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Abstract 

The Classification of Style in Fine-art Painting 
 

by 
Thomas Edward Lombardi 

 
Submitted in partial fulfillment 

of the requirements for the degree of 
Doctor of Professional Studies 

in Computing 
 

August 2005 
 

     The computer science approaches to the classification of painting concentrate on 
problems of attribution.  While this goal is certainly worthy of pursuit, there are other 
valid tasks related to the classification of painting including the identification of period 
styles, the description of styles, and the analysis of the relationship between different 
painting styles.  This dissertation proposed and developed a general approach to the 
classification of style and achieved this goal using a semantically-relevant feature set.  
The resulting automated painting analysis system supports the following tasks: recognize 
painting styles, identify key relationships between styles, outline the basis for style 
proximity, and evaluate and visualize classification results.   

     The study initially conducted a review of the features currently applied to this domain 
and implemented these features,  supplementing them with commonly used features in 
image retrieval applications.  The study evaluated these features for classification 
accuracy, speed, storage space, and semantic relevance, and mapped the features 
considered to formal elements discussed in the domain, including light, line, texture, and 
color.  In particular, the study successfully employed several color features not previously 
applied to painting classification, such as color autocorrelograms and dynamic spatial 
chromatic histograms.  The dissertation proposed and developed a palette description 
feature for describing the color content of paintings.  In tests, the palette description 
feature classified style as well as comparable color features.   

     The study evaluated the features against two databases of paintings using a variety of 
supervised and unsupervised classification techniques including k-nearest neighbor, 
hierarchical clustering, self-organizing maps, and multidimensional scaling.  In summary, 
the dissertation proposed and developed a theoretical style center and variance as both an 
analytical tool and an evaluation technique for classification accuracy.  A style 
description ratio based on the theoretical style center and variance served as a reliable 
basis for the evaluation of classification results. 
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Chapter 1 

  Introduction 

1.1 Problem Description and Thesis 

     In the first decade of the Twenty-First Century, researchers are marshalling advances 

in digital image processing, machine learning, and computer vision to solve problems in 

the authentication and interpretation of fine-art paintings.  The research to date focuses on 

painter identification and attribution and therefore stresses high degrees of accuracy on 

small target datasets.  The focus on forensic applications obscures the problems of broad 

classification of style in painting.  In particular, the following questions of style 

classification in painting are only partially addressed:  Is it possible to classify style in 

paintings in a general way? What features are most useful for painting classification?  

How are these features different from those used in forensic applications or image 

retrieval applications?  How are classifications of style best visualized and evaluated?  

How can these methods and approaches aid users in the classification of artistic style?  In 

addressing these questions, this work endeavors to show that the style of fine-art 

paintings is generally classifiable with semantically-relevant features.   

     An example from the career of the infamous forger, Han van Meegeren, highlights the 

distinction between forensic and general style classification.  In 1937, the renowned art 

historian Abraham Bredius referred to Christ and the Disciples at Emmaeus in glowing 

terms as “the masterpiece of Johannes Vermeer of Delft” [9].  The work, displayed in 

Figure 1, was in fact that of Han van Meegeren, the art dealer and master forger.  Indeed, 
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van Meegeren’s work in Vermeer forgeries was legendary including a sale of his Christ 

and the Adultress to Hermann Göring.   

 

Figure 1:  Han van Meegeren, Christ and the Disciples at Emmaeus, 1937.  Photo 

Credit: MyStudios [116]. 

     The forensic approach to style classification seeks to address the traditional concerns 

of art dealers, auction houses, and critics by answering questions of authenticity or 

attribution.  In this respect, forensic applications have two and only two relevant classes 

given any particular work of art: authentic and not authentic.  Given the aims of such 

applications, the technical details include the need for high resolutions images, small, 

concentrated, and targeted databases, and the focus on accuracy above other design 

considerations such as speed or semantic relevance.  Therefore, a forensic approach 

successfully applied to van Meegeren’s work should identify that it is not an authentic 

Vermeer based on a close comparison of the questionable work with verifiably authentic 

works. 
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     A general approach to the classification of fine-art paintings, on the other hand, 

addresses the concerns of art historians, students, and researchers by focusing on the 

stylistic relationships between paintings, artists, and periods.  In this context, the problem 

of classification is no longer one of binary determination but rather the categorization of a 

work or group of work with respect to a larger body of artistic heritage.  In addition to the 

classification of a particular work, a general approach to classifying style addresses the 

relationship of the categories themselves identifying and laying bare the intricate 

developments of styles.  The goals of this approach suggest a rather different set of 

techniques and technical choices favoring larger datasets of smaller images and a 

different balance of application design considerations.  A general approach to classifying 

paintings, therefore, should position van Meegeren’s forgeries within the larger corpus of 

painting tradition only classifying the work as a Vermeer if in fact the work shares more 

of the stylistic elements of Vermeer’s work than the style elements of any other artist 

considered. 

     An examination of the handling of faithful copies of well-known paintings outlines the 

primary difference between the forensic and general approaches to the classification of 

painting style.  Suppose another artist forged a perfect copy of van Meegeren’s, Christ 

and the Disciples at Emmaeus, in order to demonstrate van Meegeren’s techniques.  

Suppose further that the copy was indistinguishable from the original even to the eye of 

an expert.  A perfectly functioning forensic application still should classify the painting 

as inauthentic and yet a perfectly functioning general classification system should 

classify the painting as a van Meegeren because it shares more stylistic affinity with his 

work than that of any other. 
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1.2 Relevance and Contributions 

     A broadly defined approach to the classification of style in painting unites two 

currently disparate approaches to the computational study of painting: image indexing 

and retrieval and painting classification.  Both approaches have similar requirements, 

methods, and techniques and yet there have been few attempts to draw on the literature 

from both fields to bear on the style classification problem.  The forensic approach to 

classification encourages this because there is little need to consider retrieval metrics or 

design considerations with databases of 100 images or less.  In this regard, the study 

repositions the style classification problem such that it has a relationship to the context of 

both image classification and image retrieval research. 

     Both classification and image retrieval research focus on feature extraction, 

normalization, and comparison techniques.  The present study surveys and evaluates a 

broad range of color and texture features according to accuracy, efficiency, and semantic 

relevance.  The study demonstrates an important property of color features in the domain 

of the classification of painting styles: preserving additional spatial and frequency 

information in color features does not necessarily improve style classification accuracy.  

This finding suggests that there is a greater relationship between painting style and the 

colors chosen by the artist than that between painting style and the arrangement of colors 

on the canvas. 

     This study maps features to semantically-relevant formal elements commonly 

employed to analyze paintings: light, line, texture, and color.  Although this list of formal 

elements is in no way complete, these categories served as a point of departure in an 
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attempt to unite the goals and techniques of two communities: computer scientists and 

art historians.  The research presented in this dissertation organizes feature extraction 

techniques into categories more familiar to students of art in the hope that these 

techniques might gain more popular acceptance among researchers engaged in art history.  

Just as researchers frame computer science concepts and techniques in language familiar 

to art historians, researchers can also translate the language of art history and its methods 

into computer science techniques.  The study proposes a palette description feature that 

captures the central tendency of a painter’s use of color demonstrating that computer 

science techniques can express domain concepts specific to painting. 

     Researchers have analyzed the classification of artistic style in painting from a variety 

of perspectives.  Several studies have used supervised techniques such as naïve Bayes 

[81], Support Vector Machines [161], and Neural Networks [60] to classify artistic style.  

These approaches focus on the classification of individual artists and the elements of 

style evident in the work.  The unsupervised methods of classification presented in this 

paper offer several critical extensions to the literature on painting classification.  Self-

organizing maps, hierarchical clustering, and multidimensional scaling techniques [107] 

provide unique opportunities to evaluate and visualize the style classifications offered by 

the supervised techniques.  The paper proposes theoretical style center and variance 

metrics to identify the cluster density of paintings given a set of feature measurements.  

These measurements allow researchers to identify relationships between period and 

individual styles with respect to the formal elements of those styles.  The theoretical style 

center and variance provide the basis for a style description ratio that serves as an 

evaluation technique for classification results.   
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     As a review of collegiate-level art history textbooks reveals, the classification of 

artistic style is anything but a simple a matter.  There are many different ways to classify 

artistic style including those based on chronology, nationality, medium, school, and 

artistic movement.  Experts often disagree about how to classify paintings or a painter’s 

style.  For example, H.W. Janson [70] categorizes the work of Giotto as Gothic; 

Frederick Hartt [58] labels the work of Giotto as Renaissance in style; and Stokstad 

discusses Giotto’s paintings in the context of both periods [146].  Definitive answers to 

questions of classification are difficult to achieve because particular classifications often 

depend on the needs and aims of particular research projects.  The extensions to previous 

work in style classification offer the opportunity to assess these subjective questions 

without sacrificing the subtlety or nuance prized by researchers in the humanities. 

1.3 Scope 

     The scope of the dissertation follows from the concentration on general style 

classification.  For example, the dissertation focuses exclusively on the classification of 

images in the JPEG format that are freely and commonly available on the internet [11, 

56, 109, 110, 119, 127].  Although other formats are available such as TIFF, the JPEG 

format is the most commonly used in this research domain and the most readily available 

to researchers.  The largest images are of 1600 x 1600 pixel resolution, a necessary upper 

limit for the analysis of databases with 500 images or more as those employed in this 

study.  The study does not consider preprocessing techniques in its treatment of the 

images largely because the literature addresses it in a cursory way [60] and the efficiency 

overhead precludes working with datasets of this magnitude.   
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     The semantic relevance criterion for feature evaluation deserves mention in this 

context.  Semantically-relevant features are those representing the terms and ideas art 

historians use to discuss, analyze, compare, and classify paintings.  Although no 

comprehensive list exists, several sources [3, 16, 88, 133] outline a reasonable number of 

terms including hue, saturation, value, contour line, contrast, and intensity.  For a style 

classification system to be successful, the system must use the concepts familiar to users.  

Art historians and critics rarely, if ever, write their studies and analyses in terms of 

mathematical coefficients, equations, and matrices.  In other words, the system must 

attempt to bridge the semantic gap [145] between the measurable features in the digital 

image of a painting and domain-relevant information commonly applied in analytical 

discussions of painting.  The study concentrates on semantically-relevant features 

extracted from the two-dimensional digital representation of a painting. Conversely, the 

study neither addresses feature extraction techniques requiring special photography nor 

features requiring a third dimension for measurement [13, 111]. 

1.4 Outline 

     The dissertation is subdivided into the following sections.  Chapter 2 presents the 

background material necessary for the study.  This chapter presents critical art terms and 

domain knowledge with a discussion of style informed by art historical studies and more 

general domain resources.  The computer science background discusses the relevant work 

in painting analysis, painting classification and image retrieval research.  In the painting 

classification subsection, the study delineates works with forensic emphasis 

demonstrating how the techniques of this approach inform the goals of general style 

classification.  Throughout the chapter, the text links the domain knowledge to the 
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computer science context whenever possible.  The evaluation of features gleaned from 

previous work forms the main thrust of Chapter 3.  The chapter presents the palette 

description feature and its associated distance metric as well as techniques for feature 

normalization and comparison.  In Chapter 4, the text describes the supervised and 

unsupervised classification techniques used to integrate, analyze, visualize, and interpret 

the features.  The chapter discusses the role of self-organizing maps, hierarchical 

clustering, and multidimensional scaling techniques in the evaluation and understanding 

of style relationships.  In this context, the chapter proposes the theoretical style center, 

variance, and the style description ratio as class quality descriptors.  Although 

experimental results appear throughout the paper, Chapter 5 presents the results in their 

entirety.  Chapter 6 summarizes the key findings of the research and offers some general 

statements concerning future research and possible applications. 
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Chapter  2  
 

Background Material and Previous Work 

2.1 Introduction 

     In 1933, the mathematician George David Birkhoff attempted to explain aesthetics in 

terms of mathematics.  In his paper entitled, “Mathematics of Aesthetics” [6], he 

proposed nothing less than a formula for describing beauty.  Birkhoff argued that 

aesthetic measure (M) is simply the ratio of order (O) to complexity (C): 

COM /=  . 

Although most critics do not find the work convincing, Birkhoff sets an important 

precedent for the computational study of artistic style in that he assumes that aesthetic 

qualities are measurable and formally definable.   

     In order to classify artistic style in painting, researchers must understand “style” in its 

art-historical and computer science contexts.  On the one hand, the literature of art 

historians provides general definitions of style, descriptions of the formal elements of 

style, and a well-developed classification system for painting.  In other words, formal 

approaches to style delineate measurable elements in painting.  On the other hand, 

computer science researchers outline techniques and algorithms necessary for quantifying 

the formal elements of style in painting.  The goal of this chapter is to outline previous 
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attempts to map the techniques and algorithms of computer science to specific 

descriptions of the formal elements of style. 

     The chapter is divided into two sections addressing the art history background and the 

computer science background separately.  The art historical section describes the formal 

approach to style and describes the formal elements considered in this study: light, line, 

texture, and color.  The computer science section reviews previous approaches to painting 

including feature analysis, style classification, and image retrieval.  The section reviews 

current research trends with respect to image preprocessing, feature extraction, feature 

comparison, and classification technique.  The formal elements addressed in this study 

serve as an organizing principle for the features considered.  

2.2 The Art-historical Background 

2.2.1 Formal Approaches to Style 

     The formal approach to style [98, 138, 163, 164] presupposes that observers 

understand art in formal terms like line, color, and shape in addition to content or 

iconography [4].  For two reasons, the formal approach to style offers the best starting 

point for the computational classification of style in painting.  First, the formal elements 

of a painting like line and color are precisely the qualities of images that computers can 

measure.  Computer approaches based on iconography cannot be undertaken until 

computer techniques exist to recognize objects of interest in the art domain.  That is to 

say, until object recognition algorithms can identify a woman holding a plate adorned 

with two eyes, a common iconographic representation of Saint Lucy, computer 

approaches to style based on content are not feasible.  Second, many styles of painting, 
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such as abstract expressionism, do not contain explicit, identifiable content.  Therefore, 

approaches to style based on content cannot address works of art whose content is largely 

and explicitly formal. 

     A general definition of style is not particular to painting or art.  In fact, other 

disciplines such as archeology have definitions of style with a different emphasis than 

that discussed in the context of art.  Shapiro argues that “style is, above all, a system of 

forms with a quality and a meaningful expression through which the personality of the 

artist and the broad outlook of a group are visible” [138].  Moreover, Shapiro delineates 

three aspects of art considered in the description of style: form elements, form 

relationships, and qualities.  In terms of painting, form elements comprise characteristics 

such as line, hue, and saturation while form relationships and qualities include common 

design elements like balance and proportion. 

     Art historians categorize styles in a number of overlapping ways [138, 164].  A period 

style refers to that collection of formal elements common to painting in a particular age 

[88].  Some historians of art, on the other hand, discuss national or regional styles based 

on geography [88].  Perhaps the most accessible category of style is a painter’s personal 

style, that which distinguishes the work of an individual from the work of others.  Meyer 

Shapiro summarizes the challenge these overlapping categories pose to researchers 

attempting to classify style in art: “The characteristics of styles vary continuously and 

resist systematic classification into perfectly distinct groups” [138].  Despite this 

challenge, researchers have made significant strides in the analysis of style in painting. 
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2.2.2 Formal Analysis and Style 

     Art historians and critics use a nuanced vocabulary to discuss the characteristics of 

paintings [3, 16, 133].  These characteristics often overlap in ways that defy 

classification.  Nevertheless, for the purposes at hand, the descriptive terms related to 

paintings can be divided into three rough but useful categories: physical, subjective, and 

formal.  The terms relating to physical characteristics of a painting describe its contextual 

aspects [87].  For example, the medium and date of the work, and the artist who painted it 

are all examples of terms that define the context of a painting rather than its subject.  The 

subjective terms, on the other hand, describe the content of the painting [4].  These 

characteristics include the title and the subject matter itself, i.e. portrait, still life, 

landscape, etc.  Finally, the formal terms used to describe a painting focus on how the 

artist painted the subject given a particular context.  Color, line, light, space, composition, 

depth, shape, and size are all examples of formal characteristics of a painting.  While 

sensitive to the interdependencies of these characteristics, the research proposed in this 

study aims to define the formal characteristics of a painting quantitatively in order to 

identify and classify the paintings according to their physical and subjective 

characteristics.  For the sake of organizational simplicity, this study groups the formal 

elements of painting into the following categories: light, line, texture, and color [3, 70, 

88, 133, 138, 146]. 

2.2.3 Light 

     The use of light in a painting relates closely to other formal elements including color 

and composition.  The rendering of light, for example, can produce high or low regions of 

contrast depending on the goals of the artist.  Subtle gradations of light contribute to the 

 



 13

illusion of space in a painting by visually representing depth.  Chiaroscuro, literally 

meaning light-dark, is a technique perfected in the Italian Renaissance where artists 

created dramatic effects by juxtaposing light and dark sections of a painting [16].  

Leonardo Da Vinci also employed a related technique known as sfumato where painters 

depicted figures or objects as if enveloped by a smoky haze [16].  An artist’s use of light 

and dark provides important insights into the meaning and method of their art and style. 

2.2.4 Line 

     Lines provide several crucial functions in a painting including: compositional 

organization, shape formation, spatial organization, and to some extent texture.  Several 

aspects of line are relevant for describing paintings including the outlines of shapes or 

contour lines, the thickness, the length, and the orientation of lines (horizontal, vertical, 

diagonal).  The arrangement and orientation of the lines in a painting contribute to the 

illusion of depth or recession in space.  For example, single point perspective relies on 

the observation that parallel lines appear to converge at a point in the distance, the 

vanishing point [46, 78].  Overlapping, foreshortening, hatching, and shading are 

techniques that use lines to create a sense of depth in drawing and painting.  

2.2.5 Texture 

     Texture defines the quality of a surface in terms of its roughness or smoothness.  

Smooth, polished, rough, grainy, pitted, and oily are all terms referring to the texture of a 

painting.  Art historians are careful to distinguish between perceived and actual texture 

[88].  The perceived texture of a painting relates to the illusionary roughness or 

smoothness rendered by the artist.  The actual texture of a painting relates to the physical 

roughness or smoothness of the paint as applied to a surface.  Impasto, for example, 
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refers to paint applied thickly to a canvas or panel such that it rises above the 

painting’s surface thereby creating rough actual texture [16].  A painting can often have a 

perceived texture that is quite distinct from its actual texture. 

2.2.6 Color 

     Color provides perhaps the most immediately recognizable formal element in painting. 

Art historians discuss color with respect to three aspects: hue, saturation, and value.  Hue 

describes the common sense notion of what we mean when we say ‘color’.  In other 

words, the hue gives a color its name.  Red and blue are both examples of hues.  The 

saturation or hue intensity defines the strength of the hue.  A pale color has a low 

saturation; a vibrant color has a high saturation.  The value of a color, also referred to as 

brightness or intensity, defines the lightness or darkness of a hue.  For instance, adding 

white to a color forms a tint of that hue and makes the value higher and adding black to a 

color forms a shade of that hue and makes the value lower.  Complementary colors are 

those opposite each other on the standard color wheel.  Red and green, yellow and violet, 

and orange and blue are three pairs of complementary colors.   

