

A Software Metrics Based Approach to Enterprise Software
Beta Testing Design

by
Carlos Delano Buskey, B.S., M.S.

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies
in Computing

at

School of Computer Science and Information Systems

Pace University

April 2005

We hereby certify that this dissertation, submitted by Carlos Delano Buskey,
satisfies the dissertation requirements for the degree of Doctor of Professional
Studies in Computing and has been approved.

___-________________
Dr. Lixin Tao Date
Chairperson of Dissertation Committee

___-________________
Dr. Fred Grossman Date
Dissertation Committee Member

___-________________
Dr. Charles Tappert Date
Dissertation Committee Member

___-________________
Dr. Richard Bassett Date
Dissertation Committee Member

School of Computer Science and Information Systems
Pace University 2005

Abstract

A Software Metrics Based Approach to Enterprise Software
Beta Testing Design

by

Carlos Delano Buskey

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies
in Computing

April 2005

Today, major manufacturers of enterprise software have shifted their focus to
integrating the influence of the user community in the validation of software. This
relationship is established through the corporate beta testing programs to confirm
to the customer base that the software was properly reviewed prior to releasing
to the target market. However, there are no industry standards for beta testing
software and no structured software beta testing processes that may be used for
the common enterprise application. In addition, beta testing models used today
lack clear testing objectives. An additional problem in software beta test
processes used by most manufacturers, is that there are no organized
procedures for developing an effective beta test. Beta testing models strictly
focus on error feedback, time of testing, and the number of beta testing sites
participating in the program.

This research addresses the fundamental problems in poor beta testing design
by contributing a software metrics based beta testing design model that uses
weakness in the current product to plan an effective beta test. A set of formal
beta testing objectives is initiated and essential software attributes are suggested
to support each objective. Each objective is quantitatively measured with a set of
metric functions used to predict risk levels in a software product. The predicted
risk levels are used to assist in prioritizing tasks for the pending beta test. A
learning process is provided to demonstrate the effects of the metric functions
when the process matures.

The metric functions were tested on three real-world enterprise applications to
validate the effectiveness of the formulas when employed on a live product. The
experiment demonstrated close prediction to the actual risk value for each
product and demonstrated how the predictions improved with experience.

Acknowledgements

The process of writing a thesis was the most humbling experience I have
encountered. I could not have successfully completed this without the love and
support of so many individuals. I would first like to thank the three wonderful
ladies in my life who complete me and consume me with love…Robin, Delani,
and Ramsey, this could not have been done without your sacrifice and
unconditional love. Robin, thank you for your kindred spirit. I would also like to
give a special thank you to Dr. Lixin Tao, you believe in this project and you
believed me and I am forever grateful for your support. Another special thank
you to one my top supporters, Dr. Rick Bassett, who also influenced me greatly.
Thank you to Dr. Fred Grossman for his motivation and support, and Dr. Chuck
Tappert for instilling confidence in me to complete this project.

I would like to extend my gratitude to all of my family and close friends. Thank
you Sheila, Brittny, Alice, Ella and Joe for supporting this project. To my Mom,
who I have always strived so hard to make proud of me. A warm thank you to
my special friends for all your support. To my friend Tyson, we have always
discussed how important it is to keep “striving for perfection”, thank you for
fostering this goal with all your support. Alvin Lee Hill III, you told me to never be
a quitter, thank you for seeing this before it was complete. Thank you, Corlette,
all your positive feedback was motivating. To Jack Mooney and Laurie Sugg,
thank you for encouraging me. Thanks to all of my other friends who made this
accomplishment possible.

I would like to express a level of appreciation for all of my Pace University
cohorts especially Shiryl, Steve, Mike, and Eddie for your support. This program
brought us closer, in turn creating a strong bond. Shiryl and Eddie thanks for the
long talks. Thank you, Christina Longo, for supporting this mission and your
dedication to the entire program. I have matriculated at several universities in my
academic career and I would like to state that Dean Susan Merritt is the best in
class. Thank you for your dedication to this project, your dedication to the
student body, and dedication to this program.

Most importantly, I would like to thank God for sending the people above to assist
and support me in this effort.

-v-

Table of Contents
Abstract ..iii

List of Tables ..xi

List of Figures ...xiii

List of Use Cases ...xiv

List of Use Algorithms..xv

Chapter 1 Introduction ... 1

1.1. What is Beta Testing? ... 1

1.1.1. Beta Testing Objectives .. 7

1.1.2. Beta Testing Design.. 12

1.1.3. Current Status of Beta Testing .. 14

1.2. Beta Testing versus Other Forms of Mature Code Development Stage

Testing .. 17

1.2.1. Alpha Testing .. 17

1.2.2. Acceptance Testing... 18

1.2.3. Integration Testing .. 19

1.2.4. Installation Testing .. 20

1.2.5. White Box Testing ... 20

1.2.6. Black Box Testing ... 21

1.2.7. Stress Testing ... 21

1.2.8. Smoke Testing .. 21

1.2.9. System Testing ... 22

-vi-

1.2.10. Usability Testing .. 22

1.3. Solution Methodologies... 23

1.3.1. Identification of Beta Testing Objectives and Attributes 24

1.3.2. Introduction of Software Metrics Functions 24

1.3.3. Introduction of Beta Testing Design Methodology......................... 25

1.4. Major Contributions ... 25

1.5. Dissertation Roadmap... 26

Chapter 2 Software Testing and Beta Testing.. 27

2.1 Importance and Limitations of Software Testing 27

2.2 Major Types of Mature Code Development Testing and Their Roles in a

Software Process .. 29

2.2.1 Limitations of Major Types of Mature Code Development Testing 39

2.3 Current Beta Testing Practices and Their Limitations 43

Chapter 3 Software Metrics for Enterprise Software Beta Testing................... 46

