity{

private RelativeLayout relativeLayout;

private Bitmap myBitmap;

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 relativeLayout = (RelativeLayout)findViewById(R.id.relative1);

 relativeLayout.post(new Runnable() {

 public void run() {

 //take screenshot

 myBitmap = captureScreen(relativeLayout);

 Toast.makeText(getApplicationContext(), "Screenshot captured..!",

Toast.LENGTH_LONG).show();

 try {

 if(myBitmap!=null){

 //save image to SD card

 saveImage(myBitmap);

 }

 Toast.makeText(getApplicationContext(), "Screenshot saved..!",

Toast.LENGTH_LONG).show();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }}});

Table 14: Android screenshot source code [65]

4.1.5 Mobile 2014 Threat 5: Poor Authorization and Authentication

The OWASP 2014 Mobile Threat 5 is “Poor Authorization and Authentication”

(M4_Unintended_Data_Leakage), as seen in Figure 18. Poor Authorization and

Authentication (PAA) can potentially lead to the CIA triad compromise.

Figure 18: OWASP Mobile 2014 Threat 5: Poor Authorization and Authentication

62

Typically, web applications are susceptible to escalation of privileges at the server-side.

Server-side privilege escalation can resultFrom improper path manipulations, secure direct

object references and robust error authentication error messages, A lack of multi-factor

authentication can also result in escalation in privilege vulnerabilities. Finally, at both the

client-side and server-side improperly configured authentication (e.g. OAuth) can result in

an escalation of privileges. Android OAuth code [66] can be identified as seen Table 15.

Other examples of authentication can be seen in Table 16 and Table 17.

AccountManager am = AccountManager.get(this);

Bundle options = new Bundle();

am.getAuthToken(

 …

 options, // Authenticator-specific options

 this, // Your activity

 new OnTokenAcquired(), // Callback called when a token is

 successfully acquired

 new Handler(new OnError())); // Callback called if an error occurs

Table 15: Android OAuth source code [66]

Poor authorization and authentication can also occur from interceptions, which

occur during Mobile 2014 Threat 3, which is the Insufficient Transport Layer Protections,

discussed in Section 4.1.3.

// Retrieve stored credentials with Auth.CredentialsApi.request()

Auth.CredentialsApi.request(mCredentialsClient,

mCredentialRequest).setResultCallback(

 new ResultCallback() {

 … });

Table 16: Android credential source code [67]

Finally, poor authorization and authentication can resultFrom the use of default or

hardcoded credentials [67].

63

private Handler handler = new Handler();

private Executor executor = new Executor() {

 @Override

 public void execute(Runnable command) {

 handler.post(command);}};

@Override

protected void onCreate(Bundle savedInstanceState) {

 // ...

 // Prompt appears when user clicks "Log in"

 Button biometricLoginButton = findViewById(R.id.biometric_login);

 biometricLoginButton.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 showBiometricPrompt();

 } });}

private void showBiometricPrompt() {

 BiometricPrompt.PromptInfo promptInfo =

 new BiometricPrompt.PromptInfo.Builder()

 .setTitle("Biometric login for my app")

 .setSubtitle("Log in using your biometric credential")

 .setNegativeButtonText("Cancel")

 .build();

 BiometricPrompt biometricPrompt = new BiometricPrompt(MainActivity.this,

 executor, new BiometricPrompt.AuthenticationCallback() {

 @Override

 public void onAuthenticationError(int errorCode,

 @NonNull CharSequence errString) {

 super.onAuthenticationError(errorCode, errString);

 Toast.makeText(getApplicationContext(),

 "Authentication error: " + errString, Toast.LENGTH_SHORT)

 .show();}

 @Override

 public void onAuthenticationSucceeded(

 @NonNull BiometricPrompt.AuthenticationResult result) {

 super.onAuthenticationSucceeded(result);

 BiometricPrompt.CryptoObject authenticatedCryptoObject =

 result.getCryptoObject();

 // User has verified the signature, cipher, or message

 // authentication code (MAC) associated with the crypto object, so

 // you can use it in your mobile applicaiton’s crypto-driven workflows.

 }

 @Override

 public void onAuthenticationFailed() {

 super.onAuthenticationFailed();

 Toast.makeText(getApplicationContext(), "Authentication failed",

 Toast.LENGTH_SHORT)

 .show(); } });

 // Displays the "log in" prompt.

 biometricPrompt.authenticate(promptInfo);}

Table 17: Android biometric authentication source code [63]

64

4.1.6 Mobile 2014 Threat 6: Broken Cryptography

The OWASP 2014 Mobile Threat 6 is “Broken Cryptography”

(M6_Broken_Cryptography), as seen in Figure 19. Broken Cryptography can potentially

lead to data compromise. Cryptography is typically a control for proper entity disclosure.

Figure 19: OWASP Mobile 2014 Threat 6: Broken Cryptography

Mobile Threat 6 Broken Cryptography due to the implementation of a weak

cryptography algorithm can resultFrom from three main issues. First, a weak initialization

vector (IV) will increase the risk of the output cipher text to be easily decoded. Second, a

weak cipher algorithm (e.g. 3DES [68]) are either going to be deprecated soon or known

to already be non-secure and have already been deprecated by industry and the U.S. federal

government. Third, a weak key (e.g. less than 128-bits, non-random, etc.) are also known

susceptible to brute force attacks on today’s technology [69]. These three predominate

issues cause weak cipher text to be output by the cryptography algorithms therefore

increasing the risk of information exposure and the loss of confidentiality of the

information. Sergio Giro, a Google software engineer blogs [70] the following example

from Nikolay Elenkov [71]. As can be seen in the table below, encryption that uses the

Android API can be analyzed by employing static analysis techniques (e.g. context

sensitive analysis, string analysis, variable propagation, etc.).

 /* User types in their password: */

 String password = "password";

 /* Store these things on disk used to derive key later: */

65

 int iterationCount = 1000;

 int saltLength = 32; // bytes; should be the same size

 as the output (256 / 8 = 32)

 int keyLength = 256; // 256-bits for AES-256, 128-bits for AES-128, etc

 byte[] salt; // Should be of saltLength

 /* When first creating the key, obtain a salt with this: */

 SecureRandom random = new SecureRandom();

 byte[] salt = new byte[saltLength];

 random.nextBytes(salt);

 /* Use this to derive the key from the password: */

 KeySpec keyspec= new PBEKeySpec(password.toCharArray(), salt,

 iterationCount, keyLength);

 SecretKeyFactory keyFactory = SecretKeyFactory

 .getInstance("PBKDF2WithHmacSHA1");

 byte[] keyBytes = keyFactory.generateSecret(keySpec).getEncoded();

 SecretKey key = new SecretKeySpec(keyBytes, "AES");

Table 18 Nikolay Elenkov Example [71] [72]

Weak keys are well known to break cryptography. Weak keys are the resultFrom at least

three predominate causes. First, keys may not be stored correctly and therefore they are

not properly guarded, perhaps by the Android KeyStore [73]. An examples of such a

scenario are when the key is stored in a shared space next to the encrypted data. Second,

the key derivation function may not be properly coded. In such a scenario, keys may not

be randomly generated. Third, the key length changes with industry best practices based

on computational power. In such cases, older code relying on shorter key lengths again

increases the risk around real time brute force attacks [69].

4.1.7 Mobile 2014 Threat 7: Client-side Injection

The OWASP 2014 Mobile Threat 7 is “Client-side Injection” (M7_Client_Side_Injection),

as seen in Figure 20. Client-side Injection can potentially lead to data compromise of

sensitive information.

66

Figure 20: OWASP Mobile 2014 Threat 7: Client-side Injection

A tradition client-side injection resultsFrom allowing scripts to run locally at the

client. If an application must use the JavaScript interface (Android 6.0+), best practice is

to use HTML message channels instead of evaluateJavascript() to communicate between

client and server, as shown below [63].

WebView myWebView = (WebView) findViewById(R.id.webview);

// messagePorts[0] and messagePorts[1] represent the two ports.

// They are already tangled to each other and have been started.

WebMessagePort[] channel = myWebView.createWebMessageChannel();

// Create handler for channel[0] to receive messages.

channel[0].setWebMessageCallback(new

WebMessagePort.WebMessageCallback() {

 @Override

 public void onMessage(WebMessagePort port, WebMessage message) {

 Log.d(TAG, "On port " + port + ", received this message: " + message);

 }});

// Send a message from channel[1] to channel[0].

channel[1].postMessage(new WebMessage("My secure message"));

Table 19: Android running JavaScript [63]

Another traditional source of client-side injection resultsFrom an application

blindly trusting user input. In the below code, we see where data from the client is directly

used to make logical decisions in the code [74].

67

//This defines a one-element String array to contain the selection argument.

String[] selectionArgs = {""};

// Gets a word from the UI

searchString = searchWord.getText().toString();

// Remember to insert code here to check for invalid or malicious input.

// If the word is the empty string, gets everything

if (TextUtils.isEmpty(searchString)) {

 // Setting the selection clause to null will return all words

 selectionClause = null;

 selectionArgs[0] = "";

} else {

 // Constructs a selection clause that matches the word that the user entered.

 selectionClause = UserDictionary.Words.WORD + " = ?";

 // Moves the user's input string to the selection arguments.

 selectionArgs[0] = searchString;}

 // Does a query against the table and returns a Cursor object

mCursor = getContentResolver().query(

 UserDictionary.Words.CONTENT_URI, // The content URI of the words table

 projection, // The columns to return for each row

 selectionClause, // Either null, or the word the user entered

 selectionArgs, // Either empty, or the string the user entered

 sortOrder); // The sort order for the returned rows

// Some providers return null if an error occurs, others throw an exception

if (null == mCursor) {

 /* Insert code here to handle the error. Be sure not to use the cursor! You may want to

 * call android.util.Log.e() to log this error.*/

// If the Cursor is empty, the provider found no matches

} else if (mCursor.getCount() < 1) {

 /*

 * Insert code here to notify the user that the search was unsuccessful.

 * This isn't necessarily an error. You may want to offer the user the option to

 * insert a new row, or re-type the search term.

 */

} else {

 // Insert code here to do something with the results}

Table 20: Android client-side injection source code [74].

4.1.8 Mobile 2014 Threat 8: Security Decisions Via Untrusted Inputs

The OWASP 2014 Mobile Threat 8 is “Security Decisions Via Untrusted Inputs”

(M8_Security_Decisions_Via_Untrusted_Inputs), as seen in Figure 21. Security Decisions

Via Untrusted Inputs can potentially lead to data compromise of the CIA triad.

68

Figure 21: OWASP Mobile 2014 Threat 8: Security Decisions Via Untrusted Inputs

 In Threat 8 “Security Decisions via Untrusted Inputs” resultsFrom two main

categories: Insecure Inter-Process Communication (IPC) and Mobile Threat 7 Client-side

Injection.

Insecure Inter-Process Communication (IPC) resultsFrom not properly putting

information into an allow list. For example, it is recommended that applications using

WebView should only load whitelisted content into WebView objects to disallow users

from navigating away to sites that are outside of the application control [63].

Insecure Inter-Process Communication (IPC) resultsFrom not properly password

protecting information passed between applications which are developed by the same

developer with the intent to share data between application. In this scenario when sharing

data between two mobile applications that the developer owns or controls, the application

should be written to use signature-based permissions. These permissions don't require user

confirmation and instead check that the mobile applications accessing the data are signed

using the same signing key. Therefore, these permissions offer a more streamlined, secure

user experience.

69

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.myapp">

 <permission android:name="my_custom_permission_name"

 android:protectionLevel="signature" />

Table 21: Permissions between two+ co-owned applications source code [63]

Insecure Inter-Process Communication (IPC) resultsFrom exporting services

which are not designed to be shared. For example, ContentProviders may not be written

to trust requests from outside parties. ContentProviders which are not intended to be

shared should specifically disallow access to the application content providers in the

Android Manifest as seen below [63].

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.myapp">

 <application ... >

 <provider

 android:name="android.support.v4.content.FileProvider"

 android:authorities="com.example.myapp.fileprovider"

 ...

 android:exported="false">

 <!-- Place child elements of <provider> here. -->

 </provider>

 ...

 </application>

</manifest>

Table 22: Android disallow export of Content Providers source code [63]

4.1.9 Mobile 2014 Threat 9: Improper Session Handling

The OWASP 2014 Mobile Threat 9 is “Improper Session Handling”

(M9_Improper_Session_Handling), as seen in the figure below. Improper Session

Handling can potentially lead to the data compromise of sensitive information as

unauthorized entities can take advantage of weaknesses to either manipulate the

confidentiality, integrity or availability of data and system resources. From an application

level, improper session handling can potentially resultFrom three main software

70

development errors: improper session tokens, improper session timeout, and improper

session termination. The knowledge graph for the threat of Improper Session Handling is

seen in Figure 22.

Figure 22; OWASP Mobile 2014 Threat 9: Improper Session Handling

In the session-based authentication, a server will create a session for the client after

login. During the session creation, the server creates a token which is subsequently passed

to the client. During all subsequent client-server correspondence, the session token is

almost always sent. The server evaluates the token seen from the client against the

information stored at the server for client authenticity. As such, best practice requires

session tokens to be created at the server-side. Improper creation occurs when the token is

improperly created such as using a counter or any easy-to-guess value. Best practice

require the value to be nearly random such as using an industry best practice hashing

algorithm on the current time and random nonce. Improper session token rotation can

result in session fixation so that an unauthorized entity can improperly access the web

application.

Session tokens can be further protected by setting specific flags. The HTTPOnly

cookie flag is designed to mitigate the risk of a client-side script accessing the protected

71

cookie. The HTTPOnly cookie flag in Android [75] can be checked on a HttpCookie

cookie type by calling isHttpOnly(). The Secure cookie flag requires the client to not sent

the cookie in plaintext. The Secure flag can be checked in the Android application with an

API call to getSecure() [75].

@Override

public NewCookie fromString(final String value) {

 if (value == null || value.isEmpty()) {

 return null;

 }

 final List<HttpCookie> httpCookies = HttpCookie.parse(value);

 final HttpCookie httpCookie = httpCookies.get(0);

 return new NewCookie(

 httpCookie.getName(),

 httpCookie.getValue(),

 httpCookie.getPath(),

 httpCookie.getDomain(),

 httpCookie.getVersion(),

 httpCookie.getComment(),

 (int) httpCookie.getMaxAge(),

 null,

 httpCookie.getSecure(),

 httpCookie.isHttpOnly());

}

Table 23: Android API Cookie Flags [76]

Improper session timeout forces a session timeout when the user has been inactive

for a certain amount of time, typically defined by industry best practice. There are two

paradigms for developing a timeout: at the client-side and at the server-side. Server-side

session timeouts is considered industry best practice since client-side application timeouts

are vulnerable to interception. At the server-side, the web application must be specifically

built to timeout inactive clients. At the client-side, which would be directly within the

installed Android application, there are no built in Android API session timeouts.

However, a user on StackOverflow [77] recommends, “use a CountDownTimer and bind

72

it with an interface callback like onUserInteracted() and reset the timer whenever it is

called.”

Improper session termination is similar into timeout in that it is not fundamentally

supported in the Android API. Session termination can occur at either the server-side,

which is considered best practice, or termination can occur on the client-side, which is

vulnerable to interception. Basically, in a session termination, the web-application will no

longer accept the terminated session token as legitimate. In such a scenario, the web-

application forces the user to re-authenticate to establish a new session token.

As most of session management is implemented in the server-side, it is difficult to

detect them with a static analysis of the Android client application source code unless the

developer has written in specific related client-side code.

4.1.10 Mobile 2014 Threat 10: Lack of Binary Protections

The OWASP 2014 Mobile Threat 10 is “Lack of Binary Protections”

(M10_Lack_of_Binary_Protections), as seen in Figure 23. Lack of Binary Protections can

potentially lead to data compromise of sensitive data.