2.2.7 Discussion 

     The formal analysis of painting is the technical description of a work of art and its 

salient features [3].  Art historians conduct such analysis with a specific vocabulary, as do 

the practitioners of any profession.  With respect to style, art historians take great pains to 

identify the nature of these formal characteristics as they relate to personal, regional, and 

period styles.  The goal of computer science approaches to capturing style depends on the 

extraction and summarization of these formal qualities.  A computational approach to 

painting assumes that researchers can describe and analyze such characteristics 
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mathematically.  In other words, computer scientists attempt to model the formal 

qualities of painting for the purpose of analysis, image retrieval, and classification.  Table 

1 summarizes and categorizes the formal elements discussed in this chapter.  The next 

section addresses how previous researchers have approached the measurement and use of 

these formal elements. 

Table 1: Summary of Formal Elements in Painting 

Formal Element Category Notes 

Light Light Chiaroscuro, sfumato 

Contrast Light Chiaroscuro demonstrates high contrast 

Contour Line Line Lines demarking the shape of objects in a painting 

Line Orientation Line Horizontal, vertical, diagonal 

Line Measurement Line Length and width of lines 

Shape Line Lines delineate important shapes in painting 

Space Line Line and light often organize pictorial space, i.e. depth and perspective 

Perceived Texture Texture The apparent texture formed by the illusion of the painting: rough/smooth 

Actual Texture Texture The physical texture formed by brushstroke, i.e. impasto 

Hue Color A color’s name: red, orange, yellow, green, blue, violet 

Saturation Color The hue intensity: crimson has a higher saturation than pink. 

Value Color Brightness of a hue: dark colors have low value 
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2.3 The Computer Science Background 

2.3.1 Computer Science Approaches to Artistic Style 

     This study relies on the work of three distinct but related computer science approaches 

to artistic style: style analysis, style or artist classification, and image retrieval research.  

Style analysis focuses on identifying the characteristics or features necessary to 

understand a painter’s particular technique often focusing on particular formal elements 

such as color.  Style classification studies, on the other hand, concentrate on 

distinguishing the style of particular painters or groups of painters for the purpose of 

authentication or painter identification.  Image retrieval research provides additional 

features, comparison algorithms, distance metrics, and retrieval techniques useful for 

digital image archives for painting.   

     Style analysis focuses on using computer techniques to gain a deeper understanding of 

art.  The analytical study of painting has produced three applications germane to the 

present study:  feature analysis, conservation, and hypothesis verification.  Feature 

analysis seeks to study the key characteristics of a painting to learn the features crucial to 

its design [5, 61, 154, 155, 156, 157, 158, 159].  The conservational approach to painting 

facilitates the management, storage, preservation, and reconstruction of paintings in 

digital format.  Many applications relate to this research including digital archiving of 

images, digital color restoration, and image reconstruction [33, 48, 54, 99, 102, 120].  

Other researchers attempt to verify hypotheses that exist in the domain of art history [34, 

35, 36, 37, 38, 39, 147, 148, 149, 150, 151].  These studies contribute important 

information concerning potential features for the present study. 
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     In addition to feature specific studies, researchers have approached the 

classification of artistic style from a number of perspectives.  The earliest attempts to 

address the problem focused on specifying formal grammars for particular artistic styles 

[82, 83, 84, 85, 86].  More recently, researchers have concentrated on the authentication 

of drawings and paintings [95, 107].  In addition to these forensic applications, 

researchers have conducted style identification studies to classify style by individual 

painter and artistic movement [60, 68, 81, 161, 162].  Forensic applications focus on two 

classes and a few high-resolution images, but style classification systems concentrate on 

larger numbers of classes and larger numbers of images with lower resolution.  

Researchers have pursued so many unique approaches to style classification that the 

literature is difficult to organize in a meaningful way.  These approaches include local 

feature extraction [81], global feature extraction [60], segmentation [132, 161, 162], and 

brush stroke detection [72, 114, 129, 130]. 

     The classification studies conducted to date have leveraged research in image 

retrieval.  Image retrieval provides literature that directly and indirectly contributes to the 

analysis and classification of digital images of paintings.  In particular, image retrieval 

research provides cutting edge features for describing images [22, 23, 25, 26, 27, 66, 67, 

123, 124, 135, 141], distance measures necessary for comparing image features [19, 28, 

131], and applications that bridge the semantic gap between extractable features and 

relevant domain knowledge [145].  The relevant contributions of research in image 

retrieval supplement the study of style classification in painting. 

     The focus on painter identification has resulted in five themes in the literature related 

to computational approaches to painting.  First, the solutions proposed are style-specific 
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addressing only particular kinds of art or even the work of particular painters.  Second, 

the literature emphasizes texture features and minimizes the potential role of color 

features.  Third, the studies to date do not examine techniques for evaluating 

classification accuracy.  Fourth, current research disregards the semantic relevance of the 

features studied.  Fifth, the projects currently undertaken forego a broad approach to style 

preferring small focused studies of particular painters or movements. 

     Style classification systems of all kinds undertake four major tasks regardless of the 

approach taken to the problem:  preprocessing, features extraction, feature comparison, 

and classification technique.  Preprocessing techniques prepare an image for feature 

extraction and include techniques such as size correction, orientation correction, and 

noise filtering.  The feature extraction stage captures the light, line, texture, and color 

information contained in an image.  After extracting the required features, the application 

must normalize and compare the features in a manner appropriate for the task.  Finally, 

the system classifies the images according to its analysis of the extracted feature sets. 

2.3.2 Image Preprocessing  

     Researchers have considered several approaches to image preprocessing in this 

domain.  A common approach is to ignore the issues of preprocessing.  Some studies [81] 

do not preprocess images before extracting features assuming that the cost of doing so is 

higher than the benefit, the images are correctly oriented, and the scale is not a critical 

factor in image analysis.  In their survey of features, Herik and Postma [60] perform two 

preprocessing steps: image filtering and size correction.  The researchers apply a 

Gaussian filter to all images in order to reduce the noise from the JPEG encoding process.  

Furthermore, the researchers adjust the size of each image so that their dataset 
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corresponds consistently to the scale of the actual paintings.  A middle approach to 

preprocessing handles filtering and other preprocessing tasks as part of the feature 

extraction process [68].  Although in most contexts preprocessing is desirable, the present 

study neither filters every image nor addresses size and scale correction because 

researchers have achieved excellent classification results without these preprocessing 

steps [81].  Table 2 summarizes the preprocessing techniques employed in the studies 

reviewed. 

Table 2: Preprocessing Techniques 

Study Technique Notes 

Herik [60] Gaussian filter Implementation details are not available 

Herik [60] Size and scale correction  

Icoglu [68] Median Filter Filters grayscale images for some features 

 

2.3.3 Light 

     A number of studies address light and dark in an attempt to analyze and classify 

artistic style.  In their survey of features, Herik and Postma [60] use common statistical 

descriptors (mean, standard deviation, kurtosis, and skewness) to describe nine regions of 

the grayscale image of paintings.  In particular, the mean intensity was an effective 

feature that, after training a neural network, correctly classified a test set of paintings with 

roughly 57% accuracy.  In another study [68], researchers distinguished between the 

works of three artistic movements using features largely related to luminance or grayscale 

histograms including the percentage of dark colors, the number of peaks in the luminance 
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histogram, the deviation from the mean intensity in nine segments of the image, and 

the skew of the grayscale distribution.  Using these global features, the researchers 

classified the paintings with a Bayesian classifier, k nearest neighbor, and support vector 

machine.  The system classified paintings into three classes with rates ranging from 78 to 

95% accuracy.  Kröner and Lattner [95] employed a number of measures related to light 

and dark pixels in their analysis of freehand drawings.  Working strictly with black and 

white images, the researchers build a histogram of the ratio of black to white pixels in the 

image consisting of eight bins.  The features comprise three values calculated from the 

histogram: the difference of the third and fourth bin, the quotient of the fifth and fourth 

bin, and the product of the first and fourth bin. 

Table 3: Light Features 

Study Feature Accuracy Classes Training Set Testing Set 

Artspy [2] Intensity Mean 77.5-92.5%* 3 9 120 

Herik [60] Intensity Mean 57% 6 60 60 

Herik [60] Intensity Standard Deviation 43% 6 60 60 

Herik [60] Intensity Kurtosis 47% 6 60 60 

Herik [60] Intensity Skewness 52% 6 60 60 

Icoglu [68] Percent of Dark Pixels 78-95%* 3 27 107 

Icoglu [68] Luminance Peaks 78-95%* 3 27 107 

Icoglu [68] Deviation of Mean 78-95%* 3 27 107 

Icoglu [68] Skew 78-95%* 3 27 107 

Kröner [95] Histogram Bin Difference 87%* 2 16 25 
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Kröner [95] Histogram Bin Quotient 87%* 2 16 25 

Kröner [95] Histogram Bin Product 87%* 2 16 25 

*  The accuracy represents these features taken together with other features in the study. 

     Table 3 summarizes the features used to measure light and dark in a painting.  The 

present study implements and considers most of these features omitting only those from 

Kröner’s study designed explicitly for the analysis of drawings.   

2.3.4 Line 

     The computer recognition of line, shape, perspective, and depth is a rich area of 

research in computer science.  The Cartesian coordinate system provides a convenient 

method to describe constructs like lines.  Lines are rendered mathematically as linear 

equations in the form y=Ax+B.  Researchers have devised many line and edge detection 

algorithms for both gray scale intensity and color images [7, 14, 15, 41].  After a system 

identifies lines and edges, it is possible to identify properties of the lines such as length 

and orientation.  Furthermore, a collection of lines permits other forms of analysis: shape 

detection [73, 74], vanishing point detection [10, 112, 115, 117, 134, 153], and depth 

estimation [12].  The goal of vanishing point detection algorithms is to identify the point 

at which lines intersect.  The identification of vanishing points is crucial to determining 

the role, if any, of perspective in painting [34, 35, 36, 37, 38].  In addition to these 

features, a number of approaches exist to measure depth in an image [34, 35, 36, 37, 38].  

These features combine to yield a quantitative description of the use of line, shape, and 

space in a painting. 
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     Joan and Russell Kirsch pioneered the application of line and shape to the study of 

artistic style.  In a series of articles spanning a decade, these researchers adapted the 

techniques and insights of formal grammars to the problem of style definition [82, 83, 84, 

85, 86].  The authors specified formal grammars for the paintings of Richard 

Diebenkorn’s Ocean Park series and Joan Miró’s Constellation series [83, 84].  The 

grammar specifying Diebenkorn’s style specifies 42 transformation rules based primarily 

on linear composition.  In contrast to the Diebenkorn grammar, the Miró grammar, based 

on identifiable shapes in the composition, referenced a dictionary of shapes derived from 

his body of work.  The research, based largely on Curtis Carter’s theoretical discussion of 

style, attempts to implement his “language-like” system for art in a formal grammar [17, 

85].  Kirsch used the technique to specify a shape grammar for the prehistoric rock art of 

Barrier Canyon [86]. 

     While Kirsch employed line in an attempt to construct style grammars, Criminisi and 

Stork used line to analyze perspective and depth estimation in painting.  For example, 

Criminisi and Stork have assessed Hockney’s theory [35, 36, 39, 62, 147, 148, 149, 150, 

151] that Jan Van Eyck used optical aids in the making of his paintings.  They extracted 

edge information from the chandelier in the Portrait of Arnolfini and his Wife in order to 

build a three-dimensional model and check it for symmetrical consistency [35, 36, 147, 

148, 151].  They report that the three-dimensional reconstruction of the chandelier 

demonstrated inconsistencies not consistent with Hockney’s theory.  In other related 

studies [37, 38], researchers analyze the geometry of perspective paintings to explore the 

development of linear perspective in Renaissance painting.  In particular, the study 
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assesses the consistency of vanishing points, the rate of receding regular patterns, and 

the relative height of objects.   

     In a novel technique for the purpose of conservation, researchers have employed line 

measurement techniques designed to eliminate the cracks from the infrared images of 

paintings [54].  A network of cracks (craquelé) appears in paintings due to the aging 

process.  These cracks often provide a texture to painting quite different from the 

brushwork inherent in the painter’s style.  The research team employed a technique called 

viscous morphological reconstruction to separate the cracks related to aging from the 

lines related to the brushwork of the artist.  The technique relies on the fact that cracks 

are generally thinner and occur in predictable orientations consistent with the properties 

of wood panels. 

     The analytical and conservation work described above has analogues in painting 

authentication research.  Several studies include line and linear characteristics in their 

attempts to classify and authenticate painting.  Kröner and Lattner [95], for example, 

have used Kirsch masks to identify the orientation of strokes in freehand drawings.  After 

determining the frequency of the direction of identifiable strokes, two higher order 

features are calculated: the product of the vertical and left diagonal edges and the product 

of the horizontal and right diagonal edges.  In an attempt to distinguish paintings from 

photographs [40], another group calculated the ratio of intensity edges to the total number 

of edges in the image, the sum of intensity and color edges.  Researchers working on the 

Artspy project [2] attempted to characterize an artist’s style by calculating the number of 

edges detected using the Sobel edge detector.  Researchers have also employed Gradient 

maps [68] to extract edge information and classifying style. 
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Table 4: Line Features 

Study Feature Accuracy Classes Training Set Testing Set 

Artspy [2] Number of Sobel edges* 77-92% 3 9 120 

Criminisi [35-39] Depth and Perspective NA NA NA NA 

Cutzu [40] Ratio of intensity edges to total edges* 72% 2 2000 10000 

Hanbury [54] Line measurement and orientation NA NA NA NA 

Icoglu [68] Gradient maps 78-95% 3 27 107 

Kirsch [82] Line and Shape Grammars NA NA NA NA 

Kröner [95] Line orientation* 87% 2 16 27 

*  The accuracy represents these features taken together with other features in the study. 

     Table 4 compiles the line features studied in the analysis of paintings.  The present 

study considers most of the features discussed in these studies excepting those based on 

line and shape grammars, depth, and perspective.  The present study does not consider 

these features because they apply only to specific styles of painting.  On the other hand, 

this study incorporates some additional features related to the analysis of line.  The block 

difference of inverse probabilities measures edges and valleys in an image [22, 23] and 

the study considers this feature in its evaluation. 

2.3.5 Texture 

     Researchers have conducted more studies of texture and painting than any other type 

of feature.  Despite this depth of concentration there is no real agreement concerning the 

definition of texture [60] as it applies to this domain.  Researchers generally consider 

texture the most effective type of feature for the classification of artistic style because it 
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more closely approximates brushwork than any other type of feature.  The intense 

interest and lack of a precise definition of texture combine to create a loosely collected 

group of features aiming to characterize the same phenomena.  At the most basic level, 

texture attempts to describe the relative roughness or smoothness of a surface.   

     The work of Richard Taylor, a physicist who studies the occurrence of fractals in 

nature, is an example of analytical research in texture analysis.  In several works [154, 

155, 156, 157, 158, 159], Taylor and his research team demonstrated that the 

controversial work of Jackson Pollock is fractal in nature, prompting Taylor to coin the 

term “fractal expressionism” to describe Pollock’s style.  Taylor argues that this 

characteristic alone may be sufficient to authenticate the works of Pollock [159].  In their 

survey of features, Herik and Postma [60] calculated the Hurst coefficient [122, 128], an 

estimate of fractal dimension, for each painting in nine sections of the image.  The fractal 

measurement proved to be their most effective feature classifying the correct artist with 

75% accuracy [60]. 

     Gabor filters [40, 45, 50, 94, 96], like fractals, offer another option for describing the 

texture of artwork.  Gabor filters transform grayscale images into coefficients rendering 

texture in multiple scales and orientations.  By calculating the mean and standard 

deviation of the Gabor coefficients for four scales and four orientations, a research team 

[40] trained a neural network to distinguish between paintings and photographs with 79% 

accuracy.   

     The wavelet transformation, like the Gabor filter, allows texture analysis in multiple 

scales and orientations.  Researchers from Dartmouth have designed an authentication 
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technique that applies to prints, drawings, and paintings [107].  Their technique divides 

images into 64 sub images of 256 x 256 pixels so that each sub image can be decomposed 

into wavelet coefficients at five levels and three orientations.  The resulting feature vector 

comprises the four statistical moments and error statistics based on these coefficients.  

The researchers applied this methodology to two aspects of authentication: verification of 

authenticity and the problem of many hands.  In order to test the method’s utility for 

authentication, eight known drawings of Pieter Bruegel and five acknowledged imitations 

were scanned at 2400 dpi yielding images of 3,894 x 2,592 pixels.  When the researchers 

analyzed the distance matrix between the drawings with multidimensional scaling, the 

authentic works clustered tightly and the imitations were loosely scattered.  The same 

methodology determined the number of hands that went into the production of Perugino’s 

Madonna with Child.  The researchers segmented the original 16,852 x 18,204 pixel 

image into six regions, one region for each face in the painting.  Each segment was 

further subdivided into multiple 256 x 256 sub images for wavelet decomposition.  The 

analysis suggested that four total hands, Perugino’s and three from members of his 

workshop, painted the Madonna with Child confirming the conclusions of some art 

historians.  The Artspy project [2] also used wavelet transformations calculating the 

Besov norm of the wavelet coefficients. 

     Researchers have surveyed a number of additional texture features to identify their 

ability to classify artistic style [60] including oriented spatial features, features derived 

from Fourier spectra, and the independent components in an image.  Oriented spatial 

features measure the local spatially-oriented texture using Gaussian derivatives.  The fast 

Fourier transform reveals spatially-oriented features when sampled at a fixed distance 
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from the center of the transformation.  Finally, independent components can 

characterize texture in digital images: the FastICA algorithm transforms two-dimensional 

vectors into components as independent from each other as possible.   

     Local texture features have also been a focus for approaches to painter identification.  

Keren designed a classification scheme based on local features derived from the discrete 

cosine transformation [81].  The feature extractions program divides the sample paintings 

into nine by nine blocks and calculates the discrete cosine transform coefficients for each 

block.  From the feature set, the program constructs a table relating the probability that a 

particular painter exhibits a particular discrete cosine transform coefficient.  The 

probability table provides the basis for a naïve Bayes classifier that classifies every pixel 

in an image and classifies a test painting by majority vote of the individual pixels.  Using 

the technique, Keren accurately distinguished the work of five painters 86% of the time.   

     Researchers have studied the texture of paintings extensively in the context of 

conserving cultural heritage.  Recently, a research team modeled the effects of applying 

surface treatments such as varnish with texture features [13].  The researchers measured 

the energy and entropy of the gray-level cooccurrence matrix generated for sample 

images.  Both features proved to be sensitive to the varnishing process.   

     In most of the above studies, texture has referred to perceived texture rather than 

actual texture.  Several studies model and measure actual texture as detected in brush 

strokes in order to classify paintings.  One such study measures the brush stroke of oil 

paintings using three-dimensional range data [111].  The researchers converted the range 

images into gray scale Gaussian and mean curvature images.  The study measures the 
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characteristics of the brush stroke of three painters by extracting 35 local 

autocorrelation features from the curvature images.  The method distinguished among the 

styles of particular artists using the linear discriminant analysis of the features.  The study 

achieved 72.9% accuracy with a dataset consisting of three images per artist.  Other 

studies have concentrated on modeling brush strokes for the purpose of painting and 

animation generation and painting tool identification [21, 71, 101].   