3.1 Major Features of Common Enterprise Software 46

3.1.1 System Integration Support... 50

3.1.2 Network Enabled... 55

3.1.3 Effective Graphical User Interfaces (GUI) 57

3.1.4 Multithreading.. 58

3.1.5 Robust Transaction Support ... 59

3.1.6 Fault Tolerance capability ... 59

3.1.7 Integrated Security Policies... 60

-vii-

3.2 Beta Testing Objectives .. 62

3.2.1 Measuring Environmental-Dependency Issues in Enterprise

Software ... 62

3.2.2 Function Coverage Completeness .. 70

3.2.3 Measuring Localization Specification in Enterprise Software 73

3.2.4 Testing Enterprise Software Robustness 77

3.2.5 Measuring Software Vulnerabilities ... 80

3.2.6 Feedback from User Interface Accessibility 83

3.2.7 Feedback from User Interface Usability .. 84

3.3 Major Categorized Software Attributes for Beta Testing 88

3.3.1 Environmental Dependencies Attributes for Beta Testing 90

3.3.2 Function Coverage Completeness Attributes for Beta Testing...... 96

3.3.3 Localization Attributes for Beta Testing... 98

3.3.4 Robustness Attributes for Beta Testing....................................... 100

3.3.5 Software Vulnerability Attributes for Beta Testing 105

3.3.6 UI Accessibility Attributes for Beta Testing.................................. 108

3.3.7 UI Usability Attributes for Beta Testing.. 109

3.4 New Software Metrics for Predicting the Priority of Beta Testing

Objectives ... 112

3.4.1 Environmental Dependency Metrics.. 113

3.4.2 Function Coverage Completeness Metrics 115

3.4.3 Localization Metrics... 116

3.4.4 Robustness Metrics... 117

-viii-

3.4.5 Software Vulnerability Metrics ... 118

3.4.6 UI Accessibility Metrics ... 119

3.4.7 UI Usability Metrics ... 120

3.5 Metrics Function Training for Software Attributes................................ 121

3.5.1 Collecting Actual Attribute Values ... 125

3.5.2 Normalizing Attribute Values ... 125

3.5.3 Initializing Attribute Weights .. 127

3.5.4 Training Future Functions ... 127

3.5.5 Objective Metric Functions .. 129

3.6 Example Practice of Objective Metric Function 130

3.6.1 Weights Initialization Process ... 134

3.6.2 Weights Stabilization Process ... 138

3.7 Example of Deriving Beta Testing Metrics .. 143

3.7.1 Weights Initialization Process for Accounting Software............... 144

3.7.2 Training Future Functions For Accounting Software 147

Chapter 4 Software Metrics-Based Approach to Beta Testing Design 151

4.1 Major Components of a Beta Testing Design...................................... 151

4.2 Software Metrics-Based Beta Testing Design 153

4.2.1 Identify Beta Testing Priority Clientele Groups............................ 154

4.2.2 Identify Priority Functions/GUI Components for Beta Testing 156

4.2.3 Design Questionnaires for Controlling Beta Testing Priorities..... 157

4.2.4 Minimal Beta Testing Clientele Size Prediction 157

-ix-

4.2.5 Minimal Beta Testing Duration Prediction 158

4.3 Formal Procedure for Beta Testing Design ... 159

4.4 An Example of the Beta Testing Design.. 168

Chapter 5 Beta Testing Case Studies ... 184

5.1 Enterprise Infrastructure Monitoring Application.................................. 184

5.1.1 Product Overview ... 184

5.1.2 Metric Function Outcomes for Enterprise Infrastructure Monitoring

Software .. 186

5.1.3 Applying Beta Testing Design to Enterprise Infrastructure Monitoring

Software .. 190

5.1.4 Applying the Function Training Process to Enterprise Infrastructure

Monitoring Software .. 198

5.2 Enterprise Virtualization Monitoring Software...................................... 200

5.2.1 Product Overview ... 200

5.2.2 Metric Function Outcomes for Enterprise Virtualization Monitoring

Software .. 202

5.2.3 Applying Beta Testing Design to Enterprise Infrastructure Monitoring

Software .. 206

5.2.4 Applying the Function Training Process to Enterprise Virtualization

Monitoring Software .. 211

5.3 Comparison of Current Beta Testing Design Process......................... 213

Chapter 6.. 215

-x-

Conclusion.. 215

6.1 Major Contributions ... 215

6.2 Limitations of the Study... 216

6.3 Future Works... 217

Appendix A Sample Enterprise Software Profile... 219

Appendix B1 Enterprise Software Profile for Enterprise Management Software

... 225

Appendix B2 Calculations for Enterprise Management Software Weights

Initialization Process... 233

Appendix B3 Calculations for Enterprise Management Software Function

Training Process... 235

Appendix C1 Enterprise Software Profile for Enterprise Virtualization Monitoring

Software ... 237

Appendix C2 Calculations for Enterprise Virtualization Monitoring Software

Weights Initialization Process... 245

Appendix C3 Calculations for Virtualization Monitoring Software Function

Training Process... 247

Bibliography.. 249

-xi-

List of Tables

Table 1. Beta Testing Objectives Attributes Mapping Table 88

Table 2. Environmental Dependency Metrics Data... 114

Table 3. Function Coverage Completeness Metrics Data 115

Table 4. Localization Metrics Data.. 116

Table 5. Robustness Metrics Data Table.. 117

Table 6. Software Vulnerability Metrics Data Table .. 119

Table 7. UI Accessibility Metrics Data Table... 120

Table 8. UI Usability Metrics Data Table .. 121

Table 9. Software Vulnerability Weights Initialization Data............................... 138

Table 10. Software Vulnerability Function Training Data.................................. 141

Table 11. Functions Stabilization Data Set... 142

Table 12. Accounting Software Actual Attribute Values.................................... 144

Table 13. Accounting Application Prediction Data Set...................................... 145

Table 14. Actual Risk Values vs. Predicted Risk Values for Accounting

Application.. 147

Table 15. PRV vs. ARV Comparisons for Accounting Software after Training the

Functions.. 148

Table 16. Accounting Software Function Training Data Set 149

-xii-

Table 17. Sample Beta Testing User Group... 158

Table 18. Required Type of User Group for Beta Test Based on PRV............. 162

Table 19. Accounting Software - Predicted Objective Metrics Results 169

Table 20. Enterprise Monitoring Software Maximum Values And Normalization

Data Set ... 187

Table 21. Predicted Risk Value For Infrastructure Monitoring Software 189

Table 22. Comparison of Risk Values For EM Software – Training Process.... 200

Table 23. Enterprise Virtualization Monitoring Software Maximum Values and

Normalization Data Set... 203

Table 24. Predicted Risk Values For Virtualization Monitoring Software 205

Table 25. Comparison of Risk Values after Training Process.......................... 213

