
Mapping Parallel Programs onto Parallel
Systems with Torus and Mesh Based

Communication Structures

Lixin Tao

A DISSERTATION

in

Computer and Information Sciences

Presented to the Faculties of the University of Pennsylvania in
Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy.

1988

Supervisor of Dissertation

Graduate Group Chairperson

COPYRIGHT c©
Lixin Tao

1988

To my parents

iii

Acknowledgements

I am grateful to my advisor Dr. Eva Ma for her persistent support and advice during my
four year study at the University of Pennsylvania. My dissertation benefits greatly from
her insights and demand for high quality research and presentation. I would also like to
thank Dr. Michael Palis, Dr. Insup Lee, and Dr. I. Hal Sudborough for serving on my
dissertation defense committee and providing many good comments and suggestions for
my research.

I am indebted to Prof. Tong-han Chang for introducing me into computer science.
Dr. Charles Culmer’s suggestions on writing styles have been very helpful.

This work was supported in part by National Science Foundation grant DCR84-51408,
IBM research grant, AT&T Information System research grant, National Science Founda-
tion CER grant MCS82-19196, and Army Research Office grant DAAG-29-84-K-0061.

iv

ABSTRACT

Mapping Parallel Programs onto Parallel Systems with
Torus and Mesh Based Communication Structures

Lixin Tao
Supervisor: Dr. Eva Ma

The major objectives of this research are (1) to design efficient schemes for mapping par-
allel programs onto parallel processing systems to minimize the communication overhead
incurred by the mismatch between the communication characteristics of the parallel pro-
grams and those of the parallel processing systems, and (2) to support logical inter-process
communication at execution time to improve program readability, verifiability, productiv-
ity, and portability.

We use graph mapping as the mathematical model of the program mapping problem.
We introduce a rich class of low dilation cost graph embedding functions for toruses and
meshes of various dimensions and various shapes (with lines, rings, and hypercubes as
special cases). We design contraction functions to generalize the one-to-one embeddings
to achieve optimal or good many-to-one graph mappings.

We propose an efficient program loading approach based on inverses of mapping func-
tions and a broadcast network. We design the shortest-path data routing scheme to carry
out automatically our data routing strategies at execution time to simulate on the system
any permutation type set or scatter type set of parallel neighboring communications in
the task graph. For most of our mapping functions, the data routing complexities are the
same as the corresponding dilation costs. For the rest, the data routing complexities are
less than four times the corresponding dilation costs. Since our approach supports task
graph level communication at execution time, even the object code of parallel programs
can be completely transparent to system topologies.

v

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Research Objectives . 1

1.3 Issues Studied in This Dissertation . 3

2 Literature Survey 6

2.1 Introduction . 6

2.2 Graph Embedding . 6

2.3 Task Graph Contraction . 10

2.4 Data Routing in Single-stage Interconnection Networks 14

2.5 Mapping Parallel Programs onto Parallel Systems 19

3 Embeddings among Toruses and Meshes 21

3.1 Introduction . 21

3.2 Preliminaries . 22

3.3 Basic embeddings . 26

3.3.1 Embedding a line into a mesh or a torus 26

3.3.2 Embedding a ring into a mesh or a torus 30

3.4 Generalized embeddings . 38

3.4.1 Embeddings for increasing dimension 41

3.4.2 Embeddings for lowering dimension 44

3.5 Generalized embeddings among square toruses and square meshes 53

3.6 Conclusion . 61

4 Program Loading and Data Routing 63

4.1 Introduction . 63

4.2 Assumptions and Definitions . 64

4.3 Logical Address Identification and Program Loading 68

4.3.1 Inverses of Embedding Functions . 69

4.3.2 Logical Address Identification . 75

4.3.3 Program Loading . 76

4.4 Parallel Generation of Translation Tables 77

4.5 Conflict-free Data Routing . 78

4.5.1 Shortest-path Data Routing Scheme 79

vi

4.5.2 Data Routing for Single-step Embeddings 81
4.5.3 Data Routing for Multi-step Embeddings 85

4.6 Data Routing Complexity versus Dilation Cost 91
4.7 Conclusion . 94

5 Task Graph Contraction 96
5.1 Introduction . 96
5.2 Generalized Optimization Measures . 96
5.3 Contraction before Embedding . 97
5.4 Many-to-one Program Mapping . 100

5.4.1 Inverses for Many-to-one Mapping Functions 100
5.4.2 Conflict-free Data Routing . 102

5.5 Conclusion . 103

6 Conclusion 105

vii

List of Figures

2.1 Complete binary trees . 12
2.2 Contraction of the 255 node tree into the 63 node tree 12
2.3 RAR example . 16

3.1 A (4, 2, 3)-torus . 23
3.2 A (4, 2, 3)-mesh . 24
3.3 A function f with n = 9 and L = (3, 3) . 26
3.4 Sequences P and P ′ for L = (4, 2, 3) . 27
3.5 Embedding a ring into an (l1, l2)-mesh with l1 = 4 and l2 > 2 33
3.6 Q, Q′ and Q′′ for even m . 34
3.7 Embedding scheme of hL with L = (l1, l2, l3) and l3 = 3 36
3.8 The function rL for odd l1 . 38
3.9 Embedding functions fL, gL, and hL for n = 24 and L = (4, 2, 3) 39
3.10 Embedding a line or a ring of size 24 into a (4, 2, 3)-mesh 40
3.11 Embedding functions FV , GV , HV for L = (4, 6), M = (2, 2, 2, 3), and

V = ((2, 2), (2, 3)) . 43
3.12 Supernode view . 48

4.1 Example for the link contention problem . 78

viii

Chapter 1

Introduction

1.1 Introduction

The history of computer industry displays a continuous effort to increase the computational
speed of computer systems. But not even the state-of-the-art in VLSI technology can
fully satisfy the ever-growing computational demands from diverse fields such as artificial
intelligence, image processing, robot vision, and real-time process control. Now it is
clear that we cannot depend solely on the improvement of devices to enhance system
performance. Only parallel processing, the technique of utilizing the processing power of
multiple processors, can satisfy the requirements of future applications.

Although parallel processing is not a new concept in computer science, its deviation
from the traditional von Neumann computation model has introduced many new problems.
The extra complexity required for data communications among the processors can degrade
system performance, and also make programming on a parallel processing system much
harder than on a uniprocessor system. If each of the processors works autonomously,
the synchronization among different processes will further increase the complexity of the
system. Unless we have a clearer understanding of these problems and effective tools to
attack these complexities, the full power of parallel processing cannot be exploited.

This research is aimed at investigating the communication problems in parallel pro-
cessing systems. Our research scope will be restricted to parallel processing systems for
supporting data independent algorithms (algorithms for which the communication pat-
terns are independent of input data). Data independent algorithms are common in fields
such as image processing, robot vision, and scientific computation, which are our current
major application domains.

1.2 Research Objectives

Most of the communication problems in parallel processing systems come from the fun-
damentally different approaches adopted by uniprocessor systems and parallel processing
systems to support inter-process communication. In a uniprocessor system, all processes
reside in a single processor, and all inter-process communications are supported by main
memory references. As a result, any process can easily send a message to any other pro-
cess with a uniform delay determined principally by the main memory clock cycle. On the
other hand, in a parallel processing system, different processes usually reside in different
processors, and most inter-process communications are supported by an interconnection
network. The delay incurred in an interconnection network is much greater than that in-

1

1. Introduction

troduced by the main memory references, and may be dependent on system size (number
of processors) and the communication patterns of the parallel programs. We call the ex-
tra inter-processor communication time in a parallel processing system the communication
overhead.

There are three main sources of the extra communication overhead of a parallel pro-
cessing system: (1) the time for the messages to pass through long communication links;
(2) the time for the messages to go through one or more intermediate processors in the
absence of a direct communication link between the two processors accommodating the
two communicating processes; (3) the contention for a single physical link by more than
one message at the same time. While the delay introduced by the first source is mainly
determined by system size, silicon chip layout, and package design, the delays introduced
by the other two sources result from the mismatch of the communication characteristics
of the parallel programs and those of the parallel processing systems. It is one of our main
objectives in this research to minimize the extra communication overhead introduced by
the last two sources.

A parallel program usually consists of a series of computation phases, each of which
has a particular communication pattern. Thus, the communication characteristics of a
parallel program can be represented by a series of task graphs, with one such graph for
each phase, in which each node represents a process and each edge represents a possible
communication requirement. For simplicity, we assume that a program consists of one
computation phase unless stated otherwise.

Similarly, we can view a parallel processing system as a system graph in which each
node represents a processor and each edge represents a link. If the task graph of a program
and the system graph of a system have the same topology, then the program can be
executed on the system efficiently since each communication reqirement can be satisfied
directly by a single corresponding link. Otherwise, some messages have to go through
several intermediate processors before they can reach their destinations, and more than
one message could contend for a single link. As a result, the system performance in
supporting the program could be degraded. Since programs can assume an infinite number
of different topologies, and a system can usually assume only one topology, a mismatch
of the communication characteristics between the programs and the system is the usual
situation.

To minimize the communication overhead, we have to find an efficient way to map
parallel programs onto parallel systems. We call this the program mapping problem. The
program mapping problem consists of two parts: (1) how to allocate the parallel processes
to the processors and how to load the codes for these different processes into the allocated
processors, and (2) how to implement the parallel inter-process communications under a
particular mapping scheme. A good solution to the program mapping problem should
minimize the overall communication overhead.

In addition to the communication overhead problem, inter-processor communication
in parallel processing systems also introduces problems concerning programming. In prac-
tice, inter-process communication in parallel programs is usually expressed in the form of
inter-processor communication. Parallel programs including inter-processor communica-
tion must be tailored to system topology. As a result, programs designed for one system
cannot be executed on another system with a different topology. In addition, since the
communication in these programs is specified on the low physical system level, it is difficult

2

1.3. Issues Studied in This Dissertation

to separate computation from low-level data routing. As a result, the readability, verifia-
bility, and productivity of these programs are degraded. In this research we advocate and
support the design of parallel programs that are independent of system topology to avoid
the problems above.

The following are the two major objectives of this research:

1. Design efficient schemes to map parallel programs onto parallel processing systems
to minimize the communication overhead incurred by the mismatch of the commu-
nication characteristics of the parallel programs and those of the parallel processing
systems.

2. Support logical inter-process communication at execution time to improve program
readability, verifiability, productivity, and portability.

In this thesis, we study only the program mapping problem in which the task graph
and the system graph are both toruses or meshes. Many parallel processing systems use
variants of these graphs as their system graphs [Sny82, Pot83, PBe85, LM87b, LM87a,
Hil85, Oru84, KWA82, PV79], and many algorithms in image processing, robot vision,
and scientific computation have these structures as their task graphs [Fox83, HKS*83,
RK82, BB82].

1.3 Issues Studied in This Dissertation

To achieve our research objectives, in this dissertation we address the following issues.

Graph mappings among toruses and meshes

We use graph mapping to model the program mapping problem. We use task graphs to
represent the communication characteristics of the parallel programs, and system graphs
to represent the parallel processing systems.

In Chapter 3, we study bijective graph mappings, or embeddings. The guest graph
and the host graph of an embedding have the same size. We use dilation cost, which is
defined to be the maximum distance in the host graph between the images of any pair of
neighboring nodes in the guest graph, as our optimization measure. Dilation cost models
the maximum length of the shortest communication paths between neighboring processes
after the parallel program is mapped onto the parallel processing system. Although graph
embedding in general is an NP-complete problem, we show that if we restrict the problem
domain to toruses and meshes, many embeddings can be performed with optimal dilation
costs by simple embedding functions.

In Chapter 5, we study many-to-one graph mappings. In a many-to-one graph map-
ping, the guest graph has more nodes than the host graph. We define node evenness of
a many-to-one graph mapping to be the maximum ratio of the numbers of nodes in the
guest graph mapped into any two nodes in the host graph. We use dilation cost and node
evenness as our optimization measures. In the corresponding program mapping problem,
all of the processes mapped into the same processor have to be executed sequentially.
Node evenness models the degree of balance of the number of processes mapped into
each processor. An even distribution of the processes over the processors minimizes the
computation time. We show that for toruses and meshes, we can achieve many optimal

3

1. Introduction

many-to-one graph mappings by first contracting the guest graph into an intermediate
graph of the same size as the host graph, and then embedding the intermediate graph into
the host graph with one of our bijective embedding functions.

The graph mapping results that we derive provide the mathematical framework for our
solutions to the program mapping problem as well as a broad range of application problems
such as finding storage representations for data structures [DEL78a, LED76, Ros79, RS78]
and finding efficient layouts of circuits on chips [LR82, Ros83, Tho79, Val81].

Mapping parallel programs onto parallel processing systems

This mapping problem can be viewed as a “real world version” of the graph mapping
problem. There are two major problems to be tackled here. The first is how to load in an
efficient way the code for each process into the corresponding processor under a particular
mapping scheme. This problem corresponds to the mapping of the nodes in a guest graph
into the nodes in a host graph. To achieve this loading, we have to compute for each
process the address of its physical destination processor. For a large parallel program and
a large parallel processing system, this loading process can be computation intensive as
well as communication intensive.

The second problem is data routing. We want to support parallel communication
among neighboring nodes in the task graph at execution time. Although dilation cost
in the graph mapping problem bounds the maximum number of links a message must
traverse from any process to one of its neighboring processes, it does not address the link
contention problem. If more than one message needs to be transferred between different
pairs of neighboring processes, some links may be requested by more than one message at
the same time. This may introduce extra delay.

In Chapters 4 and 5, we use the mapping functions developed in Chapters 3 and 5 to
solve the program mapping problem. We first show that all of our mapping functions have
simple inverse functions. Based on these inverse functions, each processor can calculate
the logical addresses of the processes to be mapped into it, and all of the processors can
perform the calculations in parallel. We also propose a simple scheme for loading the codes
for different processes into the different processors specified by a mapping function. This
scheme utilizes only a simple broadcast network and has time complexity proportional
to the number of different code types, instead of the number of parallel processes. Two
methods are discussed for parallel generation of translation tables. These translation
tables can automatically transform inter-process communication specified in programs
into inter-processor communication at execution time. For each of our mapping functions,
we design a data routing strategy. We also propose a simple data routing scheme that
can automatically carry out our data routing strategies at execution time. We show that
because of the regularity of our mapping functions, we can efficiently simulate in the
system graph without link conflicts either any permutation type set or any scatter type
set of parallel neighboring communications in the task graph. For most of our mapping
functions, the data routing complexities are equal to the corresponding dilation costs. For
the remaining mapping functions, the data routing complexities are less than four times
the corresponding dilation costs.

Since our program mapping approach supports inter-process communication at execu-
tion time, parallel programs can specify all communication on the task graph level. Even

4

1.3. Issues Studied in This Dissertation

the object code of these programs is independent of system topology and can be easily
transported from one system to another. With our program mapping approach, program-
mers are freed from responsibilities for low-level data routing steps. Parallel programs can
be designed on task graphs most suitable to the problems themselves, instead of on the
system graphs. As a result, our program mapping approach can support parallel programs
with improved readability, verifiability, productivity, and portability.

5

Chapter 2

Literature Survey

2.1 Introduction

In this chapter, we review the literature on four subjects. They are (1) graph embedding,
(2) task graph contraction, (3) data routing in single-stage interconnection networks, and
(4) mapping of parallel programs onto parallel systems. For each subject, we begin with
a brief description of the problem, and end with a brief comment about the differences
between our work and those in the literature.

2.2 Graph Embedding

Given a pair of graphs G and H, an embedding of G into H is an injection (one-to-one
mapping) of the nodes in G to the nodes in H. Many variations of the graph embedding
problem have been studied in the literature [AR82, BMS87, DEL78b, DJ86, Ell88, Har66,
HMR83, HMR73, KA88, LED76, LW87, MS88, RS78, Ros78, Ros79, Wu85]. These vari-
ations differ principally in the relative sizes of G and H, the constraints imposed on
the embeddings, and the optimization measures used in the embeddings. Many impor-
tant problems in parallel processing can be formulated as the graph embedding problem.
These include the problem of mapping parallel programs onto parallel processing systems
(by interpreting G as the task graph and H as the system graph) and the problem of
evaluating the relative performance of a pair of interconnection networks (by interpreting
both G and H as interconnection networks).

The most commonly used optimization measure for graph embeddings is dilation cost.
Given an embedding of G into H, the dilation cost of the embedding is the maximum
distance in H between the images of any two adjacent nodes in G [HMR83]. This cost
gives a measure of the proximity in H among the adjacent nodes in G under a given
embedding.

Another important optimization measure for graph embeddings is expansion cost.
Given an embedding of G into H, the expansion cost of the embedding is the ratio of
the size of G to the size of H. Usually, for a fixed pair of graphs, the greater the expansion
cost is allowed, the smaller the dilation cost can be.

In this subsection, we list the principal embedding results in the literature. The results
are classified according to the domains and ranges of the embeddings.

Embedding of ring into general graph:

• Given any ring and any connected graph of the same size, the ring can be embedded
into the graph with dilation cost ≤ 3. This bound is optimal. [RS78]

6

2.2. Graph Embedding

Embeddings among meshes:

• An (n, n)-mesh can be embedded into a line with optimal dilation cost n. [Fit74]

• An (n, n, n)-mesh can be embedded into a line with optimal dilation cost d3
4n

2 + 1
2ne.

[Fit74]

• Given a 2-dimensional mesh G and a node x in G at a distance at least n steps from
the mesh boundaries, let Gn be the induced subgraph of G consisting of all of the
nodes in G at a distance less than or equal to n from x. Gn has 2n2 + 2n+ 1 nodes.
Gn can be embedded into a line with optimal dilation cost n+ 1. [Fit74]

• Let (E,D) represent the pair of the expansion cost and the dilation cost of an
embedding. Any rectangular mesh can be embedded into a square mesh with cost
pairs of (1.2, 15), (1.45, 9), (1.8, 3), or (4, 1). [AR82]

• 2-dimensional rectangular meshes of large aspect ratio can be embedded into rectan-
gles of smaller aspect ratios with small expansion and dilation costs. In particular,
width can be reduced by a factor of up to 2 with optimal expansion cost and dila-
tion cost (2). A factor of 3 can be obtained with dilation cost 3. In general, any
rectangular mesh can be embedded into a square mesh that is no more than unity
larger on the side than the minimum possible, with dilation cost no more than 3.
[Ell88]

• The simulation of a graph B by another graph A is a mapping from the nodes
of B to the nodes of A such that a constant maximum number of nodes in B are
mapped into any node in A. Let L be a mesh of shape (l1, l2, · · · , ld) and W be
a mesh of shape (w1, w2, · · · , wd), for both of which the lengths of the dimensions
are in nonincreasing order. L can simulate W with dilation cost O(α), where α =

max1≤i≤d(l1 · · · li/w1 · · ·wi)
1
i . This bound is optimal for fixed value of d. [Ata85,

KA88]

• Let L, W , and α be the same as in the preceding result. Any embedding of W into
L must have average dilation cost Ω(α). [Ata85, KA88]

Embedding among toruses:

• An (m,n)-torus (m ≥ n) can be embedded into a ring of the same size with optimal
dilation cost n. [MN86]

Embeddings of mesh, torus or tree into hypercube:

• A mesh of size some power of 2 can be embedded into a hypercube of the same size
with unit dilation cost. [MT87, CS86, SS85]

• About 88.6% of 2-dimensional meshes can be embedded into hypercubes with a
dilation cost of 2 and an expansion cost of 2. [HJ87]

• The optimal hypercube for a mesh G is the smallest hypercube that has at least as
many nodes as G.

7

2. Literature Survey

(1) There is an embedding of a mesh of shape (m, k) into its optimal hypercube
with dilation cost 2, provided that:

dlogme+

⌈
log

(⌈
mk/2dlogme

⌉
+

⌊dlogme
2

⌋)⌉
≤ dlogmke.

(2) For any k < d, there is an embedding of a mesh of shape (a1, a2, . . . , ad) into its
optimal hypercube with dilation cost k + 1, provided that:

d−1∑
i=1

dlog aie+ dlogBke ≤
⌈

d∑
i=1

log ai

⌉
,

where

Bk =
ad
∏k
i=1 ai∏k

i=1 2dlog aie
+

k∑
i=1

⌊dlog aie
2

⌋
.

(3) Let f(k) ≥ k be a function of k and G be a k-dimensional mesh of shape
(f(k), f(k), . . . , f(k)). G can be embedded into its optimal hypercube with
dilation cost Ω(k log(k + log f(k))/(log f(k) log(k log f(k)))) as k → ∞. This
shows that the dilation cost of embedding a k-dimensional mesh into its optimal
hypercube must grow with k.

[BMS87]

• A ring of size l can be embedded into a hypercube of size 2n with unit dilation cost
if l is even and 4 ≤ l ≤ 2n. [SS85]

• For n ≥ 3, it is impossible to embed an n-level complete binary tree into the subgraph
obtained by removing one of the nodes of a hypercube of size 2n. [SS85, DJ86]

• A complete binary tree of height h > 2 cannot be embedded into a hypercube with
dilation cost 1 and expansion cost less than 2. [Wu85]

• A complete binary tree of size N − 1 can be embedded into a hypercube of size N
with dilation cost 2. [Wu85]

• A complete binary tree of size N − 1 can be embedded into a hypercube of size 2N
with unit dilation cost. [Wu85]

• Two complete binary trees, each of size N
2 − 1, can be embedded into a hypercube

of size N with unit dilation cost. [DJ86]

• A stretched binary tree is a binary tree with an auxiliary node of degree 2 inserted
between the root and one of its two sons. A stretched complete binary tree of size N
can be embedded into a hypercube of the same size with unit dilation cost. [DJ86]

• A k-ary tree Kd of height d can be embedded into a (d− 1)dlog2 ke+ 1 dimensional
hypercube with dilation cost 2 · dlog2 ke. [Wu85]

• Every N node complete binary tree can be embedded into a hypercube with O(N1.71)
nodes with unit dilation cost. [BCLR86]

8

2.2. Graph Embedding

• Every binary tree can be embedded into a hypercube with dilation cost 10 and
expansion cost 4. [BCLR86]

• An arbitrary binary tree can be embedded into a hypercube with dilation cost 3 and
expansion cost O(1). [MS88]

• Every binary tree can be embedded into the smallest hypercube that has at least as
many nodes as the tree with dilation cost 5. [MS88]

• There is a bounded-degree universal graph of N nodes that includes all binary trees
of size less than or equal to N as subgraphs. [BCLR86]

Embeddings among trees:

• For every h, there is an embedding of any complete ternary tree of height h into
the complete binary tree of height 2h with dilation cost 2 and expansion cost Ω(nλ),
where λ = log3(4

3). [HMR83]

• There is a constant α > 0 such that, for infinitely many heights h, any embedding
of the complete ternary tree of height h into a complete binary tree with expansion
cost less than 2 has dilation cost > α log log h. [BCLR86]

• There are generic binary trees Bn into which all n node binary trees are embed-
dable with dilation cost O(1) and expansion cost O(nc), for some fixed constant c.
[BCLR86]

• Let T be any universal binary tree that has every binary tree of size less than or
equal to n as its subgraph. T has size Ω(n(logn)/2). [BCLR86]

Embeddings of mesh into tree:

• If an (n, n)-mesh can be embedded into some binary tree H with dilation cost T (n),
then

T (n) ≥ log n− 3/2.

[DEL78b]

• If an (n, n)-mesh can be embedded into some binary tree H with average dilation
cost A(n), then

A(n) ≥ n/12.

[DEL78b]

• If n is a power of 2, there is a binary tree H such that an (n, n)-mesh can be
embedded into H with average dilation cost 8. [DEL78b]

• An (n, n, · · · , n) d-dimensional mesh (n > 1) can be embedded into the leaves of a
2d-ary tree with average dilation cost < 4− 2blog2 nc, or in the leaves of a binary tree
with average dilation cost < (4− 2blog2 nc)d. [RS78]

9

2. Literature Survey

Comment on graph mapping

In this dissertation, we concentrate on embeddings among toruses and meshes of various
dimensions and of various shapes, with lines, rings, and hypercubes being special cases.
All of our embeddings are bijections and in the form of simple embedding functions. Many
of them are proved to be optimal. For all of the known optimal embeddings among toruses
and meshes in the literature, except for the case of embedding a hypercube into a mesh,
our embeddings have dilation costs either optimal or within a multiplicative constant of
the optimal dilation costs.

2.3 Task Graph Contraction

Given a parallel program with more processes than the processors available in a parallel
processing system, we have to design a mapping from the nodes of the task graph to
the nodes of the system graph to resolve two differences between the task graph and the
system graph before we can execute the program. The first is the difference in topology.
The second is the difference in size. While it is ideal to resolve the two differences at the
same time, it is easier to tackle the problem in two steps: first contract the task graph
into an intermediate graph of the same type as the task graph and of the same size as
the system graph, and then embed the intermediate graph into the system graph. The
objective of task graph contraction is to resolve the difference in the sizes of the task graph
and the system graph.

Since the processes mapped into a single processor must be executed sequentially, we
should try to balance the computation load over the processors. If we assume that all
of the processes have the same computation time, this balance in computation load is
achieved with an even distribution of the processes over the processors. Thus, one major
optimization measure for task graph contraction is the evenness of the distribution of the
nodes in the task graph over the nodes in the system graph.

Another major optimization measure for task graph contraction is dilation cost. To
minimize the communication delay, neighborship in the task graph should be maintained
in the intermediate graph if possible. Since the intermediate graph usually belongs to the
same graph family as the task graph, and more than one node in the task graph can be
mapped into a single node in the intermediate graph, task graph contraction for toruses
and meshes usually has dilation cost 1 or 2.

Edge grammar based task graph contraction

Berman and Snyder [BS84, BGK*85, BS87] reported a method for task graph contraction
based on edge grammars. Each parallel program is abstracted into a family of graphs
{Gm}, one for each problem size. To embed a large instance Gn into the system graph H,
the following two steps are taken:

1. Embed Gn into a smaller graph Gk from the same graph family, i.e., contract the
program as if the program and the architecture had the same type of topology.

2. Lay out the small graph Gk on the system graph H, assigning at most one node in
Gk to each node in H.

10

2.3. Task Graph Contraction

The first step is accomplished by the help of edge grammars [Ber83]. Edge grammars
define graph families by generating pairs of vertex labels (edges) using conventional formal
language mechanisms. For a class of graph families, edge grammars provide an automat-
able means by which large members of a graph family can be contracted to smaller mem-
bers of the family. Graph families that are definable and contractable using edge grammars
include square meshes, square toruses, complete binary trees, hex-connected meshes, and
cube-connected cycles. The methods in [BS84, BGK*85] are basically designed for the
CHiP Computer [Sny82]. All links are assumed to have equal communication loads.

We now outline the principal definitions and results in [Ber83].

Definition 2.3.1 A Type 3 Edge Grammar is a 4-tuple Γ =< N,T,G, P > where T is
a set of ordered pairs of strings over a finite alphabet Σ, N is a set of nonterminals, G
in N is the start symbol, and P is a finite set of productions. All of the productions in
P have the form A → BC, A → B, or A → C where A and B are nonterminals, and
C is a terminal. The concatenation of two edge sets A and B is defined to be the set
AB = {(vv′, ww′)|(v, w) ∈ A and (v′, w′) ∈ B}. 2

Definition 2.3.2 Let Γ be an edge grammar. The n-th graph generated by Γ, G(n), is
the graph with vertices and edges

V (n) = {v|for some w, ((G
∗⇒ (w, v) or G

∗⇒ (v, w)) and |v| = |w| = n)},

E(n) = {(v, w)|G ∗⇒ (v, w), v 6= w and |v| = |w| = n}.

2

Definition 2.3.3 Let Γ be an edge grammar. The graph family generated by Γ, G(Γ), is
the set {G(n)}n>0 where G(n) is the n-th graph generated by Γ. 2

For example, to generate the family of all complete binary trees, we can define Γ = <
{T0, T1, TR, R, T}, {(0, 0), (1, 1), (2, 2), (2, 0), (2, 1)}, T, P > where the productions are

T → T0 T → T1 T → TR
T0 → T (0, 0) T1 → T (1, 1) TR → R(2, 0)
T → (2, 0) T → (2, 1) TR → R(2, 1)
T → R R→ (2, 2) R→ R(2, 2)

The first three graphs in the family are shown in Figure 2.1.

Definition 2.3.4 Let {G(n) = (V (n), E(n))} be a graph family. Then {G(n)} is con-
tractable if for each n, there is a mapping c : V (n+1)→ V (n) such that c(V (n+1)) ⊆ V (n)
and {(c(v), c(w))|(v, w) ∈ E(n+ 1)} ⊆ E(n). 2

Definition 2.3.5 Let G = (V,E) be a graph whose labels are strings in Σ∗. Let m be
the mapping that assigns to each label xa (x ∈ Σ∗, a ∈ Σ) in V the label x in Σ∗. Then
the graph m(G) = ({m(v)|v ∈ V }, {(m(v),m(w))|(v, w) ∈ E}) is said to be a truncation
of G. 2

Definition 2.3.6 A graph family {G(n)} is truncatable if for each n > 0, G(n) is a
truncation of G(n+ 1). 2

11

2. Literature Survey

Figure 2.1: Complete binary trees

Figure 2.2: Contraction of the 255 node tree into the 63 node tree

Theorem 2.3.1 If a graph family is truncatable, it is contractable. 2

Theorem 2.3.2 Let Γ be a Type 3 edge grammar. Assume that

1. for each (v, w) in T , |v| = |w| = 1; and

2. for each nonterminal A in N − {G}, there is a production G → A, where G is the
start symbol.

Then {G(n)} is truncatable. 2

Assume that a graph family {G(n)}n>0 is truncatable. Given any two integers x and
y such that x > y > 0, we can contract G(x) into G(y) in this way: for any two nodes
in G(x), if their labels are of forms uv and uw where |u| = y, then they are mapped to a
single node in G(y) with label u. Figure 2.2 uses a complete binary tree to show how a
tree of size 255 (G(7)) is contracted into another complete binary tree of size 127 (G(6)),
and the latter tree is then contracted into another complete binary tree of size 63 (G(5)).

Task graph contraction case study

Nelson and Snyder [NS86] pointed out the limitations inherent in the approach adopted by
[BS84, BGK*85] and provided some case studies of task graph contraction. In [NS86], task
graphs and system graphs were taken from the same graph families. Algorithms for trees,
meshes, and hypercubes were used as examples. For each algorithm, they compared several

12

2.3. Task Graph Contraction

possible contractions. For trees, they proved that Leiserson’s layout technique [Lei83] was
the best for contracting tree algorithms for finding minimum or sum. For mesh algorithms,
they conjectured that coalescing by maximizing the area for a given perimeter is optimal
for the algorithms with balanced edge loadings. Finally, they presented two algorithms
for hypercube that require different contractions to produce optimal results.

Heuristic task graph contraction in Prep-P project

Berman [JGD87] reported an automatic mapping software system for the CHiP Computer
called Prep-P. She pointed out that the task graph contraction based on edge grammars has
narrow graph domain and restrictive description power. In the Prep-P project, heuristic
algorithms were used to solve the following version of the general contraction problem:
Given an undirected graph with m nodes, find a partition of the nodes into at most n ≤ m
groups such that a given cost function is minimized. In the Prep-P project, the cost
function was the number of edges between distinct partitions in the induced (contracted)
graph. To simplify the design process, the following assumptions were made:

(1) The processes identified with each node perform roughly the same number of reads
and writes.

(2) Parallelism is maximized when the m processes are distributed almost equally over
the n partitions.

(3) Intra-processor communication is more efficient than inter-processor communication.

With this general approach, the graph domain is the set of undirected graphs. Several
heuristic techniques for performing contraction were tested, including simulated anneal-
ing, local neighborhood search, branch-and-bound, greedy. The most promising of these
techniques were reported to be simulated annealing and local neighborhood.

Finite element modeling program contraction

Sadayappan, Ercal, and Martin [SEM87] addressed the contraction and mapping prob-
lem in the context of implementing finite element modeling programs on two dimensional
meshes. A finite element task graph is a two dimensional graph with irregular boundaries.
A heuristic two-step mapping scheme with polynomial-time complexity was developed.
The first step generates a graph partition for the nearest neighbor mapping of the finite
element task graph onto the mesh graph. The second step performs heuristic boundary
refinement procedure to incrementally alter the initial partition for improved load bal-
ancing among the processors. Successful application of the approach is reported only for
some example finite element task graphs.

Comment on task graph contraction

The task graph contraction scheme based on edge grammars is the only non-heuristic
scheme in the literature that works for more than one graph family. However, since it
allows for only one parameter, graph size, in the definition of graph families, the defini-
tional power of the edge grammar is limited. For example, in the mesh family, each edge
grammar can define only the square meshes of a fixed dimension, which is a small subset

13

2. Literature Survey

of the entire mesh family. For the same reason, within a truncatable graph family, for any
integers x and y such that x > y, there is only one way to contract G(x) into G(y). As
pointed out in [NS86], this is not optimal for many common parallel algorithms. By edge
grammar, a mesh cannot be contracted into another mesh of different dimension.

In this dissertation, we study the task graph contraction for toruses and meshes of
various dimensions and of various shapes. The contraction schemes are all defined in
the form of simple contraction functions. For every case in which the edge grammar can
be used, our contractions can achieve at least the same contraction quality (with the
contraction function ν̄L defined in Chapter 5). A torus or a mesh can be contracted into
another torus or another mesh of either higher or lower dimension.

2.4 Data Routing in Single-stage Interconnection Networks

In a parallel processing system, if more than one message must be sent from a source to a
destination at the same time, some links can be contended for by more than one message
at the same time. Since each link can support the communication of only one message
at any instant, this contention introduces extra communication delay into the system. A
good data routing algorithm should support parallel communication in the system with
minimum delay.

There are two principal kinds of data routing mechanisms: circuit switching and packet
switching. In circuit switching, a physical path is established between the source and the
destination. In packet switching, data are put in a packet and routed through the in-
terconnection network without establishing a physical connection path. Circuit switching
is generally much more suitable for bulk data transmission, while packet switching is
more efficient for many short messages. In systems with torus or mesh topologies, packet
switching is usually preferred.

There are two control strategies for packet switching: centralized control and dis-
tributed control. For centralized control, the decisions for packet routing are made by
the host computer based on global information. For distributed control, each processor
decides how to route the data based on its own information.

Data routing approaches in the literature generally fall into two categories: those for
multistage interconnection networks and those for single-stage interconnection networks.
Since this thesis is about systems with torus or mesh structures, we review only data
routing approaches for single-stage interconnection networks.

Sorting-based data routing

Let N be the number of processors in a parallel processing system. Nassimi and Sahni
[NS80b, NS81] reported sorting-based solutions to the following two general data routing
problems for SIMD machines:

1. Random Access Read (RAR): An index S(i) is contained in PE(i), 0 ≤ i < N .
PE(i) is to receive data from PE(S(i)). We assume that the data to be transmitted
to PE(i) are originally in register D(S(i)). (D(j) denotes register or memory cell D
in PE(j).) If PE(i) is not to receive data from any other PE, then S(i) =∞.

14

2.4. Data Routing in Single-stage Interconnection Networks

2. Random Access Write (RAW): An index W (i) is contained in PE(i), 0 ≤ i < N .
Data from the D register of PE(i) are to be transmitted to PE(W (i)), 0 ≤ i < N .
If W (i) =∞, then data from PE(i) are not transmitted to any PE.

Some special applications of RAR’s and RAW’s can be found in [NS80a] and [NS82].
Nassimi and Sahni’s sorting-based routing algorithm consists of the following steps.

1. Sort: Records are rearranged in nondecreasing order of a specified key. Let G(i)
denote the record in PE(i), 0 ≤ i < N . Let H(i) be the key field of record G(i).
H(i) is also in PE(i). Following a sort, the records will have been rearranged so that
H(i) ≤ H(i+ 1), 0 ≤ i < N − 1.

2. RANK: The rank of a selected record is the number of selected records in PE’s with
a smaller index. For example, assume that we have eight PE’s each containing one
record. Let the key values for these eight records be (6, 4, 2, 2∗, 6, 6∗, 3∗, 4∗), where an
asterisk over a key value denotes a flag or selected record. The ranks of the flagged
records are (−,−,−, 0,−, 1, 2, 3).

3. CONCENTRATE: Let G(ir), 0 ≤ r ≤ j < N be a set of records with G(ir) ini-
tially in PE(ir). Assume that the records have been ranked so that H(ir) = r. A
concentrate moves record G(ir) to PE(r), 0 ≤ r ≤ j. Assume that G(0 : 7) =
(A,−,−, B,−, C,−, D), i0 = 0, i1 = 3, i2 = 5, and i3 = 7. Following a concentrate,
G(0 : 7) = (A,B,C,D,−,−,−).

4. DISTRIBUTE: Let G(i), 0 ≤ i ≤ j < N be a set of records with G(i) initially in
PE(i). Let H(i), 0 ≤ i ≤ j be a set of destinations such that H(i) < H(i + 1),
0 ≤ i < j. A distribute routes G(i) to PE(H(i)), 0 ≤ i ≤ j. A distribute is the
inverse of a concentrate. For example, suppose that G(0 : 7) = (A,B,C,−,−,−,−),
that H(0) = 1, H(1) = 5, and H(2) = 6. Following a distribute, G(0 : 7) =
(−, A,−,−,−, B,C,−).

5. GENERALIZE: A generalize makes multiple copies of records. The initial configu-
ration is record G(i) in PE(i), 0 ≤ i ≤ j < N . Each record has a field H (height).
The H values are arranged such that 0 ≤ H(0) < H(1) < · · · < H(j) ≤ N − 1, and
H(i) =∞ for j < i < N . Generalize copies record G(i) into PE’s H(i−1)+1 through
H(i), 0 ≤ i ≤ j. (We assume, for convenience, that H(−1) = 0.) Let G(0 : 7) =
(1, 5, 6,∞,∞,∞,∞,∞). Following a generalize, G(0 : 7) = (A,A,B,B,B,B,C,−).

Nassimi’s RAR algorithm is best described by considering an example (Figure 2.3).
In this example we have N = 8 PE’s and S(0 : 7) = (2, 6, 2,∞, 5, 6,∞, 6). Let T (i) = i
and FLAG(i) = 1, 0 ≤ i < N . The RAR algorithm begins by sorting the records
G(i) = 〈S(i), T (i),FLAG(i)〉. Records are sorted on S; T is used to resolve ties. During
the sort, whenever a comparison between G(i) and G(j) is made, if S(i) = S(j) and
T (i) < T (j), then FLAG(i) is set to zero. As a result, following the sort, FLAG(i) = 1
only for records with distinct S values. For records with the same S value, FLAG= 1 only
for the record with the highest T value. Lines 3 and 4 of Figure 2.3 give the result of the
sort. The S values with an asterisk above them correspond to records with a FLAG of 1.