Table 5: Texture Features 

Study Feature Accuracy Classes Training Set Testing Set 

Artspy [2] Wavelets: Besov Norm NA 3 9 120 

Cai [13] GLCM: Entropy and Energy NA NA NA NA 

Cutzu [40] Gabor Filters 79% 2 2000 10000 

Herik [60] Fractals: Hurst 75% 6 60 60 

Herik [60] FFT240 65% 6 60 60 

Herik [60] FastICA 55% 6 60 60 

Herik [60] Oriented Spatial Features 45% 6 60 60 

Keren [81] Discrete Cosine Transformation 86% 5 Unknown Unknown 

Lyu [107] Wavelets: Statistical Moments NA 2 8 5 

Masuda [111] 3D Range Data 72% 3 9 9 

Taylor [154-159] Fractals: Box counting NA NA NA NA 

     Table 5 inventories the texture features applied to this domain.  This study considers 

most of the features except those deemed ineffective in previous studies such as the 

Besov Norm, FastICA, and oriented spatial features.  On the other hand, this study 
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excluded the features derived from the discrete cosine transformation despite their 

effectiveness because they have little identifiable semantic relevance.  The features based 

on 3D range data were outside of the scope of this study because range data photographs 

require special photography that was unavailable at the time of the study.  This study 

implements features based on the gray-level cooccurrence matrix, Gabor filters, wavelets, 

the fast Fourier transformation, and two types of fractal measurements, box counting and 

Hurst coefficient estimation.  In addition to these features, researchers have proposed 

several other features measuring texture in the image retrieval literature [22, 23, 55, 64, 

77, 80, 142].  This study considered block variation of local correlation coefficients and 

statistical moments of the gray-level cooccurrence matrix in the feature evaluation 

because these features are to date untested in this domain.  

2.3.6 Color 

     The science of color easily requires a full-length textbook for a complete treatment but 

some foundational concepts are worth reviewing in this context [51, 52, 75, 165].  The 

spectrum of colors, as experienced by humans, represents the range of wavelengths from 

400 nm (bluish purple) to 700 nm (red).  The International Commission on Illumination 

[24] defines standards for measuring the wavelengths of light in the ultraviolet, visible, 

and infrared spectrums.  These wavelength measurements are useful for scientific enquiry 

but can be rather awkward for other applications.  In response to this, color models 

facilitate and standardize the notation and specification of color.  Different color models 

serve different purposes and therefore emphasize different aspects of color to suit a 

particular application.  Table 6 lists common color models along with common 

applications associated with each model.   
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Table 6: Common Color Models 

Color Model Common Application 

RGB (Red, Green, Blue) Computer Monitor and Human Eye 

CMY (Cyan, Magenta, Yellow) Professional Printing Applications 

NTSC (Luminance, Hue, Saturation) United States Color Television 

YCbCr Digital Video 

HSV (Hue, Saturation, Value) Color Picker Applications 

HSI (Hue, Saturation, Intensity) Image Processing 

HSL (Hue, Saturation, Lightness) Image Processing 

CIE L*a*b Perceptually-Uniform Color space 

 

     In essence, color models provide mathematical notations for describing colors.  For 

example, the RGB color model specifies color in the form of a 24-bit RGB triplet with 

each color encoded in eight bits.  The color red is expressed with the following RGB 

triplet (255, 0, 0) indicating that the red channel is at its maximum value and its green 

and blue channels are at minimum values.  Simple arithmetic demonstrates that the RGB 

model can express 16,777,216 colors proving adequate for most applications of computer 

graphics.  For many applications however, the RGB model is rather clumsy because it 

departs from the human experience of color.  The HSV, HSI, and HSL models, on the 

other hand, correspond much more closely to the human experience of color as well as 

the critical language used to describe color.  The color models outlined above therefore 
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provide the mathematical notation necessary to encode the color characteristics of a 

painting as color features for analysis. 

     Despite all that is known about color, there have been few treatments of the role of 

color in painting analysis and style classification.  The most ambitious attempt to analyze 

the color used by an artist is a digital analysis of Van Gogh’s use of complementary 

colors [5].  The research team studied 617 digitized images of Van Gogh’s oil-on-canvas 

paintings to verify the critical claim that Van Gogh used complementary colors to 

emphasize contours of objects.  The researchers converted the RGB images into an 

opponent-color representation similar to CIE L*a*b or YCbCr where one channel carries 

the grayscale luminance component and the color components are represented as two 

channels expressing the complements yellow and blue and green and red.  The color 

channels are then convolved with Gabor filters in four orientations and four scales.  By 

calculating the total energy averaged over all orientations and scales and summing these 

values for both color channels, the system produces an opponency value for each image.  

The overall result of the study confirms the assumptions of art historians that Van Gogh 

increasingly relied on complementary colors as he matured as an artist. 

    The work on painting conservation sometimes relies on color for its aims [33, 48, 120, 

140].  For instance, Michail Pappas and Ioannis Pitas have studied digital color 

restoration of old paintings [120].  The authors note that paintings degrade chemically 

over time requiring experts to touch up or clean the original work in order to preserve its 

appearance.  Traditional approaches to cleaning include a trial and error approach where 

conservationists apply chemical cleaning solutions to small inconspicuous areas of the 

work to test for safety and effect.  The testing method can often damage the paintings in 
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the process.  The authors offer their digital painting restoration method as a safe and 

effective alternative to the traditional method of testing.  The researchers simulate the 

restoration process by extracting the original color information from the painting and then 

applying filters to the painting to demonstrate how different chemical cleaners might alter 

the painting’s appearance.  In another study [48], researchers used color to differentiate 

cracks from brushwork in paintings. 

     A number of classification studies that consider color rely on color histograms [152].  

Herik and Postma [60] employed RGB, HSI, and hue histograms of 256 bins per channel 

in their survey of features.  Although their findings conclude that RGB histograms 

outperformed HSI and Hue histograms, color features in general were not as effective as 

other texture features considered: fractals, FFT240, and intensity mean.  Other 

researchers used a 20-bin saturation histogram to calculate the ratio of the most saturated 

pixels to the least saturated pixels in their attempt to distinguish photographs from 

paintings [40].   

     In another approach based on segmented images, researchers attribute works based on 

the color profiles of skin patches extracted from paintings [161, 162].  After a series of 

normalization procedures, features were extracted from the segmented skin patches using 

the RGB, HSV, HSI, HSL, and CIE L*a*b color channels.  The researchers used the 

features to classify the paintings with support vector machines.  Using a weighted voting 

system based on the four best channel classifiers, the study correctly classified test 

samples of four artists with 85% accuracy.   
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     Researchers devised three additional color features to distinguish paintings from 

photographs [40].  The spatial variation of color was measured by normalizing the R, G, 

and B channels of the image by the image intensity and calculating the oriented plane that 

best fit a 5 x 5 neighborhood around a pixel.  If the orientation is non-zero for two of the 

channels, the color changes qualitatively.  The sum of each group of normals was then 

averaged over the entire image.  The algorithm also calculated the total number of unique 

colors used in an image.  Finally, the paper analyzed the distribution of pixels in RGBXY 

space.  In this technique, the researchers converted the MxNx3 image cube into a two-

dimensional matrix of MxN rows and five columns representing the R, G, and B values 

positioned at X and Y coordinates.  The researchers computed the features by calculating 

the 5 x 5 covariance matrix of the RGBXY space and the singular values of the 

covariance matrix. 

Table 7: Color Features 

Study Feature Accuracy Classes Training Set Testing Set 

Berezhnoy [5] Opponency Values NA NA 617 617 

Cutzu [40] Saturation Ratio 62% 2 2000 10000 

Cutzu [40] Spatial Color Variation 64% 2 2000 10000 

Cutzu [40] Number of Colors 62% 2 2000 10000 

Cutzu [40] RGBXY 81% 2 2000 10000 

Herik [60] RGB Histogram 57% 6 60 60 

Herik [60] HSI Histogram 46% 6 60 60 

Herik [60] Hue Histogram 35% 6 60 60 
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Widjaja [161] RGB Skin Profiles 68% 4 40 40 

Widjaja [161] HSV Skin Profiles 77% 4 40 40 

Widjaja [161] HSI Skin Profiles 77% 4 40 40 

Widjaja [161] HLS Skin Profiles 82% 4 40 40 

Widjaja [161] CIE L*a*b Skin Profiles 80% 4 40 40 

     Table 7 summarizes the approaches to measuring color in this domain.  This study did 

not consider those color features designed for style-specific purposes.  For example, the 

study excluded all of Widjaja’s features [161] because they specifically address paintings 

of a particular subject, i.e. people.  The only color features from Table 7 implemented in 

this study were the number of colors, RGBXY, RGB histograms, and HSV histograms. 

     With respect to color analysis, painting classification techniques have relied largely on 

the image histogram, which preserves color frequency information but ignores the spatial 

distribution of colors.  This study supplements these features with several features 

commonly used in image retrieval applications: color coherence vectors [124], spatial 

chromatic histograms [25, 26, 27] and color correlograms [20, 66, 67, 97].  These 

techniques have been included in the feature survey to test the role of spatial color 

information in style classification.  In addition to these features, this paper proposes a 

palette description feature to capture the central tendency of the colors in a painting.   

2.3.7 Composite Feature Techniques 

     In addition to the analysis of individual features, researchers have analyzed broader 

compositional structures using a number of features simultaneously.  For example, a 

number of studies [60, 68] segmented paintings into nine blocks dividing paintings into a 
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three by three series of segments.  The program extracts the features from each 

segment in order to compare each corresponding segment independently.  Segmentation 

schemes such as this preserve balance and symmetry information in an image.  In a few 

studies, researchers have concerned themselves with the organization and relationship of 

features in order to extract compositional structure from a group of paintings. 

     Researchers have studied the relationship between digital images of paintings and 

photographs.  Cutzu, Hammoud, and Leykin have designed a technique to estimate the 

photorealism of images and thereby they distinguish between paintings and photographs 

[40].  The researchers specify a number of features that adequately distinguish paintings 

from photographs including the ratio of color edges to intensity edges, the spatial 

variation of colors, the number of unique colors, pixel saturation, pixel distribution in 

RGBXY space, and texture features based on Gabor wavelets.  Using a database 

comprising 6000 images of paintings and 6000 digital photographs, a neural network 

trained on extracted features from these images correctly distinguished paintings from 

photographs with accuracy above 90%.   

     Other research teams have concentrated on the role of segmented images in style 

classification.  In a series of studies, Sablatnig, Kammerer, and Zolda, have classified 600 

portrait miniatures of the Austrian royal family with a structural analysis based on brush 

strokes, color, and facial recognition techniques [72, 129, 130, 132].  The classification 

system devised by this team analyzes the color of the depicted face, facial extraction, 

region of interest segmentation, shape classification, stroke detection, and stroke 

classification.  The system comprises a hierarchical classification system with ever more 

detailed classification as the data moves from color to stroke classification.  The 
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researchers designed particular artist-models to work in conjunction with the 

classification system.  The artist-models are mathematical descriptions of the facial 

features rendered in the image.  

Table 8: Composite Feature Approaches 

Study Feature Accuracy Classes Training Set Testing Set 

Cutzu [40] Photorealism 90% 2 2000 10000 

Herik [60] 9 block segmentation 43-57% 6 60 60 

Icoglu [68] 9 block segmentation 80-94% 3 27 107 

Sablatnig [130] Feature Hierarchy NA NA 600 600 

     Table 8 reviews the composite feature approaches to painting classification.  Although 

the present study reviews many of the individual features used in the composite feature 

studies, this study does not consider the composite feature approaches as such.  For 

example, researchers designed the feature hierarchy [130] to treat portrait miniatures 

specifically. A feature hierarchy for portrait miniatures cannot address many of the 

paintings considered in this study such as landscape or abstract paintings.  The study 

incorporated the nine-block segmentation technique for the implementation of specific 

features where appropriate. 

2.3.8 Feature Comparison 

     After the feature extraction stage, a classification system compares the feature vectors 

for particular images to each other in order to return relevant images in response to user 

queries and to classify images effectively.  Different features are best suited to certain 

types of distance metrics [28, 131, 139].  For example, the well-known Euclidean 
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distance metric serves rather well for individual features.  For features such as hue 

histograms, however, Euclidean distance measures can be ineffective or even inaccurate.  

Image retrieval researchers have devised improved distance metrics for comparing these 

types of features.  For example, researchers have treated histogram distance measures 

[19] and HSV color comparison measures [25].  The classification of style in painting 

should address the role of distance metrics because several classification techniques such 

as k-nearest neighbor rely on accurate distance measures to classify instances and define 

class boundaries.   

Table 9: Feature Comparison Techniques 

Study Comparison Technique Notes 

Artspy [2] Euclidean Distance For RGB color distance 

Lyu [107] Hausdorff Distance  

     Table 9 presents the feature comparison techniques discussed in previous studies of 

painting analysis and classification.  This study used the Euclidean distance for most 

comparisons.  Many color features require special distance metrics for accurate 

comparison including HSV histograms, color coherence vectors, and spatial chromatic 

histograms.  In addition to these distance metrics, this paper proposes a palette distance 

metric associated with the palette description feature. 

2.3.9 Classification of Style in Painting 

     After a system extracts, normalizes, and compares the features, an algorithm classifies 

the images in terms of style.  Table 10 presents the range of techniques used to classify 

paintings in the literature.  Most of the techniques applied are supervised learning 

 



 38

techniques and in all cases, the number of classes considered is quite small with six as 

the maximum number of classes considered.  The supervised techniques have three 

weaknesses with respect to a general approach to the classification of style.  First, as the 

number of classes increases the accuracy will degrade significantly.  Second, supervised 

learning techniques produce conclusive classifications rather than visualizations of the 

complex relationships between styles.  Third, the number of features required to separate 

a large number of classes often exceeds the capabilities of supervised techniques.  

Therefore, unsupervised techniques such as multidimensional scaling may prove to be 

more useful for general style classification because these techniques present complex 

data in visually meaningful ways while confronting the curse of dimensionality. 

Table 10: Classification Studies 

Study Classifiers Accuracy No. of Classes Training Set Testing Set 

Cutzu [40] Neural Networks 90% 2 2000 10000 

Herik [60] Neural Networks 85% 6 60 60 

Icoglu [68] Naïve Bayes, k-Nearest Neighbor, 

 Support Vector Machines 

80-94% 3 27 107 

Keren [81] Naïve Bayes 86% 5 Unknown Unknown 

Kröner [95] Naïve Bayes 87% 2 16 25 

Lyu [107] Multidimensional Scaling NA 2 8 5 

Masuda [111] Linear Discriminant Analysis 100% 3 9 9 

Sablatnig [130] Interactive NA NA 600 600 

Widjaja [161] Support Vector Machines 85% 4 40 40 
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     This study considers two supervised and three unsupervised classification 

techniques.  The study used the supervised techniques, k-nearest neighbor and an 

interactive approach, for the feature survey.  In addition to the supervised techniques, the 

survey reviewed three unsupervised techniques: multidimensional scaling, self-

organizing maps, and hierarchical clustering.  In previous studies, researchers used 

multidimensional scaling to authenticate paintings and drawings [107].  In this study, 

multidimensional scaling provided a basis for visualizing the stylistic relationships 

among paintings and a method for comparing styles.  Self-organizing maps [93] produce 

visual representations of complex data in two dimensions.  Hierarchical or agglomerative 

clustering also provides a hierarchy of classes demonstrating the relationship of relevant 

classes to each other [43].  Although these techniques do not necessarily produce definite 

answers in terms of classification, they make effective analytical tools by showing class 

relationships 

2.4 Conclusion 

     Despite the broad array of approaches taken to style classification, several identifiable 

trends exist.  First, most studies of style identification in painting are of a highly limited 

scope.  Some studies focus only on particular types of paintings such as portraits and 

others consider only certain types of features like those captured from brushstroke 

analysis or fractals.  For example, classification systems based on color analysis of skin 

tone regardless of how effectively they perform do not apply to abstract art.  Second, 

most studies consider the problem of style classification narrowly, constructing style-

specific models used to describe the features of particular artists, movements, or works.  

Although this is a valid approach for many problems, it is difficult to apply to a general 
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classification system because it requires building a new model for each new artist, 

movement, region, and period under consideration including those that do not yet exist.  

Third, most previous studies measure and emphasize classification accuracy neglecting 

other measurements necessary for applications such as speed or storage requirements.  

Many of these applications require special photography for feature extraction thus 

complicating the analysis of large datasets.  Fourth, many of the studies depart seriously 

from features that have any real connection to visible characteristics in the paintings. 

Many authors were careful to note that the quality of the result occurred despite the fact 

that the feature set did not address typical properties analyzed by experts in manual 

authentication [95].  Other reviewers of these studies argued that the features analyzed 

were not necessarily visible [29] raising questions about the relationship between 

classification accuracy and style characterization.  In short, in many cases high 

classification accuracy does not necessarily reflect accurate style description.  Fifth, most 

of the classification applications address painter authentication and identification rather 

than style classification.  That is to say, the approaches were more interested in 

demonstrating accurate classifications rather than presenting relationships between styles 

and movements.  Finally, most approaches rely heavily on texture features overlooking 

the role color plays in style.   

     In order to build a general classification system for style identification, the system 

must conform to four specifications.  First, the system cannot be based on content- or 

style-specific models.  The general style classification system aims to provide a basis for 

classifying paintings of any content or style and, by definition, content- and style-specific 

models cannot address all paintings.  For example, a classification system based on color 
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features extracted from segmented skin patches applies only to portraiture.  Second, the 

system cannot be based solely on features with little domain relevance.  Forensic systems 

concentrate on classification accuracy, but general systems focus on style relationships.  

The general system represents style relationships in a manner accessible to domain 

experts by using concepts and methods familiar to them.  Third, the system must not 

simplify the complicated relationships between styles.  The relationships among artistic 

styles are often complicated and multifaceted.  The general system facilitates the study of 

these complex relationships rather than simplifying or ignoring them.  Fourth, the system 

must not identify the basis for style relationships on a sparse feature set.  In many cases, 

forensic applications do not require multiple types of features to achieve high accuracy 

classifications.  On the other hand, general systems preserve style for its own sake and 

therefore require a broad range of features to capture the many aspects of style found in 

paintings. 

     The chapters that follow explore the basis for such a general classification system of 

style.  Chapter 3 summarizes the results of a feature survey addressing each of the four 

feature categories: light, line, texture, and color.  Chapter 4 reviews a survey of 

classification techniques identifying the benefits and drawbacks of different techniques 

for general style classification systems. 
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Chapter  3  
 

Digital Image Analysis of Fine-art Painting  

3.1 Introduction 

     In order to build a general classification system for style in painting, it is essential to 

identify the most discriminating features available.  Although one research team has 

conducted a survey of features [60], many features remain untested in this domain.  