-xiii-

List of Figures

Figure 1. IBM Rational Beta Testing Process.. 4

Figure 2. Software Testing Time Line.. 23

Figure 3. Core Features of an Enterprise Application.. 49

Figure 4. Core B2B Application .. 52

Figure 5. Software Metrics Process Flow ... 124

Figure 6. Beta Testing Design Process Model.. 153

Figure 7. Sample Beta Testing Questionnaire.. 172

-xiv-

List of Use Cases

Case 1. Mainframe dependency of older OLE to function with host applications64

Case 2.Minimum Hardware Requirements. .. 68

Case 3. Beta testing a document management application................................ 71

Case 4. Expected functionality in Linux Word-processing Application................ 72

Case 5. Function mapping in localized software... 75

Case 6. Multithreading Exception in a server management application. 78

Case 7. Windows XP Service Pack 2 created exception errors for third party

back-up applications... 79

Case 8. Software vulnerability in the implementation of SNMP opens the network

to DoS vulnerabilities.. 82

Case 9. Enterprise Management Profiles ... 83

Case 10. Word-processing Document Wrapping Issue 86

Case 11. DB2 Tuning Difficulties ... 87

-xv-

List of Use Algorithms

Algorithm 1. Weights Initialization... 132

Algorithm 2. Function Learning Process... 133

Algorithm 3. Standard Objective Risk Level Function....................................... 133

1

Chapter 1

Introduction

1.1. What is Beta Testing?

Beta testing is the first “user test” of software that provides enterprise software

manufactures with end-user usability and software functionality feedback. Beta

testing begins in the last phase of software development cycle prior to final

release of the software. Software developers select special users (or user

groups) to validate software and provide tools to collect feedback. The purpose

of beta testing is to enhance the product prior to general availability (product

release). Major software manufacturers are focusing on improving the quality,

acceptance, and experience of enterprise software by promoting beta testing

programs[12, 22, 30, 32, 40].

Most modern technology dictionaries, glossaries, and journals provide formal

definitions of beta testing. The Microsoft Computer and Internet dictionary

provides the most comprehensive definition for beta testing. Beta testing is

defined as:

“A test of software that is still under development accomplished by having people
actually using the software. In a beta test, a software product is sent to selected
potential customers and influential end users (known as beta sites), who test its
functionality and report any operational or utilization errors (bugs) found. The
beta test is usually one of the last steps a software developer takes before
releasing the product to market; however, if the beta sites indicate that the
software has operational difficulties or an extraordinary number of bugs, the
developer may conduct more beta tests before the software is released to
customers.” [34]

2

Although, software manufacturers recognize beta testing as a formal and

important element of software testing, and most industry dictionaries and

glossaries provide formal definitions for beta testing, there are no existing

standards or models for this form of software testing.

Manufacturers of software utilize multiple stages of testing to validate sectors of

the application. Beta testing is the last stage of the software testing process

regarded as a “live” test. During this stage of testing, end-users test the software

to provide product usability feedback (negative or positive). Users suggest

software features that improve the total end-user experience and provide

valuable functionality data. As an example, manufacturers are interested in

responses to the following questions: Does the software yield the same results

when the end-user provides invalid data? Does the product generate a report

when no data is entered? How does the application respond when the end-users

extend the length of time between required responses in an application? Beta

testing is the most effective process to generate this information.

Software manufacturers seek real-life users to test beta software. These users

or testing groups are called beta testers. A pre-released version of the software

is provided to the beta testers for a “specific period of time.” Beta testers install

and test software in local environments creating software validation domains.

Testers receive software documentation and product goals; however, beta

testing is executed using black box techniques (with no direction or instructions

3

from software development). Beta testers provide continuous feedback to

software manufacturers throughout the beta testing cycle.

Beta testing is also a process that extends the validation and testing phase in the

software development life cycle. An iterative software development life cycle

includes a domain analysis phase, specification phase, design phase, coding and

development phase, integration phase, validation and testing phase, and

deployment phase (similar to the common waterfall model)[26]. The domain

analysis phase examines business needs, product scope, and suggests a set of

solution(s). The specification phase outlines the information and resources

required to complete the product. The design phase drafts the software project

providing a software blueprint. During the coding and development phase,

system developers construct the application based on requirements received

from the specification phase. The assembly of code and components emerge

during the integration phase of software development. Software validation and

testing is an important facet in application development seeking to validate the

product by employing a series of tests. Lastly, the deployment phase releases

the software to the end-user. Beta testing strengthens the validation and testing

phase and fosters the deployment phase by assuring the product is fully tested.

4

Figure 1. IBM Rational Beta Testing Process

Major enterprise software companies focus on processes to improve software

through the beta testing process. IBM software advertises beta testing as a

platform to ensure the product can withstand the challenges of real-world

processing [22]. The company provides a formal beta testing process and the

benefits of participating in its beta testing program. IBM beta testing program is

divided into two sections: the sign up period and beta testing period. The sign up

period, consisting of the customer profile, beta site agreements (non-disclosure

agreement), and approval & acceptance phases, focuses on advertising, testing

preparation, and testing user group selection. The beta testing period, which

includes the install and testing, mid-survey collection, technical support, and

feedback and followup stage, executes the process until the software developers

end the beta testing stage. After completion of this stage, IBM releases the

5

product for shipment to customer base (See Figure 1. IBM Rational Beta Testing

Process[22]).

Computer Associates Corporation (CA) beta testing program recruits suitable

users to validate software prior to general availability [12]. CA has two types of

beta testing programs, open and selective beta programs. The open beta

program is for end-users who do or do not have experience with the product in

beta. The benefit is increased participation in new product lines and/or exposure

to software with a small user group (i.e. users seeking to test new products or

using a new product for proof of concept purposes). Selective beta testing

programs restricted to users with former product experience. CA extracts

selective beta testers from product advisory councils and “development buddy”

programs. Both programs provide a pre-released version of the software, in

beta, to end-users with a general testing focus. Beta testers participate in

periodic meetings with the manufacturer to provide product feedback, which is

addition to the normal support channels (e.g. online support tools, knowledge

base, product documentation, etc). The benefits are customers in both

programs, impact the quality of the software and CA improves the value and

position in the software market.

Formerly, Microsoft relied heavily on its channel of industry certified professionals

and user groups to beta test software. This group of professionals comprised of

Microsoft Certified Professionals (MCP), Microsoft Certified System Developers

6

(MCSD), and Microsoft Solution Providers, all part of its TechNet Network[31].