The next step is to rank the records with a flag of 1. This results in the rank assignment
of line 5 (Figure 2.3). For PE’s containing a record G with FLAG= 1, we define a new

15

2. Literature Survey

Figure 2.3: RAR example

16

2.4. Data Routing in Single-stage Interconnection Networks

record G′, where G′(i) = 〈R(i), U(i), S(i)〉, R(i) is the rank just determined, U(i) = i, and
S(i) is as in line 4 of Figure 2.3. The G′(i)’s are concentrated to obtain the configuration
of lines 6 and 7. At this point, we define a new record G′′ for each PE containing a G′

type record. G′′(i) = 〈S(i), V (i)〉, where V (i) = i. The newly defined G′′ type records are
distributed according to S to get the result in line 8. Observe that a PE now contains a
G′′ type record if and only if its data are to be transmitted to another PE. Let D(i) be
the data in PE(i) that is to be broadcast. The T , U , and V registers of each PE contain
return addresses that are now used to broadcast the data.

First, the data to be broadcast are concentrated using the ranks contained in the V
registers (line 9). Next, the data are generalized using the values in the U registers as
the corresponding H values in the definition of generalize. This yields the configuration
of line 10. Finally, the broadcast data are sorted using the T value in each PE as the sort
key. As the result (line 11), all of the data have been broadcast to the PE’s that requested
them. This algorithm solves the RAR problem.

The RAW problem is similar and is omitted. Using Kung’s sorting algorithm for
meshes [TK77], or Batcher’s merge sort adapted for cube-connected or perfect shuffle
computers, Nassimi and Sahni [NS81] proved the following theorem.

Theorem 2.4.1 Based on sorting algorithms, a RAR can be accomplished with complex-
ity O(q2n) on a q-dimensional nq PE mesh-connected computer and O(log2N) on an N PE
cube-connected or perfect shuffle computer; a RAW can be accomplished with complexity
O(q2n + dqn) on a q-dimensional mesh-connected computer and O(log2N + d logN) on
an N PE cube-connected or perfect shuffle computer, where d is the maximum number of
data items written into any PE. 2

Nondeterministic data routing

Valiant [Val82] reported a nondeterministic routing algorithm that can perform any per-
mutation on a hypercube of size N = 2n in O(logN) steps with overwhelming probability.

In describing the algorithm we identify each record to be routed by its starting node
address. The name of each record is a number s ∈ V = {0, . . . , N − 1}.

The algorithm consists of two consecutive phases. Phase A sends each record s ∈ V
to a randomly chosen node u(s) ∈ V . For each s, every u ∈ V has the same probability,
1/N , of being chosen, and the choices for the different records are independent of each
other. The second phase routes each record s from u(s) to its destination t = a(s).

At each instant, there is just one copy of each record, and this is either (a) being
transmitted along an edge, or (b) waiting in a queue associated with such an edge, or (c)
stored as loose at a node.

For simplicity, the algorithm is described in synchronized fashion, although this is
inessential. In this form, the algorithm alternates between a transmitting mode and a
bookkeeping mode. In the transmitting mode, the record at the head of each queue is
transmitted along the edge associated with it and stored as loose at the recipient node. In
the bookkeeping mode, each loose record is assigned to the queue of one of the outgoing
edges according to some random choice, unless it has nowhere further to go in the current
phase.

In phase A each record makes for itself a random ordering of the n dimensions. It
considers each one in turn and, according to the toss of a coin, makes or refrains from

17

2. Literature Survey

making a move in that dimension from its current position. (By making a move we mean
here that we add it to the appropriate queue. Actual transmission may be delayed by the
presence of other records in the queue.) With this procedure, for each record, every node
has the same probability of being its destination. Valiant proved that no record will have
to wait in queues for more than O(n) steps.

Phase B is similar except that now each record considers the set of dimensions in which
its current location differs from its final destination, and moves along one randomly chosen
such dimension in each step. Correctness is again immediate. Valiant proved that under
the assumption that the records are initially at randomly chosen nodes (as guaranteed by
Phase A), no record will wait in queues for more than O(n) steps.

Valiant [Val82] proved that this distributed randomized algorithm can route every
record to its destination without two records passing down the same link at any instant,
and finishes within time O(logN) with overwhelming probability for all of such routing
requests. (“Overwhelming” means here that given any constant S there is a corresponding
parameter C of the algorithm such that the algorithm can successfully finish with prob-
ability greater than 1 − 2−Sn.) Each record carries with it O(logN) bits of bookkeeping
information. No other communication among the nodes is needed.

Lower bounds for data routing

Gottlieb [GK84] proved the following interesting complexity results for data routing. The
basic idea of the proofs is this: We first establish that most pairs of PE’s are separated by
a distance at least logarithmic in the number of PE’s. A theorem of Dirac on the existence
of Hamiltonian cycles is then applied to find for each PE(i) a distinct PE(j) at least a
logarithmic distance away. This “processor permutation” is applied to the data items, and
the minimum complexity needed to achieve the resulting data permutation is established
using a Lagrange multiplier argument. The following are the main results in [GK84].

Theorem 2.4.2 Let Q = {PE(0), . . . ,PE(P − 1)} be a degree K parallel processor of
size P , and let N data items be distributed without replication among the PE’s. Then
there exist h > 0, which depends only on K, and a data permutation π such that at least
h(N/P)(logP) cycles are required to achieve π, where we may choose h = 1/3(logK +
log 2). 2

Corollary 2.4.1 The permutation problem is not completely parallelizable on any degree
PO(1) parallel processor. 2

Corollary 2.4.2 The permutation problem is not completely paralleliazable on any
bounded degree parallel processor. 2

Gottlieb [GK84] also showed that the bound for fixed K is sharp for evenly distributed
data and a permutation given in advance by presenting an algorithm and providing that it
attains the necessary speedup. Gottlieb also considered the dynamic permutation problem
and presented an algorithm achieving the same speedup, but only in the supersaturation
limit.

18

2.5. Mapping Parallel Programs onto Parallel Systems

Comment on data routing

In this dissertation, we study data routing in systems with torus or mesh structures to
simulate parallel inter-process communications in a task graph under various mapping
schemes. In the context of mapping task graphs into system graphs, since all of the
inter-process communication requirements are specified by the edges in the task graph,
we need only to simulate in the system graph the parallel neighboring communications
in the task graph. We show in Chapters 4 and 5 that the regularity of our mapping
functions facilitates a very simple and efficient data routing approach. This approach is
deterministic, and based on packet switching and distributed control strategies. After a
task graph is mapped into a system graph, any permutation type or scatter type set of
parallel neighboring communications in the task graph can be simulated in the system
graph with data routing complexities either equal to the corresponding dilation costs, or
less than four times the corresponding dilation costs. Since our mapping functions all
have small dilation costs, our data routing approach has a performance better than that
of sorting-based data routing in the program mapping context.

2.5 Mapping Parallel Programs onto Parallel Systems

We can view program mapping as a special form of binding parallel computations to
system topologies. This binding can be performed at different stages of the program
development cycle and in different forms. If this binding is performed early in the program
development cycle, the resulting programs are clustered with low-level data routing steps
and lack portability. On the other hand, if this binding is performed after the coding
stage, the resulting programs have good abstraction of communication implementations,
and are easily portable. Thus, this binding should be delayed to improve the parallel
programming environment.

In this section, we review some typical mapping strategies in the literature.

The Poker System for the CHiP Computer

The Poker Parallel Programming Environment [Sny83, Sny84] is a graphics-based, interac-
tive system for programming the Configurable, Highly Parallel (CHiP) Computer [Sny82].
Given a parallel algorithm with a known task graph, the conversion of the algorithm to
an executable version involves the following steps:

(a) Embed the task graph into the switch lattice (system graph) on a screen.

(b) Program each process type in a sequential programming language.

(c) Assign one of the process types to each processor.

(d) Name the data path ports for each processor. In this step, each port in a processor
used by the algorithm is identified with the corresponding edge in the task graph.

(e) Compile, assemble, coordinate, and load the program.

All of these steps are performed manually on the screen.

19

2. Literature Survey

Program mapping in Prep-P project

Berman [JGD87] reported the program mapping strategy adopted by the ongoing Prep-P
project. Prep-P is an automatic mapping software system designed for the CHiP Com-
puter. It uses heuristic algorithms to automate the mapping steps used in the Poker
environment. The input is an undirected graph using a graph description language. Each
node in the graph is identified with a process (written in XX). The output of the system is
Intel 8051 assembly code that, when run, executes the algorithm communication graph on
a fixed parallel architecture simulator. The Prep-P system contracts, places, routes, and
multiplexes the communication graph in the sequence followed in the Poker environment.
In the Poker environment, these steps are performed manually. In the Prep-P system,
these steps are performed automatically by heuristic algorithms. The system has been
tested only for a small set of examples.

Mapping Crystal programs onto system

Saltz and Chen [SC87] reported an approach to map Crystal programs onto multi-processor
systems. A Crystal program is a very high-level algorithm specification in which the de-
tailed interactions among processes in space and time are suppressed. No explicit message
passing is needed in the program specification, and task decomposition is done auto-
matically by the Crystal compiler. The compiler generates as many logical processes as
possible, and then combines clusters of logical processes to produce a problem decompo-
sition that possesses a degree of granularity appropriate for the target machine. If the
pattern of computations in a section of the program is known at compile time, a direct
mapping of the algorithm may be performed. If the pattern of computations is fully de-
termined only at runtime, the compiler constructs a symbolic representation of the data
dependencies. This symbolic representation is used by a runtime system that aggregates
the required computations. If enough regularity is present, the runtime system creates a
parameterized mapping scheme. Different instances of the mapping scheme have a range
of properties. Using information about the target machine characteristics, the runtime
system chooses the appropriate instance of the mapping scheme and dynamically maps
the computations onto the target architecture.

Comment on program mapping

In this research, programs are mapped onto systems at program loading time. All of
the inter-process communications can be specified at the logical task graph level. These
logical communications can be simulated automatically in the system graph at execution
time with very low data routing complexity and system overhead. We use non-heuristic
algorithms for task graph contraction, embedding, and data routing. Our approach can
be supported in partitionable systems in which the partition for a task is unknown until
execution time.

20

Chapter 3

Embeddings among Toruses and Meshes

3.1 Introduction

An embedding of a graph G (guest) into a graph H (host) is an injection (one-to-one
mapping) of the nodes in G to the nodes in H. The graph embedding problem can be
stated as follows: given a pair of graphs G and H, and a set of constraints and optimization
measures, find an embedding of G into H that satisfies these constraints and optimizes
these measures. Many variations of the graph embedding problem have been studied in
the literature [AR82, BMS87, DEL78b, DJ86, Ell88, Har66, HMR83, HMR73, KA88,
LED76, LW87, MS88, RS78, Ros79, Ros78, Wu85]. These variations differ mainly in the
relative sizes ofG andH, the constraints imposed on the embeddings, and the optimization
measures used in the embeddings. Many important problems in parallel processing can
be formulated as the graph embedding problem. They include the problem of mapping a
parallel program onto a parallel processing system (by interpreting G as the task graph
and H as the system graph) and the problem of evaluating the relative performance of a
pair of interconnection networks (by interpreting G and H as interconnection networks).

This chapter studies embeddings among toruses and meshes of various dimensions.
A d-dimensional torus is a graph in which each node has two neighbors in each of the
d dimensions. A d-dimensional mesh is a graph in which each node, except those at
the boundaries, has two neighbors in each of the d dimensions, while a boundary node
in any dimension has only one neighbor in that dimension. (The terms array and grid
have also been used for mesh in the literature.) Toruses and meshes are two families
of graphs that are important in parallel processing. These two families include lines,
rings, and hypercubes. Many of these graphs arise naturally as task graphs in parallel
processing, particularly in the application areas of image processing, robotics, and scientific
computation [Fox83, HKS*83, RK82, BB82]. Furthermore, because of their regularity and
simplicity, many of these graphs have also been used widely as the topologies of large-scale
interconnection networks [LM87a, Oru84, KWA82, PV79].

The most commonly used optimization measure in graph embeddings is dilation cost.
The dilation cost of an embedding of G into H is the maximum distance in H between
the images of any two adjacent nodes in G [HMR83]. This cost gives a measure of the
proximity in H of the adjacent nodes in G under an embedding. In this chapter, we
study embeddings for which G and H are of the same size, using dilation cost as the
optimization measure. Based on the dimension of G, we divide the embeddings among
toruses and meshes into two classes: (i) basic embeddings, those for which the dimension of
G is 1, that is, G is either a ring or a line; and (ii) generalized embeddings, those for which
the dimension of G is greater than 1. Based on the dimensions of G and H, we further
divide generalized embeddings into two classes: (i) generalized embeddings for increasing
dimension, those for which the dimension of G is lower than the dimension of H; and

21

3. Embeddings among Toruses and Meshes

(ii) generalized embeddings for lowering dimension, those for which the dimension of G
is higher than the dimension of H. We study only those cases in generalized embeddings
that satisfy some particular conditions: the condition of expansion for increasing dimension
cases and the condition of reduction for lowering dimension cases.

All of our generalized embeddings are constructed from several optimal, basic embed-
dings, which are derived by generalizing the concept of Gray code for the radix-2 (binary)
numbering system to similar sequences for mixed-radix numbering systems. For increasing
dimension cases in which the shapes of G and H satisfy the condition of expansion, our
embeddings have dilation costs of either 1 or 2, depending on the types of graphs of G
and H. Except for the case in which G is a torus of even size and H is a mesh, these
embeddings are all optimal. For lowering dimension cases in which the shapes of G and
H satisfy the condition of reduction, the dilation costs of our embeddings depend on the
shapes of G and H. These embeddings, however, are not optimal in general.

For the special cases in which both G and H are square, we can always construct
an embedding of G into H using our results for generalized embeddings. For increasing
dimension cases in which the dimension of G is divisible by the dimension of H, our
embeddings have a dilation cost of 2 if G is a torus of odd size and H is a mesh, and have
unit dilation cost otherwise. These embeddings are all optimal. For lowering dimension
cases, our embeddings have dilation cost 2`(d−c)/c if G is a torus and H is a mesh, and
`(d−c)/c otherwise, where ` is the length of the dimensions of G, d the dimension of G, and
c the dimension of H. For fixed values of d and c, these embeddings are all optimal to
within a constant.

Using the sequential computation model, our basic embeddings and embeddings for
increasing dimension have complexities proportional to n, and our embeddings for lowering
dimension have complexities proportional to (d− c)n, where d is the dimension of G, c is
the dimension of H, and n is the size of G and H.

3.2 Preliminaries

Unless stated otherwise, variables denote positive integers, logarithms refer to base 2,
graphs are unweighted and undirected. Given an integer n ≥ 1, we use [n] to denote the
set {0, 1, . . . , n−1}, and [n]+ to denote the set {1, 2, . . . , n}. Given a list (x1, x2, . . . , xp),
we use |(x1, x2, . . . , xp)| to denote the number of components in the list. Given a
list (x1, x2, . . . , xp) and a list (y1, y2, . . . , yq), we use (x1, x2, . . . , xp) � (y1, y2, . . . , yq)
to denote the concatenation of the two lists: (x1, x2, . . . , xp) � (y1, y2, . . . , yq) =
(x1, x2, . . . , xp, y1, y2, . . . , yq). Given two functions f and g, we use f ◦ g to denote the
composition of f and g: (f ◦ g)(x) = f(g(x)) for all x in the domain of g. Given a positive
integer k, a list (i1, i2, . . . , ik), and a permutation π : [k]+ → [k]+, we use π((i1, i2, . . . , ik))
to denote (iπ(1), . . . , iπ(k)). Given a rational number x, we use bxc to denote the greatest
integer less than or equal to x.

A graph G = (VG, EG) is a pair consisting of a set VG of nodes and a set EG of edges.
The size of G is |VG|.

Definition 3.2.1 An embedding f of a graph G = (VG, EG) into a graph
H = (VH , EH) is an injection f : VG → VH . The dilation cost of f is
max(i,j)∈EG{distance between nodes f(i) and f(j) in H}. We call G the guest graph, H
the host graph. 2

22

3.2. Preliminaries

Figure 3.1: A (4, 2, 3)-torus

Definition 3.2.2 Let d be a positive integer, and l1, l2, . . . , ld be integers greater than
1. An (l1, l2, . . . , ld)-torus is a connected graph with

∏
i∈[d]+ li nodes. The nodes are all

lists (i1, i2, . . . , id), where for all j ∈ [d]+, ij ∈ [lj]. For each node A = (i1, i2, . . . , id) and
each j ∈ [d]+, A has in the j-th dimension a left neighbor (i1, i2, . . . , ij−1, (ij − 1) mod
lj , ij+1, . . . , id) and a right neighbor (i1, i2, . . . , ij−1, (ij + 1) mod lj , ij+1, . . . , id). 2

Given an (l1, l2, . . . , ld)-torus, (l1, l2, . . . , ld) is the shape of the torus; d is the dimension
of the torus; and for all j ∈ [d]+, lj is the length of the j-th dimension of the torus. If
l1 = l2 = · · · = ld, we say that the torus is a square graph. A torus of dimension 1 is a
ring. For convenience in notation, given a ring of size n, instead of using the lists (0), (1),
. . ., (n− 1) to denote its nodes, we simply use the integers 0, 1, . . ., n− 1. An example of
a (4, 2, 3)-torus is given in Figure 3.1.

Definition 3.2.3 Let d be a positive integer, and l1, l2, . . . , ld be integers greater than
1. An (l1, l2, . . . , ld)-mesh is a connected graph with

∏
i∈[d]+ li nodes. The nodes are all

lists (i1, i2, . . . , id), where for all j ∈ [d]+, ij ∈ [lj]. For each node A = (i1, i2, . . . , id)
and each j ∈ [d]+, if ij /∈ {0, lj − 1}, then A has in the j-th dimension a left neighbor
(i1, i2, . . . , ij−1, ij−1, ij+1, . . . , id) and a right neighbor (i1, i2, . . . , ij−1, ij +1, ij+1, . . . , id).
If ij = 0, then A has no left neighbor in the j-th dimension, and if ij = lj − 1, then A has
no right neighbor in the j-th dimension. 2

The terms shape, dimension, length of a dimension, and square for meshes are defined
in the same way as for toruses. A mesh of dimension 1 is a line. Given a line of size n,
we use the integers 0, 1, . . ., n − 1 to denote its nodes. An example of a (4, 2, 3)-mesh is
given in Figure 3.2.

Given a torus or a mesh G, the type of G refers to whether G is a torus or a mesh.
Two graphs are of the same type if they are both toruses or both meshes.

23

3. Embeddings among Toruses and Meshes

Figure 3.2: A (4, 2, 3)-mesh

Definition 3.2.4 Let n = 2d, for some positive integer d. A hypercube of size n is a
connected graph in which the nodes are all lists (i1, i2, . . . , id), where for all i ∈ [d]+,
ij ∈ {0, 1}. A pair of nodes A and B are neighbors if the lists A and B differ in exactly
one position. 2

A graph G is a hypercube if and only if G is both a torus and a mesh: a hypercube
of size n is both a (log n)-dimensional torus and a (log n)-dimensional mesh in which the
length of each dimension is 2.

For every pair of nodes v and v′ in a connected graph G, the distance between v and v′

in G is the length of the shortest paths between v and v′ in G. The following two lemmas
follow directly from the definitions of toruses and meshes.

Lemma 3.2.1 Let G be an (l1, l2, . . . , ld)-torus, and A = (i1, i2, . . . , id) and B =
(i′1, i

′
2, . . . , i

′
d) be a pair of nodes in G. The distance between A and B in G, denoted

by δt(A,B), is
∑d
k=1 min {|ik − i′k|, lk − |ik − i′k|}. 2

Lemma 3.2.2 Let G be an (l1, l2, . . . , ld)-mesh, and A = (i1, i2, . . . , id) and B =
(i′1, i

′
2, . . . , i

′
d) be a pair of nodes in G. The distance between A and B in G, denoted

by δm(A,B), is
∑d
k=1 |ik − i′k|. 2

In the torus given in Figure 3.1, the distance between the nodes (0, 0, 1) and (3, 0, 0)
is 2, and in the mesh given in Figure 3.2, the distance between the nodes (0, 0, 1) and
(3, 0, 0) is 4.

Definition 3.2.5 Let d be a positive integer, and l1, l2, . . . , ld be integers greater than
1. Let L = (l1, l2, . . . , ld), and n =

∏d
i=1 li. For all i ∈ [d + 1], let wi =

∏d
j=i+1 lj . For

every x ∈ [n], the radix-L representation of x is the d-tuple (x̂1, x̂2, . . . , x̂d) such that for

24

3.2. Preliminaries

all j ∈ [d]+, x̂j = bx/wjc mod lj . L is a radix-base, and w0, w1, . . ., wd are the weights
in the radix-L representation. The set of all radix-L numbers, denoted by ΩL, is the set
of radix-L representation of x, for all x ∈ [n]. ΩL is a mixed-radix numbering system. Let
uL : [n]→ ΩL denote the bijection given above that maps each integer in [n] to its radix-L
representation in ΩL. Let u−1

L : ΩL → [n] denote the inverse of uL. For every integer
(x̂1, x̂2, . . . , x̂d) ∈ ΩL, u−1

L ((x̂1, x̂2, . . . , x̂d)) =
∑d
k=1 x̂kwk. 2

Every integer in [n] has unique radix-L representation [TM75]. Note that the weight w0

is not used in the definition of radix-L representation of numbers. This weight is included
only for the simplification of our later definitions and analyses. Again, for convenience in
presentation, when d = 1, instead of using the list (l1) to denote a radix-base L, and the
lists (0), (1), . . ., (l1 − 1) to denote the numbers in ΩL, we often use the integer l1, and
0, 1, . . ., l1 − 1, respectively. An example of the radix-(4, 2, 3) numbering system is given
in Figure 3.9 on page 39. In this example, l1 = 4, l2 = 2, l3 = 3, w1 = 6, w2 = 3, and
w3 = 1.

Given a radix-base L = (l1, l2, . . . , ld), we can view the radix-L numbers in ΩL as
either the nodes in an (l1, l2, . . . , ld)-torus or the nodes in an (l1, l2, . . . , ld)-mesh using
the obvious bijections. We can thus define the δt-distance and the δm-distance between
a pair of radix-L numbers as the distances between the corresponding pair of nodes in
a torus and in a mesh, respectively. By the definitions of δm-distance and δt-distance,
the δm-distance between any two numbers in ΩL is always greater than or equal to their
δt-distance.

Definition 3.2.6 Let n be a positive integer, L = (l1, l2, . . . , ld) a radix-base, and f :
[n] → ΩL a bijection. Such a function f is often treated as an acyclic sequence, namely,
f(0), f(1), . . ., f(n − 1). For all i ∈ [n− 1], f(i) and f(i + 1) are successive elements
in the acyclic sequence f . If the first and the last elements, f(0) and f(n − 1), are also
taken to be successive, then f is called a cyclic sequence. The δm-spread of the acyclic
sequence f is the maximum of the δm-distances among all pairs of successive elements in
f , and the δt-spread of the acyclic sequence f is the maximum of the δt-distances among
all pairs of successive elements in f . The δm-spread and δt-spread of the cyclic sequence
f are defined similarly. 2

In the definition above, a function f can be treated as either an acyclic sequence or a
cyclic sequence, depending on the way that successive elements are defined. Furthermore,
whether f is viewed as cyclic or acyclic, we can always define a δm-distance and a δt-
distance between pairs of elements of f . In the remainder of this chapter, we will simply
call an acyclic sequence a sequence. Figure 3.3(a) gives an example of a function f : [9]→
Ω(3,3), and Figure 3.3(b) shows the δm-distance and δt-distance between the pair f(i) and
f((i+ 1) mod 9), for all i ∈ [9]. In this example, if we view f as an acyclic sequence, then
the δm-spread of f is 2, and the δt-spread of f is 1. If we view f as a cyclic sequence, then
the δm-spread of f is 3, and the δt-spread of f is 2.

As will be discussed in detail in the next section, given an embedding f of G into H,
we often view f as an acyclic sequence if G is a line, and as a cyclic sequence if G is a
ring. We use δm-distance measure on f if H is a mesh, and δt-distance measure if H is a
torus.

25

3. Embeddings among Toruses and Meshes

i 0 1 2 3 4 5 6 7 8

f(i) (0,0) (0,1) (0,2) (2,2) (2,1) (2,0) (1,0) (1,1) (1,2)

(a)

i 0 1 2 3 4 5 6 7 8

δm(f(i), f((i+ 1) mod 9)) 1 1 2 1 1 1 1 1 3

δt(f(i), f((i+ 1) mod 9)) 1 1 1 1 1 1 1 1 2

(b)

Figure 3.3: A function f with n = 9 and L = (3, 3)

For the special case in which n = 2d and L is a list of d elements each equal to 2, if
the function f : [n] → ΩL has unit δt-spread (which is the same as the δm-spread in this
case), then the sequence f is called a Gray code [RJD77].

3.3 Basic embeddings

In this section, we consider the embeddings of either a line or a ring into a mesh or a
torus. The major results of this section are the following:

(a) A line can always be embedded into a mesh or a torus with unit dilation cost.

(b) A ring can always be embedded into a torus with unit dilation cost.

(c) A ring can be embedded into a mesh with unit dilation cost if the ring is of even size
and the mesh has dimension greater than 1, and with an optimal dilation cost of 2
otherwise.

3.3.1 Embedding a line into a mesh or a torus

Let G be a line of size n, and H be either an (l1, l2, . . . , ld)-mesh or an (l1, l2, . . . , ld)-torus
such that n =

∏d
i=1 li. Let L = (l1, l2, . . . , ld). The problem of embedding G into H can

be considered in terms of the radix-L numbers in ΩL: the nodes in G are all numbers in
[n]; the nodes in H are all radix-L numbers in ΩL; and an embedding f of G into H is a
bijection from [n] to ΩL. Since the neighbors in G correspond to the pairs of successive
numbers in the sequence 0, 1, , . . . , n − 1, the dilation cost of an embedding f is the
δm-spread of the sequence f if H is a mesh, and the δt-spread if H is a torus. The problem
of finding an embedding of G into H with minimum dilation cost thus corresponds to the
problem of finding a sequence of all numbers in ΩL with minimum δm-spread if H is a
mesh, and finding one with minimum δt-spread if H is a torus.

Since the δt-spread of a sequence is never greater than its δm-spread, to prove that a
line can be embedded into a mesh and a torus with unit dilation cost, it suffices to prove
that we can construct a sequence of all numbers in ΩL with unit δm-spread.

26

3.3. Basic embeddings

Figure 3.4: Sequences P and P ′ for L = (4, 2, 3)

Let P be the sequence of numbers 0, 1, . . . , n− 1 in their radix-L representations. In
the following, we first show that the δm-spread of P is at least 2 for all d > 1, and then
construct another sequence P ′ from P with unit δm-spread.

In the sequence P , every element a is of the form (â1, â2, . . . , âd), where âi ∈ [li], for
all i ∈ [d]+. Every element a in P thus consists of d components. The sequence P can
be viewed as consisting of d separate sequences of natural numbers, namely p1, p2, . . .,
pd, all of length n, one for each of the d components of the elements in P . Let w0, w1,
. . ., wd be the weights in the radix-L representation. From the properties of the radix-L
representation of numbers, for all i ∈ [d]+, the sequence pi can be partitioned into n/wi−1

segments, each with wi−1 elements and of the form 0 · · · 0︸ ︷︷ ︸
wi

1 · · · 1︸ ︷︷ ︸
wi

(li − 1) · · · (li − 1)︸ ︷︷ ︸
wi

. We

number these segments from 0 to n/wi−1 − 1 successively. For every pair of successive
elements in pi, for all i ∈ [d]+, if they belong to the same segment in pi, then their
difference is at most 1; otherwise, their difference is li − 1. The sequence P has thus a
δm-spread greater than 1 for all d > 1. An example of the sequence P for L = (4, 2, 3)
and n = 24 is shown in Figure 3.4.

We next construct a sequence P ′ with unit δm-spread from P . The sequence P ′ can
also be viewed as consisting of d sequences, p′1, p′2, . . ., p′d. For all i ∈ [d]+, p′i is constructed
from pi by reversing all of the odd-numbered segments of pi, which produces segments of

27

3. Embeddings among Toruses and Meshes

the form (li − 1) · · · (li − 1)︸ ︷︷ ︸
wi

1 · · · 1︸ ︷︷ ︸
wi

0 · · · 0︸ ︷︷ ︸
wi

, and by leaving all of the even-numbered segments

unchanged. As will be proved below, for every pair of successive elements in p′i, if they
belong to the same segment, their difference is at most 1; otherwise, their difference is 0.
The sequence P ′ has unit δm-spread. An example of P ′ for L = (4, 2, 3) and n = 24 is
shown in Figure 3.4.

We now define a function fL : [n]→ ΩL. Lemma 3.3.1 shows that the sequence fL is a
sequence of all numbers in ΩL, and Lemma 3.3.2 and Lemma 3.3.3 show respectively that
the sequence fL has unit δm-spread and unit δt-spread. The sequence fL is P ′.

Definition 3.3.1 Let L = (l1, l2, . . . , ld) be a radix-base, and let n =
∏d
i=1 li. Let w0, w1,

. . ., wd be the weights in the radix-L representation. For every x ∈ [n], let (x̂1, x̂2, . . . , x̂d)
be the radix-L representation of x. The function fL : [n] → ΩL is defined as follows: for
all x ∈ [n], fL(x) = (x1, x2, . . . , xd), where for all i ∈ [d]+,

xi =

{
x̂i, if bx/wi−1c is even;
li − x̂i − 1, if bx/wi−1c is odd.

2

In the definition above, for all i ∈ [d]+, bx/wi−1c determines the segment in the
sequence pi to which x̂i belongs. An example of the function fL is given in Figure 3.9 on
page 39.

We say that two numbers have the same parity if they are both even or both odd.

Lemma 3.3.1 Let L = (l1, l2, . . . , ld) be a radix-base, and let n =
∏d
i=1 li. The function

fL is bijective. 2

Proof. Since |ΩL| = n, to show that fL is bijective, it is sufficient to show that fL is
injective. Let x and y be an arbitrary pair of distinct integers in [n]. We want to show
that fL(x) 6= fL(y). Let (x̂1, x̂2, . . . , x̂d) and (ŷ1, ŷ2, . . . , ŷd) be the radix-L representations
of x and y. Let fL(x) = (x1, x2, . . . , xd), and fL(y) = (y1, y2, . . . , yd). Since every integer
in [n] has a unique radix-L representation, there is at least one index i ∈ [d]+ such that
x̂i 6= ŷi. Let k ∈ [d]+ be the smallest index such that x̂k 6= ŷk. We first show that
bx/wk−1c and by/wk−1c have the same parity. There are two cases:

Case 1. k = 1.
Since w0 = n, bx/w0c = by/w0c = 0. Thus, bx/w0c and by/w0c have the same parity.

Case 2. k > 1.
Assume for contradiction that bx/wk−1c and by/wk−1c have different parities. This

implies that bx/wk−1c 6= by/wk−1c. Since x̂k−1 = ŷk−1, we also have bx/wk−1c mod lk−1 =
by/wk−1c mod lk−1. It follows that | bx/wk−1c − by/wk−1c | = c lk−1, for some positive
integer c. By the definition of radix-base, lk−1 > 1, and hence, | bx/wk−1c−by/wk−1c | > 1.
This implies that |x − y| > wk−1. On the other hand, since k is the smallest index such
that x̂k 6= ŷk, we have

|x− y| ≤
d∑
j=k

| x̂jwj − ŷjwj | ≤
d∑
j=k

(lj − 1) wj .

28

3.3. Basic embeddings

Since by definition, for all j ∈ [d+ 1], wj =
∏d
i=j+1 li, we have for all j ∈ [d]+, ljwj = wj−1.

Thus,

|x− y| ≤
d−1∑
j=k−1

wj −
d∑
j=k

wj = wk−1 − wd < wk−1,

which is a contradiction. Therefore, bx/wk−1c and by/wk−1c have the same parity.
If bx/wk−1c and by/wk−1c are both even, then we have xk = x̂k and yk = ŷk. If they

are both odd, then we have xk = lk − x̂k − 1 and yk = lk − ŷk − 1. In either case, the fact
that x̂k 6= ŷk implies that xk 6= yk. Thus, fL(x) 6= fL(y). The function fL is therefore
bijective. 2

Lemma 3.3.2 Let L = (l1, l2, . . . , ld) be a radix-base, and let n =
∏d
i=1 li. For all x ∈

[n− 1], δm(fL(x), fL(x+ 1)) = 1. 2

Proof. Let x be an arbitrary number in [n− 1], and let y = x+1. Let (x̂1, x̂2, . . . , x̂d) and
(ŷ1, ŷ2, . . . , ŷd) be the radix-L representations of x and y. Let fL(x) = (x1, x2, . . . , xd), and
fL(y) = (y1, y2, . . . , yd). We want to show that (x1, x2, . . . , xd) and (y1, y2, . . . , yd) differ
by 1 in exactly one position.

First we look at the relationship between the values of x̂i and ŷi for all i ∈ [d]+. Since
x < n−1, by the properties of the radix-L representation of numbers, there exists exactly
one index k ∈ [d]+ such that x̂k < lk − 1 and for all i ∈ {k+ 1, . . . , d}, x̂i = li − 1. Since
y = x+ 1, for all i ∈ {k + 1, . . . , d}, ŷi = 0; ŷk = x̂k + 1; and for all i ∈ {1, . . . , k − 1},
ŷi = x̂i.

We now look at the relationship between xi and yi, for all i ∈ [d]+. There are three
cases:

Case 1. i ∈ {k + 1, . . . , d}.
First we show that bx/wi−1c and by/wi−1c have different parities. Since x̂i−1 6= ŷi−1,

we have bx/wi−1c mod li−1 6= by/wi−1c mod li−1, and hence, bx/wi−1c 6= by/wi−1c. Fur-
thermore, since x and y differ only by 1, by/wi−1c = bx/wi−1c + 1. Therefore, bx/wi−1c
and by/wi−1c have different parities. Since x̂i = li − 1 and ŷi = 0, we have xi = yi.

Case 2. i ∈ [k − 1]+.
First we show that bx/wi−1c and by/wi−1c have the same parity. If i = 1, then since

w0 = n, we have bx/w0c = by/w0c = 0. Therefore, bx/wi−1c and by/wi−1c have the same
parity. If i ∈ {2, 3, . . . , k − 1}, then since x̂i−1 = ŷi−1, we have bx/wi−1c mod li−1 =
by/wi−1c mod li−1, and since li−1 > 1 and x and y differ only by 1, we have bx/wi−1c =
by/wi−1c. Therefore, bx/wi−1c and by/wi−1c also have the same parity. Since x̂i = ŷi, we
have xi = yi.

Case 3. i = k.
Using a proof as the one in Case 2, we can show that bx/wk−1c and by/wk−1c have

the same parity. Since ŷk = x̂k + 1, we have |yk − xk| = 1.
Since δm(fL(x), fL(x+ 1)) =

∑d
i=1 |xi − yi|, we have δm(fL(x), fL(x+ 1)) = 1. 2

Lemma 3.3.3 Let L = (l1, l2, . . . , ld) be a radix-base, and let n =
∏d
i=1 li. For all x ∈

[n− 1], δt(fL(x), fL(x+ 1)) = 1. 2

29

3. Embeddings among Toruses and Meshes

Proof. Since for any two numbers in ΩL their δm-distance is never less than their δt-
distance, the claim follows from Lemma 3.3.2. 2

Theorem 3.3.1 Let G be a line, and H be either an (l1, l2, . . . , ld)-torus or an
(l1, l2, . . . , ld)-mesh such that G and H are of the same size. Let L = (l1, l2, . . . , ld).
The line G can be embedded into H with unit dilation cost. The function fL gives such
an optimal embedding. 2

Proof. The theorem follows from Lemmas 3.3.1, 3.3.2, and 3.3.3 by interpreting the
numbers in [n] as the nodes in G, and the radix-L numbers in ΩL as the nodes in H. 2

An example of embedding a line into a mesh using the function fL is given in Figure 3.10
on page 40.

3.3.2 Embedding a ring into a mesh or a torus

Let G be a ring of size n, and H be either an (l1, l2, . . . , ld)-mesh or an (l1, l2, . . . , ld)-torus
such that n =

∏d
i=1 li. Let L = (l1, l2, . . . , ld). As with the problem of embedding a line

into a mesh, we can consider this problem in terms of the radix-L numbers in ΩL. The
neighbors in a ring of size n correspond to the pairs of successive numbers in the cyclic
sequence 0, 1, , . . . , n − 1. The problem of finding an embedding of G into H with
minimum dilation cost thus corresponds to the problem of finding a cyclic sequence of
all radix-L numbers in ΩL with minimum δm-spread if H is a mesh and finding one with
minimum δt-spread if H is a torus.

In this section, we first show that the δm-spread of the cyclic sequence fL is at least
l1 − 1. We then construct from fL another cyclic sequence gL with a δm-spread of 2. The
function gL provides an embedding of a ring into a mesh with a dilation cost of 2. We also
prove that a ring of odd size cannot be embedded into a mesh of the same size with unit
dilation cost. The embedding function gL is therefore optimal for all rings and meshes of
odd sizes. Finally, we construct a cyclic sequence hL that has unit δm-spread if L consists
of at least two components, and with the first component being an even number. The
function hL can be used to construct an embedding of a ring of even size into a higher-
dimensional mesh with unit dilation cost. Furthermore, the cyclic sequence hL has unit
δt-spread. Thus, the function hL also provides an optimal embedding of a ring into a torus
with unit dilation cost.

Embedding a ring into a mesh

The embedding function gL
Let L = (l1, l2, . . . , ld) be a radix-base, and let n =

∏d
i=1 li. Let fL(n − 1) =

(n1, n2, . . . , nd). The radix-L representation of n−1 is (l1−1, l2−1, . . . , ld−1). Since
w0 = n, we have b(n − 1)/w0c = 0. It follows from the definition of fL that n1 = l1 − 1.
Hence, the δm-distance between fL(0) and fL(n−1) is at least l1−1. The cyclic sequence
fL therefore has a δm-spread of at least l1 − 1.