Figure 23: OWASP Mobile 2014 Threat 10: Lack of Binary Protections

73

Lack of Binary Protections resultsFrom mainly two categories: Reverse

Engineering the Application and from an Imitation Application.

Reverse engineering of Android applications can be made more difficult by

employing some of the Android services. Current industry tools such as ProGuard and

DexGuard are Java bytecode optimizers which make reverse engineering applications more

difficult [78] [79]. This feature can be statically checked on compiled Android APK files.

Imitation applications can be somewhat difficult to detect. It is advised that

developers of Android applications sign their application and develop a check into the

source code [80].

Figure 24: Android Application Signing [80]

However, according to Google [80] when the developer creates a signing

configuration, Android Studio “adds [the] signing information in plain text to the module's

build.gradle files. […] [developers] should move this sensitive information out of the

build files so it is not easily accessible to others.” The build.gradle files improved, is seen

below:

74

// Create a variable called keystorePropertiesFile, and initialize it to your

// keystore.properties file, in the rootProject folder.

def keystorePropertiesFile = rootProject.file("keystore.properties")

// Initialize a new Properties() object called keystoreProperties.

def keystoreProperties = new Properties()

// Load your keystore.properties file into the keystoreProperties object.

keystoreProperties.load(new FileInputStream(keystorePropertiesFile))

android { ...}

Table 24: Android signing remnants source code [80]

4.2 OWASP 2016 Mobile Threats Coding Patterns

This section examines top OWASP 2016 mobile threats through ontology and Android

source code. The OWASP Top Ten Mobile Threats are still the main year posted on the

OWASP portal. The specific threats can be seen in Figure 25.

Figure 25: OWASP Mobile Top Ten Threats of 2016

4.2.1 Mobile 2016 Threat 1: Improper Platform Usage

The OWASP 2016 Mobile Threat 1 is “Improper Platform Usage” (M1_

Improper_Platform_Usage), as seen in Figure 26. Improper Platform Usage can potentially

lead to data compromise of sensitive data or the unauthorized system access.

75

Figure 26: OWASP Mobile 2016 Threat 1: Improper Platform Usage

This threat resultsFrom Insufficently_Implementing_Platform_Security_Controls or

resultsFrom Incorrectly_Implementing_Platform_Features.

Insufficently_Implementing_Platform_Security_Controls resultsFrom

Improperly_Implementing_Keychains and Improperly_Implementing_TouchID. Google

maintains blogs for best practices of software development of platform security controls

which in many cases describes how to properly implement platform features.

Incorrectly_Implementing_Platform_Features resultFrom

Incorrect_Permission_Requests. For example, an application may ask for many

unnecessary or incorrect permissions which are not required by the application. As such,

the vulnerable code with the improperly allowed permissions could potentially be exploited

by OWASP 2016 Mobile Threat 8 M8_Code_Tampering described in Section 4.2.8.

It is possible to perform a static analysis on Android API class which require certain

permissions to ensure that the correct permissions are requested by the application for user

approval.

76

4.2.2 Mobile 2016 Threat 2: Insecure Data Storage

The OWASP 2016 Mobile Threat Two is “Insecure Data Storage” (M2_

Insecure_Data_Storage), as seen in Figure 27. IDS can potentially lead to data compromise

of sensitive data or the unauthorized data access.

Figure 27: OWASP Mobile 2016 Threat 2: Insecure Data Storage

According to the OWASP 2016 Mobile Threat categories [81], we built the 2016 threat

resultsFrom either OWASP_2014_M2_Insecure_Data_Storage or, since the M4 category

disappeared in 2016, resultsFrom OWASP_2014_M4_Unintended_Data_Leakage.

Therefore, the 2016 category of threats is simply a composite of two former OWASP 2014

threats M2 IDS, Section 4.1.2, and M4, Section 4.1.4, “Unintended Data Leakage.” The

beauty of the knowledge graph representation development over time helps build a threat

landscape map of the field to show how prior analyses reflect with current cybersecurity

analyses and trends. This graphical information is extremely valuable especially if

examining how code changes or drifts with time or examining earlier analyses after

potential data breach insurance claim reports. Furthermore, the graphical representation

can be transformed into many different OWL languages to furthermore enable

cybersecurity in the semantic web.

77

4.2.3 Mobile 2016 Threat 3: Insecure Communication

The OWASP 2016 Mobile Threat 3 is “Insecure Communication” (M3_

Insecure_Communication), as seen in Figure 28. Insecure Communication can potentially

lead to data compromise of sensitive data or the unauthorized system or data access.

Figure 28: OWASP Mobile 2016 Threat 3: Insecure Communication

According to the OWASP 2016 Mobile Threat categories [81], the 2016 threat resultsFrom

either OWASP_2014_M3_Insufficient_Transport_Layer_Protection or

Improper_Implementation_CheckServerTrusted_Method within the SSLSocketFactory.

public class EasyX509TrustManager implements X509TrustManager {

 private X509TrustManager standardTrustManager = null;

...

public void checkClientTrusted(X509Certificate[] certificates, String authType) throws

CertificateException {

 standardTrustManager.checkClientTrusted(certificates, authType);

}

...

public void checkServerTrusted(X509Certificate[] certificates, String authType)

 throws CertificateException {

 if ((certificates != null) && (certificates.length == 1)) {

 certificates[0].checkValidity();

 } else {

 standardTrustManager.checkServerTrusted(certificates, authType);

 }

}…}

Table 25: Android Implementation CheckServerTrusted source code [82]

Table 25 shows a properly implementation of the CheckServerTrusted method for

SSLSocketFactory connections. The OWASP 2014 threats M3 described in Section 4.1.3.

78

4.2.4 Mobile 2016 Threat 4: Insecure Authentication

The OWASP 2016 Mobile Threat 4 is “Insecure Authentication” (M4_

Insecure_Authentication), as seen in Figure 29. Insecure Authentication can potentially

lead to data compromise of sensitive data or the unauthorized system or data access.

Figure 29: OWASP Mobile 2016 Threat 4: Insecure Authentication

According to the OWASP 2016 Mobile Threat categories [81], the 2016 threat resultsFrom

OWASP_2014_M9_Improper_Session_Handling described in Section 4.1.9.

4.2.5 Mobile 2016 Threat 5: Insufficient Cryptography

The OWASP 2016 Mobile Threat 5 is “Insufficient Cryptography”

(M5_Insufficient_Cryptography), as seen in Figure 30. Insufficient Cryptography (IC) can

potentially lead to at least data compromise as cryptography is predominantly driven by

information confidentially requirements [83]. From a mobile application level, the

application should enforce cryptography is sufficient from its scope. Insufficient

cryptography puts information confidentially at risk during both storage as well as

transmission.

79

Figure 30: OWASP Mobile 2016 Threat 5: Insufficient Cryptography

From the perspective of an application, there are three main relationships for insufficient

cryptography. First, insufficient cryptography can potentially resultFrom platform specific

issues or using a week cryptography function. In addition, insufficient cryptography used

onA certain data (i.e. physical domain) can result in higher risks for the domain information

compromise. Third, insufficient cryptography can potentially resultFrom improperly

applying cryptography techniques.

Platform specific issues include having a device that is unable to perform the proper

cryptography as a resultFrom from power constraints. As mobile devices can linger on

networks for many years [84], their platform may not be able to keep up with modern

cryptographic requirements. On average, older cryptographic techniques become

deprecated with time for multiple reasons [68]. For example, there could be other platform

specific issues, or the algorithm may be weak, preventing the implementation of sufficient

cryptography.

Insufficient cryptography can also arise from not properly encoding certain sensitive data

(i.e. physical domain). This lack of sufficient cryptography can occur onA an endpoint

communication channel during transmission. This lack of sufficient cryptography can

occur onA device without device based encryption (DBE) as DBE is a featureOf only

80

Android 5 [85]. Google has also issued a warning for pre-Android5 devices which have

been upgraded, “Caution: Devices upgraded to Android 5.0 and then encrypted may be

returned to an unencrypted state by factory data reset.” [85] DBE will be depricatedIn

future versions of Android, perhaps due to performance constraints [86]. Google currently

has posted, “Caution: Support for full-disk encryption is going away. If you're creating a

new device, you should use file-based encryption.” [87] This lack of sufficient

cryptography can occur onA file without file based encryption (FBE) [88]. Google has

already issued OS version specific issues in relation to FBE. For example, the Android

Application API currently reads, “Caution: On devices running Android 7.0-8.1, file-based

encryption can't be used together with adoptable storage. On devices using FBE, new

storage media (such as an SD card) must be used as traditional storage. Devices running

Android 9 and higher can use adoptable storage and FBE.” [89]

Insufficient cryptography due to the implementation of a weak cryptography algorithm can

resultFrom from three main issues. First, a weak initialization vector (IV) will increase

the risk of the output cipher text to be easily decoded. Second, a weak cipher algorithm

(e.g. 3DES [68]) are either going to be deprecated soon or known to already be non-secure

and have already been deprecated by industry and the U.S. federal government. Third, a

weak key (e.g. less than 128-bits, non-random, etc.) are also known susceptible to brute

force attacks on today’s technology [69]. These three predominate issues cause weak

cipher text to be output by the cryptography algorithms therefore increasing the risk of

information exposure and the loss of confidentiality of the information. Sergio Giro, a

Google software engineer blogs [70] the following example from Nikolay Elenkov [71].

81

As can be seen in the table below, encryption that uses the Android API can be analyzed

by employing static analysis techniques (e.g. context sensitive analysis, string analysis,

variable propagation, etc.).

 /* User types in their password: */

 String password = "password";

 /* Store these things on disk used to derive key later: */

 int iterationCount = 1000;

 int saltLength = 32; // bytes; should be the same size

 as the output (256 / 8 = 32)

 int keyLength = 256; // 256-bits for AES-256, 128-bits for AES-128, etc

 byte[] salt; // Should be of saltLength

 /* When first creating the key, obtain a salt with this: */

 SecureRandom random = new SecureRandom();

 byte[] salt = new byte[saltLength];

 random.nextBytes(salt);

 /* Use this to derive the key from the password: */

 KeySpec keySpec = new PBEKeySpec(password.toCharArray(), salt,

 iterationCount, keyLength);

 SecretKeyFactory keyFactory = SecretKeyFactory

 .getInstance("PBKDF2WithHmacSHA1");

 byte[] keyBytes = keyFactory.generateSecret(keySpec).getEncoded();

 SecretKey key = new SecretKeySpec(keyBytes, "AES");

Table 26 Nikolay Elenkov Example [71] [72]

Weak keys are known to cause insufficient cryptography. Weak keys are the resultFrom

at least three predominate causes. First, keys may not be stored correctly and therefore

they are not properly guarded, perhaps by the Android KeyStore [73]. An examples of

such a scenario are when the key is stored in a shared space next to the encrypted data.

Second, the key derivation function may not be properly coded. In such a scenario, keys

may not be randomly generated. Third, the key length changes with industry best practices

based on computational power. In such cases, older code relying on shorter key lengths

again increases the risk around real time brute force attacks [69].

82

In summary, we have identified at least two sub-areas where the static analysis of developer

Android application source code can be examined for standard risky Android API calls

which are OWASP Mobile Threat 5 is “Insufficient Cryptography” (IC). The threat of

insufficient cryptography potentially results in at least the loss of confidentiality and

integrity, which potentially lead to data compromise. The standard Android encryption

API calls include creating keys, encrypting, and decrypting, are all detectable using static

analysis.

4.2.6 Mobile 2016 Threat 6: Insecure Authorization

The OWASP 2016 Mobile Threat 6 is “Insecure Authorization” (M6_

Insecure_Authorization), as seen in Figure 31. Insecure Authorization can potentially lead

to data compromise of sensitive data or the unauthorized system or data access.

Figure 31: OWASP Mobile 2016 Threat 6: Insecure Authorization

According to the OWASP 2016 Mobile Threat categories [81], the 2016 threat resultsFrom

either OWASP_2014_M5_Poor_Authorization_and_Authentication (described in Section

4.1.5), Improper_LDAP, Improper_DirectObjectReference or Missing_Authentication.

These vulnerabilities are mainly implemented on the server-side of an application;

however, static analysis on the client-side may expose the potential to test such scenarios.

83

4.2.7 Mobile 2016 Threat 7: Poor Code Quality

The OWASP 2016 Mobile Threat 7 is “Poor Code Quality” (M3_

Poor_Code_Quality), as seen in Figure 32. Poor Code Quality can potentially lead to data

compromise of sensitive data or the unauthorized system or data access.

Figure 32: OWASP Mobile 2016 Threat 7: Poor Code Quality

According to the OWASP 2016 Mobile Threat categories [81], the 2016 threat resultsFrom

either OWASP_2014_M7_ Client_Side_Injection (Section 4.1.7) or OWASP_2014_M8_

Security_Decisions_Via_Untrusted_Inputs (Section 4.1.8).

4.2.8 Mobile 2016 Threat 8: Code Tampering

The OWASP 2016 Mobile Threat 8 is “Code Tampering” (M8_ Code_Tampering),

as seen in Figure 33. Code Tampering vulnerabilities allow an attacker to modify code

delivered and running on client devices. Such code tampering can potentially lead to the

compromise of data, application or the entire underlying system resources.

Figure 33: OWASP Mobile 2016 Threat 8: Code Tampering

The 2016 threat M8_Code_Tampering results from all of the following in Android:

Allowing_Binary_Patching, Allowing_Local_Resource_Modification, Allowing_Method

_Hooking, and Allowing_Dynamic_Memory_Modification. In binary patching the

84

application is completely modified and redeployed to the device [90]. Method hooking,

allowed on some Android devices, completely redirect the control flow of Android

applications are runtime [91].

4.2.9 Mobile 2016 Threat 9: Reverse Engineering

The OWASP 2016 Mobile Threat 9 is “Reverse Engineering”

(M9_Reverse_Engineering), as seen in Figure 34. Reverse Engineering can potentially

lead to data compromise of sensitive data or the unauthorized system or data access.

Figure 34: OWASP Mobile 2016 Threat 9: Reverse Engineering

According to the OWASP 2016 Mobile Threat categories [81], the 2016 threat resultsFrom

OWASP_2014_M10_Lack_of_Binary_Protections (Section 4.1.10).

4.2.10 Mobile 2016 Threat 10: Extraneous Functionality

The OWASP 2016 Mobile Threat 10 is “Extraneous Functionality” (M3_

Extraneous_Functionality), as seen in Figure 35. Extraneous Functionality can potentially

lead to data compromise of sensitive data or the unauthorized system or data access.

M10_Extraneous_Functionality resultsFrom Developer_Debug_Errors such as hidden

backdoors which expose administrative dashboards or leave improperly set debug flags

turned on within live production code.

85

Figure 35: OWASP Mobile 2016 Threat 10: Extraneous Functionality

4.3 Summary of OWASP Threat/Risk Findings

In the Knowledge-Graphs, which we introduced for the OWASP 2014 and the

OWASP 2016, we introduced five relationships (i.e. hasThreat, hasA, onA, resultsFrom,

and without) for software assurances and re-applied the isA relationship from standard

ontologies.

Table 27: Relations Introduces in OWASP Mobile Threat Knowledge-Graph

• hasThreat – Specific to certain current cybersecurity threats.

• isA – Standard ontology hierarchy

• hasA – An optional attribute which could cause further analysis.

• onA – The concern is relevant to certain constraints.

• resultsFrom – The cause of the concern under investigation.

• without – Missing a property related to the security.

With time these, these relationships will be kept constant to provide consistency;

however, they may become deprecated as cybersecurity further evolve.