As a part of this network, Microsoft provided a monthly subscription of software,

which included the latest beta software programs. Microsoft has now shifted its

focus, opening its beta testing program to any user. Microsoft has created

TechNet Virtual labs for testers to participate in beta testing. TechNet labs

employ remote technology to prepare beta testing environments (coined sandbox

development labs) dynamically, which provide additional time for the beta tester

to test the software [32]. Microsoft believes this will increase participation in the

beta testing program, providing faster end-user response time, and a volume of

product feedback.

Another major software distributor, Oracle, solicits developers to provide

information for its OTN (Oracle Technologies Network) profile database. Oracle

engineers utilize the personal data to match possible test sites for beta testing

cycles [40]. This method establishes beta tester relationships and matches test

products with the most effective group of end-users.

In addition, there are websites devoted to beta testers and companies that locate

testers, manage beta test, and provide a forum to discuss beta testing issues.

BetaNews.com provides a one stop location for companies to post a pre-

released version of new software and a web-based forum to provide feedback in

one location[4]. Large corporations, such as Microsoft, have products posted to

the website to recruit beta testers.

7

1.1.1. Beta Testing Objectives

Software testing occurs in multiple stages utilizing various techniques. The

method of software testing employed is directly related to the outcomes desired.

Software testing occurs from the introduction of the first set of code until the

completion of the product in test. This study focuses on the final stage of testing

for enterprise software, which is beta testing. This section identifies and

describes the objectives important to manufactures when beta testing enterprise

applications. The objectives outlined in this section provide a foundation for the

software metrics based model for beta testing design introduced in this study.

The function of beta testing is to measure usability and the functionality.

Manufacturers of software develop a set of objectives for an application prior to

testing. The objectives are designed by application specifics and outcome

expectations. In this thesis, a set of important beta testing objectives is provided

for any enterprise software. The objectives are environmental dependency,

function coverage completeness, localization, robustness, user interface

usability, user interface accessibility, and system vulnerability. This study is

limited to the aforementioned set of objectives; however, future studies may

expand the number of objectives.

1.1.1.1 Environmental-Dependency

Environmental dependency is an application’s reliance on additional components

to function correctly in a production environment. Enterprise software

8

manufacturers generate products for large corporations with robust

infrastructures. Robust infrastructures house applications, which has adapted to

its installed environment (e.g. shared files, access policies, DASD volume

control, etc). Historically, enterprise software manufacturers have encountered

environmental issues with new applications when deployed on robust

infrastructures (especially legacy systems). For example, software

manufacturers of operating systems produce a new version or major

maintenance release (e.g. service pack, or maintenance build). The memory

address or shared library versions change with the upgrade of an application.

These changes affect how applications use this information. The result is

abnormal system behavior or the existing application ceases to function. During

a beta testing cycle, software manufacturers seek to identify and measure

environmental dependency issues during deployment of the software.

1.1.1.2 Function Coverage Completeness

During the design phase of application development, software developers decide

which functionality is included to meet the scope of the project. Additionally,

developers predict need, based on information received during the specification

phase. However, the expectation changes when customers use the application.

Function coverage completeness is an objective of beta testing, which measures

end-user function expectations in enterprise software. The goal is to focus on

customer feedback (Does the product meet the end-user expectations?). This

9

feedback promotes minor changes in the software. Additionally, the feedback

received from end-users impacts future releases of the software.

1.1.1.3 Localization Specification

Environmental-dependency addresses deployment issues in software. However,

enterprise software companies with a global presence are focused on localization

expectations, which is an additional deployment concern. Localization is the

adjustments in enterprise software to prepare the product for foreign

infrastructures. Localization specification is a beta testing objective, which

measures whether software meets foreign standards. As an example, a

database application sorting tables must adjust to the required language.

Characters in the English language differ from Japanese language. Beta testing

abroad also collects diverse usability feedback.

1.1.1.4 Robustness

Software manufacturers utilize multiple forms of testing when designing software.

These tests are based on the adoption of testing best practice. However, in-

house software testing is conducted by utilizing a “white-box” testing method.

White-box tests are based on a finite number of use-cases, empirical evidence,

and historical data (e.g. issue logs, event logs, etc.). This form of testing is

predicting outcomes based on control issues. However, what happens when the

end-user enters erroneous data in a field? How is the software affected if the

10

end-user shuts down the software when data is being processed? Does the

software function after unpredictable conditions?

Robustness is an objective that measures how software responds to user habits.

This objective measures the complexity of the application and utilizes the data to

make changes. Robustness also measures the common mistakes made by end-

users, which is used to enhance usability in the software.

1.1.1.5 User Interface Accessibility

Software manufacturers are required to provide modified interface for people with

disabilities (e.g. sight limitations, hearing, physical impairments, etc.)

The Rehabilitation Act of 1998, requires electronic technology to be accessible

and easily modified for people with disabilities[43]. Accessibility is features in

software that provides ease of use for persons with physical disability. The user

interface accessibility (UI accessibility) objective measures the efficiency of UI

accessibility in enterprise software. Beta testing is the most efficient method of

testing to measure this subjective goal and promote change prior to releasing the

product to the customer.

1.1.1.6 User Interface Usability

A major goal of beta testing is to measure the usability of software. Usability is

the ease in which a user adapts to a program. User interface usability (UI

usability) collects end-user feedback on the graphical user interface. The

11

feedback is a requirement often misinterpreted in the specification phase of the

software development life cycle. In addition, feedback is based on client

expectations or features the end-user believes will ease product usage. This

objective is important because feedback from beta testing impacts the current

product and adds value to future releases of the product in test.

1.1.1.7. Software Vulnerabilities

Beta testing focuses on measuring usage patterns and functionality of the

product. As environmental dependency measures the software ability to adapt to

current system configurations, system vulnerability validation is important.

Software vulnerability is testing an application for potential security violations.

This measures firewall standards and violations of trusted domains. A firewall is

a program (or set of programs) used to manage network traffic, monitor, and

protect information. Firewall standards are the network policy implemented to

protect information. As end users introduce new products to a system, the

application behavior changes according to access rights. Beta testing measures

the application behavior and validates that firewall standards are not

compromised by the new application (or changes).