A cyclic sequence with a δm-spread of 2 can be constructed from fL in the following
way. We number all the elements in fL successively from 0 to n − 1. Let R′ and R′′ be
the following two sequences: R′ consists of all even-numbered elements in fL in the same

30

3.3. Basic embeddings

order as they appear in fL, and R′′ consists of all odd-numbered elements in fL in the
reverse order. Since the sequence fL has unit δm-spread, both R′ and R′′ have a δm-spread
of 2. The cyclic sequence R′R′′, the concatenation of R′ and R′′, has a δm-spread of 2:
the first element in R′ and the last element in R′′ correspond to the first two elements in
fL; the last element in R′ and the first element in R′′ correspond to the last two elements
in fL; and the sequence fL has a unit δm-spread.

We first define the function tn : [n] → [n]. This function defines a cyclic sequence of
all numbers in [n] with a δm-spread of 2. We then define the function gL : [n]→ ΩL using
fL and tn. The sequence gL is R′R′′.

Definition 3.3.2 Let n be any positive integer. The function tn : [n]→ [n] is defined as
follows: for all x ∈ [n],

if n is even, then

tn(x) =

{
2x, if x < n/2;
n− 2(x− n/2)− 1, otherwise;

if n is odd, then

tn(x) =

{
2x, if x < (n+ 1)/2;
n− 2(x− (n+ 1)/2)− 2, otherwise.

2

Definition 3.3.3 Let L = (l1, l2, . . . , ld) be a radix-base, and let n =
∏d
i=1 li. The func-

tion gL : [n]→ ΩL is defined as follows: for all x ∈ [n],

gL(x) = fL(tn(x)).

2

An example of the function gL for L = (4, 2, 3) is given in Figure 3.9 on page 39. It is
clear that the function gL is bijective. The next lemma follows directly from the definition
of gL and the properties of fL.

Lemma 3.3.4 Let L = (l1, l2, . . . , ld) be a radix-base, and let n =
∏d
i=1 li. For all x ∈ [n],

δm(gL(x), gL((x+ 1) mod n)) ≤ 2. 2

Theorem 3.3.2 Let G be a ring, and H be an (l1, l2, . . . , ld)-mesh such that G and H
are of the same size. Let L = (l1, l2, . . . , ld). The ring G can always be embedded into H
with a dilation cost of 2. The function gL gives such an embedding. Furthermore, such
an embedding is optimal if H is a line or has odd size. 2

Proof. We need only prove that a ring cannot be embedded into either a line or a mesh of
odd size with unit dilation cost. The other part of the theorem follows from Lemma 3.3.4.

For the case in which H is a line, it suffices to notice that since each of the two
boundary nodes of a line has only one neighbor, a ring cannot be embedded into a line
with unit dilation cost. For the case in which H is of odd size and of dimension greater

31

3. Embeddings among Toruses and Meshes

than 1, we prove the theorem by showing that there is no Hamiltonian circuit in such a
mesh.

Assume for contradiction that a Hamiltonian circuit exists in an (l1, l2, . . . , ld)-mesh
of odd size. Since the mesh has an odd number of nodes, the circuit also has an odd
number of edges. By specifying a direction in the circuit, we can view all of the edges in
the circuit as directed. Each node in the mesh is a list of d components, (i1, i2, . . . , id),
where ij ∈ [lj], for all j ∈ [d]+. Since each edge (u, v) in the circuit connects a pair of
neighboring nodes in the mesh, u and v differ in exactly one component by 1, that is,
v can be obtained from u by either increasing or decreasing exactly one component of u
by 1. Furthermore, for each edge (u, v) in the circuit, if v can be obtained from u by
increasing the k-th component of u from a to a + 1, where k ∈ [d]+ and a, a + 1 ∈ [lk],
then there must exist an edge (s, t) in the circuit such that t can be obtained from s by
decreasing the k-th component of s from a + 1 to a; otherwise, if we traverse the circuit
starting from the node u, we will not be able to return to u in the circuit. For a similar
reason, the reverse of the above condition is also true: if v can be obtained from u by
decreasing the k-th component of u from a + 1 to a, then there must exist an edge (s, t)
in the circuit such that t can be obtained from s by increasing the k-th component of s
from a to a + 1. It follows that every edge in the circuit has a unique mate. Therefore,
the number of edges in the circuit is even. This contradicts the assumption that H is of
odd size. 2

An example of an embedding of a ring of size 24 into a (4, 2, 3)-mesh using the function
gL is given in Figure 3.10 on page 40.

The proof of the following corollary is contained in the proof of the theorem above.

Corollary 3.3.1 There is no Hamiltonian circuit in any mesh of odd size. 2

For the special case where the mesh is of even size and of dimension at least 2, a ring
can always be embedded into it with unit dilation cost. In the following, we first construct
an embedding function rL for the simple case where the dimension of the mesh is exactly
2, and then construct a function hL for the case where the dimension of the mesh is at
least 2.

The embedding function rL

The following lemma gives a property of fL that will be used in the construction of
the function rL.

Lemma 3.3.5 Let L = (l1, l2, . . . , ld) be a radix-base, and let n =
∏d
i=1 li. If l1 is even,

then fL(n− 1) = (l1 − 1, 0, . . . , 0). 2

Proof. By definition, the radix-L representation of n−1 is (l1−1, l2−1, . . . , ld−1). Since
w0 = n, b(n− 1)/w0c = 0. We want to show that if l1 is even, then for all i ∈ {2, . . . , d},
b(n− 1)/wi−1c is odd. These results together with the definition of the function fL will
then imply the lemma.

Since n =
∏d
k=1 lk, and, by definition, for all i ∈ {2, . . . , d}, wi−1 =

∏d
j=i lj , we can

write b(n− 1)/wi−1c as b
∏i−1
j=1 lj − (1/wi−1)c. Furthermore, since 0 < (1/wi−1) ≤ 1, we

have b(n− 1)/wi−1c =
∏i−1
j=1 lj − 1. Therefore, for all i ∈ {2, . . . , d}, b(n− 1)/wi−1c is

odd if l1 is even. 2

32

3.3. Basic embeddings

Figure 3.5: Embedding a ring into an (l1, l2)-mesh with l1 = 4 and l2 > 2

Let G be a ring, and H be an (l1, l2)-mesh such that l1 is even, and G and H are of
the same size. Let L = (l1, l2). We assume the following coordinates: the origin of the
mesh H, (0, 0), is at the lower left corner, the first dimension increases vertically upward,
and the second dimension increases horizontally to the right. If we use the function fL
to embed the ring into the mesh, then by Lemma 3.3.5, both the first and the last nodes
from the ring are embedded into the first column of the mesh, with node 0 at the bottom
(node (0, 0) in the mesh) and node n − 1 at the top (node (l1 − 1, 0) in the mesh) (see
Figure 3.5(a)). The δm-distance between fL(0) and fL(n− 1) is thus l1 − 1. For the case
in which l2 > 2, the following simple modification of fL gives an embedding of G into H
with unit dilation cost. We first embed the nodes from the ring successively into the first
column of the mesh, from top to bottom, and then by treating the remaining nodes in
the mesh as an (l1, l2 − 1)-mesh, we embed the remaining nodes from the ring using the
function f(l1,l2−1). (See Figure 3.5(b).) In this embedding, all neighboring nodes in the
ring are embedded into neighboring nodes in the mesh.

For the case in which l2 = 2, the function f(l1,l2−1) is not defined because every
component in a radix-base must be greater than 1. For this case, we simply embed the
nodes from the ring successively into the first column of the mesh, from top to bottom,
and then embed the remaining nodes from the ring into the second column of the mesh,
from bottom to top. This embedding also has unit dilation cost.

We next define the function rL : [n] → ΩL. This function rL gives the embedding
above.

Definition 3.3.4 Let L = (l1, l2) be a radix-base, and let n = l1l2. The function
rL : [n]→ ΩL is defined as follows: for all x ∈ [n],

if l2 > 2, then

rL(x) =

{
(l1 − 1− x, 0), if x < l1;
(x1, x2 + 1) where (x1, x2) = f(l1,l2−1)(x− l1), if x ≥ l1;

if l2 = 2, then

33

3. Embeddings among Toruses and Meshes

Figure 3.6: Q, Q′ and Q′′ for even m

rL(x) =

{
(l1 − 1− x, 0), if x < l1;
(x− l1, 1), if x ≥ l1.

2

The next lemma follows directly from the definition of rL and the properties of the
function fL.

Lemma 3.3.6 Let L = (l1, l2) be a radix-base for which l1 is even, and let n = l1l2. For
all x ∈ [n], δm(rL(x), rL((x+ 1) mod n)) = 1. 2

The embedding function hL

We next consider the case of embedding a ring of even size into a mesh of dimension
at least 3. Given a mesh of even size, first we assume that the length of its first dimension
is even.

Let d ≥ 3, let L = (l1, l2, . . . , ld) be a radix-base for which l1 is even, and let n =
∏d
i=1 li.

Let L′ = (l1, l2), L′′ = (l3, l4, . . . , ld), and m =
∏d
i=3 li. We now construct a cyclic

sequence of the numbers in ΩL with unit δm-spread. This sequence is defined in terms of
rL′ and fL′′ . We first define m sequences q0, q1, . . ., qm−1, each of which has length l1l2. For
all i ∈ [m], let qi be the sequence rL′(0) � fL′′(i), rL′(1) � fL′′(i), . . ., rL′(l1l2 − 1) � fL′′(i).
(� is the operator for concatenating two lists, as defined in Section 3.2, page 22.) Since
the function rL′ : [l1l2] → ΩL′ and the function fL′′ : [m] → ΩL′′ are both bijective, each
of these sequences consists of l1l2 distinct numbers in ΩL. Next we construct two disjoint
segments from each of these sequences: for all i ∈ [m], the segment q′i consists of the first
l1l2 − 1 elements of qi, with these elements in the same order as they appear in qi if i is
even and in the reverse order if i is odd; and the segment q′′i consists of the last element
in qi. Let Q′ = q′0 q

′
1 · · · q′m−1, Q′′ = q′′m−1 q

′′
m−2 · · · q′′0 , and Q = Q′Q′′. An example of

Q, Q′, and Q′′ is given in Figure 3.6 for even m. The sequence Q consists of all numbers
in ΩL, and each element in Q is a list of d components. We now show that the cyclic
sequence Q has unit δm-spread by establishing the following claims.
Claim 1. The sequence Q′ has unit δm-spread.

34

3.3. Basic embeddings

For every pair of successive elements in Q′, if they belong to the same segment q′i, for
some i ∈ [m], then they have the same rightmost d− 2 components, which are the compo-
nents of fL′′(i), and their leftmost two components correspond to successive elements in
the sequence rL′ . Therefore the δm-distance between them is 1. If they belong to different
segments, then they have the same leftmost two components, which are either the compo-
nents of rL′(0) or the components of rL′(l1l2 − 2), and their rightmost d− 2 components
correspond to successive elements in the sequence fL′′ . Therefore the δm-distance between
them is also 1. The sequence Q′ thus has unit δm-spread.
Claim 2. The sequence Q′′ has unit δm-spread.

All elements in Q′′ have the same leftmost two components, which are the components
of rL′(l1l2 − 1). Furthermore, for every pair of successive elements in Q′′, their rightmost
d−2 components correspond to successive elements, in reverse order, in fL′′ . The sequence
Q′′ therefore has unit δm-spread.
Claim 3. The cyclic sequence Q has unit δm-spread.

Let y′ and z′ be the first and last elements of Q′, and y′′ and z′′ be the first and last
elements of Q′′. We show that the δm-distance between z′ and y′′ and the δm-distance
between y′ and z′′ are both 1. Both z′ and y′′ come from the sequence qm−1, with y′′ being
the last element in qm−1, and depending on whether m is even or odd, z′ being either the
first or the second to last element in qm−1. Since l1 is even, and l2 ≥ 2, by Lemma 3.3.6,
the cyclic sequence rL′ has unit δm-spread. The δm-distance between z′ and y′′ is therefore
1. For the pair y′ and z′′ , since they both come from the sequence q0, with y′ being the
first element and z′′ being the last element, again since the cyclic sequence rL′ has unit
δm-spread, the δm-distance between y′ and z′′ is also 1. Using claims 1 and 2, we conclude
that the cyclic sequence Q has unit δm-spread.

We next define the function hL : [n] → ΩL. When d ≥ 3 and l1 is an even number,
the sequence hL is Q′Q′′. To simplify our presentation, we also define the function hL for
the special cases d = 1 and d = 2. For d = 2, we define hL to be rL. For d = 1, we
define hL to be the identity function. (The function hL with d = 1 appears only in the
embedding of a ring into a torus, which will be discussed in the next subsection, but not
in the embedding of a ring into a mesh.)

Definition 3.3.5 Let L = (l1, l2, . . . , ld) be a radix-base, and let n =
∏d
i=1 li. The func-

tion hL : [n]→ ΩL is defined as follows: for all x ∈ [n],
if d ≥ 3, then let L′ = (l1, l2), L′′ = (l3, l4, . . . , ld), m =

∏d
i=3 li, a = bx/(l1l2 − 1)c,

b = x mod (l1l2 − 1), and

hL(x) =

rL′(b) � fL′′(a), if x < m(l1l2 − 1) and a is even;
rL′(l1l2 − b− 2) � fL′′(a), if x < m(l1l2 − 1) and a is odd;
rL′(l1l2 − 1) � fL′′(n− x− 1), otherwise;

if d = 2, then hL(x) = rL(x); and
if d = 1, then hL(x) = x. 2

In the definition above, l1l2 − 1 corresponds to the length of each segment in Q′,
m(l1l2−1) corresponds to the length of the sequence Q′, a determines a particular segment
in Q′, and b determines a particular element inside the segment. An example of the
function hL for L = (4, 2, 3) is given in Figure 3.9 on page 39.

35

3. Embeddings among Toruses and Meshes

Figure 3.7: Embedding scheme of hL with L = (l1, l2, l3) and l3 = 3

The function hL is clearly bijective. The following lemma follows from the definition
of hL and the properties of rL′ and fL′′ .

Lemma 3.3.7 Let d > 1, let L = (l1, l2, . . . , ld) be a radix-base, and let n =
∏d
i=1 li. If l1

is even, then for all x ∈ [n], δm(hL(x), hL((x+ 1) mod n)) = 1. 2

We can view the function hL as embedding a ring into an (l1, l2, . . . , ld)-mesh for
which d ≥ 2 and l1 is even in the following way. Let m =

∏d
i=3 li. We first divide the

(l1, l2, . . . , ld)-mesh into m (l1, l2)-meshes, which we simply call planes. All nodes in each
plane have the same rightmost (d − 2) components. The values of these components are
used to order the planes from 0 to m − 1 according to the sequence fL′′(0), fL′′(1), . . .,
fL′′(m− 1). We refer to the nodes in each plane only by their leftmost two components.
The embedding function hL marches through these planes in two passes: first a forward
pass from plane 0 to plane m − 1, and then a backward pass from plane m − 1 to plane
0. In the forward pass, hL fills up l1l2 − 1 nodes in each plane according to the sequence
rL′(0), rL′(1), . . ., rL′(l1l2 − 2) for even-numbered planes, and according to the sequence
rL′(l1l2 − 2), rL′(l1l2 − 3), . . ., rL′(0) for odd-numbered planes. In the backward pass,
hL fills up the last node rL′(l1l2 − 1) in each plane. (See Figure 3.7.) An example of
an embedding of a ring of size 24 into a (4, 2, 3)-mesh using the function hL is given in
Figure 3.10 on page 40.

Given a ring G of even size and an L-mesh H of the same size and of dimension greater
than 1, the function hL(x) gives a unit dilation cost embedding of G into H only if the first
component of L is an even number. If this condition is not satisfied, we can define an L∗-
mesh H∗ such that L∗ = (l∗1, l

∗
2, . . . , l

∗
d), l

∗
1 is even, and π(L∗) = L, for some permutation

π : [d]+ → [d]+. (The application of a permutation to a list is defined in Section 3.2 on
page 22.) Since H is of even size, L∗ must exist. The ring G can be embedded into H by

36

3.3. Basic embeddings

first embedding G into H∗ using hL∗ and then embedding H∗ into H using π. For any
pair of neighboring nodes A and B in H∗, π(A) and π(B) remain neighbors in H because
π is only a permutation of the lists A and B. Hence, the function π ◦ hL∗ gives a unit
dilation cost embedding of the ring G into the mesh H. (◦ is the function composition
operator defined in Section 3.2 on page 22.)

Theorem 3.3.3 Let G be a ring of even size, and H be an L-mesh of the same size and
of dimension d, for d ≥ 2. Let L∗ be a list such that π(L∗) = L for some permutation
π : [d]+ → [d]+, and the first component of L∗ is even. The ring G can be embedded into
H with unit dilation cost. The function π ◦ hL∗ gives such an optimal embedding. 2

The next corollary follows from Theorem 3.3.3.

Corollary 3.3.2 Every mesh of even size and of dimension greater than 1 has a Hamil-
tonian circuit. 2

Embedding a ring into a torus

By Lemma 3.3.5, if l1 is even, then fL(n) = (l1 − 1, 0, . . . , 0). In this case, while the
δm-distance between fL(0) = (0, 0, . . . , 0) and fL(n − 1) = (l1 − 1, 0, . . . , 0) is l1 − 1, the
δt-distance between them is 1. On the other hand, if l1 is odd, then b(n− 1)/w1c (which
was shown to be l1 − 1 in the proof of Lemma 3.3.5) is even. It follows that the sublist
corresponding to the leftmost two components of fL(n− 1) is (l1− 1, l2− 1), and thus the
δt-distance between fL(0) and fL(n− 1) is greater than 1.

Let G be a ring, and H be an L-torus of the same size and of dimension d. If the size
of G and H is even, we can define an L∗-torus H∗ such that the first component of L∗ is
an even number, and π(L∗) = L for some permutation π : [d]∗ → [d]+. The ring can be
embedded into H∗ using fL∗ , and H∗ can be embedded into H using π, both with unit
dilation cost. The function π ◦ fL∗ thus gives a unit dilation cost embedding of G into H.
On the other hand, if the size of G and H is odd, then all the components in L are odd
numbers. In this case, we cannot construct a unit dilation cost embedding of G into H in
this way because the intermediate graph H∗ does not exist.

We now show that the embedding function hL always embeds a ring into an L-torus
of the same size with unit dilation cost, whether their size is even or odd.

Let L = (l1, l2) be a radix-base. While the cyclic sequence rL has unit δm-spread
only when l1 is even, this cyclic sequence always has unit δt-spread. When l1 is odd,
rL(n − 1) = (l1 − 1, l2 − 1), which is the top node in the last column of a torus. (See
Figure 3.8.) Since this node and rL(0), which is the top node in the first column, are
neighbors in a torus, δt(rL(0), rL(n− 1)) = 1. This property is summarized in the following
lemma.

Lemma 3.3.8 Let L = (l1, l2) be a radix-base, and let n = l1l2. For all x ∈ [n],
δt(rL(x), rL((x+ 1) mod n)) = 1. 2

Let L = (l1, l2, . . . , ld) be a radix-base, and let L′ = (l1, l2). For the case in which
d ≥ 2, since the cyclic sequence rL′ in Definition 3.3.5 always has unit δt-spread, whether
l1 is odd or even, the cyclic sequence hL has unit δt-spread. For the case in which d = 1,

37

3. Embeddings among Toruses and Meshes

Figure 3.8: The function rL for odd l1

the cyclic sequence hL is 0, 1, . . ., n − 1, which also has unit δt-spread. The function
hL therefore always provides an optimal, unit dilation cost embedding of a ring into an
L-torus. We summarize these results in Lemma 3.3.9 and Theorem 3.3.4.

Lemma 3.3.9 Let L = (l1, l2, . . . , ld) be a radix-base, and let n =
∏d
i=1 li. For all x ∈ [n],

δt(hL(x), hL((x+ 1) mod n)) = 1. 2

Theorem 3.3.4 Let G be a ring, and H be an L-torus of the same size and of dimension
d. The ring G can be embedded into H with unit dilation cost. The function hL gives
such an optimal embedding. 2

The next corollary follows from the theorem above.

Corollary 3.3.3 Every torus has a Hamiltonian circuit. 2

3.4 Generalized embeddings

In this section, we study embeddings for which the dimensions of the two graphs are
greater than 1. We analyze only the cases in which the shapes of the two graphs satisfy
certain conditions: the condition of expansion for increasing dimension cases (G has lower
dimension than H) and the condition of reduction for lowering dimension cases (G has
higher dimension than H). The embedding functions for these cases are defined in terms
of the basic embedding functions fL, gL, and hL.

Except when G is a torus of even size and H is a mesh, our embeddings for increasing
dimension are all optimal. For the exception above, our embeddings can always achieve
a dilation cost of 2, and when a certain condition on the shapes of G and H is satisfied,
unit dilation cost is also achievable.

The dilation costs of our embeddings for lowering dimension depend on the shapes of
G and H. They are not optimal in general.

38

3.4. Generalized embeddings

x radix-L rep. of x fL(x) gL(x) hL(x)

0 (0,0,0) (0,0,0) (0,0,0) (3,0,0)
1 (0,0,1) (0,0,1) (0,0,2) (2,0,0)
2 (0,0,2) (0,0,2) (0,1,1) (1,0,0)
3 (0,1,0) (0,1,2) (1,1,0) (0,0,0)
4 (0,1,1) (0,1,1) (1,1,2) (0,1,0)
5 (0,1,2) (0,1,0) (1,0,1) (1,1,0)
6 (1,0,0) (1,1,0) (2,0,0) (2,1,0)
7 (1,0,1) (1,1,1) (2,0,2) (2,1,1)
8 (1,0,2) (1,1,2) (2,1,1) (1,1,1)
9 (1,1,0) (1,0,2) (3,1,0) (0,1,1)
10 (1,1,1) (1,0,1) (3,1,2) (0,0,1)
11 (1,1,2) (1,0,0) (3,0,1) (1,0,1)
12 (2,0,0) (2,0,0) (3,0,0) (2,0,1)
13 (2,0,1) (2,0,1) (3,0,2) (3,0,1)
14 (2,0,2) (2,0,2) (3,1,1) (3,0,2)
15 (2,1,0) (2,1,2) (2,1,0) (2,0,2)
16 (2,1,1) (2,1,1) (2,1,2) (1,0,2)
17 (2,1,2) (2,1,0) (2,0,1) (0,0,2)
18 (3,0,0) (3,1,0) (1,0,0) (0,1,2)
19 (3,0,1) (3,1,1) (1,0,2) (1,1,2)
20 (3,0,2) (3,1,2) (1,1,1) (2,1,2)
21 (3,1,0) (3,0,2) (0,1,0) (3,1,2)
22 (3,1,1) (3,0,1) (0,1,2) (3,1,1)
23 (3,1,2) (3,0,0) (0,0,1) (3,1,0)

Figure 3.9: Embedding functions fL, gL, and hL for n = 24 and L = (4, 2, 3)

39

3. Embeddings among Toruses and Meshes

0, 1, 2, . . . , 21, 22, 23

(a) A line of size 24

'
&

$
%

0, 1, 2, . . . , 21, 22, 23

(b) A ring of size 24

�
�
�

�
�
�

�
�
�

6
�
�
��

-

l2 = 2

l3 = 3

l1 = 4

(c) A (4,2,3)-mesh

p p p p p p
p p p ppp
ppppp
ppppp
pppp

p p p p p p p p p p p p p

i3 = 0

0 23
1 6
2 5
3 4

-

6

i2

i1

i3 = 1

13 22
12 7
11 8
10 9

i3 = 2

14 21
15 20
16 19
17 18

(f) Embedding the ring into the mesh using h(4,2,3)

i3 = 0

12 9
6 15

18 3
0 21

-

6

i2

i1

i3 = 1

11 14
17 8
5 20

23 2

i3 = 2

13 10
7 16

19 4
1 22

(e) Embedding the ring into the mesh using g(4,2,3)

i3 = 0

23 18
12 17
11 6
0 5

-

6

i2

i1

i3 = 1

22 19
13 16
10 7
1 4

i3 = 2

21 20
14 15
9 8
2 3

(d) Embedding the line into the mesh using f(4,2,3)

Figure 3.10: Embedding a line or a ring of size 24 into a (4, 2, 3)-mesh

40

3.4. Generalized embeddings

3.4.1 Embeddings for increasing dimension

Given a list A = (a1, a2, . . . , ak), we use
∏
A to denote the product a1a2 · · · ak.

Definition 3.4.1 Let L = (l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be lists of positive
integers for which d < c. The list M is an expansion of the list L if there exist d lists of
integers V1, V2, . . ., Vd such that (i) for all i ∈ [d]+,

∏
Vi = li; and (ii) the list M is a

permutation of the list Ṽ = V1 � V2 � · · · � Vd. We call V = (V1,V2, . . . ,Vd) an expansion
factor of L into M. 2

For example, the list M = (2, 4, 3, 8, 5, 4) is an expansion of the list L = (6, 8, 80)
because we can have V1 = (2, 3), V2 = (8), and V3 = (4, 5, 4). The list V =
((2, 3), (8), (4, 5, 4)) is an expansion factor of L into M. Expansion factors may not be
unique: the list ((3, 2), (8), (5, 4, 4)) is also an expansion factor of L into M.

Let G be either a torus or a mesh of shape L, and let H be either a torus or a mesh of
shapeM such thatM is an expansion of L with an expansion factor V = (V1,V2, . . . ,Vd).
Let Ṽ = V1 � V2 · · · � Vd, and let H ′ be a graph of shape Ṽ and of the same type as H.
(type of a graph is defined in Section 3.2 on page 23.) We now construct an embedding of
G into H in two steps: G→ H ′ → H.

Let π : [c]+ → [c]+ be a permutation such that π(Ṽ) = M. By the definition of
expansion, such a permutation always exists. Since H ′ has shape Ṽ and H has shape M,
H ′ can be embedded into H with unit dilation cost using the permutation π. Next we
construct an embedding of G into H ′.

We first consider the case in which G and H ′ are both meshes. We map each node
(i1, i2, . . . , id) in G to the node fV1(i1) � fV2(i2) � · · · � fVd(id) in H ′. Since the functions
fV1 : [l1] → ΩV1 , fV2 : [l2] → ΩV2 , . . ., fVd : [ld] → ΩVd are all bijective, this map-
ping is an embedding of G into H ′. For every pair of neighboring nodes (i1, i2, . . . , id)
and (i′1, i

′
2, . . . , i

′
d) in G, by definition, there exists exactly one index k ∈ [d]+ such that

|ik− i′k| = 1 and ij = i′j , for all j ∈ [d]+ such that j 6= k. Since the sequences fV1 , fV2 , . . .,
fVd all have unit δm-spread, we have δm(fVk(ik), fVk(i′k)) = 1, and δm(fVj (ij), fVj (i

′
j)) = 0,

for all j ∈ [d]+ such that j 6= k. The nodes fV1(i1) � fV2(i2) � · · · � fVd(id) and
fV1(i′1) � fV2(i′2) � · · · � fVd(i′d) thus have unit δm-distance in H ′, and hence must be neigh-
bors in H ′. This embedding therefore has unit dilation cost. Furthermore, since the se-
quences fV1 , fV2 , . . ., fVd all have unit δt-spread. This embedding also has unit dilation
cost when G is a mesh and H ′ is a torus.

When G is a torus and H ′ is a mesh, we can define a similar embedding by replacing
the functions fV1 , fV2 , . . ., fVd with the functions gV1 , gV2 , . . ., gVd . Since the cyclic
sequences gV1 , gV2 , . . ., gVd all have a δm-spread of 2, by a similar argument, we can show
that the embedding has a dilation cost of 2.

For the remaining case in which G and H ′ are both toruses, we can construct a similar
embedding by replacing fV1 , fV2 , . . ., fVd with hV1 , hV2 , . . ., hVd . Since the cyclic sequences
hV1 , hV2 , . . ., hVd all have unit δt-spread, the embedding also has unit dilation cost.

The sequence of embeddings G→ H ′ → H described above gives an embedding of G
into H with a dilation cost of 2 if G is a torus and H is a mesh, and with unit dilation
cost otherwise.

As will be proved in Theorem 3.4.1, when G is a torus and H is a mesh, a dilation
cost of 2 is optimal for all G of odd size. On the other hand, if each dimension of G

41

3. Embeddings among Toruses and Meshes

has even length and there is at least one expansion factor of L into M such that each
list in the factor has at least two components, then we can choose an expansion factor
V = (V1,V2, . . . ,Vd) of L into M such that for all i ∈ [d]+, Vi has length at least 2, and
its first component is an even number. If we use such an expansion factor V to define the
shape of H ′, then by Lemma 3.3.7, G can be embedded into H ′ with unit dilation cost by
mapping each node (i1, i2, . . . , id) in G to the node hV1(i1) �hV2(i2) � · · · �hVd(id) in H ′.
Such an embedding sequence G→ H ′ → H gives a unit dilatoin cost embedding of G into
H.

For example, if L = (6, 12) and M = (6, 3, 2, 2), then both ((6), (3, 2, 2)) and
((2, 3), (6, 2)) are expansion factors of L into M. If we choose the expansion factor
((2, 3), (6, 2)) to define the shape of H ′, then we get a unit dilation cost embedding of
a (6, 12)-torus G into a (6, 3, 2, 2)-mesh H. On the other hand, if we choose ((6), (3, 2, 2))
to define the shape of H ′, then we get an embedding with a dilation cost of 2.

We formalize the above results in the following definition and theorems.

Definition 3.4.2 Let L = (l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be radix-bases such
that M is an expansion of L with an expansion factor V = (V1,V2, . . . ,Vd). Let Ṽ =
V1 � V2 � · · · � Vd. The functions FV : ΩL → ΩṼ , GV : ΩL → ΩṼ and HV : ΩL → ΩṼ are
defined as follows: for all (i1, i2, . . . , id) ∈ ΩL,

FV((i1, i2, . . . , id)) = fV1(i1) � fV2(i2) � · · · � fVd(id),

GV((i1, i2, . . . , id)) = gV1(i1) � gV2(i2) � · · · � gVd(id),

HV((i1, i2, . . . , id)) = hV1(i1) �hV2(i2) � · · · � hVd(id).

Furthermore, let π : [c]+ → [c]+ be a permutation such that π(Ṽ) = M. Then we have
the functions π ◦ FV : ΩL → ΩM, π ◦ GV : ΩL → ΩM, and π ◦ HV : ΩL → ΩM. 2

Examples of the functions FV , GV , and HV for L = (4, 6), M = (2, 2, 2, 3), and
V = ((2, 2), (2, 3)) are given in Figure 3.11. In this example, we have M = V1 � V2.

Theorem 3.4.1 Let G be either an (l1, l2, . . . , ld)-torus or an (l1, l2, . . . , ld)-mesh, and
let H be either an (m1,m2, . . . ,mc)-torus or an (m1,m2, . . . ,mc)-mesh. Assume
that (m1,m2, . . . ,mc) is an expansion of (l1, l2, . . . , ld) with an expansion factor V =
(V1,V2, . . . ,Vd). Let π : [c]+ → [c]+ be a permutation such that π(V1 � V2 · · · � Vd) =
(m1,m2, . . . ,mc). Then

(a) If G is a mesh, then G can be embedded into H with unit dilation cost. The function
π ◦ FV gives such an optimal embedding.

(b) If G and H are both toruses, then G can be embedded into H with unit dilation cost.
The function π ◦ HV gives such an optimal embedding.

(c) If G is a torus and H is a mesh, then G can be embedded into H with a dilation cost
of 2. The function π◦GV gives such an embedding. Furthermore, such an embedding
is optimal for all G of odd size. If G is of even size, and for all i ∈ [d]+, Vi consists
of at least two components such that the first component is an even number, then
G can be embedded into H with unit dilation cost. The function π ◦ HV gives such
an optimal embedding.

42

3.4. Generalized embeddings

(i1, i2) Ω(2,2) �Ω(2,3) FV = f(2,2) � f(2,3) GV = g(2,2) � g(2,3) HV = h(2,2) �h(2,3)

(0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,1,0)
(0,1) (0,0,0,1) (0,0,0,1) (0,0,0,2) (0,0,0,0)
(0,2) (0,0,0,2) (0,0,0,2) (0,0,1,1) (0,0,0,1)
(0,3) (0,0,1,0) (0,0,1,2) (0,0,1,0) (0,0,0,2)
(0,4) (0,0,1,1) (0,0,1,1) (0,0,1,2) (0,0,1,2)
(0,5) (0,0,1,2) (0,0,1,0) (0,0,0,1) (0,0,1,1)
(1,0) (0,1,0,0) (0,1,1,0) (1,1,0,0) (1,0,1,0)
(1,1) (0,1,0,1) (0,1,1,1) (1,1,0,2) (1,0,0,0)
(1,2) (0,1,0,2) (0,1,1,2) (1,1,1,1) (1,0,0,1)
(1,3) (0,1,1,0) (0,1,0,2) (1,1,1,0) (1,0,0,2)
(1,4) (0,1,1,1) (0,1,0,1) (1,1,1,2) (1,0,1,2)
(1,5) (0,1,1,2) (0,1,0,0) (1,1,0,1) (1,0,1,1)
(2,0) (1,0,0,0) (1,1,0,0) (1,0,0,0) (1,1,1,0)
(2,1) (1,0,0,1) (1,1,0,1) (1,0,0,2) (1,1,0,0)
(2,2) (1,0,0,2) (1,1,0,2) (1,0,1,1) (1,1,0,1)
(2,3) (1,0,1,0) (1,1,1,2) (1,0,1,0) (1,1,0,2)
(2,4) (1,0,1,1) (1,1,1,1) (1,0,1,2) (1,1,1,2)
(2,5) (1,0,1,2) (1,1,1,0) (1,0,0,1) (1,1,1,1)
(3,0) (1,1,0,0) (1,0,1,0) (0,1,0,0) (0,1,1,0)
(3,1) (1,1,0,1) (1,0,1,1) (0,1,0,2) (0,1,0,0)
(3,2) (1,1,0,2) (1,0,1,2) (0,1,1,1) (0,1,0,1)
(3,3) (1,1,1,0) (1,0,0,2) (0,1,1,0) (0,1,0,2)
(3,4) (1,1,1,1) (1,0,0,1) (0,1,1,2) (0,1,1,2)
(3,5) (1,1,1,2) (1,0,0,0) (0,1,0,1) (0,1,1,1)

Figure 3.11: Embedding functions FV , GV , HV for L = (4, 6), M = (2, 2, 2, 3), and
V = ((2, 2), (2, 3))

43

3. Embeddings among Toruses and Meshes

2

Proof. We prove only the claim in (iii) that GV is optimal for all toruses of odd sizes.
We prove this by showing that such a torus cannot be embedded into a mesh with unit
dilation cost. The other parts of the theorem follow from the definitions of FV , GV , and
HV .

Assume for contradiction that a torus G of odd size can be embedded into a mesh H
with unit dilation cost. Let p be such an embedding. Since G is a torus, by Corollary 3.3.3,
there exists at least one Hamiltonian circuit v0− v1− · · · − vn−1− vn (= v0) in G. By the
definition of a Hamiltonian circuit, for all i ∈ {0, . . . , n−1}, vi and vi+1 are neighbors in G.
Since the embedding p has unit dilation cost, p(vi) and p(vi+1) must also be neighbors in
H. This implies that the path p(v0)−p(v1)−· · ·−p(vn−1)−p(vn) (= p(v0)) is a Hamiltonian
circuit in H, contradicting the fact that no mesh of odd size has a Hamiltonian circuit
(Corollary 3.3.1). 2

The embeddings for increasing dimension given in this subsection can be applied only
if the shapes of the two graphs satisfy the condition of expansion. The next theorem
states that if H is a hypercube, then the shapes of G and H always satisfy the condition
of expansion.

Theorem 3.4.2 Let G be either a torus or a mesh, and let H be a hypercube of the same
size. Then the shape of H is an expansion of the shape of G. 2

Proof. Let L = (l1, l2, . . . , ld) be the shape of G, and M be the shape of H. By the
definition of hypercube, G and H must both be of size some power of 2. Hence, for all
k ∈ [d]+, lk = 2qk , for some positive integer qk. Since G and H are of the same size,
2q12q2 · · · 2qd is the size of H. The list M is thus an expansion of the list L with an
expansion factor

((2, 2, . . . , 2︸ ︷︷ ︸
q1

), (2, 2, . . . , 2︸ ︷︷ ︸
q2

), . . . , (2, 2, . . . , 2︸ ︷︷ ︸
qd

)).

2

By viewing a hypercube as a special case of a torus, the next corollary follows directly
from Theorems 3.4.1 and 3.4.2. This corollary was proved in [CS86].

Corollary 3.4.1 A torus or a mesh can be embedded into a hypercube of the same size
with unit dilation cost. 2

3.4.2 Embeddings for lowering dimension

Our embeddings for lowering dimension are defined using two types of embeddings: em-
beddings for increasing dimension (from preceding subsection) and embeddings among
toruses and meshes of the same shape.

Given a torus or a mesh G and a torus or a mesh H of the same shape (l1, l2, . . . , ld), G
can be embedded into H with unit dilation cost using the identity function, except when
G is a torus, H is a mesh, and neither is a hypercube. In this exceptional case, G clearly
cannot be embedded into H with unit dilation cost because each boundary node in H has
degree less than that of any node in G. An optimal embedding of G into H with a dilation
cost of 2 can be constructed by embedding each node (i1, i2, . . . , id) of G into the node

44

3.4. Generalized embeddings

(tl1(i1), tl2(i2), . . . , tld(id)) of H. Since for all i ∈ [d]+, the function tli : [li] → [li] defines
a cyclic sequence of all numbers in [li] with a δm-spread of 2 (Definition 3.3.2), every two
neighboring nodes in G are mapped to nodes in H at a distance no greater than 2. This
embedding thus has a dilation cost of 2. The following definition and lemma summarize
these results.

Definition 3.4.3 Let L = (l1, l2, . . . , ld) be a radix-base. The function TL : ΩL → ΩL is
defined as follows: for all (x1, x2, . . . , xd) ∈ ΩL,

TL((x1, x2, . . . , xd)) = (tl1(x1), tl2(x2), . . . , tld(xd)).