Therefore, a feature survey including both features previously used in the domain and 

those of compelling interest to the domain were tested and classified for accuracy, 

performance, information quality, and semantic relevance.  The feature survey 

demonstrates a preference for texture features that often overlooks color features 

commonly used in other domains such as color coherence vectors, spatial chromatic 

histograms, and color correlograms.  An analysis of these advanced color features 

suggests that preserving additional frequency and spatial information in the color 

channels of an image does not necessarily improve classification accuracy.  In light of 

this evidence, this chapter proposes a palette description feature and a palette comparison 

technique specifically designed for style classification.  The chapter rounds out the 

discussion of features by considering the role of normalization and feature selection. 
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3.2 Features 

          The survey constituting this chapter has two goals: describe the features considered 

and evaluate those features that are most appropriate for style classification systems of 

painting.  The survey details the features used most frequently in the domain of style 

classification supplementing these with features not tested in this domain.  The feature 

descriptions include references to the implementations evaluated, feature visualizations, 

mathematical descriptions, and implementation details where appropriate.  Figure 2 will 

serve as a running test image to demonstrate the transformations and feature 

visualizations to follow.   

 

Figure 2: Jan Vermeer, Girl with a Pearl Earring, 1665.  Photo Credit: Scala/Art 

Resource, NY [1]. 

     This study evaluated features according to the following criteria: classification 

accuracy, performance, information quality, and semantic relevance.  Classification 
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accuracy measured the success of classification with a k-nearest neighbor classifier and 

an interactive classification technique described more fully in Chapter 4.  The study 

measured performance in feature extraction time and the number of doubles required to 

store the feature.  The information quality measurements considered each feature as a 

signal with a quantifiable degree of disorder (entropy) and degree of independence 

(mutual information) compared to other features.  The semantic relevance of a feature 

describes the proximity of a feature to its analogue in formal art-historical terms.  For 

example, many color features exhibit a high semantic relevance in that hue, saturation, 

and value metrics closely correspond to the language used in the description of color in a 

painting.  Chapter 5 provides the complete results of the evaluation with more detailed 

explanations of the criteria.  The survey organized the material according to the formal 

elements considered in this study: light, line, texture, and color. 

3.2.1 Light 

     Features rendering aspects of light are both efficient and effective classifiers of artistic 

style.  These features are generally extracted from grayscale images.  Furthermore, 

features based on light are effective because the use of lighting characterizes many styles 

of painting such as Baroque.  One of the simplest techniques to gauge the use of light is 

the intensity mean.  Grayscale images can easily be summarized by taking the arithmetic 

mean of the intensity.  For example, the arithmetic mean of the grayscale image of the 

Girl with a Pearl Earring is 57.2 or 0.2245 if normalized.  The feature by itself has 

proven effective in several studies [60, 68].  

     A similar feature calculates the standard deviation of the mean intensity [68].  This 

feature divides an image into nine segments of equal size.  The feature results from the 
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sum of the differences between the intensity of each segment and the global image 

intensity normalized by the total number of pixels.  According to the author [68], the 

feature discerns styles even if lighting or resolution conditions differ.  The mean 

deviation for the test image is 0.00002178.  The same researchers [68] also posited an 

additional feature, intensity skew, designed to resist extreme changes in brightness.  The 

feature divides the difference between each pixel value and the mean intensity value for 

the image by the standard deviation of the intensity value for the image.   

     In addition to estimating intensity, other features related to light are worth measuring 

as well.  First, the percentage of dark pixels in an image is a valuable feature [68].  

Researchers define this feature as the number of dark pixels, those below 65 in a 0-255 

grayscale image, divided by the total number of pixels in the image.  Second, the number 

of local and global maxima also estimates the use of light in an image.  A feature 

extraction program identified the local and global maxima in an image by finding the 

peaks in a luminance histogram [68].  Figure 3 shows the grayscale histogram for the test 

image.  For example, bin number two represents a global maximum; bins six and ten 

represent local maxima.  The total number of luminance peaks in this histogram therefore 

is three.   
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Figure 3: Grayscale Histogram Peaks 

     Finally, the feature survey considered a number of other statistical features for the 

sake of comparison including a 256-bin intensity histogram; the mean, variance, 

skewness, and kurtosis of the image intensity; and the distribution of intensity values in 

space (IXY) based on the RGBXY feature described in Section 3.2.4.  The full results of 

the light survey found in Chapter 5 demonstrate some clear trends of note.  The mean 

deviation of intensity outperformed both the segmented mean and the global mean on 

both test databases.  Moreover, the mean deviation proved to be resistant to noise and 

highly independent with respect to other light features. 
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3.2.2 Line 

     Line and edge detection algorithms are among the most mature of feature extraction 

methods.  There is a great deal of literature addressing edge detection [7, 14, 15, 41].  

Researchers have applied several of these approaches to the domain of art history.  The 

Artspy team [2] for example applied the Sobel edge detector and simply counted the 

number of lines found.  Figure 4 demonstrates the output from the Sobel edge detection 

algorithm.  This study does not address the Sobel edge detection technique because many 

of the edges identified appear arbitrary with little apparent connection to style. 

 

Figure 4: Sobel Edges 
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     Researchers have devised other edge-based features to classify different types of 

lines.  In an analysis of the distinguishing characteristics between paintings and 

photographs [40], researchers drew a distinction between pure intensity edges and those 

edges related to color.  The technique uses the Canny edge detector to identify all edges 

in a grayscale image.  The Canny edge detector extracts the edges resulting from color 

differences in the red, green, and blue channels of the RGB image.  With this technique, 

the researchers separated color-dependent edges from pure intensity edges.  The authors 

of the study use the ratio of pure intensity edges to total edges as a feature.  Figure 5 

shows the Canny edge image before removing color dependent edges and after.  The 

feature extraction technique removed the strong lines around the neck and headscarf, 

caused by strong color contrasts.   

 

Figure 5: Total Edges and Pure Intensity Edges 
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     The present survey configured the Canny edge detector to extract contour lines 

from images such as those represented in Figure 6.  The technique calculated the number 

of lines, the mean and the standard deviation of the major and minor axes, the area, and 

the eccentricity, and an eight-bin line orientation histogram.  The contour edge 

measurements were important features because they captured knowledge of style in a 

manner similar to that found in art-historical literature [95].  In particular, analysis of 

style in drawing sometimes uses quantitative measurement to characterize an artist’s use 

of line [125]. 

 

Figure 6: Canny Edge Detection 
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     Gradient maps measure the rate of change in intensities across an image.  The 

coefficients of a gradient map provide summarization of the intensity lines in an image.  

In one study [68], researchers used an aggregated value of the gradient coefficients for 

the distinction of styles.  After filtering the grayscale image with a two-pass median filter, 

the program calculated the gradient for the intensity image and constructed the gradient 

map by calculating the following equation, 
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where r is the number of rows, c is the number of columns in the image and f(i,j)x and 

f(i,j)y are the gradients of the pixels in x and y directions.  Finally, the aggregate of the 

gradient coefficients is normalized by the total number of pixels in the image.  Figure 7 

shows the visualization of a gradient map for the test image. 
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Figure 7: Gradient Map 

     Another technique proven effective for edge analysis is the block difference of inverse 

probabilities [22, 23].  Researchers define the block difference of inverse probabilities of 

an image as the difference between the count of pixels in a block and the ratio of the sum 

of the pixel intensities in the block to the maximum intensity in that block.  Formally, the 

block difference of inverse probabilities equals, 
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where I(i,j) is the intensity of a pixel in the image and B represents a block of size M x M.  

Figure 8 displays the visualization for the block difference of inverse probabilities image 
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using a 2 x 2 block.  This study extracted the first and second statistical moments as 

features from the block difference of inverse probabilities coefficients.  Researchers have 

applied the block difference of inverse probabilities to other transformations including 

wavelet decompositions for which they have proven effective for image retrieval 

applications [22]. 

 

Figure 8: Block Difference of Inverse Probabilities Visualization 

     The classification results related to line measurements demonstrated that features with 

high semantic content in this domain could classify with the same accuracy as those with 

less semantic relevance.  For example, the mean length of the major axis of the contour 
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lines proved to classify style as well as comparable block difference of inverse 

probabilities descriptors.  Therefore, semantically-relevant features can provide an 

important supplement to more traditional approaches to image processing in this domain. 

3.2.3 Texture 

     By far the most commonly used features for style classification are those based on 

texture.  The emphasis on texture features relies on the assumption that such features 

capture the qualities of brushwork [60, 101].  Carr and Leonard aptly describe the 

importance of brushwork to the analysis of style: “Because it is, in essence, a direct 

reflection of the pressure and movement of the artist’s hand across the surface of the 

painting, brushwork is one of the most intimate links that we, as viewers, have with the 

artist’s mind at work” [16].   

     Although the importance of brushwork to style analysis is clear, the relationship 

between texture and brushwork is much less so.  First, many researchers discuss the lack 

of a precise definition of texture [55, 64].  Moreover, texture as defined in computer 

science terms is not necessarily equivalent to texture in art-historical terms.  Second, 

computer science approaches to texture analysis in this domain do not distinguish 

between actual texture and perceived texture.  The actual texture of a painting is the 

three-dimensional height of the paint on the canvas corresponding most closely to 

brushwork [13, 21, 111].  The perceived texture of a painting is the two-dimensional 

illusion of texture conveyed by the skill of the artist.  In most cases, the texture features 

used for research in this domain capture some undetermined blend of both types of 

texture.  Third, many researchers do not distinguish between textures intended by the 

artist and those that are due to the aging process such as cracks and other types of damage 
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[48, 54].  Despite this lack of precision, texture features have proven effective in this 

domain in a number of studies [60, 107].  This survey considers the following texture 

features based on wavelet transformations, Gabor transformations, discrete cosine 

transformations, fast Fourier transformations, fractals, gray level cooccurrence matrices, 

and block variation of local correlation coefficients. 

     The wavelet transformation has received a great deal of attention in image processing 

and image retrieval research because of its elegant and powerful method for summarizing 

texture information in images.  A team of researchers has successfully applied the 

wavelet transformation and features derived from it to the authentication of paintings and 

drawings of Pieter Bruegel the Elder and Piero della Francesca [107].  Features extracted 

from the wavelet transformation have proven effective at identifying artistic style.  The 

power of wavelet transformation lies in its ability to summarize images in multiple 

resolutions and orientations.  Researchers have claimed that wavelet characteristics 

provide detailed information concerning texture and brushstroke.   

     Figure 9 shows the grayscale visualization of the sub band coefficients from a wavelet 

transformation for the Girl with a Pearl Earring at two scales and three orientations using 

the Haar filter.  The wavelet transformation produces four groups of coefficients: the low 

pass (A), the horizontal (H), the vertical (V), and the diagonal (D).  The low pass sub 

band is the rescaled image seen in the upper left corner of Figure 9.  The horizontal sub 

band as shown in the upper right of Figure 9 reveals the horizontally-oriented features.  

The diagonal (lower right) and vertical (lower left) sub bands expose features in their 

respective orientations.  Researchers have extracted a number of features from the sub 

bands of this transformation including Besov norms [2], statistical moments [107], fractal 
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dimension [142], and additional transformations of the coefficients [22].  The 

implementation surveyed in this study used the Haar filter at three scales [51, 52] and 

extracted the mean and variance of the coefficients of the horizontal, vertical, and 

diagonal sub bands. 

 

Figure 9: Wavelet Transformation 

     Gabor filters [50, 94, 96] provide another useful transformation revealing the texture 

of images.  Figure 10 displays a Gabor transformation at four scales and in four 

orientations, vertical, horizontal, and the two diagonals.  Like the wavelet transformation, 

Gabor transformations offer a number of options for feature extraction including 
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statistical moments [40] and fractal dimensions.  Although Gabor filters have been 

used for texture analysis extensively [45, 96], they have not been applied to the 

classification of artistic style.  The implementation used in this survey was Kovesi’s 

Gabor transformation [94].  The mean and variance of the coefficients were extracted 

from four scales and four orientations as specified in Cutzu [40]. 

 

Figure 10: Gabor Transformation 

     The discrete cosine transformation provides another option for studying image texture.  

Keren has used the coefficients of the discrete cosine transformation to classify artistic 
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style [81].  In Keren’s implementation, the system subdivides each image of a painting 

into nine by nine blocks and calculates the absolute values of the discrete cosine 

transformation coefficients for each block.  A histogram of the coefficients serves as the 

basis for classification with a naïve Bayes classifier.  Figure 11 demonstrates a 

visualization of the discrete cosine transformation coefficients for an entire image.  

Although researchers have produced quality results with this feature, the study does not 

consider the feature because it lacks a clear connection to domain knowledge.  Discrete 

cosine transformation coefficients serve as an example of a feature with little semantic 

relevance in the art-historical domain. 

 

Figure 11:  Visualization of the Discrete Cosine Transformation 
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     The fast Fourier transformation, like the discrete cosine transformation, captures 

texture information in an image [60].  Herik and Postma obtained 50 features from evenly 

sampling the fast Fourier transformation 240 pixels from the center of the image.  The 

center of the fast Fourier transformation image corresponds to a spatial frequency of zero 

or the mean intensity.  Moving 240 pixels from the center of the image shows the spatial 

frequency at the orientation perpendicular to a given angle.  The bright lines in the fast 

Fourier transformation image correspond to the strong lines found in the image.  For 

example, the strong line running through the center of the image represents the horizontal 

grid sampling inherent in the JPEG format.  The implementation reproduced in this study 

is that proposed by Herik and Postma [60] modified to measure values at a fixed distance 

of 100 pixels from the center. 

 



 59

 

Figure 12:  Fast Fourier Transform 

     Fractals have become an important feature for measuring the self-similar structures in 

the texture of an image.  There are several approaches to measuring the fractal dimension 

in an image.  The box counting method [154, 155, 156, 157, 158, 159] is a common 

technique used to measure fractal dimension.  Formally, the box counting method is 

defined as, 
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where D is the fractal dimension, N is the number of boxes not empty, and h is the size of 

the boxes used.  The Hurst coefficient [60, 122, 128] approximates the fractal dimension 
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by plotting the log of the given scales or distances against the log of the average value 

in that scale.  In early assessments of the Hurst coefficient technique as implemented by 

Herik and Postma [60], the efficiency was outside of the bounds possible for this study 

requiring over an hour to calculate the Hurst coefficient for one image.   

     Using wavelet decomposition [142] however, researchers calculate the Hurst 

coefficient by means of the average wavelet coefficient.  The wavelet decomposition 

provides coefficients at multiple levels providing the scaling mechanism required.  The 

log of the arithmetic mean of the absolute values of the wavelet coefficients provides the 

other component required to calculate the Hurst coefficient.  The algorithm evaluated in 

this study considered the fractal dimensions of the horizontal, vertical, and diagonal 

coefficients separately.  Figure 13 displays the calculation of the Hurst coefficient for the 

horizontal coefficients of a seven level wavelet decomposition using the Haar filter.  The 

slope of the fitted line (d) holds the following relationship to (H) the Hurst coefficient, 

Hd +=
2
1 . 

In this example, the slope of the fitted line is 2.3326 and the Hurst coefficient is 1.8326. 

 



 61

 

Figure 13: Hurst Coefficient 

     The gray level cooccurrence matrix [13, 55] provides second order statistical 

information concerning the texture of an image.  The gray level cooccurrence matrix 

calculates the joint probability of intensity a and b for two pixels at a fixed distance and 

orientation.  The resulting cooccurrence matrix of 256 x 256 provides detailed 

information concerning the spatial relationship of intensities given a distance and 

orientation.  This study analyzed four gray level cooccurrence matrices for each image 

corresponding to four orientations, -45 degree, 0 degree, 45 degree, and 90 degree at a 

distance of one.  The study extracted eight statistical features from each gray level 
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cooccurrence matrix including contrast, correlation, energy, entropy, homogeneity, 

inertia, inverse difference moment, and maximum probability [55].   

     The block variation of local correlation coefficients [22, 23] is a measure of 

smoothness and coarseness in an image.  Figure 14 shows the visualization of the block 

variation of local correlation coefficients for a median filtered version of the test image. 

 

Figure 14: Block Variance of Local Correlation Coefficients 

Light areas denote relative roughness, and dark areas signify relative smoothness.  As in 

other transformations, the implementation extracted statistical moments (mean and 

variance) from these coefficients and compared them to those of other images. 
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     Overall, the study found the statistical moments derived from the wavelet 

decomposition and the fractal measurements to be the most effective texture features.  In 

terms of the speed of execution, the wavelet transformation was clearly the most 

efficient, but the box counting method for measuring the fractal dimension was the most 

efficient in terms of storage space.  The features based on the fast Fourier transformation 

implemented in this study did not reproduce the accurate results reported by Herik and 

Postma [60].  The study did not implement the size-correction preprocessing step 

undertaken in the original study and this difference offers the best explanation for the 

variance in the results. 

3.2.4 Color 

     Color features provide vital information concerning style in painting.  For example, 

the pigments available to an artist depended on the availability of materials and the 

technology to process those materials [49, 63].  In addition to a painter’s historical 

context, an individual’s style partially depends on that artist’s approach to the use of 

color.  In contrast to the plethora of texture features applied to painting classification, 

researchers have tested relatively few color approaches.  A general approach to the 

classification of style should benefit from the use of more robust color features.  The 

color features surveyed in this section include palette scope, histograms, color coherence 

vectors, RGBXY, spatial chromatic histograms, color correlograms, and a palette 

description feature. 
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     The palette scope describes the number of colors used in an image.  Researchers 

have shown that this feature effectively distinguishes between paintings and photographs 

[40].  The palette scope (U) of an image is formally defined as: 

PCU /= , 

where C is the total number of unique colors measured in RGB or HSV triples and P is 

the total number of pixels in an image.  There are multiple ways to obtain the palette 

scope from an image.  For example, one can calculate the palette scope simply by 

counting each unique RGB or HSV triplet as a unique color.  In this case, the number of 

colors can be extremely large possibly the number of pixels in the image.  A more useful 

way to arrive at the palette scope is to cluster the colors into meaningful groups with 

algorithms such as minimum variance quantization.  Table 11 summarizes the values 

obtained by applying various methods to the Girl with a Pearl Earring in Figure 2.  

Despite the success of this feature in other applications [40], this survey did not consider 

the number of colors because it failed to distinguish between artists reliably in 

preliminary tests. 

Table 11: Palette Scope Measurements 

Palette Scope Method Value Value Normalized by Size 

Unique Triples: All color spaces 110148 0.148799 

Minimum Variance Quantization: RGB 3607 0.004872 

MVQ: HSI 5259 0.007104 

MVQ: CIE L*a*b 173 0.000233 
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MVQ: RGB (no duplicates) 3576 0.004830 

MVQ: HSI (no duplicates) 5125 0.006923 

MVQ: CIE L*a*b (no duplicates) 172 0.000232 

     The palette scope describes the number of colors used to create a painting but it does 

not describe the actual color content or the frequency with which those colors appear on 

the canvas.  Histograms [106, 121, 141, 152] supply frequency information for the use of 

color in an image.  There are several relevant types of histograms for the study of 

painting in digital formats: dynamic histograms, static histograms, and static histograms 

applied to a color map.  A dynamic histogram organizes the colors in an image into color 

bins natural to that image.  For example, Figure 15 represents the dynamic histogram 

 

Figure 15:  Dynamic Histogram 
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of the Girl with a Pearl Earring.  The color map was obtained using a minimum 

variance quantization of the RGB image into 16 bins.  The colors in the histogram are 

easily identifiable in the image and therefore are satisfying aesthetically.  Unfortunately, 

this type of histogram does not provide an easy way to compare images because no two 

images will produce the same 16 colors.  Comparing histograms of this type is like 

comparing apples and oranges unless systems measure the difference between the bins in 

addition to the number of pixels in the bins. 