86

87

Chapter 5

Detectable Security Management Coding Patterns

In this chapter, we discuss how static analysis methods can contribute to certain kinds of

unresearched security threats. Static analysis techniques are archetypal for object-oriented

programming but must be enhanced to fit Android. An example archetypal static analysis

is type checking, used ubiquitously in standard compilers [8], which dates back to IBMs

mid-19th century Fortran and perhaps earlier. In this section, we examine two major

OWASP security concerns given from Chapter 4: Mobile 2016 Threat 2: Insecure Data

Storage (discussed in Section 4.2.2) and Mobile 2016 Threat 5 Insufficient Cryptography

(discussed in Section 4.2.5). We examine the source code of 200+ Android Healthcare

applications uploaded to GitHub ranging from full blown grant funded applications to

smaller experimental prototype projects. A full listing of the analyzed applications can be

seen in Appendix A.

5.1 Analysis of Android Health Source Code for OWASP Top Security Issues

To examine secure coding guidelines being employed utilizing the OWASP 2016

Mobile Threat and OWASP 2014 Mobile Threat knowledge-graph from Chapter 4, over

200 Android healthcare application source codes were reviewed for this research. Note

that the full final list of applications analyzed will be copied up onto my GitHub account a

www.GitHub.com/schmeelk/pace-dps-2020.

http://www.github.com/schmeelk/pace-dps-2020

88

For analysis, we reviewed the 200+ application source code for OWASP 2016

Mobile Threat 2 “Insecure Data Storage” and OWASP 2016 Mobile Threat 5 “Insufficient

Cryptography.” Our findings are presented in Error! Reference source not found..

 REF _Ref31450238 \h * MERGEFORMAT Error! Reference source not found. shows

the following: (1) a row number, (2) the GitHub links to the analyzed Android healthcare

application source code repositories, (3) the GitHub application description, (4) if secure

coding artifacts are present for OWASP 2016 Mobile Threat 2 Insecure Data Storage

discussed in Section 4.2.2 and (5) if secure coding artifacts are present for OWASP 2016

Mobile Threat 5 Insufficient Cryptography.

5.2 Analysis 1 Summary: OWASP 2016 Threat 5 Insufficient Cryptography

We analyzed the source code of 200+ Android healthcare applications hosted on GitHub

if secure coding artifacts are present for OWASP 2016 Mobile Threat 5 Insufficient

Cryptography based on our knowledge-graph presented in Section 4.2.5 on page 78.

Are results are presented in Table 28. We found with a string analysis that 17 of 203

applications actually employed the javax.crypto package from the Java API. The string

analysis showed that eight additional applications may employ crypto as lower-level binary

inclusions referenced the crypto package (e.g. jar files and other dex files). These eight

applications are not in scope for this current Java source code level analysis research, but

future research should examine the static analysis of binary/lower-level inclusions.

89

Table 28: Analysis 1 OWASP 2016 Mobile Threat 5 Insufficient Cryptography

GitHub Link Git Hub Application

Description
MT_2016_

M5_Presen

t_Source

MT_2016_M5_P

resent_binary_Fi

le_eg-jar-dex

1 https://github.com/Yah

yaOdeh/HealthWatche

r

Android Application that

can estimate Heart rate,

Blood pressure,

Respiration rate and

Oxygen rate from only

the camera of the mobile

X

2 https://github.com/citi

ususc/calendula

[UNMANTAINED] An

Android assistant for

personal medication

management

https://citius.usc.es/calen

dula/

X

3 https://github.com/Fla

que/quirk

A GPL Licensed

Cognitive Behavioral

Therapy app for iOS and

Android https://quirk.fyi

X

4 https://github.com/Qin

gbao/HealthCareStepC

ounter

A step counter on

Android platform

X

5 https://github.com/has

yed/HealthCareApp

 Health Care

Management System in

Android

X

6 https://github.com/ope

nmrs/openmrs-

android-client-user-

guide

User guide for OpenMRS

Android Client

X

7 https://github.com/kro

kyze/FitKit

Flutter plugin for reading

health and fitness data.

Wraps HealthKit on iOS

and GoogleFit on

Android.

X

8 https://github.com/Zai

nMustafaaa/HealthCar

e-Scan-Nearby-

Hospital-Locations

I developed this android

application to help

beginner developers to

know how to use Google

Maps API and how to

conver…

X

9 https://github.com/Gan

eshSinghPapola/rn-

samsung-health

React Native package to

access Samsung Health

data using samsung

health kit android sdk

X

https://github.com/YahyaOdeh/HealthWatcher
https://github.com/YahyaOdeh/HealthWatcher
https://github.com/YahyaOdeh/HealthWatcher
https://github.com/citiususc/calendula
https://github.com/citiususc/calendula
https://github.com/Flaque/quirk
https://github.com/Flaque/quirk
https://github.com/Qingbao/HealthCareStepCounter
https://github.com/Qingbao/HealthCareStepCounter
https://github.com/Qingbao/HealthCareStepCounter
https://github.com/hasyed/HealthCareApp
https://github.com/hasyed/HealthCareApp
https://github.com/openmrs/openmrs-android-client-user-guide
https://github.com/openmrs/openmrs-android-client-user-guide
https://github.com/openmrs/openmrs-android-client-user-guide
https://github.com/openmrs/openmrs-android-client-user-guide
https://github.com/krokyze/FitKit
https://github.com/krokyze/FitKit
https://github.com/ZainMustafaaa/HealthCare-Scan-Nearby-Hospital-Locations
https://github.com/ZainMustafaaa/HealthCare-Scan-Nearby-Hospital-Locations
https://github.com/ZainMustafaaa/HealthCare-Scan-Nearby-Hospital-Locations
https://github.com/ZainMustafaaa/HealthCare-Scan-Nearby-Hospital-Locations
https://github.com/GaneshSinghPapola/rn-samsung-health
https://github.com/GaneshSinghPapola/rn-samsung-health
https://github.com/GaneshSinghPapola/rn-samsung-health

90

10 https://github.com/goj

uukaze/healthgo

a android pedometer app

(安卓计步器)

X

11 https://github.com/brm

innick/HealthClinic

An iOS & Android app

built in Xamarin.Forms

that parses images of

food to give nutritional

information. Leverages

Azure's Cognitive

Services.

https://docs.microsoft.co

m/azure?WT.m…

X

12 https://github.com/agh

ao/HealthSLife

HealthSLife--an Android

APP

X

13 https://github.com/Dev

eloperStudentClub-

Udaipur/GymBuddy_

Official

Android App for Health

Zone Gym Udaipur

X

14 https://github.com/syst

ers/powerup-android

PowerUp is an

educational choose-your-

own-adventure game that

utilizes a users uploaded

curriculum to empower

pre-adolescents to take

charge of their

reproductive health. This

is the Android version of

the game.

X

15 https://github.com/chri

stianb/iHealth

Mobile Health Support in

Hospitals with Android,

Arduino and a

WebServer.

X

16 https://github.com/sco

ute-dich/QuitSmoking

Android app to help

smokers to quit smoking.

Three fragments

organized with tabs:

overview, health and

diary.

X

17 https://github.com/me

dic/medic-android

A native Android

container for Medic

Mobile's Community

Health Worker mobile

application

X

https://github.com/gojuukaze/healthgo
https://github.com/gojuukaze/healthgo
https://github.com/brminnick/HealthClinic
https://github.com/brminnick/HealthClinic
https://github.com/aghao/HealthSLife
https://github.com/aghao/HealthSLife
https://github.com/DeveloperStudentClub-Udaipur/GymBuddy_Official
https://github.com/DeveloperStudentClub-Udaipur/GymBuddy_Official
https://github.com/DeveloperStudentClub-Udaipur/GymBuddy_Official
https://github.com/DeveloperStudentClub-Udaipur/GymBuddy_Official
https://github.com/systers/powerup-android
https://github.com/systers/powerup-android
https://github.com/christianb/iHealth
https://github.com/christianb/iHealth
https://github.com/scoute-dich/QuitSmoking
https://github.com/scoute-dich/QuitSmoking
https://github.com/medic/medic-android
https://github.com/medic/medic-android

91

18 https://github.com/chie

fg13/SkinHealthCheck

er

SkinHealthChecker App

detects possible

melanoma skin cancer

using OpenCV and

Android camera.

 X

19 https://github.com/Bai

yuY/AndroidAppPCLi

nk

Android App connect

with health measure

devices and MySQL

 X

20 https://github.com/rjba

iley/mystatus

An Android app that

provides self-

management tools to

users with chronic health

conditions.

 X

21 https://github.com/um

aranis/health-book

An open source Android

app for helping cancer

patients to keep track of

their medical history and

condition.

 X

22 https://github.com/mp

atel136/LifePulse

Android Health App X

23 https://github.com/tars

d/HealthGuru

Android App X

24 https://github.com/stee

pmountain/HealthSync

Android Application that

displays data from

Samsung S Health

 X

25 https://github.com/neil

007m/HealthApp

Android app that records

a user's symptoms and

various information about

it.

 X

5.3 Analysis 2 Summary: OWASP 2016 Threat 2 Insecure Data Storage

We analyzed the source code of 200+ Android healthcare applications hosted on GitHub

to detect what, if any, secure coding artifacts are present for OWASP 2016 Mobile Threat

2 Insecure Data Storage based on our knowledge-graph presented in Section 4.2.2 on page

76 and recently published [92]. In all the healthcare applications, the data collected is

considered sensitive or personal identifying information (PII) since it is also can be

https://github.com/chiefg13/SkinHealthChecker
https://github.com/chiefg13/SkinHealthChecker
https://github.com/chiefg13/SkinHealthChecker
https://github.com/BaiyuY/AndroidAppPCLink
https://github.com/BaiyuY/AndroidAppPCLink
https://github.com/BaiyuY/AndroidAppPCLink
https://github.com/rjbailey/mystatus
https://github.com/rjbailey/mystatus
https://github.com/umaranis/health-book
https://github.com/umaranis/health-book
https://github.com/mpatel136/LifePulse
https://github.com/mpatel136/LifePulse
https://github.com/tarsd/HealthGuru
https://github.com/tarsd/HealthGuru
https://github.com/neil007m/HealthApp
https://github.com/neil007m/HealthApp

92

attached to certain device specific identifiers such as IMEI or IMSI. The full list of

analyzed applications is found in Appendix A.

First, our research found some case specific issues such as the application listed at

https://github.com/doneill123/HealthyHabitsProject/blob/master/app/src/main/AndroidM

anifest.xml. This particular application both requests to be entirely installed on external

storage (most likely for the removal of space constraint issues) and requests permission to

write to external storage, as can be seen in Figure 36. The specific Google guidance on

installing applications entirely on the external storage is seen in Figure 37.

Second, we found overall through a string analysis that 70 applications of 203 applications

requested permissions to write to external storage, which is unsecured shared space among

all the applications on a devices. Of these 70 applications only 9 applications employed

either the Android or Oracle crypto packages indicating immediately that 64 applications

will qualify for higher risk management methodologies as they are requesting permissions

to store data on non-private shared spaces without considering the C and I in the CIA-triad.

https://github.com/doneill123/HealthyHabitsProject/blob/master/app/src/main/AndroidManifest.xml
https://github.com/doneill123/HealthyHabitsProject/blob/master/app/src/main/AndroidManifest.xml

93

Figure 36: Application seeking permission to be entirely stored on external storage

Figure 37: The Google documentation guidance for install location

Overall, we found that 99 of the 200+ Android source code applications potentially either

directly store information in known vulnerable device shared spaces, or store information

in vulnerable locations only if the device is rooted. Rooting a device comes with entirely

different risk-levels as not too many end users choose to root their devices since it can

potentially violate service plans, among other concerns. Risk related to rooting devices

can further be explored during additional research.

Our analysis for IDS can be seen in Table 29. Column W indicates that the string analysis

found that the applications requests to write external storage. Column S indicates that a

string analysis of the application binary components (e.g. dex or jar files buried within the

application) detected strings preferring external storage. Similarly, Column P indicates

that a string analysis of the source code shows evidence that the source code manifest is

94

requesting the application be preferred to installed entirely on external storage, through the

string android:installLocation="preferExternal. Once the application is itself installed on

external storage, all collected application data is also stored on the external storage as well.

Column X shows the applications which access SharedPreferences. Our string analysis

showed that only one application of 200+ applications accesses SharedPreferences, but

they were accessed with Mode_PRIVATE (e.g. SharedPreferences sharedPref =

getActivity().getPreferences(Context.MODE_PRIVATE);) which lowers the risks unless

the device is rooted. Column D indicates the applications which access the built in Android

SQLite database. Column B indicates the applications binary files may access the built in

Android SQLite database. The database is by default private unless the device is rooted.

Table 29: Analysis 2 OWASP 2016 Mobile Threat 2 Insecure Data Storage (IDS)

95

GitHub Link GitHub Description W S P X D B

2 https://github.com/citiususc/calendula An Android assistant for

personal medication

management

https://citius.usc.es/calendu

la/

W

 D

3 https://github.com/Flaque/quirk A GPL Licensed Cognitive

Behavioral Therapy app for

iOS and Android

https://quirk.fyi

W

10 https://github.com/gojuukaze/healthgo a android pedometer app (

安卓计步器)

W

16 https://github.com/scoute-dich/QuitSmoking Android app to help

smokers to quit smoking.

Three fragments organized

with tabs: overview, health

and diary.

W

 D B

17 https://github.com/medic/medic-android A native Android container

for Medic Mobile's

Community Health Worker

mobile application

W

19 https://github.com/chiefg13/SkinHealthCheck

er

SkinHealthChecker App

detects possible melanoma

skin cancer using OpenCV

and Android camera.

W

P D B

37 https://github.com/BaiyuY/AndroidAppPCLi

nk

Android App connect with

health measure devices and

MySQL

W

P

58 https://github.com/rjbailey/mystatus An Android app that

provides self-management

tools to users with chronic

health conditions.

W

 D B

65 https://github.com/umaranis/health-book An open source Android

app for helping cancer

patients to keep track of

their medical history and

condition.

W

 D B

20 https://github.com/Get-Siempo/siempo-

android-app

Siempo Android Launcher -

Smartphone interface for

mental health and wellbeing

http://getsiempo.com

W

 D

23 https://github.com/nutritionfactsorg/daily-

dozen-android

Keep track of the foods that

Dr. Greger recommends in

his NYT's best-selling

W

 D

https://github.com/citiususc/calendula
https://github.com/Flaque/quirk
https://github.com/gojuukaze/healthgo
https://github.com/scoute-dich/QuitSmoking
https://github.com/medic/medic-android
https://github.com/chiefg13/SkinHealthChecker
https://github.com/chiefg13/SkinHealthChecker
https://github.com/BaiyuY/AndroidAppPCLink
https://github.com/BaiyuY/AndroidAppPCLink
https://github.com/rjbailey/mystatus
https://github.com/umaranis/health-book
https://github.com/Get-Siempo/siempo-android-app
https://github.com/Get-Siempo/siempo-android-app
https://github.com/nutritionfactsorg/daily-dozen-android
https://github.com/nutritionfactsorg/daily-dozen-android

96

book, How Not to Die with

this Android app

https://play.google.com/sto

re/apps/de…

27 https://github.com/bholagabbar/AurumHealth

App

An Android App for Rural

Healthcare developed for

the RTBI Hackathon Finals

https://play.google.com/sto

re/apps/de…

W

 B

30 https://github.com/EyeSeeTea/malariapp Android app to help with

health center assessments

(development repository)

W

 D

34 https://github.com/cqlzx/health-management PHMS Android Application W

40 https://github.com/sages-health/sagesmobile-

common

Android library common to

sages-health mobile

Android components

W

45 https://github.com/kudrom/HealthWalk Aplicación android de

sistemas móviles
W

 D

47 https://github.com/Health4TheWorld/Health4

TheWorld-android

Android App for

Health4TheWorld
W

 D

52 https://github.com/McFlyWYF/HealthManag

er

Android课设---基于心脏

病的健康管理

W

 D

56 https://github.com/ibisTime/xn-health-

android

健康e购android W

 D

59 https://github.com/cupcaketees/PocketFitness An android application

assisting in health and

fitness goals and lifestyle

W

66 https://github.com/psin007/HealthyMaternity Android application to help

rural pregnant women
W

68 https://github.com/Ethanator/MobileHealth Data are collected from

Google Glass, Moto 360,

and Android phone to offer

a glimpse into the user's

daily activity.