Trusted domains are network file systems or applications with users’ policies

implemented. Trusted domains are another layer of security restricting access to

system information. Software manufacturers are concerned about how

applications perform when information is restricted. Developers of enterprise

12

software simulate application behavior according to standard network

configurations, but networks are customized according to corporations’ best

practices. Beta testing is a proficient form of testing to measure this objective.

1.1.2. Beta Testing Design

The focus of this study is to provide a software metrics-based approach to

enterprise software beta testing design. The function of this methodology is to

provide a formal model for testing mature software in the final stages of the

coding phase, the software development life cycle. The mature code

development stage is the period when a version of software is near-finished

coding and close to being in final preparation for the release to the end-user (or

ready for the deployment phase). A fundamental problem in beta testing is the

lack of industry standard or testing design to test enterprise software. The

International Organization for Standardization (ISO), which governs non-

proprietary technology standards. ISO awards an ISO 9000 certification to

companies that properly institute measures to improve the quality of software[9].

ISO expects corporations to institute testing methodologies with limited guidance.

Beta testing is a goal for the top software manufacturers; however, testing design

models are ad-hoc. Most beta testing design models focus on time parameters

and data collection, with limited attention on usability.

This study introduces a beta testing design framework for enterprise software.

The beta testing design components for this model are: identifying the proper

13

type of testing group (skill set requirements), size of the testing user group,

questionnaire’s design, and predicting beta testing duration (testing period). The

components utilized function metrics to predict risk levels for objectives. The

outcome provides a focused approach to the beta testing phase and

demonstrates the value of this form of software testing.

In the preliminary stage of beta testing, Beta test managers meet with the

product developers to discuss the testing (project) scope. The scope provides a

summary of the steps required for the desired outcome of the test. The steps are

based on a set of testing objectives. Product developers review testing scopes

and provide final approval. The beta testing scope is ad-hoc and not an

important component of this beta testing design model.

When the scope is complete, beta test managers preselect beta testers or start

to solicit for a pending project (i.e. when new software requires testing or the

product market is small). Product testers form a testing user group that is

created according test objectives, product functionality, and end-user product

experience (if applicable). Product experience factors are based on the user

group’s level of industry experience. This is not important when new products

are in a beta testing phase.

After forming the beta testing user group, beta test managers prepare testing

questionnaires. The questionnaire provides an outline to guide beta testers in

expected outcomes of the beta test and to solicit feedback. In addition,

14

questionnaires guide testers in prioritizing tasks, but maintaining the black box

approach to testing the product. Black box testing is a form of testing where

users are not concerned with the mechanics or interested in the code but focus

on functionality. The main focus of the testing questionnaire is to guide testers

and provide an instrument to collect data.

Following approval of the questionnaire, beta test managers construct a testing

time line to predict the amount of time required for a complete beta testing cycle.

Timelines are not formal but essential in managing the testing length. Testing

time lines are estimated based on historical data or testing methodologies. In

addition, beta test managers construct testing timelines based on trends. As the

feedback proliferates from testers in the field, testing timelines are adjusted

(extending or decreasing testing time).

In Controlling Software Projects: Management, Measurement and Estimation,

Tom DeMarco stated,”…you cannot control what you cannot measure in

controlling software development.” This growing adage outlines the foundation of

this study[14].

1.1.3. Current Status of Beta Testing

Beta testing is an essential component of the software validation and testing

phase because of its immediate impact on the product in test. It provides a

platform to integrate real-world feedback into a product, prior to availability. This

collectively improves the software usability and functionality, which lowers cost

15

implication and improves quality[16]. The focus of beta testing is to measure

usability; however, deployment of the software is important. Users report issues

to developers if software fails to function correctly or documentation does not

resolve issues. The impact of beta testing on the software industry is important

and global standards are required to manage this process.

During the implementation of a new product, large infrastructures are subject to

environmental issues during deployment; this is not common in small

environments. For example: A large insurance company with over 9,000 users

experienced a memory leak in a new operating system, causing a 30-minute

system outage. A senior information technology executive for this company

estimated these issues resulted in 1 million dollars in lost time. The

manufacturer of the operating system sent a team of five-developers onsite to

find the problem and eliminate it. If this client were part of the beta testing

program, these issues would have been exposed and eliminated during the

testing phase. This created cost issues for the client and both cost and quality

issues for the manufacturer. This is just one example of the importance of beta

testing.

Beta testing is widely used in the software industry. The top software

manufacturers dedicate a section of its development process to beta testing. In

addition, software manufacturers provide literature (most in an html format) to

educate and solicit testers for current and future releases of software. Major

software manufacturers such as CA, Microsoft, IBM, Oracle are actively beta

16

testing enterprise software ranging from operating systems, database

applications, and enterprise management tools[18]. In addition to software

manufacturers, e-commerce businesses and web resources solicit users to beta

test features and applications[1]. Google.com uses beta testers to validate new

search engine features to capture usability and functionality feedback[18].

IBM has posted its beta testing model “IBM Rational Beta Testing Process,”

which provides a beta testing road-map (see Figure 1). Microsoft Corporation

has revamped its beta testing program to allow any qualified user to participate in

the beta testing process. In addition, it monitors usability and functionality

through its “Customer Experience Program.” Computer Associates has two

types of beta testing programs, open and selective, which allows experienced

and non-experienced users to test programs. Computer Associates has also

formed “development buddy” and “product advisory” councils to build

partnerships with experienced end-users. These experienced user groups are

often beta testers. These programs are discussed in length in section 1.1.

As corporations continue to model beta testing programs, there lie a series of

fundamental problems. Modern beta testing processes focus heavily on error

and deployment issues and time constraints. Beta testing processes also lack

focus on collecting usability data, properly distilling data collected, dedication to

functionality, and proper recruitment of qualified beta testers. Beta testing is an

ad-hoc form of testing focused more on time of testing parameters. This study

provides a focused approach to software testing using software metrics. The

17

metrics are based on a formal set of beta testing objectives and design

components.

1.2. Beta Testing versus Other Forms of Mature Code Development Stage

Testing

Post-development testing emerges, as the product is near completion and

prepared for the deployment phase (preparing the product for release to end-

user). In this stage, the code is consider mature and may be tested by the end-

user. There are several forms of testing employed during this phase to validate

the product is functioning as designed [See Figure.2]. This section provides a

contrast between beta testing and other forms of post-development testing. The

forms of post-development testing discussed in this section are alpha testing,

acceptance testing, integration testing, stress testing, smoke testing, system

testing, installation testing, and white box testing.