 

Figure 16:  Static Hue Histogram 

     Static color histograms, on the other hand, analyze each channel separately in equally 

spaced bins.  For example, the hue, saturation, and value channels can each be binned 
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separately and compared faithfully to the histograms of other images.  Figure 16 shows 

the static hue histogram of the Girl with a Pearl Earring.  Although this histogram bears 

less direct resemblance to the image than does the image histogram, it serves as a more 

convenient basis for comparing two images.   

     In addition to dynamic and static histograms of an image, a static histogram of an 

image color map provides still more information about the color content in an image.  

Where the image canvas histogram places every pixel in a bin, the static histogram of a 

color map places every entry of the color map in a bin disregarding the frequency of the 

application of those colors.  In essence, the static map or palette histogram provides 

insight into the dominant colors used by an artist. 

 

Figure 17: Hue Histogram of Image Palette. 
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     Figure 17 demonstrates a static hue histogram for the image palette of the Girl with 

a Pearl Earring.  Comparing Figures 16 and 17 reveals that the static histograms applied 

to the image index and color map for the same painting can be quite different.  The 

survey included several types of histogram including static histograms applied to image 

indexes and color maps and dynamic histograms applied to image indexes in the HSV 

color space. 

     Histograms have proven to be powerful descriptors of color properties in an image.  

Image descriptions based on this technique, however, suffer from a lack of spatial 

information often resulting in dissimilar images having similar histograms.  Color 

coherence vectors [124] preserve some spatial characteristics of image colors by 

distinguishing large blocks of coherent color from smaller blocks of incoherent color.  

Color coherence vectors classify image pixels into two categories: coherent pixels are 

those placed in a region of similarly-colored pixels numbering above a threshold, 

incoherent pixels are those placed in regions less homogenously colored.  Figure 18 

shows a visual representation of the coherent pixels and the incoherent pixels derived 

from one color bin of a static histogram.  The implementation used in this example 

classified color regions of more than 5,694 pixels (total image pixels divided by 130) as 

coherent.  The image on the left-hand side represents coherent pixels, and the image on 

the right represents incoherent pixels.  This study considered color coherence vectors to 

supplement the approaches based on histograms. 
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Figure 18: Coherent and Incoherent Pixels 

     As useful as the palette scope and frequency descriptions of color are, they neglect a 

rather important aspect of painting: the spatial distribution of color.  It is possible to 

characterize the spatial distribution of color in the RGBXY space [40].  First, the MxNx3 

cube of the original image is reduced to a matrix of MxN rows, one row for each pixel in 

the image, and 5 columns, one for the Red, Green, and Blue channels and the X and Y 

coordinates.  Second, the 5x5 covariance matrix is calculated for the new RGBXY 

matrix.  The five singular values summarized the covariance matrix associated with the 

image.  Paintings with larger palette scopes and larger variations in spatial color 

distribution will have larger singular values [40].   
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Table 12: Covariance Matrix of RGBXY Matrix. 

 R G B X Y 

R 4527 3966.6 3130.3 3308.5 -5.3274 

G 3966.6 3572 2967.3 3101 -3.326 

B 3130.3 2967.3 2936.9 2799.1 -2.8788 

X 3308.5 3101 2799.1 70994 0 

Y -5.3274 -3.326 -2.8788 0 53600 

     Table 12 displays the covariance matrix of RGBXY space for the Girl with a Pearl 

Earring.  The singular values derived from the covariance matrix are 71460, 53600, 

10037, 513.2, 20.117.  The singular values provide directly comparable values with those 

obtained from other images.  In many applications, hue-based color transformations such 

as HSI perform better than transformations in RGB space.  This study constructed an 

HSIXY feature for comparison with RGBXY.  The implementation considered in this 

study derives the HSIXY feature in exactly the same manner as RGBXY except that the 

original MxNx3 image cube is transformed into HSI color space before processing. 

     The RGBXY feature provides a compact summarization of the spatial distribution of 

color in an image but it does not provide detailed spatial information about specific 

colors.  Image retrieval researchers have defined the spatial chromatic histogram [25, 26, 

27, 105, 135] for this purpose.  Like ordinary histograms, spatial chromatic histograms 

can use static or dynamic bins.  Figure 19 shows the 19 bin static spatial chromatic 

histogram for the Girl with a Pearl Earring.  The spatial chromatic histogram consists of 
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the following fields for each color: number of pixels in the color bin, the color 

baricenter in XY space, and the standard distance deviation of the distribution of the 

color. 

 

Figure 19: Spatial Chromatic Histogram 

     An ordinary static histogram provided the number of pixels per bin.  The color 

baricenter defines the central point of the distribution of a color.  The standard distance 

deviation characterizes the dispersion of the pixels around the mean.  Figure 20 shows the 

visualization of one color entry from the spatial chromatic histogram of the Girl with the 

Pearl Earring.  The center of the circle is the baricenter of the color; the radius of the 
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circle represents the standard distance deviation around the baricenter.  Figure 21 

aligns multiple entries from the spatial chromatic histogram.  The spatial chromatic 

histogram has proven effective in image retrieval applications.  This study included this 

feature to test if capturing additional spatial information improves style classification.  In 

particular, the study implements a variant called dynamic spatial chromatic histogram 

[26] designed to improve performance and accuracy. 

 

Figure 20: Spatial Chromatic Histogram Baricenter and Radius 
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Figure 21: Spatial Chromatic Histogram Details 

     While the spatial chromatic histogram characterizes the global arrangement of color in 

space, correlograms [20, 66, 67, 97] describe the global distribution of the local 

correlation of colors in space.  The color correlogram of an image relates the probability 

that color 1 lies a certain distance from color 2 resulting in (c*c)d rows in the 

correlogram table. For example, Table 13 shows the correlogram for an image 

represented in three colors, red, green, and blue, and measuring a distance of one pixel in 
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four directions.  In this sample correlogram, each color has a 25% chance of being 

placed adjacent to a pixel of the same color.  The color correlogram provides additional 

detail concerning the local distribution of colors in an image. 

Table 13: Color Correlogram 

Color 1 Color 2 Distance Probability 

Red Red 1 .25 

Red Green 1 .50 

Red Blue 1 .25 

Green Red 1 .25 

Green Green 1 .25 

Green Blue 1 .50 

Blue Red 1 .50 

Blue Green 1 .25 

Blue Blue 1 .25 

     Color correlograms can often be expensive to compute with large numbers of colors or 

with many distance measures.  In these cases, it is often useful to construct 

autocorrelograms that only consider the distance between a color and itself resulting in 

c(d) rows in the correlogram table.  Table 14 shows the autocorrelogram corresponding to 

the correlogram in Table 13.  This study considered the autocorrelogram to gauge the 

importance of local color arrangement on style classification.  The feature considered in 

this study measured local color variations at distances of one, three, five, and seven 

pixels. 
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Table 14: Color Autocorrelogram 

Color 1 Color 2 Distance Probability 

Red Red 1 .25 

Green Green 1 .25 

Blue Blue 1 .25 

     The color feature survey conducted in this study revealed that preserving more 

frequency and spatial information in the color channel does not necessarily improve 

classification accuracy.  Although not conclusive, the result suggests that the spatial and 

frequency distribution of color channels characterizes the subject or content of the 

painting rather than providing significant information concerning style.  Features from 

image retrieval applications are designed with precisely that goal in mind: improving the 

description of image content.  This study proposed a palette description feature that 

captures the central tendency of color information in an image. 

     A digital image can be broken down into two main parts: an image map and an image 

index.  The image map records the set of colors required to display the image and the 

image index records the spatial arrangement of those colors in the image.  In terms of a 

painting, the image map corresponds to a painter’s palette and the image index 

corresponds to the canvas.  It is often desirable to compare the entire color palette of one 

painting to that of another.  The palette description feature summarizes the color content 

of an image map for HSV colors by defining the central tendency of the colors in the 

image.   
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          The palette description feature presented in this study breaks a color map into 

discrete value slices as depicted in Figure 22.  For each value slice, the mean hue, 

saturation, and value were calculated.  The mean values were computed by finding the 

RGB means and converting the RGB means to HSV values.  The feature calculated the 

distance between every color in the slice and the HS mean of that slice to determine the 

variance of the colors around the mean.  The total number of colors in the slice was also 

calculated.   

 

Figure 22: HSV Cone Decomposition into Value Slices 

     Figure 23 demonstrates the color distributions for a slice taken from the test image.  

Figure 23 depicts the value mean at the top of the figure.  The red crosshair represented 

the hue and saturation means and the blue dots represent the scatter of colors in the value 
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slice.  The hue, saturation, and value means as well as the variance and number of 

colors are recorded for each slice of the HSV cone.  The resulting palette description 

results in a robust feature for style classification. 

 

Figure 23: Value Slice of HSV Cone 

     The palette description can be extracted from any HSV image map in the following 

manner: 

1. Sort the HSV color map by the value channel in descending order; 

2. Cut the map into 10 uniformly-divided value slices; 
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3. For each of the 10 slices repeat steps 4 through 9: 

4. Convert the HSV values in the slice into RGB values; 

5. Find the Red, Green, and Blue means of the RGB values; 

6. Convert the Red, Green, and Blue means to Hue, Saturation, and Value means; 

7. Use the law of cosines to calculate the distances between each color in the slice 

and the Hue and Saturation means; 

8. Find the variance of the color distribution by calculating the mean of the distances 

found in step 7; 

9. Count the number of colors in the slice and normalize this value by the number of 

colors in the entire map. 

     The color features surveyed in this section reveal that preserving additional frequency 

and spatial information in the color channels does not necessarily improve classification 

accuracy.  For example, the HSV static histogram of the color map outperformed the 

HSV static histogram of the image index in classification tasks suggesting that style in 

painting is more closely linked to a painter’s palette than the arrangement of colors on the 

canvas.  In a similar way, the HSV palette description feature performed as well as the 

features designed to capture the spatial arrangement of colors including HSIXY, color 

coherence vectors, dynamic spatial chromatic histograms, and color autocorrelograms.  

Although these results are not conclusive, they suggest that characterizing style is 

sufficiently different from characterizing image content to justify the development of 

features particularly suited to style classification. 
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3.3 Feature Normalization and Comparison 

     After extracting the desired features, the proper evaluation of those features requires 

that features are directly comparable.  In order to compare features reliably, those 

features must be rescaled or normalized to a consistent scale and then the standardized 

features must be compared in a manner appropriate to the nature of the feature.  In many 

cases, features can be compared in a number of ways and therefore both normalization 

and comparison techniques are crucial for understanding style classification. 

3.3.1 Feature Normalization 

     The raw numbers produced by the feature extraction process are more often than not 

scaled inconsistently.  Unless otherwise corrected, these inconsistencies result in 

variances that provide de facto feature weights increasing the importance of some 

features and decreasing that of others.  Moreover, many features require several levels of 

normalization.  For example, features such as line length and palette scope must be 

normalized by the total number of pixels in an image before normalizing the values with 

respect to other features.  Normalization therefore serves two important functions in 

feature comparison in that the techniques ensure that features are internally consistent and 

features are directly comparable.   
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Table 15: Feature Values before Normalization 

No. of Colors Intensity Mean Intensity Skew No. of Lines Line Orientation 

3607 65.2 -0.76 304 -45 

1054 155.4 0.34 237 0 

2365 109.3 -0.18 127 45 

     Table 15 displays feature values prior to the normalization process.  The number of 

colors is at least an order of magnitude larger than any other feature considered.  If the 

features are not normalized, the number of color values will overshadow the differences 

in other features.  For the sake of example, assume that rows 1 through 3 are features 

extracted from images of 500 x 500, 300 x 300, and 400 x 400 pixels respectively.  The 

first step is to ensure that the values in each feature column are internally consistent.  In 

particular, the number of colors and the number of lines depend on the size of the image.  

That is to say, larger images are statistically more likely to have more colors and more 

lines due to higher resolutions.  Therefore, these features must be normalized by the total 

number of pixels in the image.  Table 16 displays the same feature values after the 

features have been normalized for internal consistency. 

Table 16: Feature Values adjusted for Image Size 

No. of Colors Intensity Mean Intensity Skew No. of Lines Line Orientation 

0.014428 65.2 -0.76 0.001216 -45 

0.011711 155.4 0.34 0.002633 0 

0.014781 109.3 -0.18 0.000793 45 
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     After adjusting the values for image size where necessary, the features must be 

rescaled to facilitate comparison.  In this study, two normalization techniques are used.  

The first technique normalizes features to values between negative one and one based on 

the maximum absolute value of the feature values.  Formally, the normalized features are 

defined as:  

|)max(|
)(
V

iV  

where V(i) represents each element in the feature vector and max(|V|) represents the 

maximum absolute value in the feature vector.  Table 17 demonstrates the sample 

features normalized using this technique.  The technique preserves the sign (+/-) of each 

value, which introduces an inconsistency between feature vectors with mixed signs and 

those with all positive or all negative values.  Feature vectors with mixed signs therefore 

can have twice the range of feature vectors consisting of values with only one sign.   

Table 17: Features Normalized by Maximum Absolute Value 

No. of Colors Intensity Mean Intensity Skew No. of Lines Line Orientation 

0.97 0.41 -1.0 0.46 -1.0 

0.79 1.0 0.44 1.0 0.0 

1.0 0.70 -0.23 0.30 1.0 

 

     The second normalization technique [44] standardizes all values in a feature vector to 

values between zero and one.  Although the technique does not preserve the sign of the 
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values, the standardized values guarantee range consistency.  Formally, the 

normalization technique is defined as 

)min()max(
)min()(
VV

ViV
−

− , 

where V(i) represents individual values in the feature vector, min(V) represents the 

minimum value in the feature vector, and max(V) represents the maximum value in the 

feature vector.  Table 18 shows the test features normalized with this technique. 

Table 18: Features Normalized by Max and Min Values 

No. of Colors Intensity Mean Intensity Skew No. of Lines Line Orientation 

0.88 0.0 0.0 0.22 0.0 

0.0 1.0 1.0 1.0 0.5 

1.0 0.48 0.52 0.0 1.0 

 

3.3.2 Feature Comparison 

     After scaling the features appropriately, the feature vectors must be compared to 

determine the relative nearness of two images.  The literature includes a number of 

distance metrics including City Block, Euclidean, Minkowski, and Mahalanobis [44, 

131].  Unless otherwise stated, the study used the Euclidean distance metric because of its 

ease of implementation and its general utility.  Although other distance measures may 

increase classification accuracy, the detailed analysis of distance measures is beyond the 

scope of this study. 
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     There are special cases where the Euclidean distance is not only an inappropriate 

distance metric but an inaccurate one as well.  Researchers have shown that the Euclidean 

distance metric is inaccurate when comparing ordinal histograms like saturation 

histograms and modulo histograms such as those representing hue [19].  Researchers 

have devised accurate methods of comparing histograms to account for the specific 

properties of ordinal and modulo data.   

     The hue histograms discussed above introduce another important distance measure: 

the distance between two HSV values.  The Euclidean distance between two HSV values 

is inappropriate because it leads to inconsistencies due to the circular nature of the hue 

measurement.  For example, when comparing hue values of 0.9 and 0.1, the desired 

difference is 0.2 but the Euclidean distance returns 0.8.  Another approach to comparing 

HSV values uses the polar coordinate system to calculate the difference.  The method for 

HSV difference consists of the following steps: convert the hue values to radians, use the 

hue and saturation pairs to calculate the distance between the points using the law of 

cosines, and finally calculate the Euclidean distance of the hue/saturation distance and the 

value distance.  Figure 24 demonstrates several examples of the hue saturation distance 

measure.  The hue measurement is the angular measure of the circle (theta), and the 

saturation is the distance from the center (rho).  For example, the distance between cyan 

(0.5, 1.0, 1.0) and red (0.0, 1.0, 1.0) is 2.0. 
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Figure 24: Hue-Saturation Distance Measure 

     In order to compare cyan and red, the following calculations are required.  First, 

convert the hue channel of cyan (0.5, 1.0, 1.0) and red (0.0, 1.0, 1.0) to radians: 

π*180
360*huehrad =  

resulting in cyan (3.14, 1.0, 1.0) and red (0.0, 1.0, 1.0).  Second, the hue and saturation 

values are used to calculate the distance between points with the law of cosines: 

)cos(2 1221
2
2

2
1 huehuesatsatsatsathsdist −−+= . 
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Figure 24 represents the distance between cyan and red with a black line.  Third, the 

absolute value of the distance between the value channels was calculated: 

|| 21 valvalvdist −= . 

Finally, the Euclidean distance of the hsdist and vdist components was calculated to find 

the distance between the two colors: 

22 vdisthsdisthsvdist += . 

The overall distance between cyan and red is 2.0 because the value channel of both colors 

is 1.0 resulting in a vdist of 0. 

     The HSV distance metric discussed above was a fundamental component of the 

palette comparison technique associated with the palette description feature.  It is often 

desirable to compare the entire palette of an image to that of another image.  The distance 

between two palette descriptions is the slice-by-slice difference of the two palettes.  The 

palette comparison method requires the following six steps to determine the difference 

between two palette descriptions.  First, the difference between HS pairs was calculated 

with the law of cosines: 

)cos(2 1221
2
2

2
1 huehuesatsatsatsathsdist −−+= . 

Second, the distance between values was calculated: 

|| 21 valvalvdist −= . 
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Third, the distance between the variances was calculated: 

|| 21 vrvrvrdist −= . 

Fourth, the difference between the color counts was computed: 

|| 21 countdistcountdistcountdist −= . 

After finding the above differences for each slice, the fifth step computed the overall slice 

distance: 

2222 countdistvrdistvdisthsdistslicedist +++= . 

Finally, the total palette distance is the sum of the slice distances normalized by the 

number of slices: 

n

slicedist
tpalettedis

n

i
i∑

== 1 . 

3.4 Feature Selection and Weighting 

     This study combined the features in order to compare them to similar features.  The 

potential feature space is expansive and therefore requires a technique for winnowing the 

feature set when combining large numbers of features.  The present study used three 

techniques to isolate desirable features from those that are not.  First, the feature set 

should be semantically relevant: the features should translate to some concept in the 

domain.  Second, the feature set should aim to reduce noise.  Third, the feature set should 
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reduce redundancy as much as possible.  The feature selection and weighting 

algorithms were based on these three criteria.   

     Semantic relevance is the most difficult of the criteria to define.  The concept has two 

major components: features must preserve visual properties of the image and the features 

must relate to the image and be identifiable as such.  Features based on the discrete 

cosine transformation do not preserve the spatial arrangement of an image.  Although 

these features have proven useful for painting classification tasks, it is rather difficult to 

envision how these coefficients relate to artistic style and its formal elements.  Feature 

sets do not necessarily relate to specific images but rather relate to local features 

decoupled from their images of origin.  The study rated features with one of three 

subjective labels: low, medium, or high relevance.  Most of the features surveyed were of 

medium and high semantic relevance but the study considered some low relevance 

features for the sake of comparison. 