W

73 https://github.com/norim13/rios-mais-ldso Website and Android app

for river health monitoring

and maintenance

W

74 https://github.com/chennanni/diabetes-

control-app

an android app to manage

users' health data
W

77 https://github.com/CMPUT301F18T21/Docto

rPlzSaveMe

An Android app for keeping

track of health issues
W

https://github.com/bholagabbar/AurumHealthApp
https://github.com/bholagabbar/AurumHealthApp
https://github.com/EyeSeeTea/malariapp
https://github.com/cqlzx/health-management
https://github.com/sages-health/sagesmobile-common
https://github.com/sages-health/sagesmobile-common
https://github.com/kudrom/HealthWalk
https://github.com/Health4TheWorld/Health4TheWorld-android
https://github.com/Health4TheWorld/Health4TheWorld-android
https://github.com/McFlyWYF/HealthManager
https://github.com/McFlyWYF/HealthManager
https://github.com/ibisTime/xn-health-android
https://github.com/ibisTime/xn-health-android
https://github.com/cupcaketees/PocketFitness
https://github.com/psin007/HealthyMaternity
https://github.com/Ethanator/MobileHealth
https://github.com/norim13/rios-mais-ldso
https://github.com/chennanni/diabetes-control-app
https://github.com/chennanni/diabetes-control-app
https://github.com/CMPUT301F18T21/DoctorPlzSaveMe
https://github.com/CMPUT301F18T21/DoctorPlzSaveMe

97

87 https://github.com/simonaMarkova/HealthQu

est-android

android W

90 https://github.com/aiwac-health-

group/HealthRobot

Android project W

 D

96 https://github.com/mohamedelhadi123/Health

Care1

Framework Android W

 D

10

3

https://github.com/ShizuoZ/RUPacer A health android app using

pedometer to count daily

and weekly steps. Users can

log in via Facebook

Account and compete with

friends in Leaderboard.

W

 D

10

9

https://github.com/TobiasReich/HealthTracke

r

Health Tracker app for

Android
W

 D

11

1

https://github.com/BevoLEt/HealthCare_Appl

ication

HealthCare Android

Application
W

11

7

https://github.com/kitaice/HealthClassifier android app with decision

tree classifier
W

11

8

https://github.com/sinanelveren/Smart-

Healthband-Bilek-Partner-Bil396-Project

ESP32 based smart

healtband and Android

application project.

W

 D B

12

6

https://github.com/malkio/happyfit an android health app

http://maxmenthol.bitbucke

t.org

W

 D B

12

7

https://github.com/gameloser/Burning-Fat Android Project - Health &

Fitness
W

 D

13

3

https://github.com/KourdacheHoussam/Healt

hContentManager

Application Android de

gestion de patients
W

 D B

13

4

https://github.com/swe-team-

c/HealthCareApplication

An android application for

health care
W

13

6

https://github.com/carlyonmdsol/HealthVault

AndroidExample

Cleaned up Android Health

Vault Example
W

 D B

14

2

https://github.com/CrystalRanita/BabyHelper Health care tool using

OpenCV on android

platform

W

14

3

https://github.com/timchenggu123/SaveMi A health monitoring

Android app. Winner of

Waterloo EngHack 2019

W

https://github.com/simonaMarkova/HealthQuest-android
https://github.com/simonaMarkova/HealthQuest-android
https://github.com/aiwac-health-group/HealthRobot
https://github.com/aiwac-health-group/HealthRobot
https://github.com/mohamedelhadi123/HealthCare1
https://github.com/mohamedelhadi123/HealthCare1
https://github.com/ShizuoZ/RUPacer
https://github.com/TobiasReich/HealthTracker
https://github.com/TobiasReich/HealthTracker
https://github.com/BevoLEt/HealthCare_Application
https://github.com/BevoLEt/HealthCare_Application
https://github.com/kitaice/HealthClassifier
https://github.com/sinanelveren/Smart-Healthband-Bilek-Partner-Bil396-Project
https://github.com/sinanelveren/Smart-Healthband-Bilek-Partner-Bil396-Project
https://github.com/malkio/happyfit
https://github.com/gameloser/Burning-Fat
https://github.com/carlyonmdsol/HealthVaultAndroidExample
https://github.com/carlyonmdsol/HealthVaultAndroidExample

98

16

0

https://github.com/siddharthsujir/Health-

Buddy

An Android application for

health conscious android

user

W

 D

16

1

https://github.com/SayeedAbid/HealthMonito

rApp

A personal health

monitoring system with

android studio and java

W

 D

16

2

https://github.com/doneill123/HealthyHabitsP

roject

Mobile app on Android

Studio for final year project
W S

16

6

https://github.com/charlesmastin/healthnotifie

r-android

HealthNotifier Android

Client
W

17

1

https://github.com/danielCantwell/Fit-Friend Health & Exercise app for

Android
W

 B

17

5

https://github.com/serkansorman/LogMe-

Android-App

Smart Health Band Android

App

https://logmewristband.gith

ub.io

W

17

9

https://github.com/xiangxianzui/Health-

Android-Client

Android client of

"HEALTH" app
W

 D

18

0

https://github.com/Ramonrune/nhs-patient NFC Health System Patient

Android
W

 D B

18

3

https://github.com/yourSylvia/HealthAssistan

t

An Android APP for

exercise reminder, user

activities tracking report,

exercise videos and health

forum.

W

 D

18

9

https://github.com/AtifMahmud/HealthWatch An Android to work in

conjunction with a heart

rate tracking wearable.

W

19

4

https://github.com/MujtabaBinKhalid/lifeline An android health , fitness

application.
W

19

6

https://github.com/apoorvsarang10/Healthily

App

Android health related app

which incorporates

Fragments, Firebase

Authentication, Firebase

Firestore, Notifications and

Accelerometer.

W

19

7

https://github.com/aarjan/Android-apps A set of android mobile

applications
W

X

https://github.com/doneill123/HealthyHabitsProject
https://github.com/doneill123/HealthyHabitsProject
https://github.com/charlesmastin/healthnotifier-android
https://github.com/charlesmastin/healthnotifier-android
https://github.com/xiangxianzui/Health-Android-Client
https://github.com/xiangxianzui/Health-Android-Client
https://github.com/Ramonrune/nhs-patient
https://github.com/AtifMahmud/HealthWatch
https://github.com/MujtabaBinKhalid/lifeline

99

20

2

https://github.com/NgJun/bHealth_Android_S

ouceCode

Android Code W

21 https://github.com/farhan071024/HealthCare

App

Health Care Android

Application

S

91 https://github.com/tarsd/HealthGuru Android App

P D B

14

7

https://github.com/steepmountain/HealthSync Android Application that

displays data from Samsung

S Health

P B

19

2

https://github.com/neil007m/HealthApp Android app that records a

user's symptoms and

various information about

it.

P D B

1 https://github.com/YahyaOdeh/HealthWatche

r

Android Application that

can estimate Heart rate,

Blood pressure, Respiration

rate and Oxygen rate from

only the camera of the

mobile

 D

4 https://github.com/Qingbao/HealthCareStepC

ounter

A step counter on Android

platform
 D B

70 https://github.com/mpatel136/LifePulse Android Health App D

18 https://github.com/alexnanrick/health Basic health app for

Android
 D

26 https://github.com/MD4N1/Wireless-E-

Health-Monitor

Wireless E-Health Monitor

is monitoring medical

sensors monitoring using

Arduino Duemilanove or

similar, USB Host Shield,

USB Bluetooth dongle and

medical sensors data from

Arduino is sent to Wireless

E-Health for Android

Smartphone/Tablet through

USB Bluetooth Dongle that

attached in Arduino,

 D

36 https://github.com/vjitendra/PanHealth_Perso

nal_Health_Records

developed by Neha

(Android)
 D B

49 https://github.com/manueljeffin/MyHealth Health Monitoring Android

app
 D

55 https://github.com/gudigundla/PersonalHealth

Check

An Android app named

Personal HealthCheck. It

helps track all your personal

 D B

https://github.com/farhan071024/HealthCareApp
https://github.com/farhan071024/HealthCareApp
https://github.com/tarsd/HealthGuru
https://github.com/steepmountain/HealthSync
https://github.com/neil007m/HealthApp
https://github.com/YahyaOdeh/HealthWatcher
https://github.com/YahyaOdeh/HealthWatcher
https://github.com/Qingbao/HealthCareStepCounter
https://github.com/Qingbao/HealthCareStepCounter
https://github.com/mpatel136/LifePulse
https://github.com/alexnanrick/health
https://github.com/MD4N1/Wireless-E-Health-Monitor
https://github.com/MD4N1/Wireless-E-Health-Monitor
https://github.com/vjitendra/PanHealth_Personal_Health_Records
https://github.com/vjitendra/PanHealth_Personal_Health_Records
https://github.com/manueljeffin/MyHealth
https://github.com/gudigundla/PersonalHealthCheck
https://github.com/gudigundla/PersonalHealthCheck

100

medical needs like health

care appointments (i.e.

Doctor, Dentist, Physio,

reoccurring blood work

etc). Even recurring events

like Prescription Taking

reminders. (i.e. Heart

medicine every day at 10:00

am, Cholesterol medicine

Monday/Wednesday/

Friday 7:00 pm), tasks lik…

https://play.google.com/sto

re/apps/de…

57 https://github.com/ankit1414/Fitvit Fitvit is an android

application focused on the

health and fitness of the

users.

 D

64 https://github.com/ruifeng2357/FitnessApp This is an Android &

iPhone app for own health

state can record, analysis

and share using mobile app

 D

71 https://github.com/justiceamoh/AsthmaGuard Android App for Dartmouth

COSC 169: Mobile Health
 D

82 https://github.com/shvmshukla/Healthify-

NearByHospitals-

An android application

which uses google map api

and helps us to find nearby

hospitals. Also, it displays

detailed information about

those hospitals(viz no of

doctors,no of beds, contact

no etc.)

 D

84 https://github.com/rr016/HealthOut Android app that allows

users to input health

metrics; this data is used to

compare and graph the

user's progress toward's

his/her goals.

 D

89 https://github.com/JANGYONGSEONG/heal

thNotes

android application D

94 https://github.com/w771854332/health_andro

id

health_android D

98 https://github.com/Alphacoder221/HealthApp

-AyurVeda

Android HealthApp D

99 https://github.com/KiraSensei13/HealthyGrill HealthyGrill Android

Mobile Application
 D

https://github.com/ankit1414/Fitvit
https://github.com/ruifeng2357/FitnessApp
https://github.com/justiceamoh/AsthmaGuard
https://github.com/shvmshukla/Healthify-NearByHospitals-
https://github.com/shvmshukla/Healthify-NearByHospitals-
https://github.com/rr016/HealthOut
https://github.com/JANGYONGSEONG/healthNotes
https://github.com/JANGYONGSEONG/healthNotes
https://github.com/w771854332/health_android
https://github.com/w771854332/health_android
https://github.com/Alphacoder221/HealthApp-AyurVeda
https://github.com/Alphacoder221/HealthApp-AyurVeda
https://github.com/KiraSensei13/HealthyGrill

101

10

0

https://github.com/AnkitKiet/HealthCare Android app with Firebase D

10

1

https://github.com/SRatna/HealthyNepali Android health related

application
 D

10

8

https://github.com/kelooy/HealthDiagnostics Android app | Patients data

storage

https://github.com/kelooy

 D

11

0

https://github.com/KieronMoorcroft/HealthM

onitor

An Android Health Monitor

App
 D

11

5

https://github.com/KuznetsovaAnastasiia/Hea

lthyCafe

An android app for the cafe

staff
 D

11

6

https://github.com/verma-ady/HealthLitmus Android App for

www.healthlitmus.com
 D

12

1

https://github.com/NiallMcCann96/Health-

App

An Android Health App D

12

4

https://github.com/PabloPicassoft/MyMediCa

re

Android Health

Measurement App
 D

13

2

https://github.com/woolver/CYBAWeight android app for health D

13

8

https://github.com/neelmehta247/Hack4Healt

h

RemindMe is an Android

app that helps Alzheimer's

patients multitask in their

day to day life.

 D

14

1

https://github.com/chinnatan/Healthy Advanace app android D

15

2

https://github.com/prabhnoor15/HealthFit this is the android studio

project for "Health Fit"
 D

16

3

https://github.com/Abdullah-

Naveed/HealthChain-Android

Android App for Final Year

Project - Health Chain
 D

16

7

https://github.com/zhning12/Health-Record Android Individual Project. D

16

9

https://github.com/kenny0202/SimpleHealthP

lan

Android App D

https://github.com/AnkitKiet/HealthCare
https://github.com/SRatna/HealthyNepali
https://github.com/kelooy/HealthDiagnostics
https://github.com/KieronMoorcroft/HealthMonitor
https://github.com/KieronMoorcroft/HealthMonitor
https://github.com/KuznetsovaAnastasiia/HealthyCafe
https://github.com/KuznetsovaAnastasiia/HealthyCafe
https://github.com/verma-ady/HealthLitmus
https://github.com/NiallMcCann96/Health-App
https://github.com/NiallMcCann96/Health-App
https://github.com/PabloPicassoft/MyMediCare
https://github.com/PabloPicassoft/MyMediCare
https://github.com/chinnatan/Healthy
https://github.com/Abdullah-Naveed/HealthChain-Android
https://github.com/Abdullah-Naveed/HealthChain-Android

102

17

0

https://github.com/marcgilbert01/ContactsSi

mpleApp

Android test for "Babylon

Health"
 D

18

7

https://github.com/SuciuCalin/Project_09_He

althyRoutineTracker

Habit Tracker App -

Udacity Android Basics

Nanodegree by Google

 D

19

8

https://github.com/nvrocks/MobiDoc This is a health care android

application which

determines the disease

suffered by the patient on

the basis of symptoms

entered by him/her.

 D

19

9

https://github.com/jnoga1996/healthy-eating Android app for PUM18

course
 D

20

1

https://github.com/Nolthicha/Health_Care_Fo

r_Diabetes

Project Android Silpakorn

University
 D

81 https://github.com/kevm66/4thYearProject_H

appy

Happy - Mental Health

Android App
 B

43 https://github.com/engai/FitKit An Android health app for

CSE 110
 B

10

7

https://github.com/rizwan95/HealthChilli Android application for

healthchilli.com
 B

11

9

https://github.com/qianzch/NowSleep It's time for bed! Now

Sleep! [Android App]
 B

https://github.com/kevm66/4thYearProject_Happy
https://github.com/kevm66/4thYearProject_Happy
https://github.com/engai/FitKit
https://github.com/rizwan95/HealthChilli
https://github.com/qianzch/NowSleep

103

Chapter 6

Conclusion

This research examined mobile application security through the lens of knowledge

graph construction to inform static analysis. As people and organizations around the world

are adopting applications written by third-parties at an unprecedented rate, mobile

application security analyses are not keeping pace. This research contributes new security

vulnerabilities for detection, contributes related mobile security knowledge-graphs and

argues via source code review that certain static analysis methodologies can be employed

to detect vulnerabilities. We conclude with future research potentials.

6.1 Contribution Summary

This dissertation focused on the software assurance of mobile applications. It presented

four main contributions described in the following subsections.

6.1.1 Contribution #1: Android Mobile Application Knowledge Graph

Our research developed a preliminary mobile application security knowledge graph to

inform security analysis. A knowledge graph is useful for showing longitudinal changes

and inter-dependencies of software.

Based on a large literature review, to date The National Institute of Standards and

Technology’s Software Assurance Metrics And Tool Evaluation (SAMATE) project team

has published multiple articles [10] [11] on the Bug Framework, seen below in Table 30.

The Bug Framework is currently the only known open-source taxonomy, which is a subset

104

of a knowledge graph, aimed at informing application development but at lower levels.