2

Lemma 3.4.1 Let G be a torus or a mesh of shape L, and let H be a torus or a mesh
of the same shape. If G is a torus, H is a mesh, and neither G nor H is a hypercube,
then G can be embedded into H with an optimal dilation cost of 2 using the embedding
function TL. Otherwise, G can be embedded into H with unit dilation cost using the
identity function. 2

For lowering dimension, we consider only those cases where the shapes of G and H
satisfy the condition of reduction. We define two types of reduction: (i) simple reduction
and (ii) general reduction.

Simple reduction

Definition 3.4.4 Let L = (l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be lists of positive
integers for which d > c. The list M is a simple reduction of the list L with a reduction
factor V = (V1,V2, . . . ,Vc) if L is an expansion of M with an expansion factor V. 2

Let L be a radix-base. We next define a function that will be used to construct our
embeddings. This function is defined in terms of the function u−1

L , which maps each mixed-
radix number in ΩL to the corresponding natural number in [|ΩL|], defined on page 25,
Section 3.2.

Definition 3.4.5 Let L = (l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be radix-bases such
that M is a simple reduction of L with a reduction factor V = (V1,V2, . . . ,Vc). Let
Ṽ = V1 � V2 · · · � Vc. For all k ∈ [c]+, let u−1

Vk : ΩVk → [mk]. The function UV : ΩṼ → ΩM
is defined as follows: for all (i1, i2, . . . , id) ∈ ΩṼ ,

UV((i1, i2, . . . , id)) = u−1
V1 (I1) �u−1

V2 (I2) � · · · � u−1
Vc (Ic),

where I1, I2, . . ., Ic are partitions of (i1, i2, . . . , id) such that for all k ∈ [c]+, |Ik| = |Vk|,
and I1 � I2 � · · · � Ik = (i1, i2, . . . , id). Furthermore, let π : [d]+ → [d]+ be a permutation
such that π(L) = (Ṽ). Then we have the function UV ◦ π : ΩL → ΩM. 2

Let G be either a torus or a mesh with shape L, and let H be either a torus or a mesh
with shape M such that M is a simple reduction of L. Let V be a reduction factor of L
intoM such that for all i ∈ [c]+, the elements in the list Vi are in non-increasing order. Let
vi denote the index in [d]+ such that lvi is the first element in Vi. Let Ṽ = V1 � V2 · · · � Vc,

45

3. Embeddings among Toruses and Meshes

and let G′ be a graph with shape Ṽ and of the same type of graph as G. Let π : [d]+ → [d]+

be a permutation such that π(L) = Ṽ. The graph G can be embedded into G′ using the
permutation π with unit dilation cost. We next construct an embedding of G′ into H.

Let A = I1 � I2 � · · · � Ik � · · · � Ic and B = I ′1 � I ′2 � · · · � I ′k � · · · � I ′c be an arbitrary
pair of neighboring nodes in G′, where for all i ∈ [c]+, |Ii| = |I ′i| = |Vi|. Let q = |Vk|,
and (l′1, l

′
2, . . . , l

′
q) = Vk. Here l′1 = lvk . Without loss of generality, assume that A and B

differ at the r-th position in Ik, for some r ∈ [q]+. Let ir and i′r denote respectively the
components of A and B at this position.

We first consider the case in which both G′ and H are meshes. We use the func-
tion UV to embed G′ into H. The distance between the images of A and B in H
is δm(UV(A),UV(B)) = |u−1

Vk (Ik)− u−1
Vk (I ′k)| = |ir − i′r|

∏q
j=r+1 l

′
j . Since G′ is a mesh,

|ir − i′r| = 1, and since mk =
∏q
j=1 l

′
j , we have δm(UV(A),UV(B)) = mk/

∏r
j=1 l

′
j ≤ mk/l

′
1.

Therefore, the function UV gives an embedding of G′ into H with a dilation cost of
max1≤i≤c{mi/lvi}.

For the cases in which either (i) G′ is a mesh and H is a torus or (ii) both G′ and H
are toruses, we use the same embedding function UV to embed G′ into H. The distance
between the images of A and B in H is δt(UV(A),UV(B)) = min{|ir − i′r|

∏q
j=r+1 l

′
j ,mk −

|ir − i′r|
∏q
j=r+1 l

′
j}. For case (i), |ir − i′r| is 1 and for case (ii) |ir − i′r| is either 1 or l′r − 1.

In either case, using the fact that for all j ∈ [q]+, l′j ≥ 2, we can show that the embedding
also has a dilation cost of max1≤i≤c{mi/lvi}.

For the remaining case in which G′ is a torus and H is a mesh, using the embedding
function TṼ , we first embed G′ into an intermediate mesh G′′ that has the same shape as
G′. Such an embedding has a dilatin cost of 2. We then embed the mesh G′′ into the mesh
H using the function UV . This sequence gives an embedding of G′ into H with a dilation
cost of 2 max1≤i≤c{mi/lvi}.

Theorem 3.4.3 Let L = (l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be radix-bases, G be
either an L-mesh or an L-torus, and H be either an M-mesh or an M-torus such that
M is a simple reduction of L. Let V be a reduction factor of L into M such that for all
i ∈ [c]+, the elements in the list Vi are in non-increasing order. Let vi denote the index in
[d]+ such that lvi is the first element in Vi. Let Ṽ = V1 � V2 � · · · � Vc. Let π : [d]+ → [d]+

be a permutation such that π(L) = Ṽ. If G is a torus and H is a mesh, then G can be
embedded into H with a dilation cost of 2 max1≤i≤c{mi/lvi}, and the function UV ◦ TṼ ◦π
gives such an embedding; otherwise, G can be embedded into H with a dilation cost of
max1≤i≤c{mi/lvi}, and the function UV ◦ π gives such an embedding. 2

The next corollary follows from the property that for the special case in which G is a
hypercube, the shapes of G and H always satisfy the condition of simple reduction.

Corollary 3.4.2 A hypercube can be embedded into an (m1,m2, . . . ,mc)-torus or an
(m1,m2, . . . ,mc)-mesh of the same size with a dilation cost of max{m1,m2, . . . ,mc}/2. 2

Proof. Let G be a hypercube of size 2d, for some positive integer d. Let H be a
(m1,m2, . . . ,mc)-torus or a (m1,m2, . . . ,mc)-mesh of the same size as G. Since G and
H have the same size, we have

∏c
i=1mi = 2d, and hence for all i ∈ [c]+, mi = 2bi for

some positive integer bi. Therefore, H is a simple reduction of G with a reduction factor

46

3.4. Generalized embeddings

((2, . . . , 2︸ ︷︷ ︸
b1

), (2, . . . , 2︸ ︷︷ ︸
b2

), · · · (2, . . . , 2︸ ︷︷ ︸
bc

)). Since a hypercube is a special case of a mesh, by The-

orem 3.4.3, G can be embedded into H with a dilation cost of max{m1,m2, . . . ,mc}/2.
2

General reduction

We first illustrate through a simple example the embeddings to be constructed under
general reduction. Let G be a (3, 3, 6)-mesh, and H be a (6, 9)-mesh. We can view G as a
(3, 3)-mesh of supernodes, each of which is a line of length 6, and view H as a (3, 3)-mesh of
supernodes, each of which is a (2, 3)-mesh. (See Figure 3.12.) With respect to supernodes,
G and H have the same shape: a (3, 3)-mesh. With the identity function, neighboring
supernodes of G can be embedded into neighboring supernodes of H. Since the supernodes
of G are lines of length 6, and the supernodes of H are (2, 3)-meshes, the nodes belonging
to a single supernode of G can be embedded into the nodes belonging to the corresponding
supernode of H by using the embedding function f(2,3). This embedding of G into H is
achieved by embedding nine separate lines of length 6 into nine separate (2, 3)-meshes,
with neighboring lines embedded into neighboring meshes. Such an embedding gives a
dilation cost of 3.

In general, given a torus or a mesh G and a torus or a mesh H whose dimension is
at least half of the dimension of G and whose shape is a general reduction (to be defined
below) of the shape of G, G and H can be viewed as graphs of some supernodes such that
(i) with respect to supernodes, G and H have the same shape; and (ii) the shape of the
supernodes of H is an expansion of the shape of the supernodes of G. An embedding of
G into H can be achieved as follows: first establish a one-to-one correspondence between
the supernodes of G and the supernodes of H, and then by using the embedding functions
for increasing dimension defined in the last subsection, embed the nodes belonging to a
single supernode of G into the nodes belonging to the corresponding supernode of H.

We now define the relation general reduction between two lists of different lengths
where the length of the shorter list is at least half of the length of the longer list. Given
a list A = (a1, a2, . . . , ak) and a list B = (b1, b2, . . . , bk), we use A × B to denote the list
(a1b1, a2b2, . . . , akbk) and A + B to denote the list (a1 + b1, a2 + b2, . . . , ak + bk). We use
[] for grouping.

Definition 3.4.6 Let L = (l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be lists of positive
integers for which c < d < 2c. The list M is a general reduction of the list L if (i) there
exist a list L′ of length c and a list L′′ of length d− c such that L is a permutation of the
list L′ �L′′; (ii) there exist d − c lists S1, S2, . . ., Sd−c, the components of each of which
are integers all greater than 1, such that the list L′′ is (

∏
S1,

∏
S2, . . . ,

∏
Sd−c) and the

list S̃ = S1 � S2 . . . � Sd−c has length b, where d− c < b ≤ c; and (iii) M is a permutation
of the list [S̃ � I]× L′, where I = (1, 1, . . . , 1︸ ︷︷ ︸

c−b

). We call S = (S1,S2, . . . ,Sd−c) a reduction

factor of L into M, L′ the multiplicant sublist, and L′′ the multiplier sublist. 2

For example, the list M = (4, 3, 5, 28, 10, 18) is a general reduction of the list L =
(2, 3, 2, 10, 6, 21, 5, 4) because we can choose L′ = (2, 2, 6, 4, 3, 5), L′′ = (10, 21), S1 = (5, 2),
and S2 = (3, 7). The list [S̃ � (1, 1)]×L′ = (10, 4, 18, 28, 3, 5) is a permutation of M. The

47

3. Embeddings among Toruses and Meshes

Figure 3.12: Supernode view

48

3.4. Generalized embeddings

list S = ((5, 2), (3, 7)) is a reduction factor of L into M. Reduction factors may not be
unique: the list ((2, 5), (3, 7)) is also a reduction factor of L into M.

By the definition, if M is a general reduction of L with a reduction factor S =
(S1,S2, . . . ,Sd−c), then the list S̃ = S1 � S2 � · · · � Sd−c is an expansion of L′′ with an
expansion factor S.

Note that if M is a simple reduction of L, then each component in M is the product
of one or more components of L. On the other hand, if M is a general reduction of L,
then each component in M is either (i) a component in the multiplicant sublist L′ or (ii)
the product of a component in L′ and a factor of one of the components in the multiplier
sublist L′′.

Let G be a torus or a mesh of shape L = (l1, l2, . . . , ld), and let H be a torus or a
mesh of shape M = (m1,m2, . . . ,mc). Assume that M is a general reduction of L with
a reduction factor S = (S1,S2, . . . ,Sd−c). Let S̃ = (s1, s2, . . . , sb) = S1 � S2 � · · · � Sd−c,
where d− c < b ≤ c, and let I = (1, . . . , 1︸ ︷︷ ︸

c−b

). Let G′ be a graph of shape L′ �L′′ and of the

same type as G, and let H ′ be a graph of shape [S̃ � I] × L′ and of the same type as H.
We now construct an embedding of G into H in three steps: G → G′ → H ′ → H. Let
α : [d]+ → [d]+ be a permutation such that α(L) = L′ �L′′, and let β : [c]+ → [c]+ be a
permutation such that β([S̃ � I] × L′) =M. By the definition of general reduction, such
permutations always exist. The graph G can be embedded into G′ with unit dilation cost
using the permutation α, and H ′ can be embedded into H with unit dilation cost using
the permutation β. Next we construct an embedding of G′ into H ′.

The graph G′ has shape L′ �L′′ = (lα(1), lα(2), . . . , lα(c)) � (lα(c+1), lα(c+2), . . . lα(d)). If G′

is a mesh, we can think of G′ as an L′-mesh of supernodes with each supernode being an L′′-
mesh, that is, the supernode (i1, i2, . . . , ic) consists of all nodes (i1, i2, . . . , ic) � (∗, ∗, . . . , ∗)
in G′, where for all j ∈ [c]+, ij ∈ [lα(j)], and (∗, ∗, . . . , ∗) denotes all lists in ΩL′′ . For
example, if we view the (3, 3, 6)-mesh given in Figure 3.12(a) as a (3, 3)-mesh of supernodes,
then the supernode (2, 0) consists of the nodes (2, 0, 0), (2, 0, 1), (2, 0, 2), (2, 0, 3), (2, 0, 4),
and (2, 0, 5). These nodes are labeled 0, 1, 2, 3, 4, and 5 in the figure. Similarly, if G′ is
a torus, we can think of G′ as an L′-torus of supernodes with each supernode being an
L′′-torus.

The graph H ′ has shape [S̃ � I] × L′ = (s1lα(1), s2lα(2), . . . , sblα(b), lα(b+1) . . . , lα(c)). If
H ′ is a mesh, we can think of H ′ as an L′-mesh of supernodes with each supernode being
an S̃-mesh, that is, the supernode (i1, i2, . . . , ic) consists of all nodes [(s1i1, s2i2, . . . , sbib)+
(∗, ∗, . . . , ∗)] � (ib+1, ib+2, . . . , ic) in H ′, where for all j ∈ [c]+, ij ∈ [lα(j)], and (∗, ∗, . . . , ∗)
denotes all lists in ΩS̃ . For example, if we view the (6, 9)-mesh in Figure 3.12(b) as a
(3, 3)-mesh of supernodes, then the supernode (2, 0) consists of the nodes (4, 0), (4, 1),
(4, 2), (5, 0), (5, 1), and (5, 2). These nodes are labeled 0, 1, 2, 5, 4, and 3 in the figure.
If H ′ is a torus, we can also think of H ′ as an L′-torus of supernodes. Each supernode
in H ′ is now an S̃-mesh instead of an S̃-torus. Notice that we cannot divide a torus into
toruses of the same dimension and of smaller sizes because the neighborship required at
the boundary nodes of the smaller toruses cannot be satisfied.

In summary, the supernodes of G′ are formed by partitioning the shape of G′ into two
parts, with one part forming the shape of the supernodes, and the other the shape of the
graph consisting of these supernodes. On the other hand, the supernodes of H ′ are formed
by factoring the length of each dimension of H ′ into one or two factors, with one factor

49

3. Embeddings among Toruses and Meshes

forming the length of a dimension of the graph consisting of the supernodes, and the other
factor, if present, forming the length of a dimension of the supernodes. The dimensions of
the supernodes of G′ and the graph consisting of these supernodes are both lower than the
dimension of G′. On the other hand, the dimension of the supernodes of H ′ may be lower
than the dimension of H ′, while the dimension of the graph consisting of these supernodes
is always the same as the dimension of H ′. With respect to supernodes, G′ and H ′ have
the same shape L′. The shape of the supernodes of H ′ (S̃) is an expansion of the shape
of the supernodes of G′ (L′′) with an expansion factor of S.

We consider the following four cases for constructing an embedding of G′ into H ′.

Case 1. G′ and H ′ are meshes.
In this case, G′ and H ′ are L′-meshes of supernodes. Neighboring supernodes in G′ can

be mapped to neighboring supernodes in H ′ using the identity function. The L′′-meshes
(supernodes of G′) can then be embedded into the S̃-meshes (supernodes of H ′) using the
embedding function FS : ΩL′′ → ΩS̃ defined in the preceding subsection. Hence, we map
each node (i1, i2, . . . , id) in G′ to the node

F ′S((i1, i2, . . . , id)) = [(s1i1, s2i2, . . . , sbib) + FS((ic+1, ic+2, . . . , id))] � (ib+1, ib+2, . . . , ic)

in H ′. We call (s1i1, s2i2, . . . , sbib) and (ib+1, . . . , ic) the base, and FS((ic+1, ic+2, . . . , id))
the offset.

Let FS((ic+1, ic+2, . . . , id)) = (e1, e2, . . . , eb). We can write

F ′S((i1, i2, . . . , id)) as (s1i1 + e1, s2i2 + e2, . . . , sbib + eb, ib+1, . . . , ic).

Since FS : ΩL′′ → ΩS̃ is bijective, and for all i ∈ [b]+, 0 ≤ ei < si, the function
F ′S : ΩL′ � L′′ → Ω[S̃ � I]×L′ is injective. Since |ΩL′ � L′′ | = |Ω[S̃ � I]×L′ |, F

′
S is bijective.

Therefore, the function F ′S is an embedding of G′ into H ′.
This embedding has a dilation cost of max{s1, s2, . . . , sb}. Let A = (i1, i2, . . . , id) and

B = (i′1, i
′
2, . . . , i

′
d) be an arbitrary pair of neighboring nodes in G′, and let k = [d]+ be

the index at which ik 6= i′k. Let A′ = F ′S(A) and B′ = F ′S(B). If k ∈ [c]+, then A′ and B′

have the same offset but different bases. Since H ′ is a mesh, the distance between A′ and
B′ is |skik− ski′k| if k ∈ [b]+, and |ik− i′k| if k ∈ {b+ 1, . . . , c}. Since G′ is also a mesh, we
have |ik− i′k| = 1. Therefore, the distance between A′ and B′ in H ′ is sk if k ∈ [b]+, and 1
if k ∈ {b+ 1, . . . , c}. If k ∈ {c+ 1, . . . , d}, then A′ and B′ have the same base but different
offsets. Since the function FS embeds an L′′-mesh into an S̃-mesh with unit dilation cost,
the distance between A′ and B′ in H ′ is 1.

Case 2. G′ is a mesh and H ′ is a torus.
We use the embedding function F ′S from Case 1 but modifying the analysis slightly.

We change the distance measure between A′ and B′ from δm-distance to δt-distance, and
use the relation that for all k ∈ [b]+, mk = sklk and lk > 1. In this way, we can show that
this embedding also gives a dilation cost of max{s1, s2, . . . , sb}.

Case 3. G′ and H ′ are both toruses.
Since G′ and H ′ are both L′-toruses of supernodes, neighboring supernodes in G′ can

be mapped to neighboring supernodes in H ′ using the identity function. The L′′-toruses

50

3.4. Generalized embeddings

(supernodes of G′) can then be embedded into the S̃-meshes (supernodes of H ′) using the
function GS : ΩL′′ → ΩS̃ defined in the preceding subsection. Hence, we map each node
(i1, i2, . . . , id) in G′ to the node

G′S((i1, i2, . . . , id)) = [(s1i1, s2i2, . . . , sbib) + GS((ic+1, ic+2, . . . , id))] � (ib+1, ib+2, . . . , ic)

in H ′. This mapping is also bijective, and is therefore an embedding of G′ into H ′.
This embedding also has a dilation cost of max{s1, s2, . . . , sb}. Let A, B, and k be

defined as in Case 1; and let A′ = G′S(A), and B′ = G′S(B). Since G′ is a torus, |ik − i′k| is
either 1 or lk−1. If k ∈ [b]+, then the distance between A′ and B′ is min{|skik−ski′k|, mk−
|skik − ski′k|} = min{sk|ik − i′k|, sk(lk − |ik − i′k|)}; since mk = sklk, this distance is sk. If
k ∈ {b+ 1, . . . , c}, the distance between A′ and B′ is min{|ik − i′k|, mk − |ik − i′k|}; since
mk = lk, this distance is 1. If k ∈ {c + 1, . . . , d}, then the distance between A′ and B′

in H ′ is at most 2 because the function GS embeds an L′′-torus into an S̃-mesh with a
dilation cost of 2. Finally, since for all i ∈ [d]+, li > 1, we have max{s1, s2, . . . , sb} ≥ 2.
Therefore, the embedding has a dilation cost of max{s1, s2, . . . , sb}.

Case 4. G′ is a torus and H ′ is a mesh.
By Lemma 3.4.1, neighboring supernodes of G′ can be mapped to some supernodes

in H ′ at a distance no greater than 2 by embedding each supernode (i1, i2, . . . , ic) in
G′ into the supernode (tlα(1)(i1), tlα(2)(i2), . . . , tlα(c)(ic)) in H ′. The L′′-toruses in G′ are

then embedded into the S̃-meshes using the function GS . Hence, we can map each node
(i1, i2, . . . , ic) in G′ to the node

G′′S((i1, i2, . . . , id)) = [(s1tlα(1)(i1), s2tlα(2)(i2), . . . , sbtlα(b)(ib)) + GS((ic+1, ic+2, . . . , id))]

� (tlα(b+1)
(ib+1), tlα(b+2)

(ib+2) . . . , tlα(c)(ic))

in H ′. This mapping is also bijective, and is therefore an embedding of G′ into H ′.
Let A, B, and k be defined as in Case 1, and let A′ = G′′S(A) and B′ = G′′S(B). The

distance between A′ and B′ is |sktlα(k)(ik)−sktlα(k)(i
′
k)| if k ∈ [b]+, and |tlα(k)(ik)−tlα(k)(i

′
k)|

if k ∈ {b + 1, . . . , c}. Since for all j ∈ [c]+, the cyclic sequence tlα(j) has a δm-spread of

2 if lα(j) > 2, and 1 otherwise, this distance is at most 2sk if k ∈ [b]+, and at most 2 if
k ∈ {b+ 1, . . . , c}. If k ∈ {c+ 1, . . . , d}, then as in Case 3, the distance between A′ and B′

in H ′ is at most 2. Hence, the embedding has a dilation cost at most 2 max{s1, s2, . . . , sb}.
In summary, the sequence of embeddings G → G′ → H ′ → H defined above has a

dilation cost at most 2 max{s1, s2, . . . , sb} if G is a torus, H is a mesh, and a dilation cost
of max{s1, s2, . . . , sb} otherwise.

We refine and formalize the above results in the following definition and theorem.

Definition 3.4.7 Let d and c be positive integers such that c < d < 2c. Let L =
(l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be radix-bases. Assume that M is a general
reduction of L with a reduction factor S = (S1,S2, . . . ,Sd−c), multiplicant sublist L′,
and multiplier sublist L′′. Let α : [d]+ → [d]+ be a permutation such that α(L) =
L′ �L′′. Let S̃ = (s1, s2, . . . , sb) = S1 � S2 � · · · � Sd−c, and let I = (1, 1, . . . , 1︸ ︷︷ ︸

c−b

). Let FS :

ΩL′′ → ΩS̃ , HS : ΩL′′ → ΩS̃ , and GS : ΩL′′ → ΩS̃ be defined as in Definition 3.4.2. The
functions F ′S : ΩL′ � L′′ → Ω[S̃ � I]×L′ , H

′
S : ΩL′ � L′′ → Ω[S̃ � I]×L′ , G

′
S : ΩL′ � L′′ → Ω[S̃ � I]×L′ ,

51

3. Embeddings among Toruses and Meshes

H′′S : ΩL′ � L′′ → Ω[S̃ � I]×L′ , and G′′S : ΩL′ � L′′ → Ω[S̃ � I]×L′ are defined as follows: for all

(i1, i2, . . . , id) ∈ ΩL′ � L′′ ,

F ′S((i1, i2, . . . , id)) = [(s1i1, s2i2, . . . , sbib) + FS((ic+1, ic+2, . . . , id))] � (ib+1, ib+2 . . . , ic),

H′S((i1, i2, . . . , id)) = [(s1i1, s2i2, . . . , sbib) +HS((ic+1, ic+2, . . . , id))] � (ib+1, ib+2 . . . , ic),

G′S((i1, i2, . . . , id)) = [(s1i1, s2i2, . . . , sbib) + GS((ic+1, ic+2, . . . , id))] � (ib+1, ib+2 . . . , ic),

H′′S((i1, i2, . . . , id)) = [(s1tlα(1)(i1), s2tlα(2)(i2), . . . , sbtlα(b)(ib)) +HS((ic+1, ic+2, . . . , id))]

� (tlα(b+1)
(ib+1), tlα(b+2)

(ib+2) . . . , tlα(c)(ic)).

G′′S((i1, i2, . . . , id)) = [(s1tlα(1)(i1), s2tlα(2)(i2), . . . , sbtlα(b)(ib)) + GS((ic+1, ic+2, . . . , id))]

� (tlα(b+1)
(ib+1), tlα(b+2)

(ib+2) . . . , tlα(c)(ic)).

Furthermore, let β : [c]+ → [c]+ be a permutation such that β([S̃ � I] × L′) = M. Then
we have the functions β ◦F ′S ◦α: ΩL → ΩM, β ◦H′S ◦α: ΩL → ΩM, β ◦ G′S ◦α: ΩL → ΩM,
β ◦ H′′S ◦ α: ΩL → ΩM, and β ◦ G′′S ◦ α: ΩL → ΩM. 2

Theorem 3.4.4 Let d and c be positive integers such that c < d < 2c, and L =
(l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be radix-bases. Let G be a torus or a mesh of
shape L, and let H be a torus or a mesh of shapeM. Assume thatM is a general reduction
of L with a reduction factor S = (S1,S2, . . . ,Sd−c), multiplicant sublist L′, and multiplier
sublist L′′. Let S̃ = (s1, s2, . . . , sb) = S1 � S2 � · · · � Sd−c, and let I = (1, 1, . . . , 1︸ ︷︷ ︸

c−b

). Let

α : [d]+ → [d]+ be a permutation such that α(L) = L′ �L′′, and let β : [c]+ → [c]+ be a
permutation such that β([S̃ � I]× L′) =M.

(1) If G is a mesh, then G can be embedded into H with a dilation cost of
max{s1, s2, . . . , sb}; the function β ◦ F ′S ◦ α gives such an embedding.

(2) If both G and H are toruses, and for all i ∈ [d− c]+, Si consists of at least two com-
ponents such that the first component is an even number, then G can be embedded
into H with a dilation cost of max{s1, s2, . . . , sb}; the function β ◦H′S ◦α gives such
an embedding.

(3) If both G and H are toruses, and the condition on the lists in S stated in (2) is not
satisfied, then G can be embedded into H with a dilation cost of max{s1, s2, . . . , sb};
the function β ◦ G′S ◦ α gives such an embedding.

(4) If G is a torus, H is a mesh, and for all i ∈ [d− c]+, Si consists of at least two com-
ponents such that the first component is an even number, then G can be embedded
into H with a dilation cost of 2 max{s1, s2, . . . , sb}; the function β ◦ H′′S ◦ α gives
such an embedding.

(5) If G is a torus, H is a mesh, and the condition on the lists in S stated in (4) is not
satisfied, thenG can be embedded intoH with a dilation cost of 2 max{s1, s2, . . . , sb},
the function β ◦ G′′S ◦ α gives such an embedding.

52

3.5. Generalized embeddings among square toruses and square meshes

2

Theorem 3.4.4 refines the embeddings in our informal discussion for lowering dimen-
sion. In case (2), the function H′S has the same dilation cost as the function G′S , but the
neighborship in the dimensions of G corresponding to L′′ is maintained by H′S , not by G′S .
Similarly, in case (4), the function H′′S has the same dilation cost as the function G′′S , but
the neighborship in the dimensions of G corresponding to L′′ is maintained by H′S , not
by G′S . These extra properties of H′S and H′′S can improve data routing complexities in
Chapter 4.

The condition of general reduction requires that the dimension of H be at least half of
the dimension of G. If this condition is not satisfied, an embedding of G into H can still
be constructed using the results in this subsection provided that there exists a sequence
of intermediate graphs in which every pair of successive graphs have shapes satisfying the
condition of general reduction.

As will be shown in Section 3.5, if G and H are both square, then one of the following
two conditions must be true: (i) their shapes satisfy the condition of simple reduction,
and (ii) the sequence of graphs described above exists.

3.5 Generalized embeddings among square toruses and square meshes

The results for generalized embeddings developed in the last section can be applied only if
the shapes of G and H satisfy either the condition of expansion (for increasing dimension)
or the condition of reduction (for lowering dimension). In this section, we study the cases
in which G and H are both square. For these cases, we can always construct an embedding
of G into H through a sequence of one or more embeddings using the embedding functions
defined in Section 3.4.

Let d be the dimension of G, c be the dimension of H, a be the greatest common
denominator of d and c, and ` be the length of the dimensions of G. The major results of
this section are the following:

For the case of lowering dimension (c < d), G can be embedded into H with a dilation
cost of 2`(d−c)/c if G is a torus and H is a mesh, and with a dilation cost of `(d−c)/c

otherwise. For fixed values of d and c, these dilation costs are optimal to within a constant.
For the case of increasing dimension (d < c), if c is divisible by d, then G can be

embedded into H with an optimal dilation cost of 2 if G is a torus of odd size and H is
a mesh, and with unit dilation cost otherwise. If c is not divisible by d, then G can be
embedded into H with a dilation cost of 2`(d−a)/c if G is a torus of odd size and H is a
mesh, and with a dilation cost of `(d−a)/c otherwise.

A lower bound on dilation cost for lowering dimension
In [Ros75], Rosenberg studied the problem of embedding finite arrays (meshes), prism

arrays, and orthant arrays into lines to minimize proximity in various local and global
senses. Let t be an embedding of a d-dimensional mesh G into a line. For any positive
integer k, the diameter of preservation σk is the smallest positive integer i such that for
every node v in G, and for every pair of nodes u and w in G whose distances from v are
no greater than k, δm(t(u), t(w)) < i. Rosenberg proved that σk > bkµd−1, where µ is the
length of the shortest dimension of G, and b depends only on d and is a constant with
respect to µ.

53

3. Embeddings among Toruses and Meshes

Let G be a d-dimensional torus or a d-dimensional mesh, and H be a c-dimensional
torus or a c-dimensional mesh such that c < d and G and H are of the same size. In the
following, using a straightforward modification of Rosenberg’s proof for the lower bound
on the diameter of preservation [Ros75], we show that the dilation cost of any embedding
of G into H is bounded from below by bµ(d−c)/c, where µ is the length of the shortest
dimension of G, and b is a constant with respect to µ and depends only on d and c.
This lower bound on dilation cost will be used to prove the optimality properties of our
embeddings among square toruses and square meshes in the lowering dimension case.

Given an (l1, l2, . . . , ld)-mesh G, a node v in G, and a positive integer k, let Q(v, k)
denote the set of nodes in G whose distances from v are no greater than k.

Lemma 3.5.1 [Ros75] Let G be a d-dimensional mesh. Let µ be the length of the shortest
dimension of G. For any positive integer k such that k < µ, maxv∈G|Q(v, k)| ≥

(k+d
d

)
>

bkd, where b > 0 is a constant with respect to k, and depends only on d. 2

Lemma 3.5.2 Let G be a d-dimensional mesh, and H be a c-dimensional mesh such that
c < d and G and H are of the same size. Let t be an embedding of G into H with a dilation
cost of ρ. Then for any node v in G and any positive integer k, |Q(v, k)| ≤ (2kρ+ 1)c. 2

Proof. Let p1, p2, . . ., pc be nonnegative integers. A set of lists is said to lie within a c-
dimensional interval [p1, p2, . . . , pc] if the lists are all of the form (i1+e1, i2+e2, . . . , ic+ec),
and for all j ∈ [c]+, ij is some fixed integer and ej ∈ [pj]. For v an arbitrary node in G
and k an arbitrary positive integer, let t(Q(v, k)) be the set of images of all the nodes in
Q(v, k) under the embedding t. We first show by induction on k that t(Q(v, k)) lies within
a c-dimensional interval [2kρ+ 1, 2kρ+ 1, . . . , 2kρ+ 1].
Induction basis: k = 1.

Let q = |Q(v, 1)|. Let (a1
1, a

1
2, . . . , a

1
c), (a2

1, a
2
2, . . . , a

2
c), . . ., (aq1, a

q
2, . . . , a

q
c) denote

the nodes in t(Q(v, 1)). For all j ∈ [c]+, let αj = min{a1
j , a

2
j , . . . , a

q
j}, and let

βj = max{a1
j , a

2
j , . . . , a

q
j}. Since for all u,w ∈ Q(v, 1), δm(t(u), t(w)) ≤ δm(t(u), t(v)) +

δm(t(v), t(w)) ≤ 2ρ, we have for all j ∈ [c]+, |αj − βj | ≤ 2ρ. Therefore, t(Q(v, 1)) must lie
within a c-dimensional interval [2ρ+ 1, 2ρ+ 1, . . . , 2ρ+ 1].
Induction hypothesis: Assume that for all k ≤ k′, t(Q(v, k′)) lies within a c-dimensional
interval [2k′ρ+ 1, 2k′ρ+ 1, . . . , 2k′ρ+ 1].
Induction step: k = k′ + 1.

Since every node u in Q(v, k′ + 1) must either belong to Q(v, k′) or be a neighbor
of some node w in Q(v, k′), the smallest c-dimensional interval containing t(Q(v, k′ + 1))
contains at most 2ρ elements more in each of the c dimensions than the corresponding
interval for t(Q(v, k′)). Therefore, by our induction hypothesis, t(Q(v, k′ + 1)) must lie
within a c-dimensional interval [2ρ+ 2k′ρ+ 1, 2ρ+ 2k′ρ+ 1, . . . , 2ρ+ 2k′ρ+ 1] = [2(k′ +
1)ρ+ 1, 2(k′ + 1)ρ+ 1, . . . , 2(k′ + 1)ρ+ 1].

For any positive integer k, the maximum number of lists that can lie within a c-
dimensional interval [2kρ + 1, 2kρ + 1, . . . , 2kρ + 1] is (2kρ + 1)c. Since t is bijective, we
have |Q(v, k)| ≤ (2kρ+ 1)c. 2

Lemma 3.5.3 Let G and H be meshes of the same size. Let G′ be a torus of the same
shape as G, and H ′ be a torus of the same shape as H. Assume that the dilation cost of
any embedding of G into H is bounded from below by x. Then the dilation cost of any

54

3.5. Generalized embeddings among square toruses and square meshes

embedding of G′ into H, G into H ′, or G′ into H ′ is bounded from below by bx, for some
constant b. 2

Proof. Let ζ be the dilation cost of an arbitrary embedding of the torus G′ into the torus
H ′. By Lemma 3.4.1, the mesh G can be embedded into the torus G′ with unit dilation
cost, and the torus H ′ can be embedded into the mesh H with a dilation cost of 2. Since

the sequence of embeddings G
1→ G′

ζ→ H ′
2→ H provides an embedding of G into H with

a dilation cost of 2ζ, we have ζ ≥ x/2.

Similarly, let λ be the dilation cost of an arbitrary embedding of G′ into H, and γ the

dilation cost of an arbitrary embedding of G into H ′. Since the sequence G
1→ G′

λ→ H

and the sequence G
γ→ H ′

2→ H also provide embeddings of G into H with dilation costs
of λ and 2γ respectively, we have λ ≥ x and γ ≥ x/2. 2

Theorem 3.5.1 Let G be a d-dimensional torus or a d-dimensional mesh, and let H be
a c-dimensional torus or a c-dimensional mesh such that c < d and G and H are of the
same size. Let µ be the length of the shortest dimension of G. Then the dilation cost of
any embedding of G into H is bounded from below by bµ(d−c)/c, for some positive number
b that is a constant with respect to µ and depends only on d and c. 2

Proof. We first assume that G and H are both meshes. Let ρ be the dilation cost of an
arbitrary embedding of G into H. By Lemmas 3.5.1 and 3.5.2, for any positive integer
k such that k < µ, (2kρ + 1)c > bkd, for some positive number b that depends only on

d. We thus have ρ > (b
1/c

2)k(d−c)/c − 1
2k ≥ (b

1/c

2)k(d−c)/c. By letting k = µ − 1, we have

ρ ≥ (b
1/c

2)(µ− 1)(d−c)/c. Since µ ≥ 2, µ− 1 ≥ µ
2 . Therefore ρ ≥ b′µ(d−c)/c, for some b′ that

is a constant with respect to µ and depends only on d and c. The other cases follow from
Lemma 3.5.3. 2

Embeddings for lowering dimension

Theorem 3.5.2 Let G be a square torus or a square mesh of dimension d, and H be a
square torus or a square mesh of dimension c such that c < d and G and H are of the same
size. Let ` be the length of the dimensions of G. Assume that d is divisible by c. Then the
shapes of G and H always satisfy the condition of simple reduction. Furthermore, G can
be embedded into H with a dilation cost of 2`(d−c)/c if G is a torus and H is a mesh, and
with a dilation cost of `(d−c)/c otherwise; for fixed vaules of d and c, such dilation costs
are optimal to within a constant. 2

Proof. Let b = d/c. Since d is divisible by c, b is an integer. Let m be the length of the
dimensions of H. Since G and H are of the same size, we have mc = `d, and m = `b.
Hence, H is a simple reduction of G with a reduction factor of ((`, . . . , `︸ ︷︷ ︸

b

), . . . , (`, . . . , `︸ ︷︷ ︸
b

)).

Therefore, by Theorem 3.4.3, G can be embedded into H with a dilation cost of 2m/` =
2`(d−c)/c if G is a torus and H is a mesh, and with a dilation cost of `(d−c)/c otherwise.

By Theorem 3.5.1, the optimal dilation cost of embedding G into H is bounded from
below by b`(d−c)/c, for some positive number b > 0 that is a constant with respect to ` and

55

3. Embeddings among Toruses and Meshes

depends only on d and c. Since the dilation costs of our embeddings are either 2`(d−c)/c

or `(d−c)/c, they are optimal to within a constant for fixed values of d and c. 2

The following lemma states a property of integers that will be used in Theorem 3.5.3
to construct our embedding for lowering dimension case in which d is not divisible by c.
This lemma in turn uses the following properties of integers [Bun72]:

(∗) Any positive integer N > 1 can be written uniquely in a standard form N =
pb11 p

b2
2 · · · pbrr such that for all i ∈ {1, 2, . . . , r}, bi is a positive integer and each

pi is a prime with 1 < p1 < · · · < pr.

Lemma 3.5.4 Let x be any integer greater than 1, and let u and v be any integers that
are relatively prime. Assume that xu/v is an integer. Then x1/v is also an integer. 2

Proof. Let y = xu/v. By assumption, y is an integer. Furthermore, since x is an integer
greater than 1, y must also be an integer greater than 1. By property (∗) of integers, x can
be rewritten in its unique standard form pb11 p

b2
2 · · · pbrr in which r, b1, b2, . . . , br are positive

integers and p1, p2, . . ., pr are distinct primes with p1 < p2 < · · · < pr. Similarly, y can
be written in its unique standard form qc11 q

c2
2 · · · qcss in which s, c1, c2, . . . , cs are positive

integers and q1, q2, . . ., qs are distinct primes with q1 < q2 < · · · < qs.