     Choosing semantically relevant features was largely a subjective and manual 

enterprise.  The removal of noise and redundancy from the feature set relied on standard 

techniques from signal processing.  Entropy measures the degree of disorder in a signal 

[43, 44].  The higher the entropy the more a signal appears as noise.  The study 

considered each feature as a channel with a measurable degree of disorder.  The features 

were assigned weights according to their relative entropies: the feature with the lowest 

entropy receives the greatest weight.  The affect of this technique was to discount the 

importance of those features least likely to provide discriminating data. 
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     After filtering the feature set for noisy features, the program checked the features 

for redundancy.  It is possible for example, that two features provide the same type of 

discriminating power such as the standard deviation and the variance.  This redundancy 

provides a de facto weighting for these features that may hurt the overall performance of 

classification.  Therefore, the features were tested for mutual information [43] against 

other features in the dataset.  Those features sharing the most information with others 

received lower weights than those that were relatively independent from other features.   

     It is important to say that other approaches to feature selection and weighting were 

possible.  Heuristic approaches such as those offered by genetic algorithms or simulated 

annealing might serve to find the best balance of features.  Other approaches include 

techniques based on principal component analysis and independent component analysis.  

Although these techniques may be considered in the future, the techniques based on 

information theory were effective in many applications and provided a decent basis for 

weighting and selecting features.  The result of the feature selection and weighting 

component is a feature set that is semantically relevant and therefore suitable for a wide 

range of applications relevant to the domain, distant from noise, and largely free of 

redundancy. 

3.5 Conclusion 

     The feature review presented in this study evaluated features based on performance, 

classification accuracy, information theory, and semantic relevance.  The review revealed 

a preference for texture features that tended to downplay the potential role of color 

features.  When examining additional color features, the survey demonstrated that 
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preserving frequency and spatial information in the color channels does not necessarily 

improve classification accuracy.  The proposed palette description feature and its 

accompanying palette comparison method proved to be as effective as similar color 

features with significantly less storage overhead.  The feature survey was a necessary pre-

study for the material related to analysis and evaluation in Chapter 4.  The features 

discussed in this chapter served as the raw material for the analytical and machine 

intelligence techniques discussed in the next chapter.   
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Chapter  4  
 

Classification, Visualization, and Evaluation of Artistic Style 

4.1 Introduction 

     The feature study of Chapter 3 supplies the necessary raw data for the advanced 

analysis techniques of this chapter: classification, visualization, and evaluation.  

Researchers have treated the classification of artistic style as outlined in Chapter 2.  The 

goal of the present discussion is to outline classification techniques with broad 

applicability: k-nearest neighbor and an interactive approach.  Despite the appeal of 

applications that focus on classification, visualization techniques often provide additional 

analytical capabilities for researchers interested in the structure of data.  This chapter 

explores three useful approaches to visualizing artistic style: hierarchical clustering, self-

organizing maps, and multidimensional scaling.  The evaluation of results concerns all 

researchers and the chapter concludes with a discussion of how to interpret the 

classifications and visualizations obtained.    

4.2 Classification 

4.2.1 k-nearest neighbor 

     The k-nearest neighbor algorithm is a well-known supervised classification technique 

[43].  The algorithm classifies test instances by assuming the label of the most frequently 

occurring neighbor of k training samples.  After examining the k closest training samples, 
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the test sample received the label with the most votes.  The distance between samples 

is calculated by some vector distance measure such as the Euclidean distance.  The 

critical decision in the implementation of the k nearest neighbor algorithm is choosing or 

finding the best window size (k).  The standard technique for this type of optimization is 

ten-fold or leave-one-out cross validation [43].  Although this technique achieves high 

degrees of accuracy in studies, the broad range of testing conducted in this study 

precludes its use in this context.  Instead the tests were conducted with preset k values (1, 

5, 13, 54) appropriate for the given class size.   

     Using the k-nearest neighbor algorithm described above, the study conducted a 

number of tests against the test databases discussed in Chapter 5.  First, the study 

evaluated each feature independently to gauge its ability to classify style.  Second, the 

study tested the features from each of the four feature classes discussed in Chapter 3 as a 

group using the following weighting techniques: unweighted, entropy-weighted, 

independence-weighted, and both entropy- and independence-weighted.  Third, the study 

combined and tested the overall best of breed features from each group together using the 

feature selection techniques described previously.  In addition to the percent correct and 

semantic relevance, the noise and independence characteristics of the test sets determined 

the best features. 

4.2.2 Interactive 

     The k-nearest neighbor testing described above was repeated using an application-

oriented classification scheme.  The interactive technique was a modified version of k-

nearest neighbor where the query result comprised the ten closest images as one might 

expect an image indexing and retrieval system to behave.  If the query returned at least 
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one image from the appropriate class, the application classified the result as a success.  

The interactive technique was developed to support an early prototype of a simple fine-

art painting classification system.  Figure 25 displays the result of a query using the 

interactive technique.  The interactive approach to classification offers two methods of 

gauging  

 

Figure 25: Interactive Query Result 

which artist painted a test image.  First, a user could deduce the correct artist by noting 

the number of paintings returned per painter.  The more paintings returned in a query by a 

particular artist the greater the probability that that artist is the painter of the test image.  

Second, the system arranged the paintings in rank order with the closest painting in the 

upper left position and the farthest painting in the lower right.  In the example in Figure 
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25, a user would deduce correctly that Turner painted the test image because the result 

set includes three of his paintings holding ranks one, two, and six in the result set. 

Table 19: Supervised Learning Test Summary 

Test Classification Method Weighting Method K  Window Sizes  

Individual Feature Tests k-nearest neighbor unweighted 1,5,13,54 

Individual Feature Tests Interactive unweighted 10 

Feature Class Tests k-nearest neighbor unweighted,entropy,mutual 

information, entropy and 

mutual information 

1,13 

Integrated Feature Tests k-nearest neighbor unweighted, entropy mean 1,8,13,21 

     Table 19 summarizes the supervised learning tests run for the feature evaluations and 

integrated feature tests.  Chapter 5 lists the full results for the supervised learning tests. 

4.3 Visualization 

4.3.1 Unsupervised Learning 

     The k-nearest neighbor and interactive techniques described above are examples of 

supervised learning techniques [43].  Supervised learning techniques require the division 

of datasets into training, testing, and validation sets.  These techniques as applied to 

painting classification produce accurate classification results similar to the forensic 

systems discussed in Chapter 2.  Although the approach is useful and effective for 

smaller targeted datasets, the approach does not easily scale to larger databases 

comprising a greater number of styles.  Moreover, often researchers do not desire 

classification but rather information concerning the relationships of styles to other styles.   
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     Unsupervised learning approaches and clustering techniques provide a different 

basis for classifying artistic style.  First, unsupervised techniques do not require the 

separation of datasets into training, testing, and validation subsets.  Second, clustering 

techniques often relate to visualization methods appropriate to presenting the 

arrangement of complex data.  The visualization techniques offered by clustering 

approaches provide a convenient basis for analyzing style and the relationships between 

styles in ways not possible with supervised techniques geared toward classification.  

Third, most unsupervised techniques are also dimension reduction techniques suiting 

themselves to working with larger datasets.  Unsupervised learning techniques are 

important for a general approach to style classification because they provide mechanisms 

for analyzing and visualizing the complex relationships that exist among painting styles.   

4.3.2 Hierarchical Clustering 

     Hierarchical clustering provides information concerning clusters and sub clusters 

found in data.  In contrast to flat descriptions of data where clusters are primarily disjoint, 

hierarchical clusters identify multiple levels of structure in data convenient for 

classification systems like those used in biological taxonomy [43, 44, 137].  The 

technique as applied to artistic style provides detailed information concerning the relative 

proximity of styles.  As with many clustering techniques, hierarchical classification offers 

a natural visualization, the dendrogram.  Figure 26 depicts a style dendrogram of 

Impressionist and Post-Impressionist painters.  
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Figure 26: Hierarchical Cluster of Impressionist and Post-Impressionist Paintings 

     The clusters depicted in the dendrogram in Figure 26 were calculated in the following 

manner.  The program implemented for this example extracted texture features from the 

images in the test database of Impressionist and Post-Impressionist painters aggregating 

these values by painter.  A difference matrix of Euclidean distances was calculated as 

input to an agglomerative or bottom-up hierarchical clustering algorithm based on the 

farthest neighbor or complete-linkage algorithm [43].  The complete-linkage algorithm 

determines cluster distance by measuring the most distant nodes in two clusters.  

Formally, the complete-linkage algorithm [43] is defined as: 

||'||max),max( xxDDd ji −=  
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where Di and Dj are clusters and x and x’ are nodes in clusters Di and Dj respectively.  

According to the features measured, fractals, fast Fourier points, and intensity mean, 

Seurat and Van Gogh, both Post-Impressionists, are separated from the Impressionist 

painters and Cezanne.   

4.3.3 Self-Organizing Maps 

     Although agglomerative clustering provides opportunities for organizing styles in a 

hierarchical way based on distance metrics, other approaches offer a greater range of 

analytical capabilities.  Self-organizing maps [43, 93, 118] also known as, self-organizing 

feature maps, topologically ordered maps, or Kohonen self-organizing feature maps are 

one such unsupervised technique.  Self-organizing maps transform all points in the 

feature space to points in a target space preserving the relative distances and proximities 

between instances as much as possible.  The appeal of self-organizing maps derives from 

its advanced visualization capabilities and analytical techniques.  Figure 27 displays a 

basic self-organizing map for the Impressionist and Post-Impressionist database 

considered in previous examples.   

     The basic self-organizing map represents clusters of each painting labeled by its 

painter.  Every basic self-organizing map specifies characteristics describing its structure.  

The topology of a self-organizing map may be hexagonal as in Figure 27, a grid, or 

random.  The number of nodes in the map is also configurable; the example in Figure 27 

is a four by four configuration.  In addition to these characteristics, self-organizing maps, 

as a type of neural network, specify other characteristics common to many learning 

algorithms including the number of epochs, initialization functions, and training 

algorithm.  The self-organizing map in Figure 27 represents the results of a 5000 epoch 
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training duration with a random initialization of map nodes. The self-organizing map 

was trained with the Levenberg-Marquardt backpropagation training function.  A visual 

inspection of the self-organizing map reveals a reasonably clustered map with several 

nodes clearly dominated by a single painter.  By simply changing the labels one can 

analyze the clusters according to style class, Impressionist or Post-Impressionist, painter, 

or painting title.  Figure 27 demonstrates significant style overlap in the top center nodes 

labeled 10 and 8 as these nodes contain just under one third of the entire database and at 

least one painting from each painter. 

 

Figure 27: Self-Organizing Map 
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     In addition to clustering samples of paintings, the basic self-organizing map 

organizes feature aggregates of a painter’s style.  Figure 28 shows a basic self-organizing 

map of two by two nodes arranged on a hexagonal sheet according to color and texture 

features.  In this example, Cezanne, Sisley, and Van Gogh cluster at one node opposite 

Pissarro denoting that his work is farthest from the work of those at the cluster of three.  

Despite the potential of the basic self-organizing map, there are two questions worth 

considering when evaluating the quality of a map [118].  First, what features contribute to 

the organization of the map?  Second, to what degree is the map organized and how do 

we recognize this degree of organization? 

 

Figure 28: Self-Organizing Map of Aggregate Values 
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     Advanced self-organizing map techniques answer both of these questions.  The 

visualizations above suffer because they do not offer opportunities to identify cluster 

boundaries [93].  The unified distance matrix representation remedies this by illustrating 

the clusters of codebook vectors in the self-organizing map.  This visualization technique 

shows the average distance between codebook vectors or neurons in a grayscale image.  

In Figure 29, light shades denote small average distances and dark shades identify large 

average distances.  In essence, the dark nodes form boundaries between clusters.   

 

Figure 29: Unified Distance Matrix representation of Self-Organizing Map 
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     The unified distance matrix visualization represents the average distance between 

codebook vectors or neurons considering all available features, which in this case 

included forty-three light features discussed in Chapter 3.  In order to identify which 

features contribute to the clustering, it is possible to construct unified distance matrix 

representations for each feature as in Figure 30.  In this example, eight of the forty-three 

light features considered are shown with the data labels mapped onto the representations.  

Each feature provides a different visualization of the data with the Peak Count, Global 

Standard Deviation, and the Global Kurtosis showing the most similarity to the unified 

distance matrix.  By examining the clusters produced by individual features, we can see 

that little similarity or consistency exists in the clusters generated by these light features 

on the Impressionist and Post-Impressionist dataset. 

 

Figure 30: Unified Distance Matrix with Select Feature Components 
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     The general impression offered by an analysis of individual features suggests that 

perhaps the light features in question are a poor basis for clustering this data.  In order to 

gauge this question with more depth, we must consider the measurement of error found in 

the map.  The quantization error or average unit of disorder is the average distance 

between each input data vector and its best matching unit or codebook vector.  For the U-

matrix in question the average unit of disorder is rather high (0.8395) confirming our 

intuited observation that this feature set does not lend itself well to clustering the work of 

these painters.  Figure 31 displays the average unit of disorder for the unified distance 

matrix considered throughout this example. 

 

Figure 31: Unified Distance Matrix - Label Representation of Self-Organizing Map 
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     Further evidence of the poor quality of this self-organizing map is gathered from 

the examination of the average unit of disorder after each epoch.  Figure 32 displays two 

graphs tracking the quantization error.  The top graph shows that the quantization error 

decreases slowly at first and then ever more quickly as the epochs progress.  The pattern 

displayed is exactly the opposite of what should be happening: if the self-organizing map 

quality were better, there would be a period of rapid decrease in the early epochs when 

large global restructuring takes place and gradual refinement in the later epochs.  The 

bottom graph displays the best matching units in red plotted against the input data vectors 

after the training period has completed.  There are a number of data vectors quite distant 

from the best matching units. 

 

Figure 32: Self-Organizing Maps Assessment with Quantization Error 
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     In order to improve the quality of the self-organizing maps, the algorithm must be 

tuned and a better basis for comparison (better features) selected.  The more advanced 

implementations of self-organizing maps provide additional tunable parameters including 

additional neighborhood functions, initial neighborhood radius settings, final 

neighborhood radius settings, and additional topology options.  The neighborhood 

function determines how codebook vectors are weighted.  The implementation for the 

example in this study used the Gaussian neighborhood function.  The initial and final 

neighborhood radius parameters determine the distances considered when applying the 

neighborhood function at both the beginning and the end of the training sequence 

respectively.  The shape used in this example was a sheet but cylinder and toroid (donut) 

shapes are available as well.  The self-organizing map and its representations provide 

opportunities to analyze and assess the role of individual features in style relationships. 

4.3.4 Multidimensional Scaling 

     Although self-organizing maps provide broad analytical powers for analyzing features 

and clusters of paintings, they often obscure the arrangement of sample paintings within 

clusters.  There are often cases when the paintings themselves and their relationships to 

each other are the central focus of study.  In these cases, multidimensional scaling [43, 

44] techniques serve rather well.  Multidimensional scaling is a data reduction technique 

that projects data with high dimensionality onto a Euclidean space preserving the original 

distances of the data points in a space that is easier to visualize.  Figure 33 shows a 

multidimensional scaling analysis of light features derived from ten paintings of Cezanne.  

Each circle in the plot represents a painting in the database.  By averaging the values of 

the samples, the study constructs a theoretical style center that represents the central 
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stylistic tendency of the paintings considered.  The average sum of the distances 

between each sample and the stylistic center provides an estimate of stylistic variance.  

Figure 33 displays the paintings that fall within the style variance with green circles and 

those outside of the style variance with blue circles.   

 

Figure 33: Multidimensional Scaling Analysis of Cezanne's Paintings 

     The style center and variance constitute a method of characterizing the style of an 

artist with respect to particular features.  These style descriptors provide an entire range 

of analytical opportunities.  For example, Figure 34 displays a list of the paintings plotted 

in Figure 33 ordered by their proximity to the style center.  The first painting in this list 
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therefore represents the closest to the theoretical stylistic center of Cezanne’s work 

with respect to the light features measured. 

 

Figure 34: Paintings sorted by Distance from Style Center 

     The utility of multidimensional scaling extends to broader class considerations as 

well.  Figure 35 plots the style centers of the six painters considered throughout this 

chapter against that of the theoretical style center for the entire class.  With respect to the 

light features considered, Cezanne’s style is the closest to the theoretical center of the 

entire group.  As evidence of this, Cezanne’s style center is closest to the overall style 
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center and more of Cezanne’s paintings are inside the overall style variance than the 

paintings of any other painter.  Another interesting observation is that it is possible to 

draw a line from the Sisley style center to the Monet style center that divides Post-

Impressionist painters from Impressionist painters albeit with several Post-Impressionists 

close to the demarcation.   

 

Figure 35: Multidimensional Scaling Analysis of Impressionist and Post-

Impressionist Paintings 

     The multidimensional scaling approach to style classification allows for the 

comparison of theoretical style centers of painters and groups of painters.  While this 

approach has important analytical significance in its own right, it also provides a 

 



 107

technique for evaluating the quality of classifications and perhaps of the class 

definitions themselves.  As will be considered in the next section, the style variance is 

one predictor of the classifiability of certain datasets.  

4.4 Evaluation 

4.4.1 Introduction 

     An interesting finding of this study is the wide range of success and failure in 

classification tasks.  That is to say that the artwork of certain artists was considerably 

easier to classify than that of others.  The study considered two possible explanations of 

this phenomenon: variance of data quality and variance of class quality.  Data quality 

regards the relative properties of the image file itself in particular its resolution.  Are 

paintings with higher resolution easier to classify?  Class quality relates to the relative 

cohesion of a class.  For example, perhaps Rembrandt is easier to classify because his 

style variance is smaller than that of other artists.  Are classes with lower style variance 

easier to classify? 

4.4.2 Data Quality 

     The nature of the data is a likely factor in classification accuracy.  Several studies [60, 

107] focus on a few high quality images to achieve high levels of accuracy in 

classification tasks.  It is intuitive to assume therefore that data quality has a proportional 

relationship to classification accuracy: as the data quality increases the classification 

accuracy increases as well.  The principal measurements of data quality in this context 

are image resolution measured in pixels, file size measured in bytes, and the ratio of bytes 
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to pixels.  Table 20 shows the data quality measurements and the accuracy of results 

for the test considered. 

Table 20: Data Quality Measurements 

Artist Mean Pixels Mean Bytes Bytes per Pixel Accuracy(%) 

Cezanne 916,559 156,399 0.1706 100 

Monet 729,664 179,350 0.2458 20 

Pissarro 590,655 157,190 0.2661 0 

Seurat 766,260 241,553 0.3152 60 

Sisley 849,990 199,670 0.2349 20 

Van Gogh 775,980 201,501 0.2623 0 

     The number of pixels proved to be the best predictor of classification accuracy of the 

data quality measures considered.  Figure 36 plots the relationship between the average 

number of pixels in an image class against the accuracy of classification for that class.  