The Bug Framework has a different methodology in place. Our Mobile Application

program code analysis knowledge graph examines security at a higher-level to further

inform nuances in the program application control flow.

Table 30: NIST SAMATE BF - Buffer Overflow (BOF) [93]

6.1.1.1 New Static Analysis Program Code Security Detection Findings

Our research informs newer static analysis findings such as methodologies to detect when

applications may be jeopardizing the confidentiality or integrity of data such as allowing

copying and pasting of sensitive information in the clipboard or potentially leading into a

shared SQLite database. Currently, little, if any, publications examine source code of all

of the security findings brought forth in the knowledge-graph built based on the OWASP

Top threats.

105

6.1.1.2 Analysis of Open Source Mobile Healthcare Applications from GitHub

This work examined 203 open source Android mobile healthcare applications from

GitHub. Among the applications analyzed are applications which have won field-specific

awards and been grant funded. In fact, some are even promoted by their respective fields

at large. Of the applications, some of them measure mental health, body signals such a

blood pressure and temperature, obstetrics and gynecology metrics, pictures, and all kinds

of other health related data. Since these applications are billing customers, they currently

are not under HIPAA; however, the data stored by these applications are in some cases

very private. We found that very few applications, if any, being posted to the open source

community in healthcare with sensitive data are considered all of the OWASP Mobile

Threats applications loss of the confidentiality, integrity and availably of their services and

sensitive data.

6.1.2 Contribution #2: Evaluate Knowledge-Graph.

Software development which includes software assurances improve security and costs

from subsequently mitigating concerns at later states of software development. We showed

how our developed OWASP Mobile Threats knowledge-graph can be employed to guide

software development practices to identify both risky Android API calls and other risky

coding patterns. These patterns can further be integrated into the knowledge graph in future

research to enable a more robust risk assessment of software.

106

6.1.3 Contribution #3: Identify Unresearched Mobile Vulnerabilities

Static analysis research on mobile applications is adhoc and quite non-systematic. Four

major domains of research exist from a utility perspective, as described by Schmeelk [14],

Schmeelk [15], Schmeelk, Yang and Aho [16], and Schmeelk and Aho [17]. Schmeelk

[14] and Schmeelk [15] showed both unsearched and immaturely researched known system

vulnerabilities specifically in the Android mobile software ecosystem. The research shows

the cybersecurity gaps which can be further investigated for mobile application risk

mitigation.

6.1.4 Contribution #4: Analyze Software Assurances in 200+ Applications

We analyzed 200+ Android healthcare applications for the OWASP Top Ten Mobile

Threat #2 Insufficient Cryptography and #5 Insecure Data Storage. We found that these

applications, which can potentially store private information about people, store data

without mitigations for these two particular threats. Future work may be in the following;

(1) expanding the knowledge graph to include the specific technology-specific coding

patterns and API calls and (2) adding more considerations to the analysis. Cybersecurity

will become more valuable as laws are further developed to protect human data. With time,

more elaborate analysis mechanisms will need to be developed to help prevent privacy and

security breaches.

6.2 Future Research

The knowledge graph created in this research connecting the two most recent years of

OWASP Top 10 Mobile Threats for mobile cybersecurity is one of the first public

107

knowledge graphs. Future research include crowd sourcing the knowledge-graph so that

the world can continue to develop out vulnerabilities as they become known. In addition,

this knowledge-graph can aid software assurance tool designs, security analysists, and

penetration testers in their analysis of 1st party and 3rd party applications which are being

integrated daily into facilities around the world (e.g. medical, schools, banks, etc.).

Currently research does not adequately map vulnerabilities to a specific graphical

representation of cybersecurity issues. The knowledge graph acts as a map guiding overall

cybersecurity understandings. In addition, it can expand with time (i.e. longitudinally) to

show the complexities and relationships of threats over time.

Other areas for future research are to develop a lower level code-specific knowledge-graph

at either machine-code or byte-code levels to inform further program analysis. These type

of knowledge graphs would be more similar to the NIST Bug Framework to inform all of

the specific coding patterns which can lead to malware indicators and other higher-level

Mobile Threats.

Future knowledge-graph construction can be implemented within program analysis tools,

Application Stores (e.g. GooglePlay, iTunes, etc.) and Mobile Device Management

platforms to detect potentially problematic code. Currently different software assurance

tools may detect different threats; thus, unifying the threats in the form of a knowledge

graph helps to have are more accurate understanding of the overall system cybersecurity.

Our world is moving to mobile and application-dependent services, our security needs to

follow these trends especially in regulated sectors.

108

Further software assurance static analysis methodologies (and other software assurance

methodologies) can be built out for all the knowledge graphs created in this research. The

knowledge graph can be thus employed to compare, contrast, and improve overall tool

soundness and completeness.

The knowledge graphs can also be combined with weights and attributes to further expand

the graphs for automated risk assessments and in development of machine learning

features. For example, we could add risk measurements and other weights to graph edges,

add attributes to graph edges, and map knowledge graphs to: NIST frameworks (e.g. Bug

Framework, CAPEC, & NVD) and MITRE frameworks (e.g. CWE). Further risk insights

could then be gained directly from the application software.

Finally, the agnostic knowledge-graph representations can be further built out to mobile

features such as device rooting and to inform other code analysis such as mobile

applications running on other platforms such as iPhone which is Swift dependent or even

applications developed entirely with front-end languages such as JavaScript, Node.js, etc.

109

List of Android Healthcare Mobile Applications Analyzed

To examine secure coding guidelines being employed utilizing the OWASP 2016

Mobile Threat and OWASP 2014 Mobile Threat knowledge-graph from Chapter 4, over

200 Android healthcare application source codes were reviewed for this research. Note

that the full final list of applications analyzed will be copied up onto my GitHub account a

www.GitHub.com/schmeelk/pace-dps-2020.

Table 31: Full List of Android Healthcare Mobile Applications Analyzed

GitHub Link Git Hub Application Description

1 https://github.com/YahyaOdeh/HealthW

atcher

Android Application that can estimate

Heart rate, Blood pressure, Respiration

rate and Oxygen rate from only the

camera of the mobile

2
https://github.com/citiususc/calendula [UNMANTAINED] An Android assistant

for personal medication management

https://citius.usc.es/calendula/

3
https://github.com/Flaque/quirk A GPL Licensed Cognitive Behavioral

Therapy app for iOS and Android

https://quirk.fyi

4
https://github.com/Qingbao/HealthCare

StepCounter

A step counter on Android platform

5
https://github.com/hasyed/HealthCareA

pp

 Health Care Management System in

Android

6
https://github.com/openmrs/openmrs-

android-client-user-guide

User guide for OpenMRS Android Client

7
https://github.com/krokyze/FitKit Flutter plugin for reading health and

fitness data. Wraps HealthKit on iOS and

GoogleFit on Android.

8
https://github.com/ZainMustafaaa/Healt

hCare-Scan-Nearby-Hospital-Locations

I developed this android application to

help beginner developers to know how to

use Google Maps API and how to

conver…

http://www.github.com/schmeelk/pace-dps-2020
https://github.com/YahyaOdeh/HealthWatcher
https://github.com/YahyaOdeh/HealthWatcher
https://github.com/citiususc/calendula
https://github.com/Flaque/quirk
https://github.com/Qingbao/HealthCareStepCounter
https://github.com/Qingbao/HealthCareStepCounter
https://github.com/hasyed/HealthCareApp
https://github.com/hasyed/HealthCareApp
https://github.com/openmrs/openmrs-android-client-user-guide
https://github.com/openmrs/openmrs-android-client-user-guide
https://github.com/krokyze/FitKit
https://github.com/ZainMustafaaa/HealthCare-Scan-Nearby-Hospital-Locations
https://github.com/ZainMustafaaa/HealthCare-Scan-Nearby-Hospital-Locations

110

9
https://github.com/GaneshSinghPapola/r

n-samsung-health

React Native package to access Samsung

Health data using samsung health kit

android sdk

10
https://github.com/gojuukaze/healthgo a android pedometer app (安卓计步器)

11
https://github.com/brminnick/HealthClin

ic

An iOS & Android app built in

Xamarin.Forms that parses images of food

to give nutritional information. Leverages

Azure's Cognitive Services.

https://docs.microsoft.com/azure?WT.m…

12
https://github.com/aghao/HealthSLife HealthSLife--an Android APP

13
https://github.com/DeveloperStudentClu

b-Udaipur/GymBuddy_Official

Android App for Health Zone Gym

Udaipur

14
https://github.com/systers/powerup-

android

PowerUp is an educational choose-your-

own-adventure game that utilizes a users

uploaded curriculum to empower pre-

adolescents to take charge of their

reproductive health. This is the Android

version of the game.

15
https://github.com/christianb/iHealth Mobile Health Support in Hospitals with

Android, Arduino and a WebServer.

16
https://github.com/scoute-

dich/QuitSmoking

Android app to help smokers to quit

smoking. Three fragments organized with

tabs: overview, health and diary.

17
https://github.com/medic/medic-android A native Android container for Medic

Mobile's Community Health Worker

mobile application

18
https://github.com/alexnanrick/health Basic health app for Android

19
https://github.com/chiefg13/SkinHealth

Checker

SkinHealthChecker App detects possible

melanoma skin cancer using OpenCV and

Android camera.

20
https://github.com/Get-Siempo/siempo-

android-app

Siempo Android Launcher - Smartphone

interface for mental health and wellbeing

http://getsiempo.com

21
https://github.com/farhan071024/Health

CareApp

Health Care Android Application

https://github.com/GaneshSinghPapola/rn-samsung-health
https://github.com/GaneshSinghPapola/rn-samsung-health
https://github.com/gojuukaze/healthgo
https://github.com/brminnick/HealthClinic
https://github.com/brminnick/HealthClinic
https://github.com/aghao/HealthSLife
https://github.com/DeveloperStudentClub-Udaipur/GymBuddy_Official
https://github.com/DeveloperStudentClub-Udaipur/GymBuddy_Official
https://github.com/systers/powerup-android
https://github.com/systers/powerup-android
https://github.com/christianb/iHealth
https://github.com/scoute-dich/QuitSmoking
https://github.com/scoute-dich/QuitSmoking
https://github.com/medic/medic-android
https://github.com/alexnanrick/health
https://github.com/chiefg13/SkinHealthChecker
https://github.com/chiefg13/SkinHealthChecker
https://github.com/Get-Siempo/siempo-android-app
https://github.com/Get-Siempo/siempo-android-app
https://github.com/farhan071024/HealthCareApp
https://github.com/farhan071024/HealthCareApp

111

22
https://github.com/Rafagf/HealthTube Android health application consisting of

video channels which help users to keep a

healthy life. An example of how to

populate ListViews with YouTube videos

playlists and reproduce them in a

embedded player

23
https://github.com/nutritionfactsorg/dail

y-dozen-android

Keep track of the foods that Dr. Greger

recommends in his NYT's best-selling

book, How Not to Die with this Android

app

https://play.google.com/store/apps/de…

24
https://github.com/GreenRobots/JPHack

s

Android × Health

25
https://github.com/webianks/Crimson An android application that can prove to

be the ultimate care taker of your eyes.

[Built during hackDTU event.]

26
https://github.com/MD4N1/Wireless-E-

Health-Monitor

Wireless E-Health Monitor is monitoring

medical sensors monitoring using Arduino

Duemilanove or similar, USB Host Shield,

USB Bluetooth dongle and medical

sensors data from Arduino is sent to

Wireless E-Health for Android

Smartphone/Tablet through USB

Bluetooth Dongle that attached in

Arduino,

27
https://github.com/bholagabbar/AurumH

ealthApp

An Android App for Rural Healthcare

developed for the RTBI Hackathon Finals

https://play.google.com/store/apps/de…

28
https://github.com/strudelauxpommes/Fi

tnessHabits

This Android software tracks fitness

activities and health habits such as

physical activities, fluids intake,

supplements, food intake, sleep durations,

and alcool intake.

29
https://github.com/michaelcarrano/seven

_minute_workout_android

An Android application that walks you

through the "7 minute workout" that was

mentioned in the May/June 2013 issue of

ACSM's Health & Fitness Journal.

30
https://github.com/EyeSeeTea/malariapp Android app to help with health center

assessments (development repository)

31
https://github.com/viswesvar/HealthCar

e-App

Android Application - Diabetes Patients

32
https://github.com/stuartdavis/HealthAu

rora

an android app

https://github.com/Rafagf/HealthTube
https://github.com/nutritionfactsorg/daily-dozen-android
https://github.com/nutritionfactsorg/daily-dozen-android
https://github.com/GreenRobots/JPHacks
https://github.com/GreenRobots/JPHacks
https://github.com/webianks/Crimson
https://github.com/MD4N1/Wireless-E-Health-Monitor
https://github.com/MD4N1/Wireless-E-Health-Monitor
https://github.com/bholagabbar/AurumHealthApp
https://github.com/bholagabbar/AurumHealthApp
https://github.com/strudelauxpommes/FitnessHabits
https://github.com/strudelauxpommes/FitnessHabits
https://github.com/michaelcarrano/seven_minute_workout_android
https://github.com/michaelcarrano/seven_minute_workout_android
https://github.com/EyeSeeTea/malariapp
https://github.com/viswesvar/HealthCare-App
https://github.com/viswesvar/HealthCare-App
https://github.com/stuartdavis/HealthAurora
https://github.com/stuartdavis/HealthAurora

112

33
https://github.com/drbobrinkman/Health

yMiamiWatchFace

Miami University themed Android Wear

watch face, with step counter.

34
https://github.com/cqlzx/health-

management

PHMS Android Application

35
https://github.com/Huangtuzhi/HealthCa

re

A health supervision device of blood

pressure and pulse based on

FriendlyARM2440 DB. It can also be

manipulated by App on Android phone

and send back monitoring data to display

on the LCD of Smart Phone.

36
https://github.com/vjitendra/PanHealth_

Personal_Health_Records

developed by Neha (Android)

37
https://github.com/BaiyuY/AndroidApp

PCLink

Android App connect with health measure

devices and MySQL

38
https://github.com/arunrajora/health-bait an android app for health and fitness

39
https://github.com/liulinru13/Android_h

ealthy_manager

android平台下的健康管理软件

40
https://github.com/sages-

health/sagesmobile-common

Android library common to sages-health

mobile Android components

41
https://github.com/GlobetrekkerChallen

ge/cordova-plugin-shealth

Samsung s-health cordova plugin (android

only)

42
https://github.com/DevPro7/HealthyU HealthyU Android application

43
https://github.com/engai/FitKit An Android health app for CSE 110

44
https://github.com/lakindu95/Healthy-

Office-plus

This project is based on a smart IOT

product which is used to monitor the

sitting pattern of office based employees.