Since yv = xu, we have qvc11 qvc22 · · · qvcss = pub11 pub22 pubrr . Since q1, q2, . . . , qs are distinct
primes with q1 < q2 < . . . < qs and p1, p2, . . . , pr are also distinct primes with p1 < p2 <
. . . < pr, we have r = s and for all i ∈ [r]+, qi = pi and vci = ubi. Hence, for all i ∈ [r]+,
we have ubi/v = ci. Since ci is an integer, and u and v are relatively prime, bi must be

divisible by v. It follows that p
b1/v
1 p

b2/v
2 · · · pbr/vr , which is x1/v, must be an integer. 2

Theorem 3.5.3 Let G be a square torus or a square mesh of dimension d, and H a square
torus or a square mesh of dimension c such that c < d and G and H are of the same size.
Let ` be the length of the dimensions of G. Assume that d is not divisible by c. Then
there always exists a sequence of intermediate graphs in which the shapes of every pair
of successive graphs satisfy the condition of general reduction. Furthermore, G can be
embedded into H with a dilation cost of 2`(d−c)/c if G is a torus and H is a mesh, and
with a dilation cost of `(d−c)/c otherwise. For fixed vaules of d and c, these dilation costs
are optimal to within a constant. 2

Proof. We first treat the case in which G is a mesh, and H is a mesh or a torus. Let
m be the length of the dimensions of H. Since G and H are of the same size, we have
mc = `d, and m = `d/c. Since m is an integer, `d/c must also be an integer.

We first consider the simple case in which d and c are relatively prime. By the definition
of meshes, ` > 1, and hence by Lemma 3.5.4, `1/c is an integer. Let I0, I1, . . ., Id−c−1 be
all meshes, and Id−c be of the same type as H. For all k ∈ [d− c+ 1], Ik has dimension
d− k and shape

(`(c+k)/c, . . . , `(c+k)/c︸ ︷︷ ︸
c

, ` . . . , `︸ ︷︷ ︸
d−c−k

).

We have I0 = G; Id−c = H; I0, I1, . . ., Id−c all have the same size `d; and, except for I0 and
Id−c, none of the meshes I1, I2, . . ., Id−c−1 is square. For all k ∈ [d− c], the dimension of

56

3.5. Generalized embeddings among square toruses and square meshes

Ik is greater than the dimension of Ik+1 by 1, and the shape of Ik+1 is a general reduction
of the shape of Ik with a reduction factor

Sk+1 = ((`1/c, . . . , `1/c︸ ︷︷ ︸
c

)).

By Theorem 3.4.4, Ik can be embedded into Ik+1 using the function F ′Sk+1
with a dilation

cost of `1/c. The sequence of embeddings G = I0 → I1 → · · · → Id−c−1 → Id−c = H has a
total of d− c steps, with a dilation cost of `1/c in each step. This embedding of G into H
therefore has a dilation cost of `(d−c)/c.

Next we consider the case in which d and c are not relatively prime. Let a be the
greatest common denominator of d and c, and let u = d/a and v = c/a. Since d is not
divisible by c, u and v are integers and relatively prime. We can write `d/c as `u/v. Since
`u/v is an integer and u and v are relatively prime, by Lemma 3.5.4, `1/v is an integer.

As in the preceding case, we can define a sequence of embeddings from G to H. This
sequence consists of u − v embedding steps, in each step of which the dimensions of the
two corresponding graphs differ by a. Let I0, I1, . . ., Iu−v−1 be all meshes, and Id−c be of
the same type as H. For all k ∈ [u− v + 1], Ik has dimension a(u− k) and shape

Lk = (`(v+k)/v, . . . , `(v+k)/v︸ ︷︷ ︸
av

, `, . . . , `︸ ︷︷ ︸
a(u−v−k)

).

We have I0 = G; Iu−v = H; I0, I1, . . ., Iu−v all have the same size `au = `d; and, except
for I0 and Iu−v, none of the meshes I1, I2, . . ., Iu−v−1 is square.

For all k ∈ [u− v], let L′k be a list of length a(u− k − 1), and L′′k be a list of length a
such that

L′k = (`(v+k)/v, . . . , `(v+k)/v︸ ︷︷ ︸
av

, `, . . . , `︸ ︷︷ ︸
a(u−v−k−1)

) and L′′k = (`, . . . , `︸ ︷︷ ︸
a

).

L′k �L′′k is a permutation of Lk. Let

Rk = (`1/v, . . . , `1/v︸ ︷︷ ︸
v

) and R′k = Rk � · · · �Rk︸ ︷︷ ︸
a

.

The list R′k has length av. We have

L′′k = (
∏
Rk, . . . ,

∏
Rk︸ ︷︷ ︸

a

).

The list [R′k � (1, . . . , 1︸ ︷︷ ︸
a(u−v−k−1)

)] × L′k is Lk+1. Therefore, the list Lk+1 is a general reduction

of the list Lk with a reduction factor of

Sk+1 = (Rk, . . . ,Rk︸ ︷︷ ︸
a

).

By Theorem 3.4.4, Ik can be embedded into Ik+1 using the function F ′Sk+1
with a dilation

cost of `1/v.

57

3. Embeddings among Toruses and Meshes

In the sequence of embeddings G = I0 → I1 → · · · → Iu−v−1 → Iu−v = H, each
embedding step has a dilation cost of `1/v. Since there are a total of u − v steps, this
embedding of G into H has a dilation cost of `(u−v)/v = `(d−c)/c.

For the case in which G and H are both toruses, we modify the embedding procedure
for the case in which G is a mesh as follows. For all i ∈ [u − v + 1], let Ii be a torus.
By Theorem 3.4.4, for all k ∈ [u − v], Ik can be embedded into Ik+1 using the function
H′Sk+1

with a dilation cost of `1/v if G is of even size, and using the function G′Sk+1
with

a dilation cost of `1/v otherwise. Therefore, the sequence of embeddings G = I0 → I1 →
· · · → Iu−v = H has a total dilation cost of `(d−c)/c.

For the case in which G is a torus of odd size, and H is a mesh, we modify the
embedding procedure for the case in which G is a mesh as follows. For all i ∈ [u− v + 1],
let Ii be a mesh. Let L be the shape of G. The torus G can be first embedded into
the mesh I0 using the function TL with a dilation cost of 2. By Theorem 3.4.4, for all
k ∈ [u− v], Ik can be embedded into Ik+1 using the function F ′Sk+1

with a dilation cost of

`1/v. Therefore, the sequence of embeddings G→ I0 → I1 → · · · → Iu−v = H has a total
dilation cost of 2`(d−c)/c.

For the case in which G is a torus of even size, and H is a mesh, we modify the
embedding procedure for the case in which G is a mesh as follows. For all i ∈ [u− v + 1],
let Ii be a torus. By Theorem 3.4.4, for all k ∈ [u − v], Ik can be embedded into Ik+1

using the function H′Sk+1
with a dilation cost of `1/v. Let M be the shape of H. The

torus Iu−v can be embedded into the mesh H using the function TM with a dilation cost
of 2. Therefore, the sequence of embeddings G = I0 → I1 → · · · → Iu−v → H has a total
dilation cost of 2`(d−c)/c.

The optimality condition of these dilation costs follows from Theorem 3.5.1. 2

The next corollary follows directly from Theorem 3.5.3 by treating a hypercube as a
mesh. This corollary also follows as a special case of Theorem 3.4.2.

Corollary 3.5.1 A hypercube can be embedded into a square torus or a square mesh of
the same size with a dilation cost of m/2, where m is the length of the dimensions of the
given torus or mesh. 2

Notice that in Theorem 3.5.3 and Corollary 3.5.1, the ratio of our dilation cost to
the optimal dilation cost is bounded from above by 1/b, for some positive number b that
depends only on d and c. For fixed values of d and c, this upper bound on the ratio is
a constant. Since in Theorem 3.5.3, an instance of G and H depends on d, c, and ` (or
equivalently, on b, c, and m, since `d = mc), we can fix the values of d and c without
fixing an instance of G and H. Therefore, in Theorem 3.5.3, for all problem instances in
which d and c are fixed but ` is any integer greater than 1, the ratio of our dilation cost
to the optimal dilation cost is bounded from above by a constant. On the other hand, in
Corollary 3.5.1, an instance of G and H depends only on d and c. Fixing d and c fixes
such an instance. Therefore, in this case, the upper bound 1/b on the ratio of our dilation
cost to the optimal dilation cost varies with each problem instance.

A few special cases of embeddings among toruses and meshes of the same size for
lowering dimension have been solved optimally in the literature: optimal embedding of
an (`, `, `)-mesh into a line of the same size with a dilation cost of b3`2/4 + `/2c [Fit74],
optimal embedding of an (`, `)-mesh into a line of the same size with a dilation cost of `

58

3.5. Generalized embeddings among square toruses and square meshes

[Fit74], optimal embedding of an (`, `)-torus into a ring of the same size with a dilation
cost of ` [MN86], and optimal embedding of a hypercube of size 2d into a line of the same
size with a dilation cost of

∑d−1
k=0

(k
bk/2c

)
[Har66].

For the cases of embedding an (`, `)-mesh into a line and embedding an (`, `)-torus
into a ring, our embeddings also give a dilation cost of `. Thus, both are truly optimal.
For the case of embedding an (`, `, `)-mesh into a line, our embedding gives a dilation cost
of `2. Thus, it is optimal to within a constant 4/3.

For the case of embedding a hypercube of size 2d into a line, our embedding gives a
dilation cost of 2d−1. The optimal dilation cost

∑d−1
k=0

(k
bk/2c

)
can be written as εd−12d−1,

where ε0 = ε1 = ε2 = 1, and for all d ≥ 3, εd−1 > εd (see Appendix). Hence, our
embedding is truly optimal for 1 ≤ d ≤ 3. However, for all d ≥ 3, the ratio of our dilation
cost to the optimal dilation cost, which is 1/εd−1, is strictly greater than 1. Furthermore,
for all d ≥ 3, this ratio is an increasing function of d, and hence cannot be bounded from
above by a constant.

Embeddings for increasing dimension

Theorem 3.5.4 Let G be a square torus or a square mesh of dimension d, and let H
be a square torus or a square mesh of dimension c such that d < c and G and H are of
the same size. Assume that c is divisible by d. Then G can be embedded into H with
an optimal dilation cost of 2 if G is a torus of odd size and H is a mesh, and with unit
dilation cost otherwise. 2

Proof. Let a = c/d. By the assumption of the theorem, a is an integer. Let ` be the
length of the dimensions of G, and m be the length of the dimensions of H. Let L be the
shape of G, and M be the shape of H. We have

L = (`, . . . , `︸ ︷︷ ︸
d

) and M = (m, . . . ,m︸ ︷︷ ︸
c

)

Since G and H are of the same size, we have `d = mc, and ` = ma. Let

R = (m, . . . ,m︸ ︷︷ ︸
a

).

Since
∏
R = `, and

M = R� · · · �R︸ ︷︷ ︸
d

,

the list M is an expansion of the list L, with an expansion factor of

(R,R, . . . ,R︸ ︷︷ ︸
d

).

Assume that G is a torus of even size and H is a mesh of the same size. Since d < c,
we have a ≥ 2. Hence, the list R consists of at least two components. Furthermore, since
the size of H is even, m must also be even, and hence, all of the components of R are
even. Therefore, by Theorem 3.4.1, G can be embedded into H with unit dilation cost.
The other cases of G and H also follow from Theorem 3.4.1. 2

59

3. Embeddings among Toruses and Meshes

Theorem 3.5.5 Let G be a square torus or a square mesh of dimension d, and let H be
a square torus or a square mesh of dimension c such that d < c and G and H are of the
same size. Let ` be the length of the dimensions of G, and a be the greatest common
divisor of c and d. Assume that c is not divisible by d. Then G can be embedded into H
with a dilation cost of 2`(d−a)/c if G is a torus of odd size and H is a mesh, and with a
dilation cost of `(d−a)/c otherwise. 2

Proof. We construct an embedding of G into H through an intermediate graph G′ for
which the shape of G′ is an expansion of that of G and the shape of H is a general reduction
of that of G′. We first consider the case in which G is either a mesh or a torus of even
size. Let m be the length of the dimensions of H. Let u = d/a, and v = c/a. Since u and
v are relatively prime, and `u/v is an integer, by Lemma 3.5.4, `1/v is also an integer. Let
G′ be a mesh of dimension vd and with the length of the dimensions equal to `1/v. The
mesh G′ has the same size as G, and the shape of G′ is an expansion of the shape of G
with an expansion factor of

V = (R, . . . ,R︸ ︷︷ ︸
d

) where R = (`1/v, . . . , `1/v︸ ︷︷ ︸
v

).

By Theorem 3.4.1, the mesh G can be embedded into G′ using the function FV with unit
dilation cost if G is a mesh, and using the function HV with unit dilation cost otherwise.

Next we construct an embedding of G′ into H. The dimension of G′, which is vd,
can be written as (c/a)d = cu. By definitions of u and v, we have d = au and c = av.
Since a is the greatest common divisor of d and c, and since by the assumption of the
theorem, c is not divisible by d, we have u > 1. The dimension ofG′ is thus greater than the
dimension of H. Since G′ and H are both square and of the same size, and G′ is a mesh, by
Theorem 3.5.3, G′ can be embedded into H with a dilation cost of (`1/v)(vd−c)/c = `(d−a)/c.
Therefore, the embedding sequence G→ G′ → H gives an embedding of G into H with a
dilation cost of `(d−a)/c.

For the case in which G is a torus of odd size, and H is a torus or a mesh, we modify
the embedding procedure for the preceding case as follows. Let G′ be a torus of dimension
vd and with the length of the dimensions equal to `1/v. By Theorem 3.4.1, the torus G can
be embedded into the torus G′ using the function HV with unit dilation cost. Since G′ and
H are both square and of the same size, vd > c, and G′ is a torus, by Theorem 3.5.3, G′

can be embedded into H with a dilation cost of (`1/v)(vd−c)/c = `(d−a)/c if H is a torus, and
G′ can be embedded into H with a dilation cost of 2(`1/v)(vd−c)/c = 2`(d−a)/c otherwise.
Therefore, the embedding sequence G→ G′ → H gives an embedding of G into H with a
dilation cost of `(d−a)/c if H is a torus, and with a dilation cost of 2`(d−a)/c otherwise. 2

In summary, our embeddings for square toruses and square meshes are all defined
using the generalized embeddings defined in Section 3.4. For lowering dimension, if the
dimension of G is divisible by the dimension of H, then the shape of H is a simple
reduction of the shape of G. Otherwise, G can be embedded into H through a sequence
of intermediate graphs in which every pair of successive graphs have shapes satisfying the
condition of general reduction. In either case, our embeddings have dilation costs optimal
to within a constant for fixed values of d and c. For increasing dimension, if the dimension
of H is divisible by the dimension of G, then H is always an expansion of G, and an
embedding of G into H can be immediately constructed by applying the results from

60

3.6. Conclusion

Section 3.4. Furthermore, this embedding is always optimal. If the dimension of H is not
divisible by the dimension of G, then an embedding of G into H is constructed through
an intermediate graph G′ such that the shape of G′ is an expansion of the shape of G and
the shape of H is a general reduction of the shape of G′. This embedding, however, may
not be optimal in general

3.6 Conclusion

In this chapter we studied embeddings among toruses and meshes of the same size. All
the results are based on several basic embeddings of either a line or a ring into a torus or
a mesh. The results for basic embeddings are all optimal. Among generalized embeddings
for which at least one of the two graphs is not square, our results are restricted only to those
special cases in which the shapes of the two graphs satisfy the condition of expansion for
increasing dimension and the condition of reduction for lowering dimension. The results
for lowering dimension are not optimal in general. On the other hand, the results for
increasing dimension are all optimal except for the case when G is a torus of even size and
H is a mesh; for this case, we provide an embedding with a dilation cost of 2 and under
certain condition, an embedding with optimal unit dilation cost.

For increasing dimension, if the graph H is a hypercube, the condition of expansion
can always be satisfied; similarly, for lowering dimension, if the graph G is a hypercube,
the condition of simple reduction can always be satisfied. Consequently, our results for
generalized embeddings can always be applied if one of the two graphs is a hypercube.

Furthermore, our results can always be applied if both graphs are square. For increas-
ing dimension, these embeddings are optimal when the dimension of H is divisible by
that of G. For lowering dimension, the embeddings are all optimal to within a constant
for fixed values of d and c; by comparing with the several known optimal results in the
literature, we have further shown that some of these embeddings are truly optimal.

A few special cases of the embedding problem studied in this thesis have been solved
optimally in the literature: embedding a mesh (of size some power of 2) into a hypercube
[CS86], embedding a 2-dimensional square torus into a ring [MN86], embedding a 2-
dimensional square mesh into a line [Fit74], embedding a 3-dimensional square mesh into
a line [Fit74], and embedding a hypercube into a line [Har66]. For these cases, our dilation
cost is either optimal or optimal to within a constant. In addition to having minimum
dilation cost, the embeddings of meshes into hypercubes given in [CS86] also satisfy other
proximity properties, and they are derived based on binary reflected Gray codes. Our
basic embeddings and generalized embeddings for increasing dimension are derived using
a generalization of the technique used in [CS86].

Other closely related results in the literature include the following: embeddings of
2-dimensional square meshes into lines to minimize average proximity [DEL78b], embed-
dings of finite arrays (meshes), prism arrays, and orthant arrays into lines to minimize
proximity in various local and global senses [Ros75], embeddings of 2-dimensional rect-
angular meshes into 2-dimensional square meshes to minimize the dilation costs while
satisfying the constraints on expansion costs [AR82, Ell88], embeddings of meshes into
hypercubes with various expansion costs and dilation costs [S87, HJ87, BMS87], simula-
tions of rectangular meshes in square meshes [Ata85], and simulations among rectangular
meshes [KA85]. (In a simulation of G in H, a constant number of nodes in G can be

61

3. Embeddings among Toruses and Meshes

mapped into a single node in H; thus, a simulation is not an injection but a many-to-one
mapping.) With the exceptions of [Ata85, KA85], in which the costs are expressed in
terms of big O notation (referring to the asymptotic behavior of an embedding), the costs
in the papers cited above and in this thesis are all exact.

Based on the sequential computation model, our basic embeddings, generalized em-
beddings for increasing dimension, and generalized embeddings for lowering dimension all
have complexity O(cn); our embeddings through simple reduction have complexity O(dn),
where d is the dimension of G, c is the dimension of H, and n is the size of G and H.

62

Chapter 4

Program Loading and Data Routing

4.1 Introduction

In the preceding chapter, we designed efficient graph embedding schemes to minimize
dilation cost. In the corresponding program mapping problem, this dilation cost is the
number of system cycles required for a single process in the task graph to send a message
to one of its neighboring processes in the worst case.

But graph embedding is not an adequate model of the program mapping problem.
If more than one process in the task graph attempts to send a message to one of its
neighboring processes at the same time, some link may be required by more than one
message at the same time. Since each unidirectional link can support transmission of
only one message at any instant, extra delay may be introduced. We call the problem of
incurring extra delay because of link conflicts the link contention problem.

In this chapter we investigate the mapping of parallel programs onto parallel processing
systems. We use a task graph to represent a parallel program, and a system graph to
represent a parallel processing system. The nodes in the task graph represent the processes
in the parallel program, and the edges in the task graph represent the communication
requirements between pairs of processes. The nodes in the system graph represent the
processors in the parallel processing system, and the edges in the system graph represent
the physical links in the parallel processing system. We do not distinguish a node from
its address unless ambiguity might occur. The emphasis of this chapter will be on (1)
the parallel loading of the code for each process into the corresponding processor under
particular embedding schemes, and (2) the conflict-free data routing in the system graph
to simulate a large class of parallel neighboring communications in the task graph after
the program is mapped into the system. The first topic addresses the implementation of
the embedding of the task graph into the system graph. The second topic addresses the
extension of the dilation cost analysis to the data routing complexity analysis and the
data routing implementation. The related topics discussed in this chapter include:

1. How can the physical nodes in the system graph calculate the addresses of their
guest nodes in the task graph in parallel?

2. How to establish translation tables in the physical nodes in parallel to support at
execution time parallel neighboring communications on the task graph level?

3. For each graph embedding function, how to design conflict-free data routing schemes
to support parallel neighboring communications in the task graph, and what are the
complexities of these schemes under different link communication models?

63

4. Program Loading and Data Routing

4.2 Assumptions and Definitions

Parallel logical neighboring communications

By definition, all communication requirements are represented directly as edges in the
task graph. Therefore, we need only to consider data routing in the system graph to
support neighboring communications in the task graph. We call the communications with
addresses in the task graph communications on the logical level, and the communications
with addresses in the system graph communications on the physical level. When we say
to simulate in the system graph a set of parallel neighboring communications in the task
graph, we mean to satisfy all of the communication requirements in the set through the
paths in the system graph that connect images of neighboring nodes in the task graph.

We define the following two types of sets of parallel neighboring communications in
the task graph:

Permutation type: At any instant, each node in the task graph can send out at most
one message to one of its neighbors and receive at most one message from one of its
neighbors.

Scatter type: At any instant, each node in the task graph can send out one message to
each of its neighbors and receive one message from each of its neighbors.

By definition, permutation type sets of parallel neighboring communications are more
restrictive than scatter type sets of parallel neighboring communications. If the nodes in
the system graph have smaller degree than the corresponding nodes in the task graph, the
link conflicts in the simulation of scatter type sets of parallel neighboring communications
are unavoidable. In this chapter, we study the simulation in the system graph of any
scatter type set of parallel neighboring communications in the task graph if the task
graph is embedded into the system graph with unit dilation cost, and the simulation in
the system graph of any permutation type set of parallel neighboring communications in
the task graph otherwise.

In this thesis, we assume that the communication requirements of a parallel program
are always in the form of either permutation type sets or scatter type sets of parallel
neighboring communications in the task graph.

Assumptions about the system

In this thesis, we do not distinguish a system graph and a physical parallel processing
system. We use the term physical nodes to denote the nodes in the system graph, and
the term logical nodes to denote the nodes in the task graph. We make the following
assumptions about the system architecture:

1. Each physical node has two message buffers associated with each bidirectional phys-
ical link, and one message buffer associated with each unidirectional physical link.
Each of the buffers is capable of accommodating a message for either input or output.

2. Each physical node knows its address in the system graph. We also call this address
the physical address.

64

4.2. Assumptions and Definitions

3. Each physical node has a translation table in which each entry corresponds to a
logical neighbor of the logical node embedded into this physical node. Suppose that
an entry corresponds to the logical neighboring node v. This entry will consist of
a pair of addresses: the first is the logical address of v in the task graph, and the
second is the physical address of the physical node accommodating logical node v.
This table is used to translate at execution time the communications on the logical
task graph level to the communications on the physical system graph level. Upon
receiving a request to send a message to one of the logical neighbors, the physical
node will look up the translation table and automatically translate the logical address
for this logical neighbor into the corresponding physical address. We will show how
to construct these translation tables in Section 4.4.

4. We use packet switching for data routing. Each message carries the physical address
of its destination.

5. We assume that the host of the parallel processing system can broadcast a message
to all of the physical nodes under its control. No other communication networks
between the host and the physical nodes are assumed.

6. We assume three possible communication modes for the links of the parallel process-
ing system:

Mode 1: Each link can independently support communications in both direc-
tions, and two messages can be sent in opposite directions over the same link
at the same time.

Mode 2: Each link can independently support communications in both direc-
tions, but two messages cannot be sent in opposite directions over the same
link at the same time.

Mode 3: At any instant, only those links along a single dimension can support
concurrent communications in a single direction.

In the remainder of this section and in Chapter 5, we assume that all of the links work
in communication mode 1 unless stated otherwise.

Coordinated parallel data movements

Here we define two kinds of coordinated parallel data movements on the system graph
to be used later for data routing.

When we say to perform a unidirectional coordinated parallel data movement along
the i-th dimension to the left (right) for k steps, we mean that (i) at the beginning of the
operation, each physical node may identify a message for moving towards the left (right) in
the i-th dimension; (ii) all of the identified messages may move along the specified single
direction in the i-th dimension in parallel, with each message participating in at most
k such parallel movement steps; (iii) an identified message will participate in a parallel
movement step if and only if this movement step will make it approach its destination
along a shortest path connecting its source and destination.

65

4. Program Loading and Data Routing

Note that in a coordinated parallel data movement, the movement of every message is
consecutive. If it stops, it will not move further in its specified direction in that coordinated
parallel data movement.

For example, let us assume that the system graph H is a torus of shape (8, 8); for all
i ∈ [4] and j ∈ [8], node (i, j) has a message A(i, j) with node ((i−2) mod 8, (j+1) mod 8)
as its destination; and for all i ∈ {4, 5, 6, 7} and j ∈ [8], node (i, j) has a message A(i, j)
with node ((i − 3) mod 8, j) as its destination. Assume that we perform a unidirectional
coordinated parallel data movement along the first dimension to the left for three steps,
then perform another unidirectional coordinated parallel data movement along the second
dimension to the right for one step. In the first coordinated parallel data movement, we
assume that for all i, j ∈ [8], node (i, j) identifies message A(i, j) in it to participate in the
data movement. Upon the completion of this first coordinated parallel data movement,
for all i ∈ [4] and j ∈ [8], message A(i, j) will be in node ((i − 2) mod 8, j), and for
all i ∈ {4, 5, 6, 7} and j ∈ [8], message A(i, j) will be in node ((i − 3) mod 8, j). In the
second coordinated parallel data movement, we assume that for all i ∈ [4] and j ∈ [8],
node ((i−2) mod 8, j) identifies message A(i, j) in it to participate in the data movement.
Upon the completion of this second coordinated parallel data movement, for all i ∈ [4]
and j ∈ [8], message A(i, j) will be in node ((i − 2) mod 8, (j + 1) mod 8), and for all
i ∈ {4, 5, 6, 7} and j ∈ [8], message A(i, j) will still be in node ((i− 3) mod 8, j).

When we say to perform a bidirectional coordinated parallel data movement along the i-
th dimension for k steps, we mean that (i) at the beginning of the operation, each physical
node may identify a message in it for moving towards the left in the i-th dimension, and
also identify a message in it for moving towards the right in the i-th dimension; (ii) all
of the identified messages may move along their specified directions in the i-th dimension
in parallel, with each message participating in at most k such parallel movement steps;
(iii) an identified message will participate in a parallel movement step if and only if that
movement will make it approach its destination along a shortest path connecting its source
and destination.

For example, let us again assume that the system graph H is a torus of shape (8, 8), and
for all i, j ∈ [8], node (i, j) has a message A(i, j) with node ((i− 2) mod 8, (j + 1) mod 8)
as its destination, and also a message B(i, j) with node ((i+3) mod 8, (j−1) mod 8) as its
destination. Assume that we perform a bidirectional coordinated parallel data movement
along the first dimension for three steps. For all i, j ∈ [8], we assume that node (i, j)
identifies message A(i, j) in it to participate in the data movement towards the left and
message B(i, j) in it to participate in the data movement towards the right. Upon the
completion of the coordinated parallel data movement, message A(i, j) will be in node
((i − 2) mod 8, j) for all i, j ∈ [8], and message B(i, j) will be in node ((i + 3) mod 8, j)
for all i, j ∈ [8].

By the definitions, in any unidirectional or bidirectional coordinated parallel data
movement, different messages use different links at different times. Therefore, no link
conflicts will occur. For the same reason, more than one unidirectional or bidirectional
coordinated parallel data movement can be performed simultaneously without link con-
flicts as long as they are along distinct dimensions. In this dissertation, all data routing
algorithms consist of one or more consecutive phases, and within each phase, one or more
coordinated parallel data movements are performed simultaneously, all in distinct dimen-
sions of the system graph. Therefore, to prove that these algorithms are link conflict free,

66

4.2. Assumptions and Definitions

we need only to verify that at the beginning of each phase, there is only one message that
needs to be sent out in any direction.

We now establish two lemmas about coordinated parallel data movements, which will
be used in the proofs for our data routing algorithms.

Lemma 4.2.1 Let G be a task graph, H be a system graph, and S be a permutation
type set of parallel neighboring communications in G. Let ρ be any positive integer.
Assume that after a one-to-one embedding of G into H, for every message in S, its source
and destination lie along one of the dimensions of H and are at a distance of at most ρ.
Then S can be simulated in H by performing simultaneously along each dimension of H
a bidirectional coordinated parallel data movement for ρ steps. 2

Proof. We need only to prove that there are no link conflicts in the parallel data move-
ments above. By the definition of permutation type sets of parallel neighboring commu-
nications, each node in H can be the source of at most one message in S. We also know
that simultaneous bidirectional coordinated parallel data movements are link conflict free
as long as they are along distinct dimensions. Therefore the lemma is true. 2

Lemma 4.2.2 Let G be a task graph, H be a system graph, and S be a permutation type
set of parallel neighboring communications in G. Let ρ be any positive integer. Assume
that after a one-to-one embedding of G into H, for every message s in S, its source u and
destination v satisfy the following conditions:

(a) there is at least one shortest path connecting u and v in H that follows at most two
dimensions;

(b) any shortest path connecting u and v in H that follows one dimension has length
either ρ or 2ρ along that dimension;

(c) any shortest path connecting u and v in H that follows two dimensions has length ρ
along either of the two dimensions.

Then S can be simulated in H by first performing simultaneously along each dimension
of H a bidirectional coordinated parallel data movement for ρ steps, then performing
simultaneously along each dimension of H another bidirectional coordinated parallel data
movement for ρ steps. 2

Proof. Using an argument similar to the proof for Lemma 4.2.1, we know that at the
end of the first coordinated parallel data movement, every message in S with source and
destination at a distance of ρ has reached its destination, and each of the other messages
in S has reached its mid-point node, which is along the same dimension as its destination
and at a distance of exactly ρ from both its source and destination.

Since S is of permutation type, every node in H can be the destination of at most
one message in S. Furthermore, since each message that has not reached its destination
is now in a mid-point node at a distance of exactly ρ from its destination, every mid-
point node has at most one message to deliver in each direction along every dimension of
H. Therefore, all of the remaining messages can reach their destinations by performing
simultaneously along each dimension of H another bidirectional coordinated parallel data
movement for ρ steps. 2

67

4. Program Loading and Data Routing

4.3 Logical Address Identification and Program Loading

We use the term code to denote the piece of program generating a process. Given a
parallel program in the form of a task graph, each node has a logical address and a code
type. The code type determines which code will be executed to generate the process
represented by the corresponding logical node. If two nodes have the same code type,
they will execute different copies of the same code. In the SIMD environment, all logical
nodes execute different copies of the same code and thus have the same code type. In
the MIMD environment, each logical node may execute different code and thus may have
different code types.

When we want to execute a parallel program on a parallel processing system, we first
have to allocate the logical nodes to the physical nodes according to some embedding
function. Since different systems usually have different system support for communication
between the host and the physical nodes, and different parallel programs usually have
different code allocation patterns, the code loading problem is not trivial and has not yet
been well treated in the literature.

One possible approach is to have the host calculate for each logical node the physical
node to which the logical node will be assigned, and then use some network to load the
appropriate codes, together with their associated logical addresses, into the physical nodes
to which the logical nodes are assigned. For large task graphs, this approach imposes a
heavy computational load on the system host because the host must sequentially evaluate
the embedding function for each logical node. The delay introduced by this sequential
computation can prohibit the application of our embedding schemes at execution time.

In this research, since all of the embedding functions are well-defined mappings, we
propose a parallel approach to solve the code loading problem above. Our approach is
based on the inverses of the embedding functions. We assume that broadcast is the only
means for the host to send messages to the physical nodes. Since a broadcast network
is available or simulated in all SIMD, MSIMD, and MIMD systems, this approach is
applicable to a wide range of parallel processing systems.

In the first step, the host broadcasts the inverse of the embedding function as well
as the parameters of the subsystem for the current task to all of the physical nodes
in the subsystem. Using the inverse function with its own unique physical address as
argument, each processor then computes the logical address of the node in the task graph
to be embedded into this processor. Such computations are performed by all processors in
parallel. Since all of our embedding functions have low complexity and these computations
are performed in parallel, the delay introduced by this step is small.

In the next step, the host first broadcasts a special code called loader , which is basi-
cally a table specifying the code type for each logical node, to all of the physical nodes
in the subsystem, and then broadcasts sequentially the codes of different types used in
the parallel program to all of the physical nodes in the subsystem. Each physical node
decides independently whether it should ignore or accept the incoming code based on the
information in the loader. The delay introduced by this step is proportional to the number
of code types and the lengths of these codes used by the parallel program. As a special
case, for SIMD programs, only one piece of code needs to be broadcast. This approach is
especially usefull when either the parallel program is large but has only a limited number
of different code types, or broadcasting is the only means for the host to send messages

68

4.3. Logical Address Identification and Program Loading

to all of the physical nodes.

4.3.1 Inverses of Embedding Functions

In this subsection, we show that all of our embedding functions have simple inverse func-
tions. Since the permutations applied before or after an embedding function are trivially
invertible, we ignore these permutations to simplify our exposition.

Inverse function for fL

Let L = (l1, l2, . . . , ld), and n = l1l2 · · · ld. We can redefine the transformation in Def-
inition 3.3.1 as a function τL : ΩL → ΩL. For all (x̂1, x̂2, . . . , x̂d) ∈ ΩL, let x be
u−1
L ((x̂1, x̂2, . . . , x̂d)), τL((x̂1, x̂2, . . . , x̂d)) = (x1, x2, . . . , xd), where for all i ∈ [d]+,

xi =

{
x̂i, if bx/wi−1c is even;
li − x̂i − 1, if bx/wi−1c is odd.

By this definition, we can write the embedding function fL : [n]→ ΩL as a composition
of the function uL and the function τL: for all x ∈ [n],

fL(x) = τL(uL(x)).

Since uL and τL are both bijections, the inverse function of fL, f−1
L : ΩL → [n], can

be expressed as

f−1
L ((x1, x2, . . . , xd)) = u−1

L (τ−1
L ((x1, x2, . . . , xd))),

where u−1
L is the inverse function of uL, τ−1

L is the inverse function of τL, and
(x1, x2, . . . , xd) is any number in ΩL.

As we noted in Section 3.2, for all (x̂1, x̂2, . . . , x̂d) ∈ ΩL,

u−1
L ((x̂1, x̂2, . . . , x̂d)) =

d∑
k=1

x̂kwk.

Let πi,j =
∏j
p=i lp. The function τ−1

L : ΩL → ΩL can be specified in the following way:

for all (x1, x2, . . . , xd) ∈ ΩL, τ−1
L ((x1, x2, . . . , xd)) = (x̂1, x̂2, . . . , x̂d), where for all i ∈ [d]+,

x̂i =

{
xi, if

∑i−1
k=1 x̂kπk+1,i−1 is even;

li − xi − 1, otherwise.

To prove that τ−1
L is the inverse of τL, we need only to show that bx/wi−1c =∑i−1

k=1 x̂kπk+1,i−1. We can rewrite bx/wi−1c as

⌊∑d
k=1 x̂kπk+1,d

πi,d

⌋
=

⌊∑i−1
k=1 x̂kπk+1,d +

∑d
k=i x̂kπk+1,d

πi,d

⌋

=

⌊
i−1∑
k=1

x̂kπk+1,i−1 +
d∑
k=i

x̂k
πi,k

⌋
.

69

4. Program Loading and Data Routing

Since
∑i−1
k=1 x̂kπk+1,i−1 is an integer, and

d∑
k=i

x̂k
πi,k

≤
d∑
k=i

lk − 1

πi,k

=

(
1− 1

li

)
+

(
1

li
− 1

lili+1

)
+ · · ·+

(
1

lili+1 · · · ld−1
− 1

lili+1 · · · ld

)
= 1− 1

lili+1 · · · ld
< 1,

we have

bx/wi−1c =
i−1∑
k=1

x̂kπk+1,i−1.

Therefore, the inverse function is correct.
Note that in the specification of τ−1

L , we have x̂1 = x1, and for all i ∈ {2, 3, . . . , d}, the
value of x̂i depends on the values of x̂1, x̂2, . . . , x̂i−1. By computing the x̂i’s in increasing
order of i, all of the values needed in the computation of x̂i, for all i ∈ {2, 3, . . . , d}, will
be available before its computation.

Inverse function for gL

The embedding function gL : [n]→ ΩL is defined as follows:

gL(x) = fL(tn(x)),

where function tn : [n]→ [n] is defined as follows: for all x ∈ [n],
if n is even, then

tn(x) =

{
2x, if x < n/2;
n− 2(x− n/2)− 1, otherwise;

if n is odd, then

tn(x) =

{
2x, if x < (n+ 1)/2;
n− 2(x− (n+ 1)/2)− 2, otherwise.

Since fL and tn are both bijections, we can write the inverse function of gL, g−1
L :

ΩL → [n], as
g−1
L ((y1, y2, . . . , yd)) = t−1

n (f−1
L ((y1, y2, . . . , yd)))

for all (y1, y2, . . . , yd) ∈ ΩL.
By the definition of tn, we know that for all y ∈ [n],

t−1
n (y) =

{
y/2, if y is even;
n− (y + 1)/2, otherwise.

70

4.3. Logical Address Identification and Program Loading

Inverse function for rL

Let L = (l1, l2) be a radix-base, and let n = l1l2. The function rL : [n] → ΩL is defined
as follows: for all x ∈ [n],

if l2 > 2, then

rL(x) =

{
(l1 − 1− x, 0), if x < l1;
(x1, x2 + 1) where (x1, x2) = f(l1,l2−1)(x− l1), if x ≥ l1;

if l2 = 2, then

rL(x) =

{
(l1 − 1− x, 0), if x < l1;
(x− l1, 1), if x ≥ l1.

The inverse function of rL, r−1
L : ΩL → [n], can be specified as follows: for all (y1, y2) ∈

ΩL,
if l2 > 2, then

r−1
L ((y1, y2)) =

{
l1 − 1− y1, if y2 = 0;

f−1
(l1,l2−1)((y1, y2 − 1)) + l1, otherwise;

if l2 = 2, then

r−1
L ((y1, y2)) =

{
l1 − 1− y1, if y2 = 0;
y1 + l1, otherwise.