Figures 37 and 38 display similar graphs plotting the average bytes and bytes per pixel 

ratios of each class.  Despite the relative success of this measurement, a few details of the 

data suggest that it is incomplete as an explanation of accuracy.  For example, despite the 

fact that the images of Sisley are on average about 80,000 pixels (9%) larger than those 

of Seurat the system struggled to classify those images.  Van Gogh and Seurat, on the 

other hand, have roughly equal (within 2% or 12,000 pixels) measurements and the 

system failed to classify a single painting of Van Gogh correctly. 
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Figure 36: Pixels vs. Classification Accuracy 

     Neither bytes nor bytes per pixel provide a better explanation of the accuracy results 

for this test.  The relationship of bytes to accuracy (Figure 37) is quite ineffective 

essentially cutting the data in two sets with no apparent relationship to accuracy.  

Although the bytes per pixel (Figure 38) measurement improved on bytes alone, it 

separates the two most successful classification results, Cezanne and Seurat, to a large 

degree.  Therefore, despite these concerns, the data quality measured in pixels most likely 

holds some relationship to classification accuracy.  Moreover, several aspects of the 

feature extraction and normalization phase, i.e. size normalization, suggest that there may 

be other predictors of classification accuracy. 
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Figure 37: Bytes vs. Classification Accuracy 

 

Figure 38: Bytes per Pixel vs. Classification Accuracy 
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4.4.3 Class Quality 

     Another method of gauging classification accuracy involves measurements of class 

quality.  In previous sections, this study outlined a technique for describing useful 

properties of a style class including style variance and the distance between a class style 

center and the global style center.  In this section, these metrics function as predictors of 

classification accuracy.  Figure 39 shows the global style center and variance for the sixty 

samples in the Impressionist/Post-Impressioninst dataset detailed in Chapter 5.  A yellow 

cross represents the global style center and a yellow ellipse represents the variance.  The 

colored crosses depict the class style centers.  Table 21 summarizes the class quality 

measurements for this example. 

 

Figure 39: Multidimensional Scaling Analysis of Style 
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     The style variance and the distance between the class centers and the global center 

provide a useful way to evaluate classification accuracy.  The style description ratio 

proposed in this study is the ratio of the class center from the global style center divided 

by the class variance.  Formally, the style description ratio is: 

cv
gccc

S
2)( −

=  

where S is the style description ratio, cc and gc are the class center and global center, and 

cv is the class variance.  As the style description ratio increases, theoretically, the 

accuracy of classification should increase as well.  The rationale for this metric depends 

on two assumptions about class quality: classes whose central tendency is far from the 

global style center should be easier to classify than classes closer to the global center and 

classes whose variance is small should be easier to classify than classes with larger 

variances. 

Table 21: Class Quality Measurements 

Artist Style Variance Distance from Global Style Center Style Description Ratio Accuracy (%) 

Cezanne 2.1265 1.5351 0.7219 100 

Monet 3.5799 0.0712 0.0198 20 

Pissarro 3.1643 0.4832 0.1527 0 

Seurat 2.743 1.3812 0.5035 60 

Sisley 3.2783 0.6856 0.2091 20 

Van Gogh 3.9409 0.4548 0.1154 0 
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Figure 40: Style Description Ratio vs. Classification Accuracy 

     Figure 40 plots the style description ratio of the test data against the classification 

accuracy.  The style description ratio provides the best explanation of the classification 

accuracy thus far with only one outlier in the data (Monet).  The style description ratio is 

at least as effective as the pixel measurement in explaining the classification results 

presented.   

4.4.4 Discussion 

     The evaluation technique discussed above has an important implication that deserves 

mention.  In the test case examined in this chapter, the classes considered are fairly 
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straightforward and difficult to dispute: most people identify the artist of a work to be 

a relevant, useful, and reliable category for discussing artwork.  There are other 

categories, however, that are more tenuous and contentious such as those based on 

movement, school, geography, or period.  For example, the introduction to this study 

mentioned that two reputable textbooks often categorized individual works and painters 

in different ways.  The evaluation technique outlined above provides a basis for gauging 

the quality of these categories as well by defining a class variance and distance to a 

global style center.  In effect, it allows a researcher to identify the formal properties that 

delineate a particular class from other related classes if such properties exist and are 

measurable.  In other words, the evaluation technique provides a method of testing the 

formal properties of art-historical categories and of comparing the formal properties of 

these categories. 

     In particular, the other classification schemes discussed can offer additional insight 

into the class relationships by arranging the data in taxonomic formats.  Consider the 

dendrogram of the aggregate test data in Figure 41.  The graph reinforces many of the 

observations gleaned from the multidimensional scaling analysis of the same data.  

Monet’s style center is the closest to the global style center and Cezanne and Seurat are 

among the farthest apart.  Another important aspect of the graph is the sub cluster 

comprising Cezanne and Van Gogh grouping two important Post-Impressionists together 

automatically.  In fact, this visualization demonstrates that all three Post-Impressionists 

(Cezanne, Seurat, and Van Gogh) are roughly equidistant from the style center dominated 

by Monet and Pissarro.  This type of analysis should be possible for aggregates of large 

groups of styles to identify and evaluate relationships among styles. 
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Figure 41: Aggregate Style Dendrogram 

4.5 Conclusion 

     Classification accuracy has been the most important benchmark for computer science 

approaches to style classification.  The focus on accurate classification assumes that 

problems of attribution are the only important questions related to style.  A broader 

approach to style classification permits the analysis of the subtle relationships among 

styles.  Unsupervised learning techniques provide the theoretical groundwork for 

complex style analysis including the visualization of style clusters, the construction of a 

taxonomic system of the formal elements of style, and the evaluation of classification 
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results.  These combined techniques form the basis for a general style classification 

system. 
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Chapter  5  
 

Results   

5.1 Introduction 

     The study conducted two types of tests run against two databases of paintings for each 

class of formal element: light, line, texture, and color.  Feature tests identified the most 

effective features in a particular class with k-nearest neighbor and interactive tests.  

Integrated tests evaluated the features together to identify noise resistant features with 

little redundancy.  In addition to these supervised learning tests, the study conducted 

unsupervised learning tests to visualize and evaluate the classification results.  The 

chapter describes the data sources used for testing and presents the results in tabular 

form.  Each section presents the result set with discussions of observations and concerns 

and summarizes the primary findings.  The study conducted the tests on a Dell Latitude 

D600 with a 1700 MHz Pentium Processor and 1 GB of RAM.  The study implemented 

the algorithms using Matlab 6.5.   

5.2 Image Databases 

5.2.1 Artist Database  

     The artist database stores the artwork of 52 painters from the Web Museum database 

published online (www.ibiblio.com/wm/paint) [127].  The database organizes JPEG 

images representing a broad range of painting styles from Medieval to Modern.  The 
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dataset comprised a training set and a testing set and served primarily for feature tests 

with k-nearest neighbor and interactive tests.  Table 22 breaks down the training set of 

the artist database by artist.  For each artist, the table reports the number of images, the 

vertical and horizontal resolution, and the mean file size.  The final row in the table 

displays the total number of classes, the total number of images, the mean vertical and 

horizontal resolution, and the mean file size of the entire training set.   

Table 22: Artist Database Description: Training Set 

Class No. of Images Vertical Resolution Horizontal Resolution Mean File Size 

Aertsen 9 849 919 171529 

Altdorfer 10 725 674 95922 

Ast 9 485 684 65099 

Avercamp 10 623 959 125360 

Bacon 11 1074 790 158827 

Baldung 10 874 519 75161 

Bassano 10 717 762 103849 

Bosch 10 1164 647 191289 

Bouguereau 11 561 331 40330 

Bruegel 11 777 1021 195578 

Caravaggio 10 823 790 89181 

Cassatt 10 685 577 70128 

Cezanne 10 819 994 158966 

Chase 8 522 418 24130 
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Davis 10 906 961 135452 

Degas 10 840 844 115021 

Delacroix 10 733 809 125002 

Durer 10 927 785 133435 

Gauguin 10 807 857 128391 

Gogh, van 10 801 971 183837 

Greco 10 1046 707 162750 

Gris 10 1026 757 143149 

Hockney 10 869 995 143519 

Hopper 10 803 1024 147145 

Ingres 10 825 610 90868 

Kandinsky 10 700 1035 150318 

Kiefer 10 785 1097 282543 

Klimt 10 774 816 105799 

Malevich 10 952 715 84580 

Manet 10 623 665 73382 

Matisse 10 883 794 138214 

Memling 10 631 563 66870 

Modigliani 10 915 593 118500 

Monet 10 833 811 166409 

Morisot 9 583 601 66377 

Munch 10 903 853 153951 
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Piero 10 950 882 198015 

Pissarro 10 646 799 124991 

Pollock 10 953 937 230366 

Redon 10 968 884 202430 

Rembrandt 10 929 783 106824 

Renoir 9 696 527 67596 

Rubens 10 662 685 84625 

Seurat 9 704 790 108576 

Sisley 10 813 956 177933 

Toulouse-Lautrec 10 797 695 130843 

Turner 9 685 851 94135 

Velazquez 10 916 826 126063 

Vermeer 10 985 850 128424 

Watteau 9 667 695 76443 

Weyden 10 884 698 123862 

Whistler 9 954 660 67208 

Total: 52 classes 513 812 780 126553 

     Table 23 summarizes the testing set of the artist database.  For each artist, the table 

reports the number of images, the vertical and horizontal resolution, and the mean file 

size.  The final row in the table displays the total number of classes, the total number of 

images, the mean vertical and horizontal resolution, and the mean file size of the entire 

testing set.   
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Table 23: Artist Database Description: Testing Set 

Class No. of Images Vertical Resolution Horizontal Resolution Mean File Size 

Aertsen 9 796 889 136798 

Altdorfer 4 684 506 81911 

Ast 2 278 234 12793 

Avercamp 4 874 1375 227890 

Bacon 2 1084 776 109381 

Baldung 3 601 493 72469 

Bassano 2 879 969 144542 

Bosch 3 1087 776 189442 

Bouguereau 2 597 292 44006 

Bruegel 4 727 1020 175736 

Caravaggio 3 899 932 99757 

Cassatt 6 675 529 62104 

Cezanne 8 890 872 145832 

Davis 3 1026 816 134712 

Degas 4 669 491 35282 

Delacroix 7 704 779 108217 

Durer 5 1031 827 145360 

Gauguin 5 895 783 108927 

Gogh, van 6 899 860 180627 

Greco, El 8 1048 727 153263 

 



 122

Gris 6 1040 834 155725 

Hockney 3 885 870 97936 

Hopper 8 770 1046 166285 

Ingres 4 697 541 70672 

Kandinsky 7 709 754 111369 

Kiefer 1 1128 767 207797 

Klimt 7 884 714 118040 

Malevich 11 892 744 62684 

Manet 7 824 771 89194 

Matisse 3 743 551 111444 

Memling 2 600 461 35577 

Modigliani 6 778 697 86973 

Monet 10 733 769 117556 

Morisot 10 603 619 64269 

Munch 2 1019 808 169363 

Piero 7 850 918 185343 

Pissarro 4 822 900 191551 

Redon 6 1053 810 203097 

Rembrandt 34 853 789 100678 

Renoir 37 722 629 92502 

Rubens 7 587 747 95006 

Seurat 3 837 809 136804 
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Sisley 3 655 685 102231 

Toulouse-Lautrec 5 910 637 139041 

Turner 10 640 851 104818 

Velazquez 8 1038 819 128990 

Vermeer 6 1055 963 165157 

Watteau 4 631 724 83139 

Weyden 1 1092 766 185467 

Whistler 7 851 644 80984 

Total: 50 classes 319 813 758 115101 

 

5.2.2 Impressionist/Post-Impressionist Database 

     The Impressionist/Post-Impressionist database reconstructs the test database used by 

Herik and Postma [60] in the most thorough feature review to date.  The database served 

for feature evaluation and all supervised and unsupervised tests.  The set was divided in 

half for all supervised training tests.  Table 24 summarizes the Impressionist/Post-

Impressionist data by artist.  For each artist, the table reports the number of images, the 

vertical and horizontal resolution, and the mean file size.  The final row in the table 

displays the total number of classes, the total number of images, the mean vertical and 

horizontal resolution, and the mean file size of the entire database.   
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Table 24: Impressionist/Post-Impressionist Database Description 

Class No. of Images Vertical Resolution Horizontal Resolution Mean File Size 

Cezanne 10 889 1031 156399 

Monet 10 832 877 179350 

Pissarro 10 699 845 157190 

Seurat 10 810 946 241553 

Sisley 10 870 977 199670 

Van Gogh 10 810 958 201501 

Total: 6 60 818 939 189277 

5.3 Feature Evaluation 

    The feature evaluation rated features according to the following criteria: execution 

time, storage requirement, semantic relevance, interactive classification, and two k-

nearest neighbor tests.  The execution time measures the average time in seconds required 

to extract the feature from the image including size-related normalization.  The storage 

requirement lists the number of doubles required to describe the feature.  The semantic 

relevance of a feature describes the proximity of a feature to its analogue in formal art-

historical terms.  For example, many color features exhibit a high semantic relevance in 

that HSV color metrics closely correspond to the language used in the description of 

painting, but features like the discrete cosine transformation coefficients exhibit low 

semantic relevance because there is little direct connection to art-historical concepts.  The 

classification results represent the percent correct for each class given a particular test.  In 

test results, the notation of NA indicates that the test was not applied. 
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5.3.1 Light 

5.3.1.1 Artist Database 

     Table 25 displays the results of tests conducted for light features against the artist 

database.  The elapsed time column measured the average time required to extract the 

feature from images in the training set.  The storage requirement measured the number of 

doubles necessary to store the feature.  The semantic relevance field describes the 

proximity of the feature to its analogue in art-historical terms.  The interactive test 

measured the accuracy of classification in percent correct in a test scenario simulating an 

image retrieval system.  The result of pure guessing for the interactive test yields an 

accuracy of 20%.  The k-nearest neighbor tests measured the accuracy of classification in 

percent correct for tests with k equal to 5 and 54.  The result of pure guessing for the k-

nearest neighbor tests yields an accuracy of 2%.   

Table 25: Results of Light Features applied to Artist Database 

Feature E Time Storage Semantic Interactive kNN5 kNN54 

% of Dark Pixels 0.11 1 Medium 28.46 NA NA 

Luminance Peaks 0.13 1 Medium NA NA NA 

Mean  Deviation Intensity 0.12 1 Medium 30.71 NA NA 

Segmented Mean 0.12 9 Medium 30.33 9.14 11.28 

Segmented Variance 0.12 9 Medium 31.83 5.18 6.09 

Segmented Skewness 0.12 9 Medium 33.33 6.70 6.40 

Segmented Kurtosis 0.12 9 Medium 31.46 7.01 4.57 

Global Mean 0.11 1 Medium 27.34 6.70 8.84 
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Global Variance 0.11 1 Medium 21.34 7.01 3.35 

Global Skewness 0.11 1 Medium 25.46 5.18 3.35 

Global Kurtosis 0.11 1 Medium 22.09 5.48 2.74 

IXY 0.54 5 Low 42.32 14.02 6.70 

Intensity Histogram 0.11 256 Medium 33.70 9.45 6.70 

     Table 25 demonstrates four points concerning the relationship of these features to 

discussions of light in art-historical terms.  First, none of the features surveyed measure 

light in a semantically-relevant manner.  In part, this results from the relationship 

between light and content in a painting.  Particular objects cast shadows and therefore the 

accurate measurement of light depends to some extent on an interpretation of context not 

compatible with the general classification system proposed in this study.  Second, the 

IXY feature measuring the spread of intensity in X and Y coordinates in the image 

outperformed the other features despite its low semantic relevance.  This result 

challenges this study’s assertion that semantically-relevant features provide the best basis 

for style classification systems.  Third, features extracted from segmented images 

perform better than their global equivalents.  For example, the global kurtosis feature 

performed just slightly better than guessing, but the segmented kurtosis feature showed 

improved accuracy in all tests.  Fourth, despite the high storage needed for the intensity 

histogram, the additional information carried in this feature did not improve classification 

accuracy over other features.  In other words, additional information is less important 

than pertinent information to style classification tasks. 
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5.3.1.2 Impressionist/Post-Impressionist Database 

     Table 26 displays the results of tests conducted for light features against the 

Impressionist/Post-Impressionist database.  The k-nearest neighbor tests measured the 

accuracy of classification in percent correct for tests with k equal to 1 and 13.  The result 

of pure guessing for the k-nearest neighbor tests yields an accuracy of 16.7%.   

Table 26: Results of Light Features applied to Impressionist/Post-Impressionist 

Feature kNN1 kNN13 

% of Dark Pixels 10 20 

Luminance Peaks 26.7 13.3 

Mean Intensity Deviation 33.3 23.3 

Segmented Mean 33.3 16.7 

Segmented Standard Deviation 23.3 36.7 

Segmented Skewness 16.7 23.3 

Segmented Kurtosis 13.3 20 

Global Mean 16.7 16.7 

Global Standard Deviation 6.7 16.7 

Global Skewness 23.3 20 

Global Kurtosis 6.7 16.7 

     Table 26 reinforces some earlier observations related to Table 25.  The features 

extracted from image segments classified images at higher rates of accuracy than the 

same features extracted from the entire image.  In fact, many of the global features failed 
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to perform as well as blind guessing casting into doubt the utility of these features.  In 

this test, the mean intensity deviation performed better than other features in the group.   

     In an integrated test of light features run against the Impressionist/Post-Impressionist 

database, the light features considered in Table 26 were combined and weighted 

according to each feature’s distance from noise and redundancy compared to other 

features.  The integrated tests confirmed the resilience of the mean intensity deviation 

demonstrating its resistance to noise and its lack of redundancy with other features.  Of 

the features surveyed, the mean intensity deviation has the broadest applicability and is 

the most appropriate for general tasks in style classification.   

5.3.2 Line 

5.3.2.1 Artist Database 

     Due to time considerations, the survey tested only those line features with high 

semantic relevance: Canny contour measurements.  The feature classified paintings in the 

artist database at an accuracy of 44% in interactive tests.  The result supports the 

argument that features with high semantic relevance provide a strong basis for classifying 

style in painting.   

5.3.2.2 Impressionist/Post-Impressionist Database 

     Table 27 presents the results for line features tested against the Impressionist/Post-

Impressionist database.  The k-nearest neighbor tests confirmed that the Canny contour 

features performed well when compared to other features in the class.  In this test case, 

the accuracy of classification was proportional to the semantic-relevance.  The study 
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rated the block difference of inverse probabilities moments, gradient coefficients, and 

intensity edge ratio as features with medium semantic relevance.   

Table 27: Results for Line Feature Tests 

Feature kNN1 kNN13 

BDIP Mean 20 30 

BDIP Variance 20 26.7 

Canny Contour Lines: Number 20 23.3 

Contour Lines: Mean Length Major Axis 33.3 30.0 

Contour Lines: Std Length Major Axis 23.3 23.3 

Contour Lines: Mean Length Minor Axis 23.3 10.0 

Contour Lines: Std Length Minor Axis 23.3 20.0 

Contour Lines: Mean Area 13.3 30.0 

Contour Lines: Std Area 20 20 

Contour Lines: Mean Eccentricity 23.3 30.0 

Contour Lines: Std Eccentricity 33.3 26.7 

Contour Lines: Orientation Histogram 26.7 30.0 

Gradient Map Coefficient 26.7 23.3 

Intensity Edge Ratio 13.3 20.0 

     The test of integrated line features confirmed the observations previously discussed.  