In order to detect the presence of the

employees at the desk area, two sensors

are permanently fixed beneath the work

table of the employee. The values

generated from these two sensors are

logically "and" operated to activate the …

http://healthyoffice.tk

https://github.com/drbobrinkman/HealthyMiamiWatchFace
https://github.com/drbobrinkman/HealthyMiamiWatchFace
https://github.com/cqlzx/health-management
https://github.com/cqlzx/health-management
https://github.com/Huangtuzhi/HealthCare
https://github.com/Huangtuzhi/HealthCare
https://github.com/vjitendra/PanHealth_Personal_Health_Records
https://github.com/vjitendra/PanHealth_Personal_Health_Records
https://github.com/BaiyuY/AndroidAppPCLink
https://github.com/BaiyuY/AndroidAppPCLink
https://github.com/arunrajora/health-bait
https://github.com/liulinru13/Android_healthy_manager
https://github.com/liulinru13/Android_healthy_manager
https://github.com/sages-health/sagesmobile-common
https://github.com/sages-health/sagesmobile-common
https://github.com/GlobetrekkerChallenge/cordova-plugin-shealth
https://github.com/GlobetrekkerChallenge/cordova-plugin-shealth
https://github.com/DevPro7/HealthyU
https://github.com/engai/FitKit
https://github.com/lakindu95/Healthy-Office-plus
https://github.com/lakindu95/Healthy-Office-plus

113

45
https://github.com/kudrom/HealthWalk Aplicación android de sistemas móviles

46
https://github.com/kouh777/HealthStep Add android and wear project

47
https://github.com/Health4TheWorld/He

alth4TheWorld-android

Android App for Health4TheWorld

48
https://github.com/vinitdeodhar/healthne

t

A module in openMRS healthcare record

management system. It allows patient or

healthworker upload data from his or her

android device to openMRS server

49
https://github.com/manueljeffin/MyHeal

th

Health Monitoring Android app

50
https://github.com/gpavlid/eHealth-

Android

Android app created using MIT app

inventor 2

http://georgepavlides.info/ehealth-ma…

51
https://github.com/brandonscott/pulse An Android OS app for server health

monitor http://www.getcadence.com

52
https://github.com/McFlyWYF/HealthM

anager

Android课设---基于心脏病的健康管理

53
https://github.com/karahbit/RU_Healthy Android-based health monitoring software

54
https://github.com/zorosteven/FemaleHe

alth

a android app for female

55
https://github.com/gudigundla/Personal

HealthCheck

An Android app named Personal

HealthCheck. It helps track all your

personal medical needs like health care

appointments (i.e. Doctor, Dentist, Physio,

reoccurring blood work etc). Even

recurring events like Prescription Taking

reminders. (i.e. Heart medicine every day

at 10:00 am, Cholesterol medicine

Monday/Wednesday/ Friday 7:00 pm),

tasks lik…

https://play.google.com/store/apps/de…

56
https://github.com/ibisTime/xn-health-

android

健康e购android

57
https://github.com/ankit1414/Fitvit Fitvit is an android application focused on

the health and fitness of the users.

https://github.com/kudrom/HealthWalk
https://github.com/kouh777/HealthStep
https://github.com/Health4TheWorld/Health4TheWorld-android
https://github.com/Health4TheWorld/Health4TheWorld-android
https://github.com/vinitdeodhar/healthnet
https://github.com/vinitdeodhar/healthnet
https://github.com/manueljeffin/MyHealth
https://github.com/manueljeffin/MyHealth
https://github.com/gpavlid/eHealth-Android
https://github.com/gpavlid/eHealth-Android
https://github.com/brandonscott/pulse
https://github.com/McFlyWYF/HealthManager
https://github.com/McFlyWYF/HealthManager
https://github.com/karahbit/RU_Healthy
https://github.com/zorosteven/FemaleHealth
https://github.com/zorosteven/FemaleHealth
https://github.com/gudigundla/PersonalHealthCheck
https://github.com/gudigundla/PersonalHealthCheck
https://github.com/ibisTime/xn-health-android
https://github.com/ibisTime/xn-health-android
https://github.com/ankit1414/Fitvit

114

58
https://github.com/rjbailey/mystatus An Android app that provides self-

management tools to users with chronic

health conditions.

59
https://github.com/cupcaketees/PocketFi

tness

An android application assisting in health

and fitness goals and lifestyle

60
https://github.com/aungkoman/mm_heal

th

Myanmar Health Android App

61
https://github.com/uurcan/Healthy Bachelor's graduation project. Health

application for Android devices.

62
https://github.com/oah-health/oah-

health-android-launcher

Launcher App for Digital Clinic for

Android Phones.

63
https://github.com/AkshayMathur92/Sy

ncHealth

SyncHealth is an Android app to move

fitness data from Samsung Health to

Google Fit.

64
https://github.com/ruifeng2357/FitnessA

pp

This is an Android & iPhone app for own

health state can record, analysis and share

using mobile app

65
https://github.com/umaranis/health-book An open source Android app for helping

cancer patients to keep track of their

medical history and condition.

66
https://github.com/psin007/HealthyMate

rnity

Android application to help rural pregnant

women

67
https://github.com/Ethanator/MobileHea

lth

Data are collected from Google Glass,

Moto 360, and Android phone to offer a

glimpse into the user's daily activity.

68
https://github.com/ogasimli/HealthBarV

iew

Custom health bar like view for Android

69
https://github.com/mpatel136/LifePulse Android Health App

70
https://github.com/justiceamoh/Asthma

Guard

Android App for Dartmouth COSC 169:

Mobile Health

71
https://github.com/beto4812/AirQueue-

Android

Air Quality Visualizations and health

tracking android application.

72
https://github.com/norim13/rios-mais-

ldso

Website and Android app for river health

monitoring and maintenance

73
https://github.com/chennanni/diabetes-

control-app

an android app to manage users' health

data

https://github.com/rjbailey/mystatus
https://github.com/cupcaketees/PocketFitness
https://github.com/cupcaketees/PocketFitness
https://github.com/aungkoman/mm_health
https://github.com/aungkoman/mm_health
https://github.com/uurcan/Healthy
https://github.com/oah-health/oah-health-android-launcher
https://github.com/oah-health/oah-health-android-launcher
https://github.com/AkshayMathur92/SyncHealth
https://github.com/AkshayMathur92/SyncHealth
https://github.com/ruifeng2357/FitnessApp
https://github.com/ruifeng2357/FitnessApp
https://github.com/umaranis/health-book
https://github.com/psin007/HealthyMaternity
https://github.com/psin007/HealthyMaternity
https://github.com/Ethanator/MobileHealth
https://github.com/Ethanator/MobileHealth
https://github.com/ogasimli/HealthBarView
https://github.com/ogasimli/HealthBarView
https://github.com/mpatel136/LifePulse
https://github.com/justiceamoh/AsthmaGuard
https://github.com/justiceamoh/AsthmaGuard
https://github.com/beto4812/AirQueue-Android
https://github.com/beto4812/AirQueue-Android
https://github.com/norim13/rios-mais-ldso
https://github.com/norim13/rios-mais-ldso
https://github.com/chennanni/diabetes-control-app
https://github.com/chennanni/diabetes-control-app

115

74
https://github.com/m2y-team/HealthOwl Android appication for healthcare

providers to manage patient data

75
https://github.com/medhelpintl/android_

hapi_sdk

Medhelp's hAPI health data platform for

Android

76
https://github.com/CMPUT301F18T21/

DoctorPlzSaveMe

An Android app for keeping track of

health issues

77
https://github.com/sydneymainga/Health firebase android

78
https://github.com/Vktor93/health android app

79
https://github.com/eliajada/CapstoneHea

lth

Fitness Tracker Android App

80
https://github.com/kevm66/4thYearProj

ect_Happy

Happy - Mental Health Android App

81
https://github.com/shvmshukla/Healthif

y-NearByHospitals-

An android application which uses google

map api and helps us to find nearby

hospitals. Also, it displays detailed

information about those hospitals(viz no

of doctors,no of beds, contact no etc.)

82
https://github.com/Maktm/TALK Android based application for tracking

your mental health

83
https://github.com/rr016/HealthOut Android app that allows users to input

health metrics; this data is used to

compare and graph the user's progress

toward's his/her goals.

84
https://github.com/SEUNAKINTOLA/H

ealthMonitor

HealthMonitor android app was built for a

final year project that involves automatic

monitoring of a patient's health, hereby

bringing mobile inteligence to health

system

85
https://github.com/alagrin/4tastic-health Android app leveraging the Knox SDK as

well as internal Android APIs to gather

data for medical electronic visit

verification

86
https://github.com/simonaMarkova/Heal

thQuest-android

android

87
https://github.com/brunocascio/nodeque

ry-android

An unofficial android native app for

https://nodequery.com/

https://github.com/m2y-team/HealthOwl
https://github.com/medhelpintl/android_hapi_sdk
https://github.com/medhelpintl/android_hapi_sdk
https://github.com/CMPUT301F18T21/DoctorPlzSaveMe
https://github.com/CMPUT301F18T21/DoctorPlzSaveMe
https://github.com/sydneymainga/Health
https://github.com/Vktor93/health
https://github.com/eliajada/CapstoneHealth
https://github.com/eliajada/CapstoneHealth
https://github.com/kevm66/4thYearProject_Happy
https://github.com/kevm66/4thYearProject_Happy
https://github.com/shvmshukla/Healthify-NearByHospitals-
https://github.com/shvmshukla/Healthify-NearByHospitals-
https://github.com/Maktm/TALK
https://github.com/rr016/HealthOut
https://github.com/SEUNAKINTOLA/HealthMonitor
https://github.com/SEUNAKINTOLA/HealthMonitor
https://github.com/alagrin/4tastic-health
https://github.com/simonaMarkova/HealthQuest-android
https://github.com/simonaMarkova/HealthQuest-android
https://github.com/brunocascio/nodequery-android
https://github.com/brunocascio/nodequery-android

116

88
https://github.com/JANGYONGSEONG

/healthNotes

android application

89
https://github.com/aiwac-health-

group/HealthRobot

Android project

90
https://github.com/tarsd/HealthGuru Android App

91
https://github.com/pryv/app-android-

iHealth

Android app that connects iHealth devices'

data to your Pryv

92
https://github.com/sha3rawi33/Sehhetna Am writing about "OUR" achievement of

winning the 2nd place in "E-sus Mobile

Applications Competition" in which,

competitors creates Mobile applications

and research ideas for solving the "SDGs"

sustainable development goals of the UN.

Our team's submitted application was

named after me "Healthy Wealthy"; we

worked on the Public Health. The appl…

93
https://github.com/w771854332/health_

android

health_android

94
https://github.com/pauloXtr3m/DroidHe

alth

Android application made in order to help

people being healthy following simple

advices.

95
https://github.com/mohamedelhadi123/

HealthCare1

Framework Android

96
https://github.com/Merdzhanov/Healthy

App

Android calorie counter

97
https://github.com/Alphacoder221/Healt

hApp-AyurVeda

Android HealthApp

98
https://github.com/KiraSensei13/Health

yGrill

HealthyGrill Android Mobile Application

99
https://github.com/AnkitKiet/HealthCar

e

Android app with Firebase

100
https://github.com/SRatna/HealthyNepal

i

Android health related application

101
https://github.com/qinzhig/HealthManag

er

Android Application for Healthcare

https://github.com/JANGYONGSEONG/healthNotes
https://github.com/JANGYONGSEONG/healthNotes
https://github.com/aiwac-health-group/HealthRobot
https://github.com/aiwac-health-group/HealthRobot
https://github.com/tarsd/HealthGuru
https://github.com/pryv/app-android-iHealth
https://github.com/pryv/app-android-iHealth
https://github.com/sha3rawi33/Sehhetna
https://github.com/w771854332/health_android
https://github.com/w771854332/health_android
https://github.com/pauloXtr3m/DroidHealth
https://github.com/pauloXtr3m/DroidHealth
https://github.com/mohamedelhadi123/HealthCare1
https://github.com/mohamedelhadi123/HealthCare1
https://github.com/Merdzhanov/HealthyApp
https://github.com/Merdzhanov/HealthyApp
https://github.com/Alphacoder221/HealthApp-AyurVeda
https://github.com/Alphacoder221/HealthApp-AyurVeda
https://github.com/KiraSensei13/HealthyGrill
https://github.com/KiraSensei13/HealthyGrill
https://github.com/AnkitKiet/HealthCare
https://github.com/AnkitKiet/HealthCare
https://github.com/SRatna/HealthyNepali
https://github.com/SRatna/HealthyNepali
https://github.com/qinzhig/HealthManager
https://github.com/qinzhig/HealthManager

117

102
https://github.com/ShizuoZ/RUPacer A health android app using pedometer to

count daily and weekly steps. Users can

log in via Facebook Account and compete

with friends in Leaderboard.

103
https://github.com/DebMaster/health PHP and Android application that tailors a

diet according to user attributes. Has some

basic machine learning in there using

phpML library.

104
https://github.com/mahadsiyaasi/Health- This android health app

105
https://github.com/rupalmartin/Health This Android application calculate Body

Mass Index(BMI) based on the height and

weight entered by the user. Also it counts

the steps taken using sensors.

106
https://github.com/rizwan95/HealthChill

i

Android application for healthchilli.com

107
https://github.com/kelooy/HealthDiagno

stics

Android app | Patients data storage

https://github.com/kelooy

108
https://github.com/TobiasReich/HealthT

racker

Health Tracker app for Android

109
https://github.com/KieronMoorcroft/Hea

lthMonitor

An Android Health Monitor App

110
https://github.com/BevoLEt/HealthCare

_Application

HealthCare Android Application

111
https://github.com/AndrewsJava/Health

FoodConcepts

Interactive Nutritional Android App

112
https://github.com/AndreeaMihalceaN/

HealthMonitoring-android

HealthMonitoring-android repository

113
https://github.com/ay3524/HealthPredict

ion

An android app based on Health

Prediction.

114
https://github.com/KuznetsovaAnastasii

a/HealthyCafe

An android app for the cafe staff

115
https://github.com/verma-

ady/HealthLitmus

 Android App for www.healthlitmus.com

116
https://github.com/kitaice/HealthClassifi

er

android app with decision tree classifier

https://github.com/ShizuoZ/RUPacer
https://github.com/DebMaster/health
https://github.com/mahadsiyaasi/Health-
https://github.com/rupalmartin/Health
https://github.com/rizwan95/HealthChilli
https://github.com/rizwan95/HealthChilli
https://github.com/kelooy/HealthDiagnostics
https://github.com/kelooy/HealthDiagnostics
https://github.com/TobiasReich/HealthTracker
https://github.com/TobiasReich/HealthTracker
https://github.com/KieronMoorcroft/HealthMonitor
https://github.com/KieronMoorcroft/HealthMonitor
https://github.com/BevoLEt/HealthCare_Application
https://github.com/BevoLEt/HealthCare_Application
https://github.com/AndrewsJava/HealthFoodConcepts
https://github.com/AndrewsJava/HealthFoodConcepts
https://github.com/AndreeaMihalceaN/HealthMonitoring-android
https://github.com/AndreeaMihalceaN/HealthMonitoring-android
https://github.com/ay3524/HealthPrediction
https://github.com/ay3524/HealthPrediction
https://github.com/KuznetsovaAnastasiia/HealthyCafe
https://github.com/KuznetsovaAnastasiia/HealthyCafe
https://github.com/verma-ady/HealthLitmus
https://github.com/verma-ady/HealthLitmus
https://github.com/kitaice/HealthClassifier
https://github.com/kitaice/HealthClassifier

118

117
https://github.com/sinanelveren/Smart-

Healthband-Bilek-Partner-Bil396-

Project

ESP32 based smart healtband and Android

application project.

118
https://github.com/qianzch/NowSleep It's time for bed! Now Sleep! [Android

App]

119
https://github.com/tymiles003/ivanlorca

app

Health & Fitness Android App

120
https://github.com/NiallMcCann96/Heal

th-App

An Android Health App

121
https://github.com/smithevandouglas/Sal

utem

Health tracking Android application

122
https://github.com/SuitGuy/Health_Appl

ication

A Prototype android application to test the

HCI considerations for a tele medicine

application as part of a software design

study course.

123
https://github.com/PabloPicassoft/MyM

ediCare

Android Health Measurement App

124
https://github.com/ayushkumar0630/Vitr

ixMobileApplication

Vitrix Health Android Application

125
https://github.com/malkio/happyfit an android health app

http://maxmenthol.bitbucket.org

126
https://github.com/gameloser/Burning-

Fat

Android Project - Health & Fitness

127
https://github.com/RazorWire13/health-

tracker

Health Tracker (Android Mobile)

128
https://github.com/vivi1393/PriorityAnd

roid

Proyecto Android Piority Health

129
https://github.com/tkyang99/healthapp An Android Health App.