Inverse function for hL

Let L = (l1, l2, . . . , ld) be a radix-base, and let n =
∏d
i=1 li. The function hL : [n]→ ΩL is

defined as follows: for all x ∈ [n],
if d ≥ 3, then let L′ = (l1, l2), L′′ = (l3, l4, . . . , ld), m =

∏d
i=3 li, a = bx/(l1l2 − 1)c,

b = x mod (l1l2 − 1), and

hL(x) =

rL′(b) � fL′′(a), if x < m(l1l2 − 1) and a is even;
rL′(l1l2 − b− 2) � fL′′(a), if x < m(l1l2 − 1) and a is odd;
rL′(l1l2 − 1) � fL′′(n− x− 1), otherwise;

if d = 2, then hL(x) = rL(x); and
if d = 1, then hL(x) = x.
The inverse function of hL, h−1

L : ΩL → [n], can be specified as follows: for all
(y1, y2, y3, . . . , yd) ∈ ΩL,

if d ≥ 2, let L′ = (l1, l2), L′′ = (l3, l4, . . . , ld), a = f−1
L′′ ((y3, . . . , yd)), and

b =

{
r−1
L′ ((y1, y2)), if a is even;

l1l2 − r−1
L′ ((y1, y2))− 2, otherwise;

h−1
L ((y1, y2, y3, . . . , yd)) =

{
n− f−1

L′′ ((y3, . . . , yd))− 1, if (y1, y2) = rL′(l1l2 − 1);
a(l1l2 − 1) + b, otherwise;

if d = 2, h−1
L ((y1, y2)) = r−1

L ((y1, y2)); and
if d = 1, h−1

L (y1) = y1.

71

4. Program Loading and Data Routing

Inverse function for TL

Let L = (l1, l2, . . . , ld) be a radix-base. The function TL : ΩL → ΩL is defined as follows:
for all (x1, x2, . . . , xd) ∈ ΩL,

TL((x1, x2, . . . , xd)) = (tl1(x1), tl2(x2), . . . , tld(xd)).

The inverse function of TL, T −1
L : ΩL → ΩL, can be specified as follows: for all

(y1, y2, . . . , yd) ∈ ΩL,

T −1
L ((y1, y2, . . . , yd)) = (t−1

l1
(y1), t−1

l2
(y2), . . . , t−1

ld
(xd)).

Inverse functions for FV , GV , and HV

Let L = (l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be radix-bases such that M is an
expansion of L with an expansion factor V = (V1,V2, . . . ,Vd). Let Ṽ = V1 � V2 � · · · � Vd.
The functions FV : ΩL → ΩṼ , GV : ΩL → ΩṼ , and HV : ΩL → ΩṼ are defined as follows: for
all (i1, i2, . . . , id) ∈ ΩL,

FV((i1, i2, . . . , id)) = fV1(i1) � fV2(i2) � · · · � fVd(id),

GV((i1, i2, . . . , id)) = gV1(i1) � gV2(i2) � · · · � gVd(id),

HV((i1, i2, . . . , id)) = hV1(i1) �hV2(i2) � · · · �hVd(id).

Their inverse functions F−1
V , G−1

V , and H−1
V are all bijections from ΩṼ to ΩL and can be

specified in terms of f−1
L , g−1

L , and h−1
L . For all Y = (y1, y2, . . . , yc) ∈ ΩṼ , we decompose

Y into d segments Y1, Y2, . . . , Yd such that Y = Y1 �Y2 � · · · �Yd and |Yi| = |Vi| for all
i ∈ [d]+. The inverse functions can be expressed as

F−1
V (Y) = f−1

V1 (Y1) � f−1
V2 (Y2) � · · · � f−1

Vd (Yd),

G−1
V (Y) = g−1

V1 (Y1) � g−1
V2 (Y2) � · · · � g−1

Vd (Yd),

H−1
V (Y) = h−1

V1 (Y1) �h−1
V2 (Y2) � · · · �h−1

Vd (Yd).

Inverse functions for F ′S , H′S , G′S , H′′S , and G′′S
Let d and c be positive integers such that c < d ≤ 2c. Let L = (l1, l2, . . . , ld) and
M = (m1,m2, . . . ,mc) be radix-bases. Assume thatM is a general reduction of L with a
reduction factor S = (S1,S2, . . . ,Sd−c), multiplicant sublist L′, and multiplier sublist L′′.
Let α : [d]+ → [d]+ be a permutation such that α(L) = L′ �L′′. Let S̃ = (s1, s2, . . . , sb) =
S1 � S2 � · · · � Sd−c, and let I = (1, 1, . . . , 1︸ ︷︷ ︸

c−b

). Let FS : ΩL′′ → ΩS̃ , HS : ΩL′′ → ΩS̃ , and

GS : ΩL′′ → ΩS̃ . The functions F ′S : ΩL′ � L′′ → Ω[S̃ � I]×L′ , H
′
S : ΩL′ � L′′ → Ω[S̃ � I]×L′ ,

72

4.3. Logical Address Identification and Program Loading

G′S : ΩL′ � L′′ → Ω[S̃ � I]×L′ , H
′′
S : ΩL′ � L′′ → Ω[S̃ � I]×L′ , and G′′S : ΩL′ � L′′ → Ω[S̃ � I]×L′ are

defined as follows: for all (i1, i2, . . . , id) ∈ ΩL′ � L′′ ,

F ′S((i1, i2, . . . , id)) = [(s1i1, s2i2, . . . , sbib) + FS((ic+1, ic+2, . . . , id))] � (ib+1, ib+2 . . . , ic),

H′S((i1, i2, . . . , id)) = [(s1i1, s2i2, . . . , sbib) +HS((ic+1, ic+2, . . . , id))] � (ib+1, ib+2 . . . , ic),

G′S((i1, i2, . . . , id)) = [(s1i1, s2i2, . . . , sbib) + GS((ic+1, ic+2, . . . , id))] � (ib+1, ib+2 . . . , ic),

H′′S((i1, i2, . . . , id)) = [(s1tlα(1)(i1), s2tlα(2)(i2), . . . , sbtlα(b)(ib)) +HS((ic+1, ic+2, . . . , id))]

� (tlα(b+1)
(ib+1), tlα(b+2)

(ib+2) . . . , tlα(c)(ic)),

G′′S((i1, i2, . . . , id)) = [(s1tlα(1)(i1), s2tlα(2)(i2), . . . , sbtlα(b)(ib)) + GS((ic+1, ic+2, . . . , id))]

� (tlα(b+1)
(ib+1), tlα(b+2)

(ib+2) . . . , tlα(c)(ic)).

The inverse function of F ′S , F ′−1
S : Ω[S̃ � I]×L′ → ΩL′ � L′′ , can be specified as follows:

for all (j1, j2, . . . , jc) ∈ Ω[S̃ � I]×L′ ,

F ′−1
S ((j1, j2, . . . , jc)) = (i1, i2, . . . , id),

where for all k ∈ [b]+,

ik = bjk/skc,

for all k ∈ {b+ 1, b+ 2, . . . , c},

(ib+1, ib+2, . . . , ic) = (jb+1, jb+2, . . . , jc),

and for all k ∈ {c+ 1, c+ 2, . . . , d},

(ic+1, ic+2, . . . , id) = F−1
S ((j1 mod s1, j2 mod s2, . . . , jb mod sb)).

The inverse function of H′S , H′−1
S : Ω[S̃ � I]×L′ → ΩL′ � L′′ , can be specified as follows:

for all (j1, j2, . . . , jc) ∈ Ω[S̃ � I]×L′ ,

H′−1
S ((j1, j2, . . . , jc)) = (i1, i2, . . . , id),

where for all k ∈ [b]+,

ik = bjk/skc,

for all k ∈ {b+ 1, b+ 2, . . . , c},

(ib+1, ib+2, . . . , ic) = (jb+1, jb+2, . . . , jc),

and for all k ∈ {c+ 1, c+ 2, . . . , d},

(ic+1, ic+2, . . . , id) = H−1
S ((j1 mod s1, j2 mod s2, . . . , jb mod sb)).

73

4. Program Loading and Data Routing

The inverse function of G′S , G′−1
S : Ω[S̃ � I]×L′ → ΩL′ � L′′ , can be specified as follows:

for all (j1, j2, . . . , jc) ∈ Ω[S̃ � I]×L′ ,

G′−1
S ((j1, j2, . . . , jc)) = (i1, i2, . . . , id),

where for all k ∈ [b]+,

ik = bjk/skc,

for all k ∈ {b+ 1, b+ 2, . . . , c},

(ib+1, ib+2, . . . , ic) = (jb+1, jb+2, . . . , jc),

and for all k ∈ {c+ 1, c+ 2, . . . , d},

(ic+1, ic+2, . . . , id) = G−1
S ((j1 mod s1, j2 mod s2, . . . , jb mod sb)).

The inverse function of H′′S , H′′−1
S : Ω[S̃ � I]×L′ → ΩL′ � L′′ , can be specified as follows:

for all (j1, j2, . . . , jc) ∈ Ω[S̃ � I]×L′ ,

H′′−1
S ((j1, j2, . . . , jc)) = (i1, i2, . . . , id),

where for all k ∈ [b]+,

ik = t−1
lα(k)

(bjk/skc),

for all k ∈ {b+ 1, b+ 2, . . . , c},

(ib+1, ib+2, . . . , ic) = (jb+1, jb+2, . . . , jc),

and for all k ∈ {c+ 1, c+ 2, . . . , d},

(ic+1, ic+2, . . . , id) = H−1
S ((j1 mod s1, j2 mod s2, . . . , jb mod sb)).

The inverse function of G′′S , G′′−1
S : Ω[S̃ � I]×L′ → ΩL′ � L′′ , can be specified as follows:

for all (j1, j2, . . . , jc) ∈ Ω[S̃ � I]×L′ ,

G′′−1
S ((j1, j2, . . . , jc)) = (i1, i2, . . . , id),

where for all k ∈ [b]+,

ik = t−1
lα(k)

(bjk/skc),

for all k ∈ {b+ 1, b+ 2, . . . , c},

(ib+1, ib+2, . . . , ic) = (jb+1, jb+2, . . . , jc),

and for all k ∈ {c+ 1, c+ 2, . . . , d},

(ic+1, ic+2, . . . , id) = G−1
S ((j1 mod s1, j2 mod s2, . . . , jb mod sb)).

74

4.3. Logical Address Identification and Program Loading

Inverse function for UV

Let L = (l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be radix-bases such that M is a simple
reduction of L with a reduction factor V = (V1,V2, . . . ,Vc). Let Ṽ = V1 � V2 · · · � Vc. The
function UV : ΩṼ → ΩM is defined as follows: for all (i1, i2, . . . , id) ∈ ΩṼ ,

UV((i1, i2, . . . , id)) = uV1
−1(I1) �uV2−1(I2) � · · · � uVc−1(Ic),

where I1, I2, . . ., Ic are partitions of (i1, i2, . . . , id) such that for all k ∈ [c]+, |Ik| = |Vk|,
and I1 � I2 � · · · � Ic = (i1, i2, . . . , id).

The inverse function of UV , U−1
V : ΩM → ΩṼ , can be specified as follows: for all

(j1, j2, . . . , jc) ∈ ΩM,

U−1
V ((j1, j2, . . . , jc)) = uV1(j1) �uV2(j2) � · · · �uVc(jc).

Inverse functions for multi-step embeddings

Given a graph G and a graph H, suppose that G is embedded into H through a sequence
of k (k > 1) intermediate embedding steps and the embedding function E : VG → VH can
be expressed as

E = αk ◦ fk ◦ αk−1 ◦ fk−1 ◦ αk−2 ◦ · · · ◦ α1 ◦ f1 ◦ α0,

where the function composition operator “◦” is right associative; for all i ∈ [k]+, fi is
the embedding function applied in the i-th step of embedding; for all j ∈ [k]+, αj is a
permutation of the dimensions in the range of fi; and α0 is a permutation of the dimensions
in the graph G.

If for all i ∈ [k]+, fi is one of the embedding functions discussed earlier in this sub-
section, then its inverse function f−1

i has already been well specified. Since all of these
functions are bijections, the inverse function for E can be expressed as

E−1 = α−1
0 ◦ f

−1
1 ◦ α−1

1 ◦ f
−1
2 ◦ α−1

2 ◦ · · · ◦ α
−1
k−1 ◦ f

−1
k ◦ α

−1
k ,

where for all j ∈ [k + 1], α−1
j is the inverse permutation of αj .

All of the embedding functions implicitly defined in Section 3.5 of the preceding chapter
satisfy the condition above. Thus, the inverse functions of these multi-step embedding
functions can all be easily constructed from the inverse functions we described in this
subsection.

4.3.2 Logical Address Identification

Logical address identification enables each physical node in the system graph to determine
which logical node in the task graph will be embedded into it. Logical address identification
provides the basis for the loading of the sequential codes into the physical nodes as well
as for the support of logical level communication.

We now show how the logical address identification can be performed quickly in a
partitionable parallel processing system. Let us assume that the global system graph is a

75

4. Program Loading and Data Routing

c-dimensional mesh (torus). Each task graph will be allocated a sub-mesh of the global
system graph, which we call a partition, as the system graph to accommodate the task
graph. Let the base of a partition be the physical address of the node in the partition
that has the smallest index in each dimension among all physical nodes in that partition.
A partition can be completely defined by its shape and base. If a partition has base
(b1, b2, . . . , bc) and shape (m1,m2, . . . ,mc), then the nodes in the partition have addresses
of the form (b1 + i1, b2 + i2, . . . , bc + ic), where for all k ∈ [c]+, ik ∈ [mk].

Given a parallel program in the form of a task graph and an allocated system partition
in the form of a system graph of the same size, let us assume that the task graph is
of shape L = (l1, l2, . . . , ld), and the partition has base B = (b1, b2, . . . , bc) and shape
M = (m1,m2, . . . ,mc). We also assume that an embedding function E : ΩL → ΩM is
used for the embedding, and the inverse function of E , E−1 : ΩM → ΩL, is known. The
host first broadcasts a message containing E , E−1, L, M, and B to all of the physical
nodes in the system. Each physical node then checks the values of B and M and decides
whether it belongs to the partition. If it does not belong to the partition, it will ignore
all of the other steps for the setup of this parallel program. Therefore from now on, we
can simply talk about “sending a message to all of the physical nodes in the partition”,
or say that “all of the physical nodes in the partition perform the following operation”.

Using the inverse function E−1, all of the physical nodes in the partition calculate in
parallel the logical addresses of the nodes in the task graph to be embedded into them. For
any node in the partition with physical address (i1, i2, . . . , ic), the address of the logical
node to be embedded into it is

E−1((i1 − b1, i2 − b2, . . . , ic − bc)).

4.3.3 Program Loading

So far, we have finished the first step in embedding the parallel program in the form of a
task graph into the system graph: each physical node in the partition knows what is the
address of the logical node to be embedded into it. The next step is actually to load the
codes for the logical nodes into the corresponding physical nodes in the system graph. We
call the problem in this step the program loading problem.

The solutions to the program loading problem depend on the communication networks
between the host and the processors as well as the properties of the task graph itself. We
now propose an approach based on a broadcast network.

Assume that there are n logical nodes in the task graph and all these nodes are based
on k different types of sequential codes. We use a table of length n to specify for each
logical address which code type will be used for the logical node. We call this table the
code type specification table. This table can be either specified by the programmer or
derived automatically from the parallel program by the compiler. We incorporate this
table into the following simple code called “Loader”:

Program Loader (In: message);
var T: code type specification table;
begin

If In.type = T(logical address)
then save In.code

76

4.4. Parallel Generation of Translation Tables

end;

The host broadcasts the Loader to all of the physical nodes in the partition, and then
sequentially broadcasts all of the different codes prefixed with their unique code types to
all of the physical nodes in the partition. Each physical node then uses the Loader to
decide whether the incoming code has the same code type as specified in the code type
specification table for the logical address assigned to it. If the two types agree, the physical
node keeps the code; otherwise it discards it.

The time needed for this program loading process is proportional to the number of
different code types used in the parallel program, but not to the size of the task graph.
This approach works especially well for large parallel programs in which only a limited
number of code types are used.

4.4 Parallel Generation of Translation Tables

If under an embedding scheme, a logical node X is mapped into a physical node Y , we
call X the corresponding logical node of Y , and Y the corresponding physical node of X.
Since we want to support efficiently at execution time parallel neighboring communica-
tions on the logical task graph level, each physical node must have a translation table to
translate the logical destination addresses of the messages to their corresponding physi-
cal addresses under the embedding. Each entry in the table is an ordered pair “(logical
address, physical address)”. For each physical node, the length of this table equals the
degree of the corresponding logical node. When a logical node needs to send a message to
one of its logical neighbors, the corresponding physical node automatically looks up the
translation table to determine the corresponding physical address of this logical neighbor,
prefix the message with the ordered pair “(logical address, physical address)”, then send
the message to its physical destination by our data routing schemes discussed in the next
section.

Here we propose two methods for the parallel generation of the translation tables.
Method 1 is based on the parallel computation of the embedding function and can be
applied to all of our embedding functions. Method 2 is based on parallel data movements
of the ordered pairs “(logical address, physical address)” computed in the logical address
identification stage and is used only if the embedding has unit dilation cost. We assume
that each physical node in the partition already knows the embedding function E , the
shape of the task graph, its physical address X = (x1, x2, . . . , xc), and the logical address
Y = (y1, y2, . . . , yd) of the corresponding node in the task graph.

Method 1: First, each physical node in the partition generates a list of all of the
addresses of the logical neighbors of the corresponding logical node. This list consists of
all of the addresses in the set

{Y ′ = (y′1, y
′
2, . . . , y

′
d)|∀k ∈ [d]+, y′k ∈ [lk], δm(Y, Y ′) = 1}

if the task graph is a mesh, or all of the addresses in the set

{Y ′ = (y′1, y
′
2, . . . , y

′
d)|∀k ∈ [d]+, y′k ∈ [lk], δt(Y, Y

′) = 1}

77

4. Program Loading and Data Routing

e e e eq q q
e
e

HHH
HHH

@
@
@

���
���

0 2 4 2(k − 1)

1 3 5 2(k − 1) + 1

2k

2k + 1

�
��

�
��

�
�
�

HH
H

HH
H

e e e eq q q

Figure 4.1: Example for the link contention problem

if the task graph is a torus. Then using the embedding function E , each physical node
computes the physical address for the address of each logical neighbor in the list above, and
make each pair “(logical address of a logical neighbor, corresponding physical address)”
an entry in the translation table. Both of the two steps above can be performed by all of
the physical nodes in parallel. The time complexity of Method 1 is proportional to the
product of d and the complexity of the embedding function.

The following Method 2 is used only if the embedding has unit dilation cost.

Method 2: Each physical node in the partition generates a message (Y,X), which is the
pair of the logical and the physical addresses assigned to the node, and sends it to all of
its physical neighbors. Each physical node then makes each of its incoming messages an
entry in its translation table.

The time complexity of Method 2 depends on the communication mode of the links.
By mode 1, only one unit of time is needed for broadcasting the messages. By mode 2,
two units of time are needed for broadcasting the messages. By mode 3, 2c units of time
are needed for broadcasting the messages. All of these will be explained in the following
section when we discuss conflict-free data routing.

4.5 Conflict-free Data Routing

Given an embedding E of a task graph G into a c-dimensional system graph H with
dilation cost ρ, in this section we consider the problem of how to simulate in the system
graph H the parallel neighboring communications in the task graph G and provide the
data routing complexities for these simulations. The main objective here is to avoid link
conflicts to minimize the simulation steps.

In general, because of the link contention problem, a small dilation cost of an embed-
ding does not imply that any set of parallel neighboring communications in the task graph
can be simulated in the system graph with a small data routing complexity. For example,
assume that G is a ring of size 2(k + 1) for some integer k > 1, H is the graph given
in Figure 4.1, and G is embedded into H by the scheme described in the figure. This
embedding has a dilation cost of 3. We consider the following set of parallel neighboring
communications in G: for all i ∈ [k], node 2i sends a message to node 2i + 1. It takes a

78

4.5. Conflict-free Data Routing

minimum of k + 2 parallel data routing steps to simulate in H this set of parallel neigh-
boring communications in G. In this case, the dilation cost is a constant three, whereas
the data routing complexity is an increasing function of the size of the task graph.

In this section, we first propose a simple data routing scheme that can automatically
carry out our data routing strategies to simulate any permutation type or scatter type
set of parallel neighboring communications in the task graph. We then design for each
of our embedding functions a data routing strategy to achieve conflict-free simulation of
parallel neighboring communication in the task graph, and analyze the correponding data
routing complexities. We show that because of the regularity of our embedding schemes,
for the embedding functions defined in Chapter 3, they can support the simulation of
parallel neighboring communications in the task graph with the following data routing
complexities: most with complexities equal to their dilation costs, and the others with
complexities either equal to their dilation costs plus 1 or 2, or equal to twice or four times
their dilation costs.

Given a function E for embedding a d-dimensional graph G of shape L into another
c-dimensional graph H of shape M, for any permutation α on [d]+ and any permutation
β on [c]+, the function β ◦ E ◦ α embeds a graph G′ of shape α−1(L) into another graph
H ′ of shape β(M). Since G and G′ are isomorphic, and H and H ′ are isomorphic, the
function E and the function β◦E ◦α have the same dilation cost and the same data routing
complexities. To simplify our presentation, in the following subsections we consider only
embedding functions without permutations surrounding them.

4.5.1 Shortest-path Data Routing Scheme

We assume that the communication requirements of parallel programs are always in the
form of permutation type or scatter type sets of parallel neighboring communications in
the task graph. Given a permutation type or scatter type set of parallel neighboring com-
munications in the task graph, a macro data routing cycle is the time that the system
takes to finish the simulation of all of the parallel neighboring communications in the
set. The length of a macro data routing cycle depends on the nature of the embedding
function as well as the set. A macro data routing cycle consists of one or more parallel
data movement steps. Within each data movement step, a message moves from one pro-
cessor to a neighboring processor through a physical link. We use the term data routing
complexity to mean the number of parallel data movement steps that is sufficient to simu-
late in the system graph any permutation type or scatter type set of parallel neighboring
communications in the task graph.

Our objective in this section is to achieve efficient data routing to support the parallel
inter-process communication in parallel programs. Given a set of parallel neighboring
communications in the task graph, we not only need a good data routing strategy to
minimize the communication delay, but also need a good data routing mechanism so that
the system can automatically carry out the routing strategies at execution time with
minimum control overhead.

Because of the regularity of our embedding functions, we can use a very simple data
routing scheme to automatically carry out each of the data routing strategies for our
embedding functions (to be constructed in the following subsections). The general scheme
is described as follows:

79

4. Program Loading and Data Routing

1. For each embedding function, we first design a routing vector (i1, i2, . . . , id), where
d is the dimension of the task graph and ik is a positive integer for all k ∈ [d]+.
The routing vector stores all of the information about our routing strategy for the
embedding function.

2. Given a set S of parallel neighboring communications in the task graph, we partition
S into as many subsets as the number of distinct integers in the routing vector: each
subset consists of all of the messages in S with source and destination addresses
differing in one of the dimensions in which the routing vector has the same integer.

3. Communications within any single subset of S described above are simulated at the
same time. Communications belonging to different subsets of S described above are
simulated at different time.

4. Let the current node of a message be the physical node in the system graph where the
message currently stays. When the communications in a subset are simulated, each
message involved repeats the following steps until it reaches its physical destination:

(a) randomly choose a dimension of the system graph among those where the physi-
cal address of the current node and the physical address of the destination node
of the message differ;

(b) move along the chosen dimension to approach its physical destination until it
reaches a physical node whose address has the same value in the chosen dimen-
sion as the address of the physical destination of the message;

(c) wait in the current node until all of the messages in the subset finish step (b).

For example, suppose that the routing vector for an embedding function is (1, 1, 2, 2),
and

S = {[(1, 1, 1, 1), (1, 2, 1, 1)], [(1, 2, 2, 2), (0, 2, 2, 2)],

[(2, 2, 0, 3), (2, 2, 1, 3)], [(2, 2, 3, 2), (2, 3, 3, 2)],

[(3, 2, 2, 1), (3, 2, 2, 0)], [(2, 2, 3, 2), (3, 2, 3, 2)],

[(3, 3, 2, 2), (3, 3, 1, 2)], [(1, 2, 1, 2), (1, 2, 1, 3)]}

is a set of parallel neighboring communications in a task graph, where [X,Y] means that
logical node X needs to send a message to logical node Y . S will first be decomposed into
sets

S1 = {[(1, 2, 2, 2), (0, 2, 2, 2)], [(2, 2, 3, 2), (3, 2, 3, 2)],

[(1, 1, 1, 1), (1, 2, 1, 1)], [(2, 2, 3, 2), (2, 3, 3, 2)]}

and

S2 = {[(2, 2, 0, 3), (2, 2, 1, 3)], [(3, 3, 2, 2), (3, 3, 1, 2)],

[(3, 2, 2, 1), (3, 2, 2, 0)], [(1, 2, 1, 2), (1, 2, 1, 3)]}.

All of the communications in S1 will be simulated at the same time. All of the communi-
cations in S2 will be simulated at the same time, either before or after the simulation of
S1.

80

4.5. Conflict-free Data Routing

As will be shown later, the regularity of our embedding functions guarantees that link
conflicts can be avoided in the data routing scheme above. Since all of the messages will
move to their destinations along the shortest paths without worrying about the contention
of links with other messages, we call this data routing scheme the shortest-path data routing
scheme.

In the following subsections, we design a routing vector for each of our embedding
functions, show that there are no link conflicts in the routing process, and provide the
data routing complexities for simulating in the system graph the parallel neighboring
communications in the task graph. We use the coordinated parallel data movements to
describe our routing strategies. When we perform a coordinated parallel data movement
along a dimension for k steps, we imply that all messages will go along that dimension in
their corresponding shortest paths for at most k steps. As will be proved in the following
subsections, for all of our embedding functions, the addresses of the images of any pair of
neighboring nodes in the task graph differ in exactly either one or two positions. Therefore,
for any pair of neighboring nodes in the task graph, there is at least one shortest path
corresponding to their images in the system graph that follows only one or two dimensions
of the system graph, and we need only to perform one or two coordinated parallel data
movements to send all of the messages to their destinations.

In the following discussion, we assume that all of the links work in communication mode
1 unless stated otherwise. The data routing complexities can be easily generalized to those
for communication modes 2 or 3 by stepwise simulation. Let us assume that for a particular
embedding scheme, the data routing complexity under communication mode 1 is ρ, and the
system graph is a c-dimensional graph. Since each bidirectional coordinated parallel data
movement can be simulated by two unidirectional coordinated parallel data movements,
the data routing complexity for this embedding scheme under communication mode 2
will be bounded from above by 2ρ. Since each unidirectional coordinated parallel data
movement along all of the dimensions can be simulated by c unidirectional coordinated
parallel data movements, one for each dimension, the data routing complexity for this
embedding scheme under communication mode 3 will be bounded from above by 2cρ.

4.5.2 Data Routing for Single-step Embeddings

We first consider the case in which the task graph is embedded into the system graph using
one of our single-step embedding functions. We further divide the embedding functions
in this category into three classes: those with unit dilation cost, those with dilation costs
of 2, and those with dilation costs greater than 2.

Theorem 4.5.1 Assume that a d-dimensional task graph G is embedded into a c-
dimensional system graph H using some embedding function with unit dilation cost. Then
any scatter type set of parallel neighboring communications in G can be simulated in H
by one parallel data movement step. The routing vector for such an embedding function
is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

Proof. Given any scatter type set of parallel neighboring communications in G, the system
can perform a bidirectional coordinated parallel data movement along each dimension for
one step at the same time. For every message involved in the communications, since its
source and destination are at distance 1, and since the embedding is a one-to-one mapping,

81

4. Program Loading and Data Routing

there must be a unique link on which this message can travel (one bidirectional link is
considered to be two unidirectional links). Since different messages use different links, all
of the messages can reach their destinations in this process without link conflicts. 2

Since the embedding functions fL, hL, FV , and HV all have unit dilation cost with
respect to their appropriate domains and ranges as stated in Theorems 3.3.1, 3.3.3, and
3.4.1, we have the following corollary.

Corollary 4.5.1 Assume that a d-dimensional task graph G is embedded into a c-
dimensional system graph H using the function fL, hL, FV , or HV with unit dilation
cost. Then any set of scatter type parallel neighboring communications in G can be sim-
ulated in H by one parallel data movement step. The routing vector for these embedding
functions is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

Corollary 4.5.2 Let G be a d-dimensional square torus or a d-dimensional square mesh
with each dimension being of length `, and let H be a c-dimensional square torus or a
c-dimensional square mesh of the same size, where d < c, and c is divisible by d. We define
the following three cases:

(1) G is a mesh and H is a torus or a mesh.

(2) G and H are both toruses.

(3) G is a torus, H is a mesh, and ` is even.

Assume that G is embedded into H using one of the procedures described in the proof
of Theorem 3.5.4 with unit dilation cost. Then in each of the three cases above, any
scatter type set of parallel neighboring communications in G can be simulated in H by
one parallel data movement step. The routing vector for these embedding procedures is
(i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

Theorem 4.5.2 Assume that a d-dimensional task graph G is embedded into a c-
dimensional system graph H using an embedding function with a dilation cost of 2. Then
any permutation type set of parallel neighboring communications in G can be simulated
in H by two parallel data movement steps. The routing vector for such an embedding
function is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

Proof. The system can first perform a bidirectional coordinated parallel data movement
along each dimension for one step at the same time, and then perform another bidirectional
coordinated parallel data movement along each dimension for one step at the same time.
Since for every message involved in the communications, its source and destination satisfy
the condition in Lemma 4.2.2 with ρ = 1, all of the messages can reach their destinations
in the two coordinated parallel data movements. 2

Since the embedding functions gL and GV have dilation costs of 2 with respect to
their appropriate domains and ranges as stated in Theorems 3.3.2 and 3.4.1, we have the
following corollary.

Corollary 4.5.3 Assume that a d-dimensional task graph G is embedded into a c-
dimensional system graph H using the embedding function gL or GV with a dilation cost

82

4.5. Conflict-free Data Routing

of 2. Then any permutation type set of parallel neighboring communications in G can be
simulated in H by two parallel data movement steps. The routing vector for these two
embedding functions is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

Corollary 4.5.4 Let G be a d-dimensional square torus with each dimension being of
odd length `, and let H be a c-dimensional square mesh of the same size, where d < c, and
c is divisible by d. Assume that G is embedded into H using the procedure described in
the proof of Theorem 3.5.4 with a dilation cost of 2. Then any scatter type set of parallel
neighboring communications in G can be simulated in H by two parallel data movement
steps. The routing vector for this embedding procedure is (i1, i2, . . . , id), where ik = 1 for
all k ∈ [d]+. 2

Theorem 4.5.3 Let d and c be positive integers such that c < d ≤ 2c. Let L =
(l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be radix-bases. Assume that M is a general
reduction of L with a reduction factor S = (S1,S2, . . . ,Sd−c), multiplicant sublist L′, and
multiplier sublist L′′. Let α : [d]+ → [d]+ be a permutation such that α(L) = L′ �L′′. Let
S̃ = (s1, s2, . . . , sb) = S1 � S2 � · · · � Sd−c, and let I = (1, 1, . . . , 1︸ ︷︷ ︸

c−b

). Assume that a task

graph G of shape L′ �L′′ is embedded into a system graph H of shape [S̃ � I] × L′ using
an embedding function as specified in the following cases:

(1) F ′S , if G is a mesh;

(2) H′S , if G and H are both toruses, and for all i ∈ [d − c]+, Si consists of at least two
components such that the first component is an even number;

(3) G′S , if G and H are both toruses, and the condition on the lists in S stated in (2) is
not satisfied;

(4) H′′S , if G is a torus, H is a mesh, and for all i ∈ [d − c]+, Si consists of at least two
components such that the first component is an even number;

(5) G′′S , if G is a torus, H is a mesh, and the condition on the lists in S stated in (4) is
not satisfied.

Then any permutation type set of parallel neighboring communications in the last d − c
dimensions of G can be simulated in H by two parallel data movement steps in cases
(3) and (5), and by one parallel data movement step in all of the other cases. Any
permutation type set of parallel neighboring communications in the first c dimensions of
G can be simulated in H by 2 max{s1, s2, . . . , sc} parallel data movement steps in cases
(4) and (5), and by max{s1, s2, . . . , sc} parallel data movement steps in all of the other
cases. Any permutation type set of parallel neighboring communications in which at least
one occurs in the first c dimensions of G and one occurs in the last d − c dimensions
of G can be simulated in H by 1 + max{s1, s2, . . . , sc} parallel data movement steps
in cases (1) and (2), by 2 + max{s1, s2, . . . , sc} parallel data movement steps in case
(3), by 1 + 2 max{s1, s2, . . . , sc} parallel data movement steps in case (4), and by 2(1 +
max{s1, s2, . . . , sc}) parallel data movement steps in case (5). The routing vector for
these embedding functions is (i1, i2, . . . , id), where ik = 1 for all k ∈ [c]+ and ik = 2 for
all k ∈ {c+ 1, c+ 2, . . . , d}. 2

83

4. Program Loading and Data Routing

Proof. We consider only case (1). The proofs for the other cases are similar. By the
definition of the function F ′S , we know that for all i ∈ [c]+, any pair of neighboring logical
nodes along the i-th dimension of G is at exactly si links apart along the i-th dimension
of H after the embedding; for all i ∈ {c+ 1, c+ 2, . . . , d}, any pair of neighboring logical
nodes along the i-th dimension of G is still neighbors along one of the first c dimensions
of H after the embedding.

Hence, by Lemma 4.2.1, any permutation type set of parallel neighboring communi-
cations in the last d − c dimensions of G can be simulated by performing a bidirectional
coordinated parallel data movement for one step in all of the dimensions of H, and any
permutation type set of parallel neighboring communications in the first c dimensions of
G can be simulated by performing a bidirectional coordinated parallel data movement for
max{s1, s2, . . . , sc} steps in all of the dimensions of H.

For any permutation type set of parallel neighboring communications in which at least
one occurs in the first c dimensions of G and one occurs in the last d−c dimensions of G, we
first split the set into two subsets such that all of the neighboring communications in the
first subset occur in the first c dimensions of G, and all of the neighboring communications
in the second subset occur in the last d−c dimensions of G. Then we simulate the parallel
neighboring communications in the two subsets with the two procedures described above
sequentially. 2

We note that if the data routing in the last theorem is performed under communication
mode 3, then in casees (1), (2), and (3), any permutation type set of parallel neighboring
communications in the first c dimensions of G can be simulated in H by 2

∑c
k=1 sk parallel

data movement steps, and in cases (4) and (5), any permutation type set of parallel neigh-
boring communications in the first c dimensions of G can be simulated in H by 4

∑c
k=1 sk

parallel data movement steps. The data routing complexities here under communication
mode 3 are lower than 2c times the corresponding complexities under communication
mode 1.

Theorem 4.5.4 Let L = (l1, l2, . . . , ld) and M = (m1,m2, . . . ,mc) be radix-bases such
that M is a simple reduction of L. Let V = (V1,V2, . . . ,Vc) be a reduction factor of L
into M such that for all i ∈ [c]+, the elements in the list Vi are in non-increasing order;
let Ṽ = V1 � V2 · · · � Vc; let vi denote the index in [d]+ such that lvi is the first element
in Vi. Let π : [d]+ → [d]+ be a permutation such that π(L) = Ṽ. Assume that a torus
or a mesh of shape Ṽ is embedded into a torus or a mesh of shape M using the function
UV . Then any permutation type set of parallel neighboring communications in G can be
simulated in H by 2 max1≤i≤c{mi/lvi} parallel data movement steps if G is a torus and H
is a mesh, or by max1≤i≤c{mi/lvi} parallel data movement steps otherwise. The routing
vector for the embedding function UV is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

Proof. By the definition of UV , every pair of neighboring nodes in G has images in H along
a single dimension and within a distance of 2max1≤i≤c{mi/lvi} if G is a torus and H is a
mesh, or along a single dimension and within a distance of max1≤i≤c{mi/lvi} otherwise.
The theorem follows from Lemma 4.2.1. 2

We note that if the data routing in the last theorem is performed under communication
mode 3, then any permutation type set of parallel neighboring communications in G can
be simulated in H by 2

∑c
i=1{mi/lvi} parallel data movement steps if G is a torus and H

is a mesh, or by
∑c
i=1{mi/lvi} parallel data movement steps otherwise.

84

4.5. Conflict-free Data Routing

Corollary 4.5.5 Assume that a d-dimensional hypercube G is embedded into a c-
dimensional torus or a c-dimensional mesh H of shape (m1,m2, . . . ,mc) and of the same
size using the function UV . Then any permutation type set of parallel neighboring commu-
nications in G can be simulated in H by max{m1,m2, . . . ,mc}/2 parallel data movement
steps. The routing vector for this embedding is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+.
2

We note that if the data routing in the last corollary is performed under communication
mode 3, then any permutation type set of parallel neighboring communications in G can
be simulated in H by

∑c
i=1mi parallel data movement steps.

4.5.3 Data Routing for Multi-step Embeddings

We first define an embedding pattern, which is a generalization of our scheme to embed
square meshes into either square toruses or square meshes.

Embedding a mesh into a torus or a mesh through sequential elimination

Let d and c be positive integers such that d > c, and let L = (l1, l2, . . . , ld) be a radix-
base. We assume that there are two sets of radix-bases {L′i | i ∈ [k + 1], |L′i| = c} and
{L′′i | i ∈ [k]} such that

(a) L = L′0 �L′′k−1 �L′′k−2 � · · · � L′′0, and

(b) for all i ∈ [k]+, L′i is a general reduction of L′i−1 �L′′i−1 with a reduction factor Si =

(S1
i , S

2
i , . . . , S

|L′′i−1|
i), multiplicant sublist L′i−1, and multiplier sublist L′′i−1.

Given a mesh G of shape L and a torus or a mesh H of shape M = L′k, we can
sequentially embed G into H in k steps. Let {Ii | i ∈ [k + 1]} be a set of intermediate
meshes such that for all i ∈ [k + 1], Ii is of shape

L′i �L′′k−1 �L′′k−2 � · · · � L′′i .