1.2.1. Alpha Testing

Alpha testing is a controlled software test that is tightly managed by the internal

software development team[16]. Alpha testing is performed on internal systems

typically in a controlled environment. Other forms of alpha testing provide special

testing labs for customers with strict testing requirements. The developer

monitors the tester’s progress and validates that the product is functioning

correctly. This phase of testing eliminates deployment and workload issues.

18

Alpha testing improves the quality of the product by discovering errors and

exposing common usability issues prior to final release of the product.

Alpha testing is unlike beta testing because testing is conducted by end-users in

real-life environments. In addition, developers do not control the test; they

support end-users for technical or customer support issues. In addition, beta

testing does not require special labs and the major focus is not deployment and

workload issues. Receiving deployment data is only one objective of beta

testing.

1.2.2. Acceptance Testing

Acceptance testing is a level of testing utilized for customized software and

applications. Customized applications are software packages typically designed

for internal business sectors or applications designed for a special group of end-

users. Customized applications characteristically have a definite stakeholder

who owns the project and product[41]. During this stage of testing, the end-user

teams with the developer to validate software requirements specified in the

statement of work. Stakeholders sign off on this process after users agree the

software is functioning as designed. Acceptance testing is the final approval

process in customized applications.

When testing enterprise software, acceptance testing is not a robust form of post

development testing. Enterprise software is designed for a wide range of

customers, providing general features, and focused objectives. Additionally,

19

enterprise software does not have an external product stakeholder. The

stakeholders are the target market. Beta testing is more effective when testing

on a larger scale creating a longitudinal validation of the software.

1.2.3. Integration Testing

Integration testing employs a pattern approach to software validation. Integration

testing is akin to extreme programming (XP) testing techniques exploiting agile

experimental methods[41]. XP programming uses a simple methodology that

implement smaller deliverables when building and testing code[3]. This testing

certifies the program structure of the software by testing the application interface.

Software developers test sectors of the product to eliminate interface issues.

The goal is to accomplish this early and often. This form of testing starts when

the software code matures, and continues until the developers release the

product to the next phase.

Integration testing implements a diverse method of UI validation and differs from

beta testing. In addition, integration testing focuses solely on the software effects

when additional codes are introduced, which differs from the goal of beta testing.

Integration testing lacks the dynamics required to validate enterprise software

packages. Beta testing employs a holistic view of testing with a definite set of

objectives, time constraints, and outcomes.

20

1.2.4. Installation Testing

Installation testing examines software to confirm compatibility with hardware

platforms[27]. During this phase of testing, developers install the product on

various hardware and operating environments (if applicable) and validate

portability (if required). Portability is the ability of software to function on different

operation systems. Installation testing is not a complete cycle of testing and is

narrow in focus. Installation testing differs from beta testing because it has a

single objective and does not require real-world testers for completion.

1.2.5. White Box Testing

White Box testing is a method of testing that uses a strict procedural design to

build test cases[41]. This form of testing employs test-user groups to experiment

with every module of the application. The procedures are determined by

predictions constructed during the coding phase or from historical data. In

addition, the logical design is tested including data structures. Developers train

the testers, on the application, and monitor the entire testing phase to record

results. During white box testing, the goals are not transparent to the user and

outcomes are definite. The data and results from white box testing are construed

and not effective in a quality post-development testing process. Beta testing is a

black box form of testing and performed by end-users, providing unbiased

feedback.

21

1.2.6. Black Box Testing

Black box testing is a form of software validation that reviews circumstances in

which the program does not behave according to its specifications[36]. Black

box testing reviews the functional characteristics of an application to reveal the

presence of issues associated with this goal. This form of testing does not focus

on the software code but features of the application.

1.2.7. Stress Testing

Stress testing is performed only by the software developers, which encompasses

a set of executables, used to simulate or stimulate abnormal behavior in a

program[36]. The purpose of stress testing is to consider situations that normally

shutdown, cause an abnormal end (ABEND), or produce irregular conditions in a

program. Testing specific constructs in a program uncovers instability in

software. Stress testing starts after the software coding is complete and

continues until benchmark results are satisfied. Stress testing, alone, validates

the stability of the application, but does not provide data for post-development

objectives (e.g. usability and functionality data).

Beta testing is not concerned with benchmark data. The data received from

stress testing is narrow in focus and does not provide the depth required to

validate software.

1.2.8. Smoke Testing

Smoke testing is a testing technique used to validate software after the

introduction of a new code or maintenance builds (akin to validation testing)[2].

22

This form of testing confirms that new updates did not compromise the integrity

of the product. Smoke testing is also narrow in focus, since it only provides

compatibility and deployment data. Although beta testing reveals potential

compatibility issues in software, smoke testing has a narrow focus and a limit

amount use cases. Beta testing is more variable incorporating multiple

objectives.

1.2.9. System Testing

System testing is a series of independent sub tests that simulate an actual

computer system[41]. The subcomponents of system testing are performance

testing, recovery testing, security testing, and stress testing. Characteristically,

developers are responsible for executing this phase of testing. Unlike beta

testing, system testing combines a “pre-packaged” testing model to validate

software and is restricted to internal testers (developers or quality assurance

groups). System testing is unlike beta testing because tests are performed

internally and feedback is assumed.

1.2.10. Usability Testing

Usability testing is a form of software validation tests where the graphical user

interfaces and measures ease of use in an application. Usability measures the

client-functional characteristic of the application such as user accuracy, user

response, user information recall, and end-user input accuracy[50]. Usability

23

testing alone does not complete the goal of software testing and does not cover

all use cases associated with complete testing.

Figure 2. Software Testing Time Line

1.3. Solution Methodologies

This study provides a framework for beta testing design specifically for enterprise

software. The process uses a software metrics based methodology to guide

manufacturers in building a schema for beta testing a product. There are three

key areas in this study; formally identifying key beta testing objectives and design

components for beta testing, present a set of software metrics functions to

24

predict the importance of diverse beta testing objectives, and contribute a beta

testing design methodology based on the results of the metric functions. This

formal beta testing framework provides a methodology for common enterprise

software, which is absent in software engineering.

1.3.1. Identification of Beta Testing Objectives and Attributes

This study identified a formal set of beta testing objectives and significant

attributes of the common enterprise application. The objectives and attributes

are key areas of focus when beta testing a product in a real-world environment.

There are seven objectives (goals) for beta testing the common enterprise

application; each has a unique focus and outcome. For each objective, there is a

set of essential attributes of an application that must be validated to support

outcome. Each objective has a metric function used to reveal the potential

existence of issues. This process is important because it provides clear testing

objectives and provides a distinctive base to measure improvements.

1.3.2. Introduction of Software Metrics Functions

This study also provides a set of software metrics functions used to reveal

potential weakness in the software product categorized by objectives.

Understanding the potential risk of problems prior to testing a product in

production offers the software developers more leverage when preparing the

product for beta testing. In addition, the risk levels provided by the software

metrics assist software developers in prioritizing testing task. The software

metrics provide a predicted value from 1 – 5 with each number representing a

25

risk level. With continuous use, the software metrics improve, providing better

risk level predictions.

1.3.3. Introduction of Beta Testing Design Methodology

The software metrics are used to support the beta testing design methodology

contribution provided by study. There are 5 unique steps in the design of beta

test; identifying beta testing priority clientele groups, identifying priority

functions/GUI components for beta testing, designing the questionnaire for

controlling beta testing priorities, and deciding the minimum beta testing clientele

size prediction. The beta testing design creates a custom beta testing process

for enterprise level software. This methodology is important because there is no

industry level beta testing design standards that may be adopted by any common

enterprise software.

1.4. Major Contributions

The major contributions of this study are:

• provide a distinctive set of beta testing objectives that may be used for

common enterprise software

• provide an essential set of software attributes that predict risk levels in the

testing objectives

• create a set of software-based metric functions when used with the software

attributes, predict the potential risk of issues in a production environment

• design a software function learning process that improves the accuracy of

the metric predictions through experience

26

• provide a formal beta testing design methodology using two real enterprise

products to demonstrate its influence

1.5. Dissertation Roadmap

This dissertation contains six chapters. Chapter 1 introduces the concept of

enterprise beta testing and highlights the different areas of testing, introduces the

solution methodology, and highlights the major contributions. Chapter 2 provides

an overview of the various forms of testing and their impact on software

development, discusses the importance of testing, highlights the limitations of

testing, and discusses the current beta testing practices and their limitations.

Chapter 3, provides a detail description of the software objectives, software

attributes, software based metrics and the application of the metrics. Chapter 4

thoroughly defines the beta testing design methodology and provides an example

of its usage. Chapter 5 provides an overview of the software metric based

functions and an experiment of the functions on two enterprise products. The

chapter demonstrates how the metric functions predict risk value and how the

functions are trained to produce better predictions with experience. Chapter 6

provides a conclusion of the research and offers suggestions of the future of this

study.

27

Chapter 2

Software Testing and Beta Testing

2.1 Importance and Limitations of Software Testing

Software testing is an improvement process that goes back more than four

decades. Software testing is the process of executing a software system to

determine whether it matches its specification and executes in its intended

environment[51]. The major focus of software testing is to find errors which

support the ideology of E. Dijksra who believes software testing is used to show

the presences of defects but never the absence of bugs[39]. In addition, software

testing is only as good as its process. Today, manufacturers of enterprise

software use testing to influence the quality of an application. There are several

forms of testing used to discover errors in the software. However, software

testing can only discover bugs in the product it cannot eliminate errors.

Software testing is an exercise in product improvement seeking to refine the way

applications are evaluated. It is an important factor in the software development

life cycle seeking to assess the operation of the application in turn locating errors

in the process and code. Software may also fail by not satisfying environmental

constraints that fall outside the specification[51]. In addition, testing provides a

perception of quality and demonstrates an activity was initiated to improve the

product.

28

There are many software process improvements such as CMM and IS0 9000; all

seeking to manage and improve the way software is developed and tested[9, 42].

Today, software testing remains complex. The focus is not product specific, but

geared more towards an unproven process. Manufacturers of application are

dedicated to process improvement but not product improvement. In this

research, the focus is on the actual products and how their attributes are used to

influence the way the applications should be tested.

Testing still remains a conundrum because software developers have difficulty

addressing some of the common problems in software testing such as:

• No true methodology to decide when to start and end testing.

• Lack of set of compelling events used to dictate when a product is

thoroughly tested and testing should end.

• No guarantee errors will be revealed during initial testing.

• Does not certify an improvement in exceptions handling a product

• Cannot validate every possible use case

• Some testing requires a special skill set to properly test.

• Unreliable outcomes for specific objectives.

29

2.2 Major Types of Mature Code Development Testing and Their Roles in a

Software Process

The coding phase of the software development life cycle is the stage in the

software building process where software engineers build the software using

languages, objects, etc. This section highlights the major form of testing used to

validate mature software code. Mature software code is the stage when the

software is close to completion. The software testing methods discussed in this

section are compared to beta testing later in this chapter to demonstrate their

limitations. There are several forms of testing used to validate and support

software quality control. The major types of testing employed after the code has

matured are integration testing, white box testing, black box testing, usability

testing, stress testing, smoke testing, installation testing, alpha testing,

acceptance testing, and beta testing.

Integration testing is a step approach to validating software by testing major

builds of the application. This form of testing secures modules of an application,

tests each unit, and applies it to the program to verify it is functional. This

process creates a systematic approach to application design[41]. The process is

used to eliminate errors in small units and build an application incrementally.

Integration starts very early in the coding phase of software development, use an

agile type methodology. Since integration testing is employed as modules are

coded, the process could start early in the coding phase and continue until

30

completion of the project. This process is most effective with usages as

capturing fatal errors in improper calling sequences or mismatched parameters

early during the coding phase[19]. Integration testing validates the performance

and reliability of an application most notably included in the design specification

of an application. There are several usage cases solved by this form of testing.

Integration testing uses a skeleton technique to application validation. It is

employed to assist with resolving functional issues with its step type

methodology. However, there are a few notable limitations outlined in section

2.2.1.

White box testing is a validation process that reviews the structure and code of

the program to build test scenarios. The test cases are clear and based on

information revealed in program routines. White box testing executes every

statement in the program at least once[20]. To guarantee the independent paths

in a program have been executed successfully, the software development team

performs white box testing[41]. In addition, the data structures are tested to

assure validity[41]. The overall goal is to reveal any logical issues in the code.