130
https://github.com/Abhishek-

karmakar/healthbuzzz

Health buzz android app

131
https://github.com/woolver/CYBAWeig

ht

android app for health

https://github.com/sinanelveren/Smart-Healthband-Bilek-Partner-Bil396-Project
https://github.com/sinanelveren/Smart-Healthband-Bilek-Partner-Bil396-Project
https://github.com/sinanelveren/Smart-Healthband-Bilek-Partner-Bil396-Project
https://github.com/qianzch/NowSleep
https://github.com/tymiles003/ivanlorcaapp
https://github.com/tymiles003/ivanlorcaapp
https://github.com/NiallMcCann96/Health-App
https://github.com/NiallMcCann96/Health-App
https://github.com/smithevandouglas/Salutem
https://github.com/smithevandouglas/Salutem
https://github.com/SuitGuy/Health_Application
https://github.com/SuitGuy/Health_Application
https://github.com/PabloPicassoft/MyMediCare
https://github.com/PabloPicassoft/MyMediCare
https://github.com/ayushkumar0630/VitrixMobileApplication
https://github.com/ayushkumar0630/VitrixMobileApplication
https://github.com/malkio/happyfit
https://github.com/gameloser/Burning-Fat
https://github.com/gameloser/Burning-Fat
https://github.com/RazorWire13/health-tracker
https://github.com/RazorWire13/health-tracker

119

132
https://github.com/KourdacheHoussam/

HealthContentManager

Application Android de gestion de

patients

133
https://github.com/swe-team-

c/HealthCareApplication

An android application for health care

134
https://github.com/DiszaJatnika/asyifahe

alth

Aplikasi Android Asyifa Health

135
https://github.com/carlyonmdsol/Health

VaultAndroidExample

Cleaned up Android Health Vault

Example

136
https://github.com/Epamek/HealthyLivi

ng2

Heartrate Monitoring through Android

over Bluetooth LE

137
https://github.com/neelmehta247/Hack4

Health

RemindMe is an Android app that helps

Alzheimer's patients multitask in their day

to day life.

138
https://github.com/davitterar/Healthiera Healthiera android app

139
https://github.com/bitgeeky/healthservic

e

Android application for Appathon

140
https://github.com/chinnatan/Healthy Advanace app android

141
https://github.com/CrystalRanita/BabyH

elper

Health care tool using OpenCV on

android platform

142
https://github.com/timchenggu123/Save

Mi

A health monitoring Android app. Winner

of Waterloo EngHack 2019

143
https://github.com/thomasfn/HealthApp Android health app for Mobile

Application Development coursework

2015.

144
https://github.com/dasilvabalautaro/Heal

thCheckpoint

Android- Get data of sensors and send to

other mobile.

145
https://github.com/Epamek/HealthyLivi

ng

Heart rate monitor for Android using

Bluetooth Low Energy

146
https://github.com/steepmountain/Health

Sync

Android Application that displays data

from Samsung S Health

147
https://github.com/mattdhlee/HealthFact

s

An android app that provides users with

random health facts.

https://github.com/chinnatan/Healthy
https://github.com/thomasfn/HealthApp

120

148
https://github.com/custord/HealthList [Android] Front-end Application to

Browse Nearby Health Care Specialists.

149
https://github.com/adeepbiswas18/Healt

hyHands

Android app for germs detection in hands

using image processing.

150
https://github.com/kurtlewis/know-

yourself

DerbyHacks3 Project - An android app for

tracking your mental health

151
https://github.com/prabhnoor15/HealthF

it

this is the android studio project for

"Health Fit"

152
https://github.com/wwwhackcom/Health

Crossplatform

Health and wellness Crossplatform

app(Android and iOS) using Xamarin

153
https://github.com/jerryliu3/HealthTrack

er

https://github.com/jerryliu3/HealthTracker

154
https://github.com/mmarose14/HealthPa

irs

Android app for looking up Healthy Food

combinations

https://mattsapps.mobi/health-pairs/

155
https://github.com/jeffborda/health-

tracker

Android App

156
https://github.com/DarrinHowell/health-

tracker

android app

157
https://github.com/pedfernandes/CarHea

lth

Aplicativo Android

158
https://github.com/christophergunadi/He

althHack18_Calorie_Camera

Android app designed for Health Hack

2018.

159
https://github.com/siddharthsujir/Health-

Buddy

An Android application for health

conscious android user

160
https://github.com/SayeedAbid/HealthM

onitorApp

A personal health monitoring system with

android studio and java

161
https://github.com/doneill123/HealthyH

abitsProject

Mobile app on Android Studio for final

year project

162
https://github.com/Abdullah-

Naveed/HealthChain-Android

Android App for Final Year Project -

Health Chain

163
https://github.com/santosh719/HealthM

onitoringByGraph

Health monitoring and relevant data

storage android app

https://github.com/jerryliu3/HealthTracker
https://github.com/jerryliu3/HealthTracker
https://github.com/jeffborda/health-tracker
https://github.com/jeffborda/health-tracker
https://github.com/DarrinHowell/health-tracker
https://github.com/DarrinHowell/health-tracker

121

164
https://github.com/Tianming8585/iHealt

h

iHealth Android Firebase

165
https://github.com/charlesmastin/healthn

otifier-android

HealthNotifier Android Client

166
https://github.com/zhning12/Health-

Record

Android Individual Project.

167
https://github.com/Ajayclamour/MyHeal

thyHost_Android

MyHealthyHost_Android

168
https://github.com/kenny0202/SimpleHe

althPlan

Android App

169
https://github.com/marcgilbert01/Contac

tsSimpleApp

Android test for "Babylon Health"

170
https://github.com/danielCantwell/Fit-

Friend

Health & Exercise app for Android

171
https://github.com/samikshay2/HHH-

Healthy-Heart-Helper

Android App

172
https://github.com/RavneetDTU/Health-

Startup

Android App for Health Startup

173
https://github.com/Touhid7051/BMI-

Health-Monitor-Android-app

BMI Health Monitor Android app

174
https://github.com/serkansorman/LogMe

-Android-App

Smart Health Band Android App

https://logmewristband.github.io

175
https://github.com/AndreasHalim/Afiat

App

Health tracker run on Android

176
https://github.com/ylrodriguez/Healthcar

eTracking

Aplicación móvil en Android para el

control de medicinas y citas para el adulto

mayor.

177
https://github.com/kkhwee/hci-

assignment

CPR Health Buddy Android Application

178
https://github.com/xiangxianzui/Health-

Android-Client

Android client of "HEALTH" app

179
https://github.com/Ramonrune/nhs-

patient

NFC Health System Patient Android

https://github.com/Tianming8585/iHealth
https://github.com/Tianming8585/iHealth

122

180
https://github.com/StevenElberger/Healt

hMate

An android application that tracks user's

health information and uploads it to a

database.

181
https://github.com/pratikg11/HealthMan

ager

This is an android App to Calculate Daily

Calorie Intake and many other

functionalities

182
https://github.com/yourSylvia/HealthAs

sistant

An Android APP for exercise reminder,

user activities tracking report, exercise

videos and health forum.

183
https://github.com/ahmetkilinc/FitnessF

orEnergy

An android app for health

https://play.google.com/store/apps/de…

184
https://github.com/cagdasbilecen/health-

tracker-app

health tracker app for android

185
https://github.com/samdkershaw/Health

Buddy

An Android application that integrates

with the FatSecret platform to provide

health guides to end users.

186
https://github.com/SuciuCalin/Project_0

9_HealthyRoutineTracker

Habit Tracker App - Udacity Android

Basics Nanodegree by Google

187
https://github.com/rieekan/QualitativeH

ealthSystems

Qualitative Health Systems - Android

Client

188
https://github.com/AtifMahmud/Health

Watch

An Android to work in conjunction with a

heart rate tracking wearable.

189
https://github.com/jocelindarma/Health

Navigator

A fully functioning Android app that

allows people to request and give personal

hygiene products.

190
https://github.com/sappybawa/Medicatio

nInformationSystem

Hacking Health, Android app UI

191
https://github.com/neil007m/HealthApp Android app that records a user's

symptoms and various information about

it.

192
https://github.com/MV1998/HealthStrid

e

An Android Application for health stride

which was made during industrial

training.

193
https://github.com/MujtabaBinKhalid/lif

eline

An android health , fitness application.

194
https://github.com/tanyag330/HealthTot

al

This is an Android App used to maintain

proper health and diet.

https://github.com/pratikg11/HealthManager
https://github.com/pratikg11/HealthManager
https://github.com/neil007m/HealthApp

123

195
https://github.com/apoorvsarang10/Heal

thilyApp

Android health related app which

incorporates Fragments, Firebase

Authentication, Firebase Firestore,

Notifications and Accelerometer.

196
https://github.com/aarjan/Android-apps A set of android mobile applications

197
https://github.com/nvrocks/MobiDoc This is a health care android application

which determines the disease suffered by

the patient on the basis of symptoms

entered by him/her.

198
https://github.com/jnoga1996/healthy-

eating

Android app for PUM18 course

199
https://github.com/dimgiatz/healthevents

-android-project

University Android Project

200
https://github.com/Nolthicha/Health_Ca

re_For_Diabetes

Project Android Silpakorn University

201
https://github.com/NgJun/bHealth_Andr

oid_SouceCode

Android Code

202
https://github.com/SajalGupta/PlanYour

Health

PlanYourHealth Android Application

203
https://github.com/itzatom/HealthSyste

mApp

Companion App for HealthSystem.

Exame project for Mobile Devices. First

Java/Android application.

124

Glossary of Terms

Android Application Package (APK) Files – Applications developed to run on the

Google Android platforms.

Android Runtime Environment (ART) – A more modern ahead-of-time (AOH) version

of the Google Android runtime platform.

Application Programming Interface (API) – A set of functions and procedures providing

the development of applications to access data and operating system features.

Bring Your Own Device (BYOD) - An organizational policy which allows personnel to

use their own personal device rather than an official organizational device.

Bug Framework (BF) – A framework that organizes software weaknesses, or bugs, into

distinct classes.

Buffer Overflow (BOF) - The software accesses through an array memory location that is

outside the boundaries of that array [11].

Common Attack Pattern Enumeration and Classification (CAPEC) - dictionary of

known patterns of attack to exploit known weaknesses in technologies.

Common Weakness Enumeration (CWE) – a community-developed common language

list of common software and hardware security weaknesses.

125

Data Loss Prevention (DLP) Technologies – monitors networks and systems to try to

detect and prevent potential data breaches and ex-filtration transmissions.

Dalvik Virtual Machine (DVM) – An earlier just-in-time (JIT) version of the Google

Android runtime platform.

Encryption/Decryption Bugs (ENC) – Defined by [11] as, “Encryption Bugs: The

software does not properly transform sensitive data (plaintext) into unintelligible form

(ciphertext) using a cryptographic algorithm and key(s). Decryption Bugs: The software

does not properly transform ciphertext into plaintext using a cryptographic algorithm and

key(s).”

Health Insurance Portability and Accountability Act (HIPAA) – A federal healthcare

law enacted by the 104th United States Congress in 1996 with the primary motivation to

modernize the flow of healthcare information.

Inter Process Communications (IPC) – An operating system process mechanism to allow

communication and resource synchronization between process.

Java Virtual Machine (JVM) - A virtual machine that enables the execution of Java

programs and other languages compiled down to Java bytecode.

Key Management Bugs (KMN) – Defined by [11] as, “The software does not properly

generate, store, distribute, use, or destroy cryptographic keys and other keying material.”

126

Mobile Device Management (MDM) – a technology for the administration of mobile

devices to lower organizational risks.

National Institute of Standards and Technology (NIST) – A United States’ physical

science laboratory under the U.S. Department of Commerce founded in 1901 to provide a

country-wide infrastructure for measurements through standards.

National Vulnerability Database (NVD) – the U.S. government repository of standards-

based vulnerability management data.

OAuth Tokens – Authentication tokens following an open standard for access delegation

typically employed after the initial system authentication.

Open Web Application Security Project (OWASP) - a nonprofit foundation that works

to improve the security of software through community-driven projects (e.g. tools and

resources), trainings, and conferences related to cybersecurity.

Penetration Testing - authorized simulated cyberattack on a technology, performed to

evaluate the technologies’ security.

Resource Description Framework Schema (RDFS) - Originally produced by the RDF

Schema Working Group (1997-2000) as a set of classes with certain properties for the

description of ontologies.

Risk Assessment - a process to identify potential threats to weaknesses within a domain

for the purpose of analyzing the likelihood and impact to the domain.

127

Semantic Web - an extension of the “current web in which information is given well-

defined meaning, better enabling computers and people to work in cooperation. [94]”

Software Assurance Metrics And Tool Evaluation (SAMATE) - The NIST Software

Assurance Metrics And Tool Evaluation (SAMATE) project is “dedicated to improving

software assurance by developing methods to enable software tool evaluations, measuring

the effectiveness of tools and techniques, and identifying gaps in tools and methods. The

scope of the SAMATE project is broad: ranging from operating systems to firewalls,

SCADA to web applications, source code security analyzers to correct-by-construction

methods. [95]”

United States Computer Emergency Readiness Team (US-CERT) - An organization

within the Department of Homeland Security’s (DHS) Cyber Security and Infrastructure

Security Agency (CISA) responsible for “analyzing and reducing cyber threats,

vulnerabilities, disseminating cyber threat warning information, and coordinating incident

response activities. [96]”

Unique User Identifier (UID) - A reference associated with a single entity in a system.

Verification Bugs (VRF) - Defined by [11] as, “The software does not properly sign data,

check and prove source, or assure data is not altered.”

Web Ontology Language (OWL) - a Semantic Web language designed to represent

detailed and complex knowledge about things and their groups and relationships.

128

Reference

[1] D. Allemang and J. Hendler, Semantic Web for the Working Ontologist: Effective Modeling

in RDFS and OWL, Morgan Kaufmann Publishers Inc., 2011, p. 384.

[2] L. Yu, A Developer's Guide to the Semantic Web, Heidelberg: Springer, 2015.

[3] L. Yu, A Developers Guide to the Semantic Web, Springer Publishing Company,

Incorporated, 2011, p. 608.

[4] Ö. Kafali, J. Jones, M. Petruso, L. Williams and M. P. Singh, "How good is a security policy

against real breaches?: a HIPAA case study," in Proceedings of the 39th International

Conference on Software Engineering, Buenos Aires, Argentina, 2017.

[5] A. Elçi, "Isn't the Time Ripe for a Standard Ontology on Security of Information and

Networks?," in Proceedings of the 7th International Conference on Security of Information

and Networks, Glasgow, Scotland, UK, 2014.

[6] C. Blackwell, "A security ontology for incident analysis," in Proceedings of the Sixth Annual

Workshop on Cyber Security and Information Intelligence Research, Oak Ridge, Tennessee,

USA, 2010.

[7] J. Howard and T. Longstaff, A common language for computer security incdients,

Albuquerque, NM: Sandia National Laboratories, 1998.

[8] A. V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, & Tools

with Gradiance, USA: Addison-Wesley Publishing Company, 2007.

[9] National Institute of Standards and Technology (NIST), "National Vulnerability Database

(NVD)," 10 July 2019. [Online]. Available: https://web.nvd.nist.gov.

[10] I. Bojanova, P. Black and Y. Yesha, "Cryptography classes in bugs framework (bf):

Encryption bugs (enc), verification bugs (vrf), and key management bugs (kmn)," in In 2017

IEEE 28th Annual Software Technology Conference (STC), Gaithersberg, Maryland, 2017.

[11] I. Bojanova, P. Black, Y. Yesha and Y. Wu, "The bugs framework (bf): A structured approach

to express bugs," in In 2016 IEEE International Conference on Software Quality, Reliability

and Security (QRS), 2016.

[12] MITRE, "Common Weakness Enumeration (cwe).," 10 July 2019. [Online]. Available:

https://cwe.mitre.org.

129

[13] MITRE, "CAPEC View: Mechanisms of attack," 10 July 2019. [Online]. Available:

https://capec.mitre.org/data/definitions/1000.html.

[14] S. Schmeelk, "Where are we looking? Understanding android static analysis techniques,"

in In 2019 IEEE International Conference on Services Computing, Milan, Italy, 2019.