We have I0 = G, Ik = H, and for all i ∈ [k]+,

L′i �L′′k−1 �L′′k−2 � · · · � L′′i

is a general reduction of
L′i−1 �L′′k−1 �L′′k−2 � · · · � L′′i−1

with a reduction factor Si, a multiplicant sublist L′i−1 �L′′k−1 �L′′k−2 � · · · � L′′i , and a mul-
tiplier sublist L′′i−1. Hence, Ii−1 can be embedded into Ii using the embedding func-
tion F ′Si . Thus, G can be sequentially embedded into H through k intermediate steps:
G = I0 → I1 → I2 → · · · → Ik = H.

If a graph G is embedded into another graph H using this embedding procedure, we
say that G is embedded into H through k steps of sequential elimination. The global
objective of this embedding procedure is to eliminate the last d− c dimensions of G. We
achieve this goal in k intermediate steps. In the i-th step, for all i ∈ [k]+, Ii−1 is embedded
into Ii by eliminating the last |L′′i−1| dimensions in Ii−1 simultaneously and distributing

85

4. Program Loading and Data Routing

these dimensions over the first c dimensions of Ii. In the next two lemmas, we study the
relative positions in H of the images of any pair of neighboring nodes in G after G is
embedded into H through k steps of sequential elimination. All of the symbols defined for
the procedure above will have the same meaning throughout the remainder of this chapter
unless stated otherwise.

Lemma 4.5.1 If a mesh G is embedded into another mesh H through k steps of sequential
elimination, then for all i ∈ [k]+, the mesh Ii−1 with shape

L′i−1 �L′′k−1 � · · · � L′′i−1

is embedded into the mesh Ii with shape

L′i �L′′k−1 � · · · � L′′i

with the following properties:

1. For every two nodes in Ii−1 differing in only one of the first c positions, their images
in Ii still differ in only the same position.

2. For every two nodes in Ii−1 differing in only one of the last |L′′i−1| positions and
differing by 1 in that position, their images in Ii differ in only one of the first c
positions and differ by 1 in that position.

3. For every two nodes in Ii−1 differing in only one of the remaining positions, their
images in Ii still differ in only the same position by the same amount.

2

Proof. By the definition on page 85, for all i ∈ [k]+, the reduction factor Si =

(S1
i , S

2
i , . . . , S

|L′′i−1|
i). Let p = c +

∑k−1
j=i−1 |L′′j | be the length of the shape of Ii−1, and

q = p − |L′′i−1| be the length of the shape of Ii. Let the list S̃i = (s1, s2, . . . , sb) =

S1
i �S2

i � · · · �S
|L′′i−1|
i , for some positive integer b ≤ c. By the definition of function F ′Si ,

for every node X = (x1, x2, . . . , xb, xb+1, . . . , xp) in Ii−1, we have

F ′Si(X) = (s1x1 + e1, s2x2 + e2, . . . , sbxb + eb, xb+1, . . . , xq),

where (e1, e2, . . . , eb) = FSi(xq+1, xq+2, . . . , xp). We can rewrite the image of X as

F ′Si(X) = (s1x1 + e1, s2x2 + e2, . . . , sbxb + eb, xb+1, . . . , xq).

Suppose that two nodes in Ii−1 differ only in the j-th position and differ by ρ in that
position, where j ∈ [c]+. If j ∈ [b]+, then by the definition of F ′Si , the images are of
the forms (y1, y2, . . . , yj−1, yj , yj+1, . . . , yq) and (y1, y2, . . . , yj−1, yj ± ρsj , yj+1, . . . , yq). If
j ∈ {b+ 1, b+ 2, . . . , c}, then the images are of the forms (y1, y2, . . . , yj−1, yj , yj+1, . . . , yq)
and (y1, y2, . . . , yj−1, yj ± ρ, yj+1, . . . , yq). Thus, the lemma is true.

Suppose that two nodes in Ii−1 differ only in one of the last |L′′i−1| positions and differ
by 1 in that position. Then by the definition of F ′Si and the fact that FSi has unit dilation

86

4.5. Conflict-free Data Routing

cost because Ii−1 is a mesh, the images of the two nodes must differ in only one of the
first b positions and differ by 1 in that position. Since b ≤ c, the lemma is true.

Suppose that two nodes in Ii−1 differ only in the j-th position and differ by ρ in that
position, and that position is any of the remaining positions. Then by the definition of
F ′Si , the images of the two nodes will be of the forms (y1, y2, . . . , yj−1, yj , yj+1, . . . , yq) and
(y1, y2, . . . , yj−1, yj ± ρ, yj+1, . . . , yq) and thus the lemma is again true. 2

Lemma 4.5.2 Assume that a mesh G is embedded into another mesh H through k steps
of sequential elimination. Then the images of any two adjacent nodes in G differ in exactly
one position. 2

Proof. If k = 1, the lemma follows directly from Lemma 4.5.1. Assume that k > 1. Let
u and v be an arbitrary pair of adjacent nodes in G. We use induction on the embedding
step i to prove the following stronger assertion: for all i ∈ [k]+, after the i-th embedding
step,

(a) if u and v are neighbors along one of the first c dimensions of G or along one of the
last |L′′i−1 �L′′i−2 � · · · � L′′0| dimensions of G, then their images in Ii differ in only
one of the first c dimensions of Ii, and

(b) if u and v are neighbors along one of the remaining dimensions of G, then their images
in Ii remain neighbors along the same dimension of Ii.

Induction basis: For i = 1, by Lemma 4.5.1, the assertion is true.
Induction hypothesis: Assume that for any 1 ≤ i ≤ p < k, the assertion is true.
Induction step: Now we consider the case after the (p + 1)-th embedding step. Let u
and v be two arbitrary neighbors in G, and let u′ and v′ be their respective images in Ip.
There are three cases.

Case 1. u and v are neighbors along either one of the first c dimensions of G or along one
of the last |L′′p−1 �L′′p−2 � · · · � L′′0| dimensions of G. By our induction hypothesis, u′

and v′ differ in only one of the first c dimensions of Ip. By Lemma 4.5.1, the images
of u′ and v′ in Ip+1 differ in only one of the first c dimensions of Ip+1.

Case 2. u and v are neighbors along one of the dimensions of G that has index in {t +
1, t+2, . . . , t+ |L′′p|}, where t = c+

∑k−1
j=p+1 |L′′j |. By our induction hypothesis, u′ and

v′ remain neighbors along the same dimension of Ip. By Lemma 4.5.1, the images
of u′ and v′ in Ip+1 differ in only one of the first c dimensions of Ip+1.

Case 3. u and v are neighbors along one of the remaining dimensions of G. By our
induction hypothesis, u′ and v′ remain neighbors along the same dimension of Ip.
Again by Lemma 4.5.1, the images of u′ and v′ in Ip+1 remain neighbors along the
same dimension of Ip+1.

This completes the proof of the lemma. 2

Theorem 4.5.5 Assume that a d-dimensional mesh G is embedded into a c-dimensional
torus or a c-dimensional mesh H through sequential elimination with dilation cost ρ. Then
any permutation type set of parallel neighboring communications in G can be simulated
in H by ρ parallel data movement steps. The routing vector for this embedding procedure
is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

87

4. Program Loading and Data Routing

Proof. By Lemma 4.5.2, the images of any pair of neighboring nodes in G will lie along
a single dimension in H. By the definition of dilation cost, we know that the two images
must be within ρ steps along this dimension. By Lemma 4.2.1, we can simultaneously
perform along each dimension of H a bidirectional coordinated parallel data movement
for ρ steps to send all of the messages to their destinations without link conflicts. 2

Corollary 4.5.6 Let G be a d-dimensional square mesh for which each dimension has
length `, and let H be a c-dimensional square torus or a c-dimensional square mesh of the
same size, where d > c. If G is embedded into H with the procedure described in the proof
of Theorem 3.5.3, then any permutation type set of parallel neighboring communications
in G can be simulated in H by `(d−c)/c parallel data movement steps. The routing vector
for this embedding procedure is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

Proof. The corollary follows from Theorem 4.5.5 by showing that the procedure we use
to embed G into H is a special case of the sequential elimination for embedding a mesh
into a torus or a mesh and has dilation cost `(d−c)/c. 2

Corollary 4.5.7 Let G be a d-dimensional square torus for which each dimension has
even length `, and let H be another c-dimensional square torus of the same size, where
d > c. Assume that G is embedded into H with the procedure described in the proof of
Theorem 3.5.3. Then any permutation type set of parallel neighboring communications
in G can be simulated in H by `(d−c)/c parallel data movement steps. The routing vector
for this embedding procedure is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

Proof. The only difference between this embedding process and the embedding of a mesh
into a torus or a mesh through sequential elimination is that in each step, the former uses
the function H′Si whereas the latter uses the function F ′Si . All of the properties we proved
for the embedding of a mesh into a torus or a mesh through sequential elimination hold,
as long as we use a function with unit dilation cost in each embedding step. We also know
that this embedding procedure has dilation cost `(d−c)/c. 2

Corollary 4.5.8 Let G be a d-dimensional square torus for which each dimension has
even length `, and let H be a c-dimensional square mesh of the same size, where d >
c. Assume that G is embedded into H with the procedure described in the proof of
Theorem 3.5.3. Then any permutation type set of parallel neighboring communications in
G can be simulated in H by 2`(d−c)/c parallel data movement steps. The routing vector
for this embedding procedure is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

Proof. By the procedure described in the proof of Theorem 3.5.3, the torus G is first
embedded into the torus Iu−v through u − v steps of sequential elimination, where Iu−v
has the same shape as H, say M, and then the torus Iu−v is embedded into the mesh
H by TM. By Corollary 4.5.7, any message involved in the communications has source
and destination in Iu−v along a single dimension and at a distance less than or equal to
`(d−c)/c. Since for all i ∈ [c]+, TM maps every pair of neighboring nodes in Iu−v along the
i-th dimension to nodes in H along the same dimension and at a distance less than or equal
to 2, any message involved in the communications has source and destination in H along
a single dimension and at a distance less than or equal to 2`(d−c)/c. By Lemma 4.2.1, we

88

4.5. Conflict-free Data Routing

can simultaneously perform along each dimension of H a bidirectional coordinated parallel
data movement for 2`(d−c)/c steps to send all the messages to their destinations without
link conflicts. 2

Corollary 4.5.9 Let G be either a d-dimensional square mesh for which each dimension
has length `, or a d-dimensional square torus for which each dimension has even length
`, and let H be a c-dimensional square torus or a c-dimensional square mesh of the same
size, where d < c, c is not divisible by d, and a is the greatest common divisor of c
and d. Assume that G is embedded into H with the procedure described in the proof of
Theorem 3.5.5. Then any permutation type set of parallel neighboring communications
in G can be simulated in H by `(d−a)/c parallel data movement steps. The routing vector
for this embedding procedure is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

Proof. The embedding is achieved through two steps. In the first step, G is embedded
into a square mesh G′ of higher dimension with unit dilation cost. In the second step,
G′ is embedded into H through sequential elimination. Since the neighborship in G is
maintained in G′, any permutation type set of parallel neighboring communications in G
corresponds to a permutation type set of parallel neighboring communications in G′. The
corollary now follows from Corollary 4.5.6. 2

Theorem 4.5.6 Let G be a d-dimensional square torus for which each dimension has
odd length `, and let H be a c-dimensional square torus or a c-dimensional square mesh
of the same size, where d > c. Let a be the greatest common denominator of d and c.
If G is embedded into H with the procedure described in the proof of Theorem 3.5.3 for
the case in which H is a mesh, then any permutation type set of parallel neighboring
communications in G can be simulated in H by 4`(d−c)/c parallel data movement steps.
The routing vector for this embedding procedure is (i1, i2, . . . , id), where ik = 1 for all
k ∈ [c]+, and ik = d(k − c)/ae+ 1 for all c < k ≤ d. 2

Proof. Let u = d/a, and v = c/a. By the procedure described in the proof of Theo-
rem 3.5.3, the torus G, which has shape L = (`, `, . . . , `), is first embedded into the mesh
I0 of the same shape using the embedding function TL with a dilation cost of 2. I0 is then
embedded into H through u− v steps of sequential elimination. For each i ∈ [u− v]+, the
i-th step of this elimination procedure uses the embedding function FSi to embed the last
a dimensions of Ii−1 into the first c dimensions of Ii.

For all i ∈ [d]+, every two neighboring nodes in G along the i-th dimension are mapped
by TL to two nodes in G′ along the same dimension and at a distance less than or equal
to 2. Furthermore, every two neighboring nodes in G′ along any of the first c dimensions
are mapped by the sequential elimination to nodes in H along a single dimension and at
a distance of `(u−v)/v. Hence, every two neighboring nodes in G along any of the first c
dimensions are mapped by the procedure described in the proof of Theorem 3.5.3 to nodes
in H that satisfy the conditions in Lemma 4.2.1 if we interpret them as the source and
destination of a message, with ρ = 2`(u−v)/v. Therefore, by Lemma 4.2.1, we conclude
that any permutation type set of parallel neighboring communications in G along the first
c dimensions can be simulated in H by simultaneously performing along each dimension
of H a bidirectional coordinated parallel data movement for 2`(u−v)/v steps.

89

4. Program Loading and Data Routing

For all i ∈ [d]+, every two neighboring nodes in G along the i-th dimension are mapped
by TL to nodes in G′ along the same dimension and at a distance less than or equal to
2. Furthermore, for all i ∈ [u − v]+, every two neighboring nodes in G′ along the k-th
dimension, for k ∈ {d − ia + 1, d − ia + 2, . . . , d − (i − 1)a}, are mapped by the sequen-
tial elimination to nodes in H along a single dimension and at a distance of `(u−v−i)/v.
Therefore, every two neighboring nodes in G along the k-th dimension are mapped by the
procedure described in the proof of Theorem 3.5.3 to nodes in H that satisfy the con-
ditions in Lemma 4.2.2 if we interpret them as the source and destination of a message,
with ρ = `(u−v−i)/v. Hence, by Lemma 4.2.2, we conclude that for all i ∈ [u − v]+, any
permutation type set of parallel neighboring communications in G along the k-th dimen-
sion, for k ∈ {d − ia + 1, d − ia + 2, . . . , d − (i − 1)a}, can be simulated in H by first
simultaneously performing along each dimension of H a bidirectional coordinated paral-
lel data movement for `(u−v−i)/v steps, and then simultaneously performing along each
dimension of H a bidirectional coordinated parallel data movement for `(u−v−i)/v steps.
Similarly, any permutation type set of parallel neighboring communications in the first
c dimensions of G can be simulated in H by first simultaneously performing along each
dimension of H a bidirectional coordinated parallel data movement for `(u−v)/v steps, and
then simultaneously performing along each dimension of H a bidirectional coordinated
parallel data movement for `(u−v)/v steps.

Given any permutation type set of parallel neighboring communications in G, we can
partition it into u − v + 1 subsets each of which contains neighboring communications
either along only the first c dimensions of G, or along only those dimensions of G that
have indices in {d − ia + 1, d − ia + 2, . . . , d − (i − 1)a} for every fixed i ∈ [u − v]+.
Then we sequentially simulate each of these u − v + 1 subsets of parallel neighboring
communications. The global data routing complexity is thus

2
u−v∑
i=0

`(u−v−i)/v = 2`(d−c)/c
u−v∑
i=0

`−i/v.

Since ` > 2 and v ≥ 1, we have `−1/v < 1/2, and

u−v∑
i=0

`−i/v <
∞∑
i=0

(`−1/v)i

=
1

1− `−1/v

<
1

1− 1/2

= 2.

Therefore, we conclude that 2`(d−c)/c
∑u−v
i=0 `

−i/v < 4`(d−c)/c. 2

For each of the embedding functions or procedures discussed in this section up to now,
we provided a data routing vector for the task graph G. The following is the only exception
in this thesis. In this case we find it most natural to define the data routing vector for
an intermediate graph G′. To carry out this data routing strategy, each processor has to
translate communications in the task graph G into communications in G′ before invoking
the general shortest-path data routing scheme. In this special case, the translation is
achieved by a simple function s(x).

90

4.6. Data Routing Complexity versus Dilation Cost

Theorem 4.5.7 Let G be a d-dimensional square torus for which each dimension has odd
length `, and let H be a c-dimensional square torus or a c-dimensional square mesh of the
same size, where d < c, c is not divisible by d, and a is the greatest common divisor of
c and d. Assume that G is embedded into H with the procedure described in the proof
of Theorem 3.5.5 for the case in which H is a mesh. Then any permutation type set
of parallel neighboring communications in G can be simulated in H by 4`(d−a)/c parallel
data movement steps. The routing vector for this embedding procedure is (i1, i2, . . . , idv),
where ik = 1 for all k ∈ [c]+, and ik = d(k − c)/ae+ 1 for all c < k ≤ dv. 2

Proof. Let u = d/a, and v = c/a. The d-dimensional square torus G is first embed-
ded into another vd-dimensional torus G′ of shape (`1/v, `1/v, . . . , `1/v) by the embedding
function HV with unit dilation cost, where V = (V1,V2, . . . ,Vd) and for all i ∈ [d]+,
Vi = (`1/v, `1/v, . . . , `1/v) and |Vi| = v. The square torus G′ is then embedded into the
square torus or the square mesh H of the same size and lower dimension using the proce-
dure described in the proof of Theorem 3.5.3. By Theorem 4.5.6, we know that our routing
vector can be used to simulate in H any permutation type set of parallel neighboring com-
munications in G′ with a data routing complexity 2`(d−a)/c∑u−1

i=0 `
−i/v < 4`(d−a)/c.

Since the routing vector in this theorem works only for graph G′, we need an algorithm
to decide for each neighboring communication in G along which dimension in G′ the
communication will be after the first embedding step.

Let L = (`1/v, `1/v, . . . , `1/v) and |L| = v. We define the function s : [`− 1] → [v]+ as
follows:

s(x) = k where hL(x) and hL(x+ 1) differ in the k-th position,

for all x ∈ [`− 1].

If a neighboring communication in G occurs between nodes with addresses
(x1, x2, . . . , xj−1, xj , xj+1, . . . , xd) and (x1, x2, . . . , xj−1, xj + 1, xj+1, . . . , xd), then we can
conclude that this communication will occur in the p-th dimension of G′ after the first
embedding step, where

p = (j − 1)v + s(xj).

2

4.6 Data Routing Complexity versus Dilation Cost

This section summarizes our data routing complexities for simulating in a system graph H
the parallel neighboring communications in a task graph G after G is embedded into H by
one of the embedding functions or procedures defined in Chapter 3. The complexity results
fall into five categories: basic embeddings, embeddings for increasing dimension, embed-
dings for lowering dimension, embeddings among square graphs for lowering dimension,
and embeddings among square graphs for increasing dimension. Within each category, we
classify the complexity results according to the domains and ranges of the embeddings.
In each case, we list the graph type of G, the graph type of H, the embedding function
we use, the type of neighboring communications in G, and the corresponding data routing
complexity. In each case, we assume that the domain and the range satisfy the conditions
specified in Chapter 3 when the embedding function was defined, and that ρ is the di-
lation cost we derived in Chapter 3 for the embedding function under the corresponding

91

4. Program Loading and Data Routing

domain and range assumptions. We express the corresponding data routing complexity
as a function of ρ.

Basic embeddings.

1. If G is a line, H is a torus or a mesh, and we use the function fL, then any scatter
type set of parallel neighboring communications in G can be simulated in H with
data routing complexity ρ.

2. If G is a ring of odd size, H is a mesh, and we use the function gL, then any
permutation type set of parallel neighboring communications in G can be simulated
in H with data routing complexity ρ.

3. If G is a ring of even size, H is a mesh, and we use the function hL, then any scatter
type set of parallel neighboring communications in G can be simulated in H with
data routing complexity ρ.

4. If G is a ring, H is a torus, and we use the function hL, then any scatter type set of
parallel neighboring communications in G can be simulated in H with data routing
complexity ρ.

Embeddings for increasing dimension

1. If G is a mesh, H is a torus or a mesh, and we use the function FV , then any scatter
type set of parallel neighboring communications in G can be simulated in H with
data routing complexity ρ.

2. If G is a torus, H is a torus, and we use the function HV , then any scatter type
set of parallel neighboring communications in G can be simulated in H with data
routing complexity ρ.

3. If G is a torus, H is a mesh, and we use the function HV , where each list in V consists
of at least two components such that the first component is an even number, then
any scatter type set of parallel neighboring communications in G can be simulated
in H with data routing complexity ρ.

4. If G is a torus, H is a mesh, and we use the function GV , then any permutation type
set of parallel neighboring communications in G can be simulated in H with data
routing complexity ρ.

Embeddings for lowering dimension

1. If G is a torus or a mesh, H is a torus or a mesh, and we use the function UV ,
then any permutation type set of parallel neighboring communications in G can be
simulated in H with data routing complexity ρ.

2. If G is a hypercube, H is a torus or a mesh, and we use the function UV , then any
permutation type set of parallel neighboring communications in G can be simulated
in H with data routing complexity ρ.

92

4.6. Data Routing Complexity versus Dilation Cost

3. If G is a mesh, H is a torus or a mesh, and we use the function F ′S , then any
permutation type set of parallel neighboring communications in G can be simulated
in H with data routing complexity ρ+ 1.

4. If G is a torus, H is a torus, and we use the function H′S , where each list in S consists
of at least two components such that the first component is an even number, then any
permutation type set of parallel neighboring communications in G can be simulated
in H with data routing complexity ρ+ 1.

5. If G is a torus, H is a torus, and we use the function G′S , then any permutation type
set of parallel neighboring communications in G can be simulated in H with data
routing complexity ρ+ 2.

6. If G is a torus, H is a mesh, and we use the function H′′S , where each list in S consists
of at least two components such that the first component is an even number, then any
permutation type set of parallel neighboring communications in G can be simulated
in H with data routing complexity ρ+ 1.

7. If G is a torus, H is a mesh, and we use the function G′′S , then any permutation type
set of parallel neighboring communications in G can be simulated in H with data
routing complexity ρ+ 2.

Embeddings among square graphs for lowering dimension

1. If G is a mesh, H is a torus or a mesh, and we use the embedding procedure from
the proof of Theorem 3.5.3, then any permutation type set of parallel neighboring
communications in G can be simulated in H with data routing complexity ρ.

2. If G is a torus of even size, H is a torus, and we use the embedding procedure from
the proof of Theorem 3.5.3, then any permutation type set of parallel neighboring
communications in G can be simulated in H with data routing complexity ρ.

3. If G is a torus of even size, H is a mesh, and we use the embedding procedure from
the proof of Theorem 3.5.3, then any permutation type set of parallel neighboring
communications in G can be simulated in H with data routing complexity ρ.

4. If G is a torus of odd size, H is a mesh, and we use the embedding procedure from
the proof of Theorem 3.5.3, then any permutation type set of parallel neighboring
communications in G can be simulated in H with data routing complexity 2ρ.

5. If G is a torus of odd size, H is a torus, and we use the embedding procedure from
the proof of Theorem 3.5.3 for the case in which H is a mesh, then any permutation
type set of parallel neighboring communications in G can be simulated in H with
data routing complexity 4ρ.

Embeddings among square graphs for increasing dimension

93

4. Program Loading and Data Routing

1. If G is a d-dimensional torus or a c-dimensional mesh, H is a c-dimensional torus or
a c-dimensional mesh, where c is divisible by d, and we use the embedding procedure
from the proof of Theorem 3.5.4, then any permutation type set of parallel neigh-
boring communications in G can be simulated in H with data routing complexity
ρ.

2. If G is a d-dimensional mesh, H is a c-dimensional torus or a c-dimensional mesh,
where c is not divisible by d, and we use the embedding procedure from the proof
of Theorem 3.5.5, then any permutation type set of parallel neighboring communi-
cations in G can be simulated in H with data routing complexity ρ.

3. If G is a d-dimensional torus of even size, H is a c-dimensional torus or a c-
dimensional mesh, where c is not divisible by d, and we use the embedding procedure
from the proof of Theorem 3.5.5, then any permutation type set of parallel neigh-
boring communications in G can be simulated in H with data routing complexity
ρ.

4. If G is a d-dimensional torus of odd size, H is a c-dimensional mesh, where c is not
divisible by d, and we use the embedding procedure from the proof of Theorem 3.5.5,
then any permutation type set of parallel neighboring communications in G can be
simulated in H with data routing complexity 2ρ.

5. If G is a d-dimensional torus of odd size, H is a c-dimensional torus, where c is not
divisible by d, and we use the embedding procedure from the proof of Theorem 3.5.5
for the case in which H is a mesh, then any permutation type set of parallel neigh-
boring communications in G can be simulated in H with data routing complexity
4ρ.

4.7 Conclusion

In this chapter, we use graph embedding technique to map system topology independent
parallel programs onto parallel processing systems. We identify three tasks in implement-
ing a program mapping: (1) logical address identification, by which each processor iden-
tifies the process in the parallel program to be mapped into it; (2) code loading, by which
codes for different processes get loaded into the corresponding processors; and (3) transla-
tion table generation, by which each processor can transform inter-process communication
into inter-processor communication automatically at execution time.

For logical address identification, we propose a parallel solution based on parallel
evaluation of the inverse of the mapping function by all of the processors. Since all of our
mapping functions have time complexities either proportional to a constant or proportional
to (d− c), where d is the dimension of the task graph and c is the dimension of the system
graph, our logical address identification has low time complexity and can be performed at
execution time.

For code loading, we propose a parallel approach based on logical address identifica-
tion. The time required for the program loading process is proportional to the number of
different code types used in the parallel program, but not to the size of the task graph. This
approach works especially well for large parallel programs in which only a limited number
of code types are used. In this approach, we assume that broadcast is the only means for

94

4.7. Conclusion

the host to send messages to the physical nodes. Since a broadcast network is available
or simulated in all SIMD, MSIMD, and MIMD systems, this approach is applicable to a
wide range of parallel processing systems.

For translation table generation, we propose two methods. The first method is based
on the parallel computation of the embedding function and can be applied to all of our em-
bedding functions. The second method is based on parallel data movements of the ordered
pairs “(logical address, physical address)” computed in the logical address identification
stage and is used only if the embedding has unit dilation cost. The time complexity of
the first method is proportional to the product of d and the complexity of the embedding
function, where d is the dimension of the task graph. The time complexity of the second
method under the bidirectional link assumption is a constant.

In this chapter, we also design for each of our graph embedding functions a data routing
strategy to achieve conflict-free simulation in the system graph of either any scatter type
set of parallel neighboring communications in the task graph if the embedding has unit
dilation cost, or any permutation type set of parallel neighboring communications in the
task graph otherwise. In most cases, these data routing strategies can simply take the form
of data routing vectors. We propose a simple data routing scheme, the shortest-path data
routing scheme, that can automatically carry out our data routing strategies at execution
time. This scheme has low overhead, and can be easily implemented either by software
or by hardware. This scheme uses our data routing strategies and local information to
ensure that all of the messages can move along the shortest paths to their destinations
without link conflicts.

We analyze the correponding data routing complexities for each of our graph embed-
dings. Let ρ denote the dilation cost of a graph embedding. The data routing complexity
for each of our graph embeddings is ρ (16 cases), ρ + 1 (3 cases), ρ + 2 (2 cases), 2ρ (2
cases), or 4ρ (2 cases).

95

Chapter 5

Task Graph Contraction

5.1 Introduction

In the preceding two chapters, we discussed graph embeddings for which the guest graph
and the host graph have the same number of nodes, and applied these embedding results
to mapping parallel programs onto parallel processing systems in which each processor
has only one process mapped into it. If we want to execute a parallel program with
more processes than the processors available in a parallel processing system, we have to
study the corresponding many-to-one graph mapping problem and many-to-one program
mapping problem.

In this chapter, we first generalize the optimization measure for graph embedding to
build our many-to-one graph mapping model of the optimal program mapping problem.
In addition to minimizing dilation cost, we also need to balance the number of guest nodes
mapped into each host node. In the corresponding program mapping problem, since all of
the processes mapped into the same processor have to be executed sequentially, an even
distribution of the processes over the processors minimizes the computation time.

We show that for toruses and meshes, we can obtain many-to-one graph mapping by
first contracting the guest graph into some intermediate graph of the same size as the
host graph, and then using our embedding schemes to embed the intermediate graph into
the host graph. Although this decomposition of the many-to-one graph mapping into two
steps will generally reduce our chances of global optimization, we show that in our special
problem domain, we can generalize each of our embedding schemes into the many-to-one
version by performing an appropriate contraction step before the embedding and still
achieve optimal or good many-to-one mapping results.

At the end of this chapter, we use the many-to-one graph mapping functions to gen-
eralize the program mapping approach described in Chapter 4 and thereby achieve many-
to-one program mapping.

To simplify our graph mapping model, we assume that in the task graph all of the links
carry the same communication load and all of the processes require the same computation
time.

5.2 Generalized Optimization Measures

In the graph embedding problem, we use dilation cost as the optimization measure. In
the corresponding program mapping problem, dilation cost is the number of system cycles
required by a single process in the task graph to send a message to one of its neighboring
processes in the worst case.

In the many-to-one graph mapping problem, while dilation cost is still important,
we have to take into consideration the evenness of the distribution of the nodes in the

96

5.3. Contraction before Embedding

guest graph over the nodes in the host graph. The evenness of the node distribution is
an abstraction of the following issue in the corresponding program mapping problem. If
more than one process is mapped into a single processor, these processes have to proceed
sequentially. The computation time of each processor is proportional to the number of
processes mapped into the processor. Since the computation time of the entire system
is determined by the maximum computation time needed by each processor, we should
try to balance the number of processes mapped into each processor to minimize system
computation time and improve processor utilization.

In this chapter, we define the following two optimization measures for our many-to-one
graph mappings. Let E be any many-to-one graph mapping.

1. Dilation cost D(E): the maximum distance in the host graph between images of any
pair of neighboring nodes in the guest graph.

2. Node evenness E(E): using η(v) to denote the number of nodes in the guest
graph mapped into node v in the host graph, node evenness is defined to be
max{η(v)/η(v′)|v and v′ are nodes in the host graph}.

By the definition of node evenness, we conclude that for a mapping of finite node
evenness, any node in the host graph has at least one node in the guest graph mapped
into it. The best value for node evenness is 1 if the ratio of the size of the guest graph
to the size of the host graph is an integer, and 2 otherwise. Since any node in the host
graph is the image of at least one node in the guest graph, unless the guest graph is not
connected or the host graph has only one node, the best value for the dilation cost is 1.

Therefore, for any many-to-one mapping E such that D(E) = 1, and E(E) = 1 if the
ratio of the size of the guest graph to the size of the host graph is an integer and E(E) = 2
otherwise, we can claim that the many-to-one mapping E is optimal with respect to our
optimization measures.

5.3 Contraction before Embedding

In this section, we first present a general scheme to generalize our embedding functions
into their many-to-one versions. A many-to-one mapping constructed by this scheme has
the same dilation cost as its corresponding embedding function. We also provide a set of
special cases in which we can achieve optimal many-to-one mappings.

A general many-to-one mapping scheme

Let G be a torus or a mesh of shape L = (l1, l2, . . . , ld), and H be a torus or a mesh of
shape M = (m1,m2, . . . ,mc). Assume that we can find an intermediate graph G′ such
that G′ is of the same type as G; G′ has shape L′ = (l′1, l

′
2, . . . , l

′
d); for some κ > 0,

li = κl′i for all i ∈ [d]+;
∏d
i=1 l

′
i =

∏c
i=1mi; and there exists an embedding function

E : ΩL′ → ΩM to embed G′ into H with dilation cost ρ. We first define the contraction
function µκ,d : Ω(l1,l2,...,ld) → Ω(l′1,l

′
2,...,l

′
d
) as follows:

µκ,d((x1, x2, . . . , xd)) =

(⌊
x1

κ

⌋
,

⌊
x2

κ

⌋
, . . . ,

⌊
xd
κ

⌋)

97

5. Task Graph Contraction

for all (x1, x2, . . . , xd) ∈ Ω(l1,l2,...,ld). If d = 1, as with the case in Chapter 3, we also write
µκ,1 : Ω(l1) → Ω(l′1) as µκ : [l1]→ [l′1].

We can use the contraction function µκ,d to map G into G′ with unit dilation cost. We
can map G into H with the composite many-to-one mapping function E ◦µκ,d : ΩL → ΩM.
We map each node (x1, x2, . . . , xd) ∈ ΩL in G into the node

E(µκ,d((x1, x2, . . . , xd)))

in H.

This many-to-one mapping has a dilation cost of ρ. Each node in H has exactly κd

nodes in G mapped into it.

If the embedding function E has unit dilation cost, then this general mapping scheme
is optimal. Therefore, if E is any one of the functions in {fL, rL, hL,FV ,HV}, and the
types and shapes of G′ and H satisfy the conditions we specified in Chapter 3 for such a
function to have unit dilation cost, then this general scheme provides an optimal many-
to-one mapping.

The many-to-one mapping derived from this scheme is not optimal in general. In the
remainder of this section, we provide some special conditions on the domains and ranges
of graph mappings. If these conditions are satisfied, we show how to design optimal
many-to-one mappings.

Mapping a ring of even size into a mesh

Given a ring G of size g and a mesh H of shape L and of size h, where g = 2κh and κ is
any positive integer. We can reduce the dilation cost from 2 to 1 by avoiding the use of the
function gL. For any positive even integer n, we define the fold function νn : [n] → [n/2]
as follows:

νn(x) =

{
x, if 0 ≤ x < n/2,
n− 1− x, otherwise

for all x ∈ [n].

We can use the fold function νg to map the ring G of size g into a line G′ of size g/2,
and then use the contraction function µκ to map the line G′ into another line G′′ of size
h. Such a contraction of G into G′′ has unit dilation cost. We can map G into H by the
composite mapping function fL ◦ µκ ◦ νg : [g]→ ΩL. We map each node x ∈ [g] in G into
node

fL(µκ(νg(x)))

in H.

The many-to-one mapping function fL ◦ µκ ◦ νg has unit dilation cost. Each node in
H has exactly 2κ nodes in G mapped into it. Thus, this mapping scheme is optimal.

Mapping a torus into a mesh of higher dimension

LetG be a torus of shape L = (l1, l2, . . . , ld), and letH be a mesh of shape (m1,m2, . . . ,mc)
such that (m1,m2, . . . ,mc) is an expansion of (l′1, l

′
2, . . . , l

′
d) with an expansion factor V =

(V1,V2, . . . ,Vd); li = 2κl′i for all i ∈ [d]+; and κ is any positive integer. Let π : [c]+ → [c]+

be a permutation such that π(V1 � V2 · · · � Vd) = (m1,m2, . . . ,mc). If there is at least one

98

5.3. Contraction before Embedding

integer i ∈ [d]+ such that l′i is an odd number, we can reduce the dilation cost from 2 to
1 by avoiding the use of the function GV .

We define the fold function ν̄L : Ω(l1,l2,...,ld) → Ω(l1/2,l2/2,...,ld/2) as follows:

ν̄L((x1, x2, . . . , xd)) = (νl1(x1), νl2(x2), . . . , νld(xd))

for all (x1, x2, . . . , xd) ∈ Ω(l1,l2,...,ld). We can first use the fold function ν̄L to map the
torus G of shape (l1, l2, . . . , ld) into a mesh G′ of shape (l1/2, l2/2, . . . , ld/2) with unit
dilation cost. Then we can use the contraction function µκ,d to map the mesh G′ of shape
(l1/2, l2/2, . . . , ld/2) into another mesh G′′ of shape (l′1, l

′
2, . . . , l

′
d) with unit dilation cost.

We can map G into H by the composite mapping function π ◦FV ◦µκ,d ◦ ν̄L : Ω(l1,l2,...,ld) →
Ω(m1,m2,...,mc). We map each node (x1, x2, . . . , xd) ∈ Ω(l1,l2,...,ld) in G into node

π(FV(µκ,d(ν̄L((x1, x2, . . . , xd)))))

in H.
Since all of the four component functions have unit dilation cost, the many-to-one

mapping function π ◦ FV ◦ µκ,d ◦ ν̄L has unit dilation cost. Each node in H has exactly
(2κ)d nodes in G mapped into it. Thus, this mapping scheme is optimal.

Mapping a torus or a mesh into another one with lower dimension

Let d and c be positive integers such that d > c, and let L = (l1, l2, . . . , ld) and L′ =
(lπ(1), lπ(2), . . . , lπ(c)) be radix-bases where π : [d]+ → [d]+ is a permutation on [d]+. We
first define the contraction function ξπ,d,c : ΩL → ΩL′ as follows:

ξπ,d,c((x1, x2, . . . , xd)) = (xπ(1), xπ(2), . . . , xπ(c))

for all (x1, x2, . . . , xd) ∈ ΩL.
Assume that G is a mesh of shape L, and H is another mesh of shape L′. If G

is mapped into H using the contraction function ξπ,d,c, then each supernode of shape
(lπ(c+1), lπ(c+2), . . . , lπ(d)) in G is mapped into a single node in H. This mapping has unit
dilation cost. Since each node in H is the image of the same number of nodes in G, this
many-to-one mapping is optimal.

Assume that G is a mesh of shape L = (l1, l2, . . . , ld), and H is a torus or a mesh of
shape M = (m1,m2, . . . ,mc), where lπ(i) = miκ for all i ∈ [c]+; κ is any positive integer;
and π : [d]+ → [d]+ is a permutation on [d]+. We can first use the contraction function
ξπ,d,c to map the mesh G into another mesh G′ of shape (lπ(1), lπ(2), . . . , lπ(c)), and then
use the contraction function µκ,c to map the mesh G′ into the torus or the mesh H. The
composite mapping function is µκ,c◦ξπ,d,c : ΩL → ΩM. Since µκ,c and ξπ,d,c both have unit
dilation cost, the many-to-one mapping function µκ,c ◦ ξπ,d,c has unit dilation cost. Each
node in H has exactly κc

∏d
i=c+1 lπ(i) nodes in G mapped into it. Thus, this many-to-one

mapping is optimal.
Assume that G is a torus of shape L = (l1, l2, . . . , ld), and H is another torus of shape

M = (m1,m2, . . . ,mc), where lπ(i) = miκ for all i ∈ [c]+; κ is any positive integer; and
π : [d]+ → [d]+ is a permutation on [d]+. As with the previous case, we can use the
many-to-one mapping function µκ,c ◦ ξπ,d,c to map G into H. The resulting many-to-one
mapping is also optimal.