The Canny contour features exhibited the most distance from noise and the least 

redundancy when measured against other features in the class.  Although the integrated 

tests do not surpass the results obtained by the most effective features, the test confirmed 

 



 130

that the Canny contour measurements performed the best of those surveyed according 

to classification accuracy, semantic relevance, noise resistance, and reduced redundancy. 

5.3.3 Texture 

5.3.3.1 Artist Database 

     Table 28 summarizes the results of texture feature tests conducted against the artist 

database.  The elapsed time column measured the average time required to extract the 

feature from images in the training set.  The storage requirement measured the number of 

doubles necessary to store the feature.  The semantic relevance field describes the 

proximity of the feature to its analogue in art-historical terms.  The interactive test 

measured the accuracy of classification in percent correct in a test scenario simulating an 

image retrieval system.  The result of pure guessing for the interactive test yields an 

accuracy of 20%.  The k-nearest neighbor tests measured the accuracy of classification in 

percent correct for tests with k equal to 5 and 54.  The result of pure guessing for the k-

nearest neighbor tests yields an accuracy of 2%.  The results indicate that wavelet 

statistical moments provide the quickest and most accurate basis for classifying style. 

Table 28: Results for Texture Features 

Feature E Time Storage Semantic Interactive kNN5 kNN54 

Fractal: Box Counting 1.06 9 Medium 34.1 6.7 8.2 

Fractal: Hurst Coefficient 1.98 27 Medium 40.8 NA NA 

Fast Fourier Transformation: 100 0.71 50 Low 27.7 NA NA 

Gabor Statistical Moments 21.9 64 Medium 48.3 NA NA 

Wavelets: Statistical Moments 0.62 36 Medium 48.3 14.9 11.2 
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5.3.3.2 Impressionist/Post-Impressionist Database 

     Table 29 displays the test results of texture features for the Impressionist/Post-

Impressionist database.  The k-nearest neighbor tests reinforce the notion that features 

based on wavelet transformations are the most effective style classifiers.  In fact, the 

results confirm the assumptions of many researchers in the field: texture features provide 

the most accurate basis for style classification.  For example, Gabor transformation 

moments and two types of fractal measurements outperformed features in other classes.   

Table 29: Results for Texture Features 

Features kNN1 kNN13 

BVLC Mean 23.3 30.0 

BVLC Variance 26.7 30.0 

Fractal: Box Counting 33.3 46.7 

Fractal: Hurst Coefficient 40 36.7 

Fast Fourier Transformation: 100 20.0 16.7 

Gabor Transformation: Mean 36.7 33.3 

Gabor Transformation: Variance 50.0 30.0 

GLCM: Contrast 16.7 23.3 

GLCM: Correlation 16.7 26.7 

GLCM: Energy 26.7 23.3 

GLCM: Entropy 20.0 26.7 

GLCM: Homogeneity 20.0 30.0 

GLCM: Inertia 16.7 23.3 
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GLCM: Inverse Difference Moment 20.0 26.7 

GLCM: Maximum Probability 20.0 23.3 

Wavelet Transformation: Mean 43.3 36.7 

Wavelet Transformation: Variance 50.0 30.0 

 

     The results of the integrated texture feature tests, revealed a less consistent view of the 

texture features than previous integrated tests for light and line features.  For example, in 

previous integrated tests the feature with the highest accuracy of classification was also 

the feature most distant from noise and the least redundant feature.  The texture features, 

on the contrary, demonstrate a broad range of responses.  Although the wavelet-based 

features are the most accurate classifiers, they exhibit high entropy and mutual 

information.  The box counting fractal measurements were the most distant of the 

features from noise.  The correlation of the gray level cooccurrence matrix was the most 

independent of the features and yet was a rather poor classifier.   

5.3.4 Color 

5.3.4.1 Artist Database 

          Table 30 summarizes the results of color feature tests conducted against the artist 

database.  The elapsed time column measured the average time required to extract the 

feature from images in the training set.  The storage requirement measured the number of 

doubles necessary to store the feature.  The semantic relevance field describes the 

proximity of the feature to its analogue in art-historical terms.  The interactive test 

measured the accuracy of classification in percent correct in a test scenario simulating an 
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image retrieval system.  The result of pure guessing for the interactive test yields an 

accuracy of 20%.  The k-nearest neighbor tests measured the accuracy of classification in 

percent correct for tests with k equal to 5 and 54.  The result of pure guessing for the k-

nearest neighbor tests yields an accuracy of 2%.   

     The results provide evidence for three themes discussed throughout this paper.  First, 

the HSV-based features performed better than their RGB equivalents in a number of 

cases.  Second, color features preserving frequency and spatial information do not 

improve the accuracy of style classification.  For example, the static histograms of an 

image map performed better in every category than the equivalent static histogram of an 

image index and the dynamic spatial chromatic histogram.  Third, the results indicate that 

the HSV palette description provided an accurate basis for classifying style with high 

semantic relevance and a low storage requirement.  In general, color features with high 

semantic value perform as well as those with medium or low semantic value. 

Table 30: Results of Color Features 

Feature E Time Storage Semantic Interactive kNN5 kNN54 

HSV Static Histogram: Index 1.72 768 High 47.9 11.9 9.7 

RGB Static Histogram: Index 0.49 768 Medium 44.6 11.6 9.1 

HSV Static Histogram: Map 0.29 768 High 49.1 14.9 15.9 

RGB Static Histogram Map 0.29 768 Medium 44.2 9.1 5.5 

HSIXY 1.42 5 Low 42.3 16.1 10.3 

RGBXY 0.65 5 Low 49.1 14.6 8.8 

HSV Palette Description 0.32 50 High 53.6 NA NA 
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HSV DSCH16 2.35 112 High 31.1 6.1 5.9 

RGB DSCH16 2.33 112 Medium 32.9 7.0 4.9 

5.3.4.2 Impressionist Database 

     Table 31 displays the test results of color features for the Impressionist/Post-

Impressionist database.  The k-nearest neighbor tests reinforce the notion that color 

features designed to preserve spatial information in the color channel do necessarily 

improve style classification.  For example, the HSV palette description performed 

slightly better than color coherence vectors, dynamic spatial chromatic histograms, and 

autocorrelograms.  Although the results were somewhat less convincing than those for 

the artist database, color features with high semantic relevance performed well for this 

classification task.  The integrated feature tests did not provide conclusive results for the 

color features. 

Table 31: Results of Color Features 

Feature kNN1 kNN13 

Hue Static Histograms: Index 16.7 23.3 

Saturation Static Histogram: Index 30.0 30.0 

Value Static Histogram: Index 26.7 10.0 

RGB Static Histograms: Index 33.3 23.3 

HSV Dynamic Histograms: Index 43.3 23.3 

Hue Static Histogram: Map 26.7 16.7 

Saturation Static Histogram Map 20 20 

Value Static Histogram: Map 16.7 13.3 
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RGB Static Histogram: Map 33.3 13.3 

HSV Color Coherence Vectors 23.3 23.3 

RGBXY 30.0 26.7 

HSIXY 36.7 26.7 

HSV Palette Description 36.7 30.0 

HSV DSCH 16 20.0 23.3 

HSV Autocorrelogram 16 10 20 

5.4 Overall Classification Results 

     The overall classification results record classification accuracies for features 

integrated from the four feature groups: light, line, texture, and color.  Conducted against 

the artist database, the interactive test measured an unweighted combination of three 

features: HSIXY, HSV histogram of the color map, and Wavelet Moments.  Conducted 

against the Impressionist/Post-Impressionist database, the k-nearest neighbor tests used 

thirteen extracted features: palette description, color coherence vector, HSIXY, 

correlation of the gray-level cooccurrence matrix, fractal dimension by box counting, 

fractal dimension by Hurst estimation, wavelet moments, contour line measurements, 

mean deviation of intensity, segmented mean and standard deviation of intensity, and 

static hue and saturation histograms obtained from the image index.  The test defined four 

values for k with the unweighted features and with features weighted by the mean 

entropy value of all fields comprising the feature. 
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5.4.1 Artist Database 

     The interactive test achieved an overall accuracy of 59 percent where the accuracy of 

pure guessing is 20 percent.  Although the overall result was disappointing, the results 

represent a wide variance of success when considering each artist separately.  Table 32 

reports the interactive test results organized by artist.   

Table 32: Results of Integrated Interactive Test 

Artist Interactive Test Accuracy 

Altdorfer 25 

Klimt 28.57 

Manet 28.57 

Sisley 33 

Renoir 35 

Monet 40 

Ast 50 

Avercamp 50 

Bassano 50 

Bruegel 50 

Cezanne 50 

Van Gogh 50 

El Greco 50 

Kandinsky 57.1 

Toulouse-Lautrec 60 
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Hopper 62.5 

Whistler 62.5 

Baldung 66 

Bosch 66 

Cassatt 66 

Gris 66 

Modigliani 66 

Seurat 66 

Delacroix 71.42 

Rubens 71.42 

Degas 75 

Ingres 75 

Aertsen 77.7 

Gauguin 80 

Pissarro 80 

Malevich 81.8 

Turner 81.8 

Vermeer 83.3 

Piero 85.7 

Rembrandt 85.7 

Velazquez 87.5 

Morisot 90.9 
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Bacon 100 

Bouguereau 100 

Caravaggio 100 

Chase 100 

Davis 100 

Durer 100 

Hockney 100 

Kiefer 100 

Matisse 100 

Memling 100 

Munch 100 

Redon 100 

Watteau 100 

Weyden 100 

Total 59.9 

 

5.4.2 Impressionist/Post-Impressionist Database 

     Table 33 displays the overall results of the integrated k-nearest neighbor feature tests.  

Again, the overall results failed to produce high levels of accuracy and yet demonstrated 

a wide variance of classification accuracy when analyzed by artist.   
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Table 33: Results of Integrated Feature Test 

Test kNN1 kNN8 kNN13 kNN21 

Unweighted 43.3 46.6 23.3 30.0 

Entropy Mean Weighting 50.0 40.0 33.3 36.7 

     Table 34 reports the variance of results from the entropy-weighted tests analyzed by 

artist.  Just as in the results for the artist database, some artists were easier to classify than 

others given a particular set of features.  The evaluation results reported in section 5.5 

suggest that the nature of the classes account for this disparity at least as much as the 

quality of the images in the test set. 

Table 34: Results of Integrated Feature Test Organized by Artist 

Artist kNN1 kNN8 kNN13 kNN21 

Cezanne 80 100 100 100 

Monet 20 40 20 20 

Pissarro 40 20 0 0 

Seurat 60 60 60 60 

Sisley 20 0 20 20 

Van Gogh 80 20 0 0 

5.5 Visualization Results 

     The classification results obtained from supervised methods like those discussed in 

section 5.4 provide information similar to forensic applications: they categorize paintings 

and researchers measure the quality of those categories in terms of classification 
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accuracy.  Supervised methods, on the other hand, contribute little to the 

understanding of how the classes in question relate to each other.  In terms of painting, 

supervised techniques provide little information about how a particular style relates to 

other styles.  Unsupervised learning techniques provide precisely this information 

including methods to present these relationships visually.  The present study proposed 

statistical descriptors of style based on the mean and variance measurements derived 

from features extracted from paintings.  The results below represent the application of 

these analytical techniques to the Impressionist/Post-Impressionist database.  The study 

suggests that these visualizations supplement and provide context for understanding the 

classification results. 

5.5.1 Style Variance Results 

     Figure 42 displays the multidimensional scaling analysis applied to the paintings of 

Cezanne.  The red plus in the figure represents the theoretical style center of the paintings 

in the database.  The red ellipse marks the theoretical style variance of the paintings.  

Figure 43 displays the same type of analysis applied to the paintings of Monet.  The 

juxtaposition of these figures provides an important point of comparison that sheds light 

on the integrated classification results reported in section 5.4.  The scale of the Monet 

figure is almost twice that of the Cezanne figure.  As one might expect, the style variance 

of Monet is also larger than that for Cezanne: where Cezanne’s style variance is 2.1, 

Monet’s is 3.5.  The fact that the Cezanne paintings cluster tightly around the mean helps 

to explain the higher accuracy of classification achieved in supervised tests. 
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Figure 42: MDS Analysis of Cezanne 

 

Figure 43: MDS Analysis of Monet 
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5.5.2 Global Variance 

     Figure 44 demonstrates how this analysis applies to style relationships.  The yellow 

star denotes the theoretical global style center and the yellow circle marks the global style 

variance.  According to the features used in the integrated feature test, Monet’s style 

center is the closest to the global style center explaining further Monet’s poor 

classification results.  On the other hand, Cezanne’s style center is the most distant from 

the global style center and the only style center outside of the global style variance.  In 

other words, the supervised techniques achieved higher degrees of accuracy for Cezanne 

because his work was most dissimilar from that of the other painters considered. 

 

Figure 44: MDS Analysis of Style Group 
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     Table 35 summarizes the results of the multidimensional analysis of these artists 

reporting the style variance, the distance of each style center from the global style center, 

the style description ratio, and the classification accuracy obtained from the k-nearest 

neighbor test discussed in section 5.4.  The data recorded in this table supports the notion 

that classification accuracy depends to some degree on class quality.  The two artists with 

the highest classification rates exhibit similar class quality descriptors: low style variance, 

large distance from the global style center, and high style description ratios.  In essence, 

the style description ratio indexes how accurately our features describe the style of a 

particular artist. 

Table 35: Class Quality Descriptors 

Artist Style Variance Distance from Global Style Center Style Description Ratio Accuracy (%) 

Cezanne 2.1265 1.5351 0.7219 100 

Monet 3.5799 0.0712 0.0198 20 

Pissarro 3.1643 0.4832 0.1527 0 

Seurat 2.743 1.3812 0.5035 60 

Sisley 3.2783 0.6856 0.2091 20 

Van Gogh 3.9409 0.4548 0.1154 0 

     These metrics offer additional analytical and visualization options.  Figure 45 displays 

a dendrogram of the artists’ stylistic centers along with the global style center.  As 

expected, Monet is closest to the global style center and Cezanne is among the most 

distant.  Figure 46 depicts a dendrogram of the data extracted from the paintings in the  
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Figure 45: Aggregate Style Dendrogram 

 

Figure 46: Style Dendrogram of Paintings 
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database.  Although far from a perfect cluster, the dendrogram demonstrates 

properties consistent with previous observations: the Cezanne paintings cluster tightly on 

the left and Monet’s are almost evenly distributed throughout the dendrogram.   

5.6 Evaluation 

     The study considered two possible explanations for classification accuracy: data 

quality and class quality.  Although both types of measurement probably contribute to 

classification results, the class quality measurements showed as strong a correlation to 

classification accuracy as data quality measurements.  Figure 47 plots the average 

number of pixels for each class against the classification accuracy of that class.  The 

graph demonstrates a proportional relationship between these two variables.  Figure 48 

plots the style description ratio for each class against the classification accuracy of that 

class.  This graph also demonstrates a proportional relationship between the variables 

with a much tighter correlation and fewer outliers.  The style description ratio measures 

the relative quality of the defined style classes, in effect providing feedback concerning 

the quality of the feature measurements.    
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Figure 47: Data Quality Evaluation 

 

Figure 48: Class Quality Evaluation 

 

 



 147

Chapter  6  
 

Conclusion 

     This study reviewed the approaches of computer science to the classification of artistic 

style.  In general, these approaches have focused on a narrow set of problems related to 

the attribution of works of art and in many cases the solutions proposed are of a limited 

scope.  In contrast to these approaches, this study proposed a general classification 

system for style based on the formal elements of artistic style in painting.  The evidence 

gathered in this study suggests that it is possible to design a general style classification 

system that supports a broad range of activities including style identification, the 

mapping of style relationships, and the visualization and evaluation of classification 

results.  

     A broad feature survey revealed a distinct bias in the literature for texture features.  

Although in certain contexts texture features were most effective for classifying style, 

this survey revealed that this was not always the case.  In fact, when considering 

databases with larger numbers of classes such as the artist database, the best color 

features perform comparably to the best texture features.  The feature survey also 

revealed that semantically-relevant features often perform as well as those with less direct 

relevance to the domain.   
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     The feature survey also identified an important difference between feature 

extraction for image retrieval and feature extraction for style classification.  Features that 

improve image retrieval do not necessarily improve style classification.  In particular, this 

proved to be the case for color features.  Color features that preserve frequency and 

spatial information do not necessarily improve style classification.  Although advanced 

color features such as spatial chromatic histograms, color coherence vectors, and color 

autocorrelograms have all been shown to improve image retrieval accuracy, the same 

cannot be said for style classification.  In fact, color metrics that ignore frequency and 

spatial information altogether often outperformed the more advanced features in 

classification tasks. 

     This observation concerning the role of color in style classification suggested the 

development of a palette description feature.  The palette description feature and its 

associated palette comparison method capture the color information inherent in a painting 

with significant reduction in the storage requirement.  The palette description feature 

described style as well as similar color measurements in this domain.  The feature 

leverages the HSV color model and conic geometry to define the central tendency of a 

palette without the loss of information resulting from separating the hue and saturation 

measurements or the translation of polar coordinates into Euclidean spaces. 

     This study has further shown that artistic style is generally classifiable using a broad 

range of features and can support such tasks as the identification of relationships between 

styles, the visualization of these relationships, and the evaluation of classification results.  

As examples of these abilities, the study reviewed three visualization techniques.  A style 

dendrogram displayed the hierarchical relationship between styles including their 
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proximity to a theoretical style center.  A visualization, based on a self-organizing 

map, identified cluster boundaries inherent in the sample of given styles.  

Multidimensional scaling analysis provided the basis for an evaluation technique that 

defined the following style descriptors: theoretical style center, theoretical style variance, 

and a style description ratio.  The style description ratio proved to be an effective 

predictor of classification accuracy. 

     The results of the study suggest several avenues for further research in image 

processing and machine intelligence.  First, the role of filtering in this domain remains 

only partially addressed.  The affect of filtering on the classification accuracy and feature 

extraction in this domain certainly warrants additional attention.  Second, the role of 

optimization in this domain has also received little attention.  It should be possible to 

optimize feature weights for classification accuracy and perhaps even for style 

description ratios thus providing a basis for improved class definition.  Third, texture 

features in this domain will improve when researchers can adequately distinguish 

between actual and perceived texture.  An explicit formulation of techniques to extract 

and separate these different types of texture should improve the analysis pursued by 

researchers.  Fourth, the development of a style taxonomy based on the formal elements 

inherent in a style should provide a map of many style relationships.  In addition to this 

taxonomy, it should be possible to identify the features most associated with specific 

styles.  Fifth, the measurements in this study assume that paintings are the best measuring 

sticks for identifying and classifying other paintings.  Approaches based on abstract 

image databases are also possible and would provide a static and universal basis for 

comparing paintings.  For example, when measuring texture features in paintings, a 
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system could just as easily measure the distance between a painting and images from 

the Brodatz texture database, which would serve as a benchmark for texture 

measurements.  Similar techniques could be applied to color and other classes of features 

discussed in this study. 
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