[15] S. Schmeeelk, "Where are we looking for security concerns? Understanding Android

Security Static Analysis," in Proceedings of the Future Technologies Conference (FTC) 2019,

San Fransisco, CA, 2019.

[16] S. Schmeelk, J. Yang and A. Aho, "Android malware static analysis techniques," in In

Proceedings of the 10th Annual Cyber and Information Security Research Conference CISR

’15, New York, NY, USA, 2015.

[17] S. Schmeelk and A. Aho, "Defending android applications availability," in 2017 IEEE 28th

Annual Software Technology Conference (STC), Gaithersburg, MD, 2017.

[18] M. Bishop, Addison-Wesley Professional, Introduction to Computer Security, 2004.

[19] A. Whitman and M. Mattord, Roadmap to Information Security: For IT and Infosec

Managers, 1st edition, Delmar Learning, 2011.

[20] N. Daswani, C. Kern and A. Kesavan, Foundations of Security: What Every Programmer

Needs to Know, Berkely, CA, USA: Apress, 2007.

[21] S. M. Bellovin, "The puzzle of privacy," IEEE Security and Privacy, p. 6(5):88–88, 2008.

[22] S. M. Bellovin., "Identity and security.," IEEE Security and Privacy, p. 8(2):88–88, March

2010.

[23] E. Androulaki and S. M. Bellovin, "A secure and privacy-preserving targeted ad-system.," in

In Proceedings of the 14th International Conference on Financial Cryptograpy and Data

Security, FC’10, Berlin, 2010.

[24] M. Bishop, Introduction to Computer Security., Addison-Wesley Professional, 2004.

[25] A. Bessey, K. Block, B. Cheif, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros, A. Kamsky, S.

McPeak and D. Engler, "A few billion lines of code later: Using static analysis to find bugs

in the real world.," Commun. ACM, p. 53(2):66–75, Feb 2010.

[26] Hewlett-Packard Development Company, "HP Fortify," 10 July 2019. [Online]. Available:

http://www8.hp.com/us/en/software-solutions/application-security/index.html.

130

[27] Rogue Wave Software, "Klocworkr," 10 July 2019. [Online]. Available:

http://www.klocwork.com.

[28] M. A. Musen, "The protégé project: a look back and a look forward," AI Matters, p. 4–12,

2015.

[29] A. Goknil and Y. Topaloglu, "Ontological perspective in metamodeling for model

transformations," in In Proceedings of the 2005 symposia on Metainformatics (MIS ’05),

New York, NY, USA, 2005.

[30] N. Noy and D. McGuinness, "Ontology development 101: A guide to creating your first

ontology.," Technical report at Stanford Knowledge Systems Laboratory, Palo Alto, CA,

USA, 2001.

[31] L. W. Lacy, OWL: Representing Information Using the Web Ontology Language, Victoria,

BC, Canada: Trafford, 2005.

[32] I. Patel, I. Dube, L. Tao and N. Jiang, "Extending OWL to Support Custom Relations," in

2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing, New

York, NY, USA, 2015.

[33] Google, "Configure an Android Device," 11 10 2019. [Online]. Available:

https://source.android.com/devices/tech.

[34] Wikipedia, "Android Runtime," 12 10 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Android_Runtime.

[35] Oracle, "Java™ Virtual Machine Technology," 12 October 2019. [Online]. Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/vm/.

[36] W. Enck, D. Octeau, P. McDaniel and S. Chaudhuri, "A study of android application

security," in In Proceedings of the 20th USENIX Conference on Security, SEC’11, Berkeley,

CA, USA, 2011.

[37] Google, "Dalvik Executable format," 12 October 2019. [Online]. Available:

https://source.android.com/devices/tech/dalvik/dex-format.

[38] C. Mann and A. Starostin, "A framework for static detection of privacy leaks in android

applications," in Proceedings of the 27th Annual ACM Symposium on Applied Computing,

SAC ’12, New York, NY, USA, 2012.

[39] Oracle, "Chapter 7. Opcode Mnemonics by Opcode," 11 October 2019. [Online]. Available:

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-7.html.

131

[40] Google, "About the Android Open Source Project," 12 October 2019. [Online]. Available:

https://source.android.com/.

[41] Google, "Android Architecture," 10 10 2019. [Online]. Available:

https://source.android.com/devices/architecture.

[42] Google, "Applicaition Sandbox," 11 October 2019. [Online]. Available:

https://source.android.com/security/app-sandbox.

[43] "Android decompiled process and tools," 11 October 2019. [Online]. Available:

http://www.yelbee.top/index.php/archives/105/.

[44] M. Gargenta and N. M., Learning Android: Develop Mobile Apps Using Java and Eclipse,

O’Reilly Media, Inc., 2014.

[45] Google, "Understand the Activity Lifecycle," 12 October 2019. [Online]. Available:

https://developer.android.com/guide/components/activities/activity-lifecycle.

[46] Google, "Cipher," 1 April 2020. [Online]. Available:

https://developer.android.com/reference/javax/crypto/Cipher.

[47] OWASP, "OWASP Mobile Top 10," 25 March 2020. [Online]. Available:

https://owasp.org/www-project-mobile-top-10/.

[48] OWASP, "Mobile Top 10 2016-M2-Insecure Data Storage," 2 May 2018. [Online].

Available: https://www.owasp.org/index.php/Mobile_Top_10_2016-M2-

Insecure_Data_Storage.

[49] Google, "Data and file storage overview.," 29 November 2018. [Online]. Available:

https://developer.android.com/guide/topics/data/data-storage#db.

[50] Google, "Security Tips," 10 December 2018. [Online]. Available:

https://developer.android.com/training/articles/security-tips.

[51] Google, "Context.," 15 December 2018. [Online]. Available:

https://developer.android.com/reference/android/content/Context#openFileOutput(java.

lang.String,%20int).

[52] A. Rajab, "How to prevent database and shared preferences from being hacked," 09

November 2017. [Online]. Available:

https://stackoverflow.com/questions/47207420/how-to-prevent-database-and-shared-

preferences-from-being-hacked.

132

[53] Google, "Save key-value data," 2020. [Online]. Available:

https://developer.android.com/training/data-storage/shared-preferences#java.

[54] Google, "Save data using SQLite.," 12 December 2018. [Online]. Available:

https://developer.android.com/training/data-storage/sqlite.

[55] Google, "Save data using SQLite," 2020. [Online]. Available:

https://developer.android.com/training/data-storage/sqlite#java.

[56] Google, "Context," 2020. [Online]. Available:

https://developer.android.com/reference/android/content/Context.

[57] Google, "Save files on device storage.," 10 November 2018. [Online]. Available:

https://developer.android.com/training/data-storage/files#java.

[58] Google, "Security with HTTPS and SSL," 27 May 2019. [Online]. Available:

https://developer.android.com/training/articles/security-ssl.

[59] M. Dolan, "Android Security: SSL Pinning," 13 January 2017. [Online]. Available:

https://medium.com/@appmattus/android-security-ssl-pinning-1db8acb6621e.

[60] A. Wagoner, "Best keyboard apps for Android in 2019," 10 April 2019. [Online]. Available:

https://www.androidcentral.com/best-keyboard-android.

[61] A. Sinicki, "Let’s build a custom keyboard for Android," 27 January 2018. [Online].

Available: https://www.androidauthority.com/lets-build-custom-keyboard-android-

832362/.

[62] Worldbestlearningcenter.com, "Android cache image from url," 27 May 2019. [Online].

Available: https://www.worldbestlearningcenter.com/tips/Android-cache-image-from-

url.htm.

[63] Google, "App security best practices," 27 May 2019. [Online]. Available:

https://developer.android.com/topic/security/best-practices.

[64] Google, "Copy and Paste," 27 May 2019. [Online]. Available:

https://developer.android.com/guide/topics/text/copy-paste.

[65] V. Sutariya, "How to programmatically take a screenshot on Android?," 21 August 2014.

[Online]. Available: https://stackoverflow.com/questions/2661536/how-to-

programmatically-take-a-screenshot-on-android.

[66] Google, "Authenticate to OAuth2 services," 27 May 2019. [Online]. Available:

https://developer.android.com/training/id-auth/authenticate.

133

[67] Google, "Smart Lock for Passwords on Android," 27 May 2019. [Online]. Available:

https://developers.google.com/identity/smartlock-passwords/android/.

[68] J. Henry, "3DES is Officially Being Retired," 3 August 2018. [Online]. Available:

https://www.cryptomathic.com/news-events/blog/3des-is-officially-being-retired.

[69] C. Sincerbox, "Security Sessions: Exploring Weak Ciphers," March/April 2014. [Online].

Available: https://electricenergyonline.com/energy/magazine/779/article/Security-

Sessions-Exploring-Weak-Ciphers.htm.

[70] S. Giro, "Security "Crypto" provider deprecated in Android N," 9 June 2016. [Online].

Available: https://android-developers.googleblog.com/2016/06/security-crypto-provider-

deprecated-in.html.

[71] N. Elenkov, "Using Password-based Encryption on Android," 27 April 2012. [Online].

Available: https://nelenkov.blogspot.com/2012/04/using-password-based-encryption-

on.html.

[72] Google, "Using Cryptography to Store Credentials Safely.," 10 December 2018. [Online].

Available: https://android-developers.googleblog.com/2013/02/using-cryptography-to-

store-credentials.html.

[73] M. Sabt and J. Traore, "Breaking Into the KeyStore: A Practical Forgery Attack Against

Android KeyStore," in 21st European Symposium on Research in Computer Security

(ESORICS), Heraklion, Greece, 2016.

[74] Google, "Content provider basics," 27 May 2019. [Online]. Available:

https://developer.android.com/guide/topics/providers/content-provider-basics#java.

[75] Google, "HttpCookie," 27 May 2019. [Online]. Available:

https://developer.android.com/reference/java/net/HttpCookie.

[76] ProgramCreek, "Java Code Examples for java.net.HttpCookie.isHttpOnly()," 27 May 2019.

[Online]. Available: https://www.programcreek.com/java-api-

examples/?class=java.net.HttpCookie&method=isHttpOnly.

[77] J. Fernandes, "Implementation of Session Time Outs in Android," 3 February 2015.

[Online]. Available: https://stackoverflow.com/questions/28292390/implementation-of-

session-time-outs-in-android.

[78] H. Mittal, "How to secure Android App Code from Reverse Engineering," 2 September

2017. [Online]. Available: https://medium.com/@mittal2810/how-to-safe-app-from-

reverse-engineering-d4ca7910d2f.

134

[79] GuardSquare, "Decompiling obfuscated Android applications," 27 May 2019. [Online].

Available: https://www.guardsquare.com/en/blog/decompiling-obfuscated-android-

applications.

[80] Google, "Sign your app," 27 May 2019. [Online]. Available:

https://developer.android.com/studio/publish/app-signing.

[81] OWASP, "Mobile Top 10 2016-Top 10," 1 August 2019. [Online]. Available:

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10.

[82] ZYS, "an unsafe implementation of the interface X509TrustManager from google," 23

February 2016. [Online]. Available: https://stackoverflow.com/questions/35545126/an-

unsafe-implementation-of-the-interface-x509trustmanager-from-google.

[83] OWASP, "Mobile Top 10 2016-M5-Insufficient Cryptography," 13 February 2017. [Online].

Available: https://www.owasp.org/index.php/Mobile_Top_10_2016-M5-

Insufficient_Cryptography.

[84] S. Cole, "New Study Suggests People Are Keeping Their Phones Longer Because There’s

Not Much Reason to Upgrade," October 30 2018. [Online]. Available:

https://www.wsj.com/articles/upgrade-no-thanks-americans-are-sticking-with-their-old-

phones-1540818000.

[85] Google, "Full-Disk Encryption," 26 January 2019. [Online]. Available:

https://source.android.com/security/encryption/full-disk.

[86] J. Hruska, "Android 6.0 Marshmallow makes full-disk encryption mandatory for most new

devices," October 20 2015. [Online]. Available:

https://www.extremetech.com/mobile/216560-android-6-0-marshmallow-makes-full-

disk-encryption-mandatory-for-most-new-devices.

[87] Google, "Encryption," 26 January 2019. [Online]. Available:

https://source.android.com/security/encryption.

[88] Google, "File-Based Encryption," 1 January 2019. [Online]. Available:

https://source.android.com/security/encryption/file-based.

[89] Google, "File-Based Encryption," 26 January 2019. [Online]. Available:

https://source.android.com/security/encryption/file-based.

[90] Infosec Institute, "Cracking Android App Binaries," 1 August 2019. [Online]. Available:

https://resources.infosecinstitute.com/android-hacking-security-part-17-cracking-

android-app-binaries/#gref.

135

[91] F. Brandolini, "Hooking Java methods and native functionsto enhance Android applications

security," 2016. [Online]. Available:

https://amslaurea.unibo.it/12257/1/Brandolini_HookingJavaMethodsAndNativeFunctions

.pdf.

[92] S. Schmeelk and T. Lixin, "Mobile Software Assurance Informed through Knowledge Graph

Construction: The OWASP Threat of Insecure Data Storage," Journal of Computer Science

Research, vol. 2, no. 2, 2020.

[93] NIST, "Buffer Overflow (BOF) Class," 1 Februrary 2020. [Online]. Available:

https://samate.nist.gov/BF/Classes/BOF.html.

[94] T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web, Scientific American, 2001.

[95] NIST, "Introduction to SAMATE," NIST, [Online]. Available:

https://samate.nist.gov/index.php/Introduction_to_SAMATE.html. [Accessed 1 May

2020].

[96] Wikipedia, "United States Computer Emergency Readiness Team," Wikipedia, [Online].

Available:

https://en.wikipedia.org/wiki/United_States_Computer_Emergency_Readiness_Team.

[Accessed 1 May 2020].

[97] user3898539, "How the SharedPreferences works and is it safe.," 18 August 2014.

[Online]. Available: https://stackoverflow.com/questions/25373145/how-the-

sharedpreferences-works-and-is-it-safe.

[98] Google, "Save key-value data.," 12 December 2018. [Online]. Available:

https://developer.android.com/training/data-storage/shared-preferences.

[99] Google, "SharedPreferences.," 02 December 2018. [Online]. Available:

https://developer.android.com/reference/android/content/SharedPreferences .

[10

0]

J. Howard, An Analysis of Security Incidents on the Internet, 1989-1995, PhD Thesis,

Pittsburg, PA: Carnegie-Mellon University, 1997.

[10

1]

National Institute of Standards and Technology (NIST), "Special Publication (SP) 800-30.

Guide for Conducting Risk Assessments.," 08 December 2012. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-30r1.pdf.

[10

2]

R. Valle´e-Rai, P. Co , E. Gagnon and L. Hendre, "Soot - a java bytecode optimization

framework.," in In Proceedings of the 1999 Conference of the Centre for Advanced Studies

on Collaborative Research, CASCON ’99, 1999.

136

[10

3]

dangqingdani, Romangol and MindMac, "SecMobi Wiki," 12 October 2019. [Online].

Available: http://wiki.secmobi.com/tools.

[10

4]

A. Bartel, J. Klein, Y. Le Traon and M. Monperrus, "Dexpler: Con- verting android dalvik

bytecode to jimple for static analysis with soot.," in In Proceedings of the ACM SIGPLAN

International Workshop on State of the Art in Java Program Analysis, SOAP ’12, New York,

New York, USA, 2012.

[10

5]

F. Wei, S. Roy, X. Ou and R. , "Amandroid: A precise and general inter-component data

flow analysis framework for security vetting of android apps," in 2014 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’14, New York, NY, USA, 2014.

[10

6]

U. Nikolic´ and F. Spoto, "Reachability analysis of program variables.," ACM Trans.

Program. Lang. Syst., 35(4), p. 1–68, 2014.

[10

7]

Google, "Save files on device storage," 2020. [Online]. Available:

https://developer.android.com/training/data-storage/files#java.