This form of testing is performed later in the software coding process after the

product is matured. The software should be near completion so a complete test

case may be exercised.

White box testing is an important process because it exercises testing from a

holistic point of view. The application code is reviewed to build a test case based

on the design of the application. Bill Hetzel, in The Complete Guide to Software

31

Testing, Second Edition, stated, “we don't even notice such features unless we

look in the wall or inside the box to see what has been done”[19]. This form of

testing studies the software code to understand how to test it.

Black box testing uncovers potential issues in the functional areas of software.

These functional areas include (but not are not limited to) data class boundaries,

missing functions, data volume limitations, interface errors, initialization errors,

data structures anomalies, and performance errors just to name a few

parameters[41]. The unique characteristic of black box testing is that code

validation is not the goal but confirmation of the information domain. Black box

assures the product features are operating as designed and the software reveals

the presence or absence of errors.

Black box testing is a test case procedure exercised in the later stages of the

software development process. In several cases, black box testing may proceed

(or complement) white box testing to test data rates, the effects of use cases,

responsive to input values, and other functional specifications.

Black box testing is used after a series of tests have been performed on the code

and to test circumstances in which the program does not behave according to its

specifications[36]. For example, black box testing is to test that the application

extracted the data from the correct repository and generated results based on a

specified set of rules. Black box testing may also reveal common initialization

32

errors. The outcome of this testing resolves a series of problems associated with

application design.

Black box testing is most useful at validating test cases created by development.

For instance, if the developers of an application wish to understand how the

application handles input errors entered by an end-user, black box testing is the

method employed to address this concern in an internal setting.

Another form of testing is usability testing. The focus of usability testing is

measuring how the end-user interacts with a software product. Usability testing

takes into perspective the end-user’s views to validate the quality of design. This

form of testing uses a small set of the targeted user group to perform a test of

features (GUI) to confirm ease of use.

Usability tests are performed in a controlled environment monitored by the

program developers. Usability tasks take into account user accuracy, user

response, user information recall, and end-user input accuracy[50]. The data is

used to refine the design factors of the application. Usability testing is employed

on the code close to the end of the coding stage.

Usability testing is performed after the code has matured, later in the software

development life cycle. In Glynn Myers, The Art of Software Testing, he believes

usability testing is most useful to validate[36]:

1. The program provides ease of use.

33

2. The software user interface has been tailored to the intelligence,

educational background, and environmental pressures of the end user.

3. The program output provides meaningful data.

4. The program produces straightforward error messages in the event of a

system exceptions

5. The program provides input redundancy, not containing a large volume of

unrestricted text fields

6. The program lacks an excessive number of options, or options that are

unlikely to be used.

7. The program user interface is systematic and demonstrate unity

8. The program returns an immediate acknowledgment to all inputs.

This provides a comprehensive list of the test cases for usability testing.

The goals of usability testing mirrors Myers list of test cases by validating that

end-users complete specific tasks successfully. Usability testing also reviews the

steps the user implements to resolve a task and if the steps are optimal. This

form of testing also reviews end-user issues, complications, and operational

efficiency[50].

Stress testing is a performance validation process that subjects a program to any

excessive conditions[36]. The goal of this form of testing is to introduce a set of

executables to demonstrate abnormal behavior in a program. Stress testing

34

validates constructs in a program to uncover the existence of instability in code

modules.

Stress testing is used to introduce excessive activity with the specific purpose to

“break the program”[41]. The test validates whether the program performs at

peak performance over a period of time[27]. For example, in a mathematical

program a subset of data may be introduced to a series of algorithms. System

engineers will review the system for degradation, accuracy of output, and other

performance metrics.

Stress testing is introduced later in the coding phase of the SDLC when

benchmarking is required for a specific feature or the program as a whole. The

software developers using a routine or separate benchmarking application

perform stress testing. The purpose of stress testing is to consider situations that

normally shutdown or cause an ABEND in a program. Stress testing produces

the existence of errors in sensitivity to large volumes of data, memory leaks,

output rates, disk resident issues, and virtual memory problems[41].

Stress testing uses a series of independent sub-tasks to simulate a software

system and verify the performance of the application is complete. The overall

goal is to exercise the complete computer-based system to validate errors do not

exist in the interface of application with hardware (or existence applications)[41].

35

Stress testing takes into account the target computer system and the entire

domain[51].

Stress testing is a massive validation exercise used to eliminate the existence of

errors in the total computer system. Stress testing is best used to confirm

system requirements’ specifications, all functions are exercised, procedures and

interfacing systems are executed, and invalid system input is accepted or

rejected[19]. Stress testing requires a large amount of preparation prior to

execution. The coordination efforts are time consuming and must be based on

good design process.

Stress testing is performed in the late stages of the coding phase proceeding the

integration testing[23]. When executed correctly, stress testing demonstrates the

performance and influence the quality of the application by[19]:

• Testing the performance of the application

• Benchmark performance by introducing use cases that push the system to

its limits

• Analyze specification carefully (especially in scenarios that reveal errors)

• Test source data and/or use simulators to generator application use cases

• Successfully evaluate the effectiveness of performance parameters such

as response time, run requirements, and file sizes.

These outcomes as a whole provide a summary of cases solved by this type of

testing.

36

When updates and maintenance are produced for an existing application, smoke

testing is issued to produce the existence of bugs. Smoke testing adds value to

software when changes or errors are identified in a particular module. Also,

smoke testing is employed to execute a series of mini-tasks to validate the

software is test-ready for more extensive testing.

Smoke testing is a smaller version of integration testing used to assure features

in an application still exist after introducing the new code[2]. For example, if an

end-user recommends a functional change to an application that is required for

its environment (customization change). Smoke testing is used to verify the

application does not affect the remainder of the application. In this scenario, only

a few small changes were made to a module and a mini test is run to assure a

new code does not impede production.

Smoke testing complements integration often creating a little overlap. The

testing technique is often employed early in the coding phase in the SDLC after a

new module is added. It is also exercised in the later stages after new changes

are recommended during the alpha testing, acceptance testing, usability testing,

and beta testing. Smoke testing solves the fundamental problem in software

testing that ensures that the same base level of functionality is still present after

the latest check-ins