99

5. Task Graph Contraction

Assume that G is a torus of shape L = (l1, l2, . . . , ld), and H is a mesh of shape
M = (m1,m2, . . . ,mc), where lπ(i) = 2miκ for all i ∈ [c]+; κ is any positive integer; and
π : [d]+ → [d]+ is a permutation on [d]+. We can first use the contraction function ξπ,d,c
to map the torus G into another torus G′ of shape L′ = (lπ(1), lπ(2), . . . , lπ(c)), then use the
fold function ν̄L′ to map the torus G′ into a mesh G′′ of shape L′′ = (m1κ,m2κ, . . . ,mcκ),
and finally use contraction function µκ,c to map the mesh G′′ into the mesh H. Therfore,
the composite mapping function is µκ,c ◦ ν̄L′ ◦ ξπ,d,c : ΩL → ΩM. Since µκ,c, ν̄L′ , and ξπ,d,c
all have unit dilation cost, the many-to-one mapping function µκ,c ◦ ν̄L′ ◦ ξπ,d,c has unit
dilation cost. Each node in H has exactly (2κ)c

∏d
i=c+1 lπ(i) nodes in G mapped into it.

Thus, this many-to-one mapping is optimal.

5.4 Many-to-one Program Mapping

Using many-to-one graph mapping functions, we can perform many-to-one program map-
pings. With slight modifications, the scheme for one-to-one program mapping, which we
described in Chapter 4, will still work in the many-to-one program mapping context.

5.4.1 Inverses for Many-to-one Mapping Functions

Since each element in the range of a many-to-one function corresponds to a set of elements
in the domain, we can define the inverse of a many-to-one function E : D → R to be the
one-to-one mapping E−1 : R → 2D (2D is the power set of D) such that for all y ∈ R,
E−1(y) = {x | x ∈ D, E(x) = y}. All of the many-to-one mapping functions defined in
this chapter are of the form

α ◦ β,

where α is an embedding function (identity function as a special case) that has known
inverse form, and β is a many-to-one contraction function that is either µκ,d, µκ ◦ νg,
µκ,d ◦ ν̄L, µκ,c ◦ ξπ,d,c, or µκ,c ◦ ν̄L′ ◦ ξπ,d,c. Therefore, we need only to determine inverses
for these many-to-one contraction functions.

Inverse for µκ,d

Let (l1, l2, . . . , ld) and (l′1, l
′
2, . . . , l

′
d) be radix-bases, where li = κl′i for all i ∈ [d]+. The

contraction function µκ,d : Ω(l1,l2,...,ld) → Ω(l′1,l
′
2,...,l

′
d
) has been defined as follows:

µκ,d((x1, x2, . . . , xd)) =

(⌊
x1

κ

⌋
,

⌊
x2

κ

⌋
, . . . ,

⌊
xd
κ

⌋)

for all (x1, x2, . . . , xd) ∈ Ω(l1,l2,...,ld).

The inverse of µκ,d, µ
−1
κ,d : Ω(l′1,l

′
2,...,l

′
d
) → 2Ω(l1,l2,...,ld) , can be specified as follows:

µ−1
κ,d((y1, y2, . . . , yd)) = {(y1κ+ c1, y2κ+ c2, . . . , ydκ+ cd) | ∀i ∈ [d]+, ci ∈ [κ]}

for all (y1, y2, . . . , yd) ∈ Ω(l′1,l
′
2,...,l

′
d
).

100

5.4. Many-to-one Program Mapping

Inverse for µκ ◦ νg

The fold function νn : [n]→ [n/2] has been defined as follows:

νn(x) =

{
x, if 0 ≤ x < n/2,
n− 1− x, otherwise

for all x ∈ [n], where n is an even positive integer.
The inverse of νn, ν−1

n : [n/2]→ 2[n], can be specified as follows:

ν−1
n (y) = {y, n− 1− y}

for all y ∈ [n/2].
Let g = 2κh. The inverse of µκ ◦ νg, ν−1

g ◦ µ−1
κ : [h] → 2[g], can thus be specified as

follows:
ν−1
g ◦ µ−1

κ (y) = {yκ+ c, g− 1− yκ− c | c ∈ [κ]}

for all y ∈ [h].

Inverse for µκ,d ◦ ν̄L

Let L = (l1, l2, . . . , ld), where li is an even number for all i ∈ [d]+. The fold function
ν̄L : Ω(l1,l2,...,ld) → Ω(l1/2,l2/2,...,ld/2) has been defined as follows:

ν̄L((x1, x2, . . . , xd)) = (νl1(x1), νl2(x2), . . . , νld(xd))

for all (x1, x2, . . . , xd) ∈ Ω(l1,l2,...,ld).

The inverse of ν̄L, ν̄−1
L : Ω(l1/2,l2/2,...,ld/2) → 2Ω(l1,l2,...,ld) , can be specified as follows:

ν̄−1
L ((y1, y2, . . . , yd)) = {(e1, e2, . . . , ed) | ∀i ∈ [d]+, ei ∈ {yi, li − 1− yi}}

for all (y1, y2, . . . , yd) ∈ Ω(l1/2,l2/2,...,ld/2).

Therefore, the inverse of µκ,d ◦ ν̄L, which is ν̄−1
L ◦µ

−1
κ,d : Ω(l′1,l

′
2,...,l

′
d
) → 2Ω(l1,l2,...,ld) where

li = 2κl′i for all i ∈ [d]+, can be specified as follows:

ν̄−1
L ◦ µ

−1
κ,d((y1, y2, . . . , yd))= {(e1, e2, . . . , ed) |

∀i ∈ [d]+, ei ∈ {yiκ+ ci, li − 1− yiκ− ci} where ci ∈ [κ]}

for all (y1, y2, . . . , yd) ∈ Ω(l′1,l
′
2,...,l

′
d
).

Inverse for µκ,c ◦ ξπ,d,c

Let d and c be positive integers such that c < d. Let L = (l1, l2, . . . , ld) and L′ =
(lπ(1), lπ(2), . . . , lπ(c)) be radix-bases, where π : [d]+ → [d]+ is a permutation on [d]+. The
contraction function ξπ,d,c : ΩL → ΩL′ has been defined as follows:

ξπ,d,c((x1, x2, . . . , xd)) = (xπ(1), xπ(2), . . . , xπ(c))

for all (x1, x2, . . . , xd) ∈ ΩL.
The inverse of ξπ,d,c, ξ

−1
π,d,c : ΩL′ → 2ΩL , can be specified as follows:

101

5. Task Graph Contraction

ξ−1
π,d,c((y1, y2, . . . , yc)) ={(e1, e2, . . . , ed) |

if i ∈ {π(1), π(2), . . . , π(c)}, ei = yπ−1(i); otherwise ei ∈ [li]}

for all (y1, y2, . . . , yc) ∈ ΩL′ .

Let L = (l1, l2, . . . , ld) andM = (m1,m2, . . . ,mc), where lπ(i) = miκ for all i ∈ [c]+; κ
is any positive integer; and π : [d]+ → [d]+ is a permutation on [d]+. The inverse function
of µκ,c ◦ ξπ,d,c, which is ξ−1

π,d,c ◦ µ−1
κ,c : ΩM → 2L, can be specified as follows:

ξ−1
π,d,c ◦ µ−1

κ,c((y1, y2, . . . , yc)) ={(e1κ+ c1, e2κ+ c2, . . . , edκ+ cd) |
if i ∈ {π(1), π(2), . . . , π(c)}, ei = yπ−1(i), ci ∈ [κ];

otherwise ei = 0, ci ∈ [li]}

for all (y1, y2, . . . , yc) ∈ ΩM.

Inverse for µκ,c ◦ ν̄L′ ◦ ξπ,d,c

Let L = (l1, l2, . . . , ld), M = (m1,m2, . . . ,mc), and L′ = (lπ(1), lπ(2), . . . , lπ(c)) be radix-
bases, where lπ(i) = 2miκ for all i ∈ [c]+; κ is any positive integer; and π : [d]+ → [d]+ is a

permutation on [d]+. The inverse function of µκ,c ◦ ν̄L′ ◦ ξπ,d,c, which is ξ−1
π,d,c ◦ ν̄

−1
L′ ◦ µ−1

κ,c :

ΩM → 2L, can be specified as follows:

ξ−1
π,d,c ◦ ν̄

−1
L′ ◦ µ−1

κ,c((y1, y2, . . . , yc)) ={(e1κ+ c1, e2κ+ c2, . . . , edκ+ cd) |
if i ∈ {π(1), π(2), . . . , π(c)}, ci ∈ [κ],
ei ∈ {yπ−1(i), lπ−1(i) − 1− yπ−1(i)};
otherwise ci ∈ [li], ei = 0}

for all (y1, y2, . . . , yc) ∈ ΩM.

5.4.2 Conflict-free Data Routing

Assume that a task graph is mapped into a system graph of smaller size using a many-to-
one mapping function. Since two different parallel neighboring communication reqirements
in the task graph may be mapped into the system graph so that the messages involved have
the same physical source and physical destination, link conflicts are generally unavoidable.
In this section we are interested only in the simulation of sets of parallel neighboring com-
munications in the task graph in which no two messages involved have the same physical
source and physical destination. Given any set of parallel neighboring communications in
the task graph, we can first partition the set into maximum size subsets that have the
property above, and then sequentially simulate these subsets in the system graph.

Definition 5.4.1 Assume that a graph G is mapped into another graph H using a map-
ping function E . A set of parallel neighboring communications in G is parallelizable in
H if under this mapping, no two messages involved have the same physical source and
physical destination. 2

By Definition 5.4.1, we have the following proposition.

102

5.5. Conclusion

Proposition 5.4.1 Let L = (l1, l2, . . . , ld), L′ = (l′1, l
′
2, . . . , l

′
d), and M =

(m1,m2, . . . ,mc) be radix-bases, where li = κl′i for all i ∈ [d]+, and κ is any positive
integer. Assume that a task graph G of shape L is mapped into a system graph H of
shape M with our general many-to-one mapping scheme, say the many-to-one mapping
function E ◦ µκ,d where E is an embedding function, µκ,d embeds G into another graph
G′ of shape L′, and E embeds G′ into H. If we know that any permutation (scatter)
type set of parallel neighboring communications in G′ can be simulated in H by ρ paral-
lel data movement steps, then any permutation (scatter) type set of parallel neighboring
communications in G that is parallelizable in H can be simulated in H by ρ parallel data
movement steps. The routing vector for this mapping function is the same as that for
embedding function E . 2

By Definition 5.4.1 and Theorem 4.5.1, we have the following corollary.

Corollary 5.4.1 Assume that a d-dimensional task graph G is mapped into a system
graph H using a many-to-one mapping function with unit dilation cost. Then any scatter
type set of parallel neighboring communications in G that is parallelizable in H can be
simulated in H by one parallel data movement step. The routing vector for any such
mapping function with unit dilation cost is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

The following result follows from Corollary 5.4.1.

Corollary 5.4.2 Assume that a d-dimensional task graph G is mapped into a c-
dimensional system graph H using any one of the many-to-one mapping functions in
{fL ◦µκ ◦νg, π ◦FV ◦µκ,d ◦ ν̄L, µκ,c ◦ ξπ,d,c, µκ,c ◦ ν̄L′ ◦ ξπ,d,c} with unit dilation cost. Then
any scatter type set of parallel neighboring communications in G which is parallelizable
in H can be simulated in H by one parallel data movement step. The routing vector for
these mapping functions is (i1, i2, . . . , id), where ik = 1 for all k ∈ [d]+. 2

5.5 Conclusion

In this chapter, we introduce node evenness as another optimization objective in addition
to dilation cost. For such a mapping, not only must we minimize the maximum distance
between images of any pair of neighboring nodes, but we must also balance the number of
nodes from the guest graphs mapped into each node in the host graph. A mapping with
good node evenness ensures an even distribution of the nodes from the guest graph over
the nodes in the host graph, and thus ensures an even computation load for each processor
and good processor utilization.

We show that for toruses and meshes, we can obtain many-to-one graph mapping by
first contracting the guest graph into some intermediate graph of the same size as the
host graph, and then using our embedding schemes to embed the intermediate graph into
the host graph. Although this decomposition of the many-to-one graph mapping into
two steps will generally reduce our chances of global optimization, we show that in our
special problem domain, we can generalize each of our embedding schemes into a many-
to-one version by performing an appropriate contraction step before the embedding and
still achieve optimal or good many-to-one mapping results.

103

5. Task Graph Contraction

The task graph contraction scheme based on edge grammars [BS84, BGK*85, BS87] is
the only non-heuristic scheme in the literature that works for more than one graph family.
However, since it allows for only one parameter, graph size, in the definition of graph
families, the definitional power of the edge grammar is limited. For example, in the mesh
family, each edge grammar can define only the square meshes of a fixed dimension, which
is a small subset of the entire mesh family. For the same reason, within a truncatable
graph family, for any integers x and y such that x > y, there is only one way to contract
G(x) into G(y). As pointed out in [NS86], this is not optimal for many common parallel
algorithms. By edge grammar, a mesh cannot be contracted into another mesh of different
dimension. For every case in which the edge grammar can be used, our contractions can
achieve at least the same contraction quality (with the contraction function ν̄L defined in
this chapter). By our approach, a torus or a mesh can be contracted into another torus
or another mesh of either higher or lower dimension.

In this chapter, we also generalize our one-to-one program mapping approach in chap-
ter 4 to the many-to-one program mapping approach.

104

Chapter 6
Conclusion

This thesis covers the communication optimization and abstraction in parallel process-
ing systems. The major objectives of this research are (1) to design efficient schemes
for mapping parallel programs onto parallel processing systems to minimize the commu-
nication overhead incurred by the mismatch of the communication characteristics of the
parallel programs and those of the parallel processing systems, and (2) to support logical
inter-process communication at execution time to improve program readability, verifiabil-
ity, productivity, and portability. We use graph mapping as a tool to achieve these two
objectives. In this chapter, we summarize our major contributions in this research. Our
results fall into the following five categories: (1) embeddings among toruses and meshes,
(2) many-to-one mappings among toruses and meshes, (3) mapping parallel programs
onto parallel processing systems, (4) conflict-free data routing after program mapping,
and (5) programming aspects of our program mapping approach.

Embeddings among toruses and meshes

An embedding is a bijective graph mapping. We study embeddings among toruses and
meshes of various dimensions and various shapes. We use dilation cost as the optimization
measure.

We generalize the concept of Gray code for the radix-2 (binary) numbering system
to similar sequences for mixed-radix numbering systems. We use mixed-radix numbering
systems as a basic tool to derive efficient embedding functions and perform dilation cost
analyses.

Let G be a guest graph, and H be a host graph. We study the following kinds
of embeddings among toruses and meshes: (i) basic embeddings, in which G is either
a line or a mesh, and (ii) generalized embeddings, in which G and H can both be of
higher dimension. Generalized embeddings are divided into two classes: embeddings for
increasing dimension (in which the dimension ofG is lower than that ofH) and embeddings
for lowering dimension (in which the dimension of G is higher than that of H). For
increasing dimension, we study only those cases in which the shapes of G and H satisfy
the condition of expansion. For lowering dimension, we study only those cases in which
the shapes of G and H satisfy the condition of reduction.

All of our basic embeddings are optimal. For all cases except (i) G is a ring of odd size
and H is a mesh, and (ii) G is a ring and H is a line, our embeddings have unit dilation
cost; for the two exceptional cases above, our embeddings have an optimal dilation cost
of 2.

For increasing dimension where the shapes of G and H satisfy the condition of expan-
sion, our embeddings have dilaton costs of either 1 or 2, depending on the types of graphs
of G and H. Except for the case where G is a torus of even size and H is a mesh, these

105

6. Conclusion

embeddings are all optimal. For the special cases in which either (i) H is a hypercube, or
(ii) G and H are both square and the dimension of H is divisible by that of G, the shapes
of G and H always satisfy the condition of expansion, and our embeddings are always
optimal.

For lowering dimension where the shapes of G and H satisfy the condition of reduction,
the dilation costs of our embeddings depend on the shapes of G and H. These embeddings
are not optimal in general. For the special case in which G is a hypercube, the shapes of
G and H always satisfy the condition of reduction. For the special case in which both G
and H are square, then either the shapes of G and H satisfy the condition of reduction,
or G can always be embedded into H through a sequence of intermediate graphs in which
every pair of successive graphs have shapes satisfying the condition of reduction. In either
case, the dilation costs of our embeddings are 2`(d−c)/c if G is a torus and H is a mesh,
and `(d−c)/c otherwise, where ` is the length of the dimensions of G, d is the dimension
of G, and c is the dimension of H. We also derive lower bounds on the dilation costs of
embeddings among square toruses and square meshes. Using these lower bounds, we show
that for fixed values of d and c, our embeddings are all optimal to within a constant.

Only a few special cases of the problem of embedding among toruses and meshes have
been studied in the literature. Our embeddings cover many cases for which there was no
previous result in the literature. A summary and comparison of our results with those in
the literature is given in the conclusion of Chapter 3, together with a discussion of the
differences between our results and the simulation results in the literature.

Let n be the size of G and H, and d and c be the dimensions of G and H respectively.
For the sequential computation model, our basic embeddings, generalized embeddings for
increasing dimension, and generalized embeddings for lowering dimension all have com-
plexity proportional to cn; our embeddings based on simple reduction have complexity
proportional to dn, where d and c are always less than or equal to log n. A parallel im-
plementation of our embeddings is also given in Chapter 4. For the parallel computation
model, our basic embeddings, generalized embeddings for increasing dimension, and gen-
eralized embeddings for lowering dimension all have complexity proportional to c, and our
embeddings based on simple reduction have complexity proportional to d.

Many-to-one mappings among toruses and meshes

An embedding is a one-to-one mapping between a host graph and a guest graph of the
same size. In a many-to-one mapping, the size of the guest graph can be greater than that
of the host graph, and more than one node in the guest graph can be mapped into a single
node in the host graph. Many-to-one mappings are important in applications because the
size of a task graph is usually greater than that of a system graph.

For many-to-one mappings, we introduce node evenness as another optimization ob-
jective in addition to dilation cost. For such a mapping, not only must we minimize the
maximum distance between images of any pair of neighboring nodes, but we must also
balance the number of nodes from the guest graphs mapped into each node in the host
graph. A mapping with good node evenness ensures an even distribution of the nodes from
the guest graph over the nodes in the host graph, and thus ensures an even computation
load for each processor and good processor utilization.

106

We show that for toruses and meshes, we can obtain many-to-one graph mapping by
first contracting the guest graph into some intermediate graph of the same size as the
host graph, and then using our embedding schemes to embed the intermediate graph into
the host graph. Although this decomposition of the many-to-one graph mapping into
two steps will generally reduce our chances of global optimization, we show that in our
special problem domain, we can generalize each of our embedding schemes into a many-
to-one version by performing an appropriate contraction step before the embedding and
still achieve optimal or good many-to-one mapping results.

Mapping parallel programs onto parallel processing systems

We use graph mapping technique to map system topology independent parallel programs
onto parallel processing systems. We identify three tasks in implementing a program map-
ping: (1) logical address identification, by which each processor identifies the process in the
parallel program to be mapped into it; (2) code loading, by which codes for different pro-
cesses get loaded into the corresponding processors; and (3) translation table generation,
by which each processor can transform inter-process communication into inter-processor
communication automatically at execution time.

For logical address identification, we propose a parallel solution based on parallel
evaluation of the inverse of the mapping function by all of the processors. Since all of our
mapping functions have time complexities either proportional to a constant or proportional
to (d− c), where d is the dimension of the task graph and c is the dimension of the system
graph, our logical address identification has low time complexity and can be performed at
execution time.

For code loading, we propose a parallel approach based on logical address identifica-
tion. The time required for the program loading process is proportional to the number of
different code types used in the parallel program, but not to the size of the task graph. This
approach works especially well for large parallel programs in which only a limited number
of code types are used. In this approach, we assume that broadcast is the only means for
the host to send messages to the physical nodes. Since a broadcast network is available
or simulated in all SIMD, MSIMD, and MIMD systems, this approach is applicable to a
wide range of parallel processing systems.

For translation table generation, we propose two methods. The first method is based
on the parallel computation of the embedding function and can be applied to all of our em-
bedding functions. The second method is based on parallel data movements of the ordered
pairs “(logical address, physical address)” computed in the logical address identification
stage and is used only if the embedding has unit dilation cost. The time complexity of
the first method is proportional to the product of d and the complexity of the embedding
function, where d is the dimension of the task graph. The time complexity of the second
method under the bidirectional link assumption is a constant.

Conflict-free data routing after program mapping

In graph mappings, dilation cost measures the maximum distance in the host graph be-
tween the images of any pair of neighboring nodes in the guest graph. In the mapping of

107

6. Conclusion

a task graph (which represents a parallel program) to a system graph (which represents a
parallel processing system), dilation cost gives a measure of the maximum number of links
a message must traverse in the worst-case if a single process sends a message to some other
process. For the case in which more than one process wants to communicate with some
other processes, multiple messages may need to traverse a given link at the same time,
causing additional delay in the delivery of the messages. Because of the link contention
problem, the fact that a mapping has a small dilation cost does not generally imply that
any set of parallel neighboring communications in the task graph can be simulated in the
system graph with a small data routing complexity.

We define two types of sets of parallel neighboring communications in a task graph: (i)
permutation type (at any instant, each node in the task graph can send only one message
to one of its neighbors and receive only one message from one of its neighbors), and (ii)
scatter type (at any instant, each node in the task graph can send one message to each
of its neighbors and receive one message from each of its neighbors). We design for each
of our graph mapping functions a data routing strategy to achieve conflict-free simulation
in the system graph of either any scatter type set of parallel neighboring communications
in the task graph if the mapping has unit dilation cost, or any permutation type set of
parallel neighboring communications in the task graph otherwise. In most cases, these
data routing strategies can simply take the form of data routing vectors. We propose a
simple data routing scheme, the shortest-path data routing scheme, that can automatically
carry out our data routing strategies at execution time. This scheme has low overhead,
and can be easily implemented either by software or by hardware. This scheme uses our
data routing strategies and local information to ensure that all of the messages can move
along the shortest paths to their destinations without link conflicts.

We analyze the correponding data routing complexities for each of our graph mappings.
Let ρ denote the dilation cost of a graph mapping. The data routing complexity for each
of our graph mappings is ρ (17 cases), ρ + 1 (3 cases), ρ + 2 (2 cases), 2ρ (2 cases), or
4ρ (2 cases). A comparison of data routing complexity and dilation cost for each of our
embeddings is given in Section 4.7, Chapter 4.

Programming aspects of our program mapping approach

Our program mapping approach supports communication abstraction and portability of
parallel programs. All communication in parallel programs can be specified on the log-
ical task graph level. System topologies are completely transparent to these programs.
Programmers do not need to concern themselves with low-level data routing. The logical
inter-process communication is not transformed into inter-processor communication until
execution time. As a result, even the object code of such parallel programs are trans-
portable. The communication abstraction supported by our program mapping approach
can also improve readability, verifiability, and productivity of parallel programs.

As future work, we expect to expand the research reported in this dissertation in the
following directions: (i) generalize our graph mapping to more graph families; (ii) gener-
alize the mapping model for many-to-one mapping to allow the nodes and edges to have
various weights; (iii) implement the shortest-path data routing scheme on an existing
system.

108

Appendix

In this appendix, we prove that
∑d−1
k=0

(k
bk/2c

)
can be rewritten as εd−12d−1, where ε0 =

ε1 = ε2 = 1, and for all d ≥ 3, εd−1 > εd. It is easy to check that for d ∈ [3], the assertion
is true. Therefore, we only need to prove the case in which d ≥ 3.

Proposition A.1 For all positive integers k,
(k
bk/2c

)
= 2k−1Ck−1, where

Ck−1 =

{ ∏(k−1)/2
j=1 (1− 1/(2j + 2)), for k − 1 even and k − 1 ≥ 0;∏k/2
j=2(1− 1/(2j)), for k − 1 odd and k − 1 ≥ 1.

Proof. We use induction on odd k’s and even k’s.

Case 1. k is even.

Basis. k = 2.

We have
(2
1

)
= 2 = 2C1.

Induction hypothesis. Assume that the proposition is true for all positive, even integers
k ≤ a, where a is an even number.

Induction step. Prove for k = a+ 2.(
a+ 2

b(a+ 2)/2c

)
=

(
a+ 2

(a+ 2)/2

)

=
(a+ 2)!

((a+ 2)/2)!((a+ 2)/2)!

= 22(1− 1

a+ 2
)

(
a

a/2

)

= 22(1− 1

a+ 2
)2(a−1)Ca−1

= 2(a+2)−1(1− 1

a+ 2
)

a/2∏
j=2

(1− 1

2j
)

= 2(a+2)−1C(a+2)−1.

Case 2. k is odd.

Basis. k = 1.

We have
(1
0

)
= 1 = 20C0.

Induction hypothesis. Assume that the proposition is true for all positive, odd integers
k ≤ a, where a is an odd number.

109

6. Conclusion

Induction step. Prove for k = a+ 2.(
a+ 2

b(a+ 2)/2c

)
=

(
a+ 2

(a+ 1)/2

)

=
(a+ 2)!

((a+ 1)/2)!((a+ 3)/2)!

= 22(1− 1

a+ 3
)

(
a

ba/2c

)

= 22(1− 1

a+ 3
)2a−1Ca−1

= 2(a+2)−1(1− 1

a+ 3
)

(a−1)/2∏
j=1

(1− 1

2j + 2
)

= 2(a+2)−1C(a+2)−1.

2

Proposition A.2 For all positive integers k, Ck ≤ Ck−1.
Proof. We consider two cases:

Case 1. k is odd.
Since Ck−1 =

∏(k−1)/2
j=1 (1− 1/(2j + 2)) =

∏(k+1)/2
j′=2 (1− 1/(2j′)), we have Ck−1 = Ck.

Case 2. k is even.
Since Ck =

∏k/2
j=1(1−1/(2j+2)) =

∏k/2+1
j′=2 (1−1/(2j′)) = (1−1/(k+2))Ck−1, we have

Ck < Ck−1. 2

Proposition A.3 Let tm =
∑m
k=0

(k
bk/2c

)
. Then tm = εm2m, where εm = (εm−1+Cm−1)/2

and Cm−1 < εm < εm−1 for all m ≥ 3.
Proof. We use induction on m.
Basis. m = 3.

Since t3 = 7, ε2 = 1, and C2 = 3/4, we have t3 = ε323, where ε3 = 7/8 = (ε2 + C2)/2,
and C2 < ε3 < ε2.
Induction hypothesis. Assume that the proposition is true for all positive integers m ≤ a.
Induction step. Prove for m = a+ 1.

Since ta+1 =
∑a+1
k=0

(k
bk/2c

)
= ta + 2aCa = 2a+1(εa + Ca)/2, we have ta+1 = εa+12a+1,

where εa+1 = (εa + Ca)/2.
Since Ca−1 < εa < εa−1 and Ca ≤ Ca−1, we have Ca < εa. Hence, εa+1 < εa and

Ca < εa+1. Therefore, Ca < εa+1 < εa. 2

From the recurrence relation εm = (εm−1 + Cm−1)/2 for all m ≥ 3, we also have
εm = (1/2)m−2 +

∑m−1
k=2 (1/2)m−kCk, for all m ≥ 3.

From the last three propositions, we can conclude that
∑d−1
k=0

(k
bk/2c

)
can be rewritten

as εd−12d−1, where ε0 = ε1 = ε2 = 1, and for all d ≥ 3, εd−1 > εd.

110

Bibliography

[AR82] Romas Aleliunas and Arnold L. Rosenberg. On embedding rectangular grids
in square grids. IEEE Trans. Computer, C-31(9):907–913, September 1982.

[Ata85] Mikhail J. Atallah. On multidimensional arrays of processors. Proc. 1985
Allerton Conf., also as Purdue Technical Report CSD-TR-528, 1–11, 1985.

[BB82] Dan H. Ballard and Christopher M. Brown. Computer Vision. Prentice-Hall,
1982.

[BCLR86] Sandeep Bhatt, Fan Chung, Tom Leighton, and Arnold Rosenberg. Optimal
simulations of tree machines. 27th Annual Symposium on Foundations of Com-
puter Science, 274–282, October 1986.

[Ber83] Francine Berman. Edge grammars and parallel computation. Proceedings of
the 1983 Allerton Conference, Urbana, Illinois, 214–223, 1983.

[BGK*85] Francine Berman, Michael Goodrich, Charles Koelbel, W.J. Robison III, and
Karen Showell. Prep-p: a mapping processor for chip computers. Proceedings
of International Conference on Parallel Processing, 731–733, 1985.

[BMS87] Said Bettayeb, Zevi Miller, and I. Hal Sudborough. Embedding grids into
hypercubes. Paper draft, 1–30, August 1987.

[BS84] Francine Berman and Lawrence Snyder. On mapping parallel algorithms into
parallel architectures. Proceedings of International Conference on Parallel Pro-
cessing, 307–309, 1984.

[BS87] Francine Berman and Lawrence Snyder. On mapping parallel algorithms into
parallel architectures. Journal of Parallel and Distributed Computing, 4:439–
458, 1987.

[Bun72] David M. Bunton. Abstract and Linear Algebra. Addison-Wesley, 1972.

[CS86] Tony F. Chan and Youcef Saad. Multigrid algorithms on the hypercube mul-
tiprocessor. IEEE Transactions on Computers, C-35(11):969–977, November
1986.

[DEL78a] R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton. On small universal data
structures and related combinatorial problems. Proc. Johns Hopkins Conf. on
Information Sciences and Systems, Baltimore, Md., 408–411, 1978.

111

6. Conclusion

[DEL78b] Richard A. DeMillo, Stanley C Eisenstat, and Richard J. Lipton. Preserving
average proximity in arrays. Communications of the ACM, 21(3):228–231,
March 1978.

[DJ86] Sanjay R. Deshpande and Roy M. Jenevein. Scalability of a binary tree on
a hypercube. Proceedings of International Conference on Parallel Processing,
661–668, 1986.

[Ell88] John A. Ellis. Embedding rectangular grids into square grids. Lecture Notes
in Computer Science (319), Springer-Verlag. (Also: Proc. of the 3rd Aegean
Workshop on Computing, AWOC88, Corfu, Greece.), 181–190, 1988.

[Fit74] Carl H. FitzGerald. Optimal indexing of the vertices of graphs. Mathematics
of Computation, 28(127):825–831, July 1974.

[Fox83] Geoffrey C. Fox. Decomposition of scientific problems for concurrent proces-
sors. Cal. Tech. Technical Report, CALT-68-986, 1983.

[GK84] Allan Gottlieb and Clyde P. Kruskal. Complexity results for permuting data
and other computations on parallel processors. Journal of the Association for
Computing Machinery, 31(2):193–209, April 1984.

[Har66] L. H. Harper. Optimal numberings and isoperimetric problems on graphs.
Journal of Combinatorial Theory, 1:385–393, 1966.

[Hil85] W. Daniel Hillis. The Connection Machine. The MIT Press, 1985.

[HJ87] Ching-Tien Ho and S. Lennart Johnsson. On the embedding of arbitrary meshes
in boolean cubes with expansion two dilation two. Proceedings of International
Conference on Parallel Processing, 188–191, 1987.

[HKS*83] Tsutomu Hoshino, Toshio Kawai, Tomonori Shirakawa, Junichi Higashino,
Akira Yamaoka, Takashi Ito, Hachidai Sato, and Kazuo Sawada. Pacs: a par-
allel microprocessor array for scientific calculations. ACM Tran. on Computer
Systems, 1(3):709–728, August 1983.

[HMR73] Alan J. Hoffman, Michael S. Martin, and Donald J. Rose. Complexity bounds
for regular finite difference and finite element grids. SIAM J. Numer. Anal.,
10(2):364–369, April 1973.

[HMR83] Jia-Wei Hong, Kurt Mehlhorn, and Arnold L Rosenberg. Cost trade-offs in
graph embeddings, with applications. Journal of the Association for Computing
Machinery, 30(4):709–728, October 1983.

[JGD87] L. Jamieson, D. Gannon, and R. Douglass, editors. The Characteristics of
Parallel Algorithms. MIT Press, 1987.

[KA85] S. Rao Kosaraju and Mikhail J. Atallah. Optimal simulations between arrays
of processors. Preliminary Version, 1–21, 1985.

112

[KA88] S. Rao Kosaraju and Mikhail J. Atallah. Optimal simulations between mesh-
connected arrays of processors. Journal of the Association for Computing Ma-
chinery, July 1988.

[KWA82] T. Kushner, A. Y. Wu, and Rosenfeld A. Image processing on zmob. IEEE
Transactions on Computers, C-31(10), October 1982.

[LED76] R. J. Lipton, S. C. Eisenstat, and R. A. DeMillo. Space and time hierarchies
for classes of control structures and data structures. Journal of the Association
for Computing Machinery, 23(4):720–732, October 1976.

[Lei83] C.E. Leiserson. Area-Efficient VLSI Computation. MIT Press, Cambridge,
Massachusetts, 1983.

[LM87a] Hungwen Li and Massimo Maresca. Polymorphic-torus architecture for com-
puter vision. IBM Technical Report, 1–30, February 1987.

[LM87b] Hungwen Li and Massimo Maresca. Polymorphic-torus network for supercom-
puting. IBM Technical Report RC 12568 (#56551), 1–36, March 1987.

[LR82] F. T. Leighton and A. L. Rosenberg. Three-dimensional circuit layouts. Un-
published manuscript, 1982.

[LW87] Ten-Hwang Lai and William White. Embedding pyramids in hypercubes.
The Ohio State University Technical Report O SU-CISRC-11/87-TR41, 1–25,
November 1987.

[MN86] Yuen-wah Ma and Bhagirath Narahari. Optimal mappings among interconnec-
tion networks for performance evaluation. Proceedings of the 6th International
Conference on Distributed Computing Systems, 16–25, May 1986.

[MS88] Burkhard Monien and I. Hal Sudborough. Simulating binary trees on hy-
percubes. Lecture Notes in Computer Science (319), Springer-Verlag. (Also:
Proc. of the 3rd Aegean Workshop on Computing, AWOC88, Corfu, Greece.,
170–180, 1988.

[MT87] Yuen-wah Eva Ma and Lixin Tao. Embeddings among toruses and meshes. Pro-
ceedings of International Conference on Parallel Processing, 178–187, August
1987.

[NS80a] D. Nassimi and S. Sahni. Finding connected components and connected-ones
on a mesh-connected parallel computer. SIAM J. Comput., 1980.

[NS80b] David Nassimi and Sartaj Sahni. An optimal routing algorithm for mesh-
connected parallel computers. Journal of the Association for Computing Ma-
chinery, 27(1):6–29, January 1980.

[NS81] David Nassimi and Sartaj Sahni. Data broadcasting in simd computers. IEEE
Transactions on Computers, C-30(2):101–107, February 1981.

113

6. Conclusion

[NS82] David Nassimi and Sartaj Sahni. Parallel algorithms to set up the benes permu-
tation network. IEEE Transactions on Computers, C-31(2):148–154, February
1982.

[NS86] Philip A. Nelson and Lawrence Snyder. Programming solutions to the algo-
rithm contraction problem. Proceedings of International Conference on Parallel
Processing, 258–261, August 1986. n6.

[Oru84] A. Yavuz Oruc. A classification of cube-connected networks with a simple
control scheme. IEEE Transactions on Computers, C-33(8):769–772, August
1984.

[PBe85] J. Potter, K Batcher, and etc. The Massively Parallel Processor. The MIT
Press, 1985.

[Pot83] J. Potter. Image processing on the massively parallel processor. Computer,
62–67, January 1983.

[PV79] Franco P. Preparata and Jean Vuillemin. The cube-connected-cycles: a versa-
tile network for parallel computation. IEEE, 140–147, 1979.

[RJD77] E. M. Reingold, Nievergelt J., and N. Deo. Combinatorial Algorithms. Prentice
Hall, Englewood Cliffs, NJ, 1977.

[RK82] Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing. Volume 1,
Academic Press, 2 edition, 82.

[Ros75] Arnold L. Rosenberg. Preserving proximity in arrays. SIAM J. Comput,
4(4):443–460, December 1975.

[Ros78] Arnold L. Rosenberg. Data encodings and their costs. Acta Informatica, 9:273–
292, 1978.

[Ros79] Arnold L. Rosenberg. Encoding data structures in trees. Journal of the Asso-
ciation for Computing Machinery, 26(4):668–689, October 1979.

[Ros83] A. L. Rosenberg. Three-dimensional vlsi: a case study. Journal of the Associ-
ation for Computing Machinery, 30(3), July 1983.

[RS78] Arnold L. Rosenberg and Lawrence Snyder. Bounds on the costs of data en-
codings. Math. Systems Theory, 12:9–39, 1978.

[S87] Greenberg D. S. Optimum expansion embeddings of meshes in hypercubes.
Technical Report YALEU/CSD/RR-535, 1987.

[SC87] Joel H. Saltz and Marina C. Chen. Automated problem mapping: the crystal
runtime system. Research Report YALEU/DCS/RR-510, 11 pages, January
1987.

[SEM87] P. Sadayappan, Fikret Ercal, and Steven Martin. Mapping finite element
graphs onto processor meshes. Proceedings of International Conference on
Parallel Processing, 192–195, August 1987.

114

[Sny82] Lawrence Snyder. Introduction to the configurable, highly parallel computer.
Computer, 47–56, January 1982.

[Sny83] Lawrence Snyder. Introduction to the poker parallel programming environ-
ment. Proceedings of International Conference on Parallel Processing, 289–292,
1983.

[Sny84] Lawrence Snyder. Parallel programming and the poker programming environ-
ment. Computer, 27–36, July 1984.

[SS85] Youcef Saad and Martin H. Schultz. Topological properties of hypercubes.
Research Report YALEU/DCS/RR-389, 1–17, June 1985.

[Tho79] C. D. Thompson. Area-time complexity for vlsi. Proc. 11th ACM Symp. on
Theory of Computing (Atlanta, Ga., May 1979), 81–88, May 1979.

[TK77] C.D. Thompson and H.T. Kung. Sorting on a mesh-connected parallel com-
puter. Communications of the ACM, 20(4):263–271, April 1977.

[TM75] J. P. Tremblay and R. Manohar. Discrete Mathematical Structures with Appli-
cations to Computer Science. McGraw-Hill Inc., 1975.

[Val81] L. G. Valiant. Universality considerations in vlsi circuits. IEEE Transactions
on Computers, C-30:135–140, 1981.

[Val82] L. G. Valiant. A scheme for fast parallel communication. SIAM J. Comput.,
11(2):350–361, May 1982.

[Wu85] Angela Y. Wu. Embedding of tree networks into hypercubes. Journal of Parallel
and Distributed Computing, 2:238–249, 1985.

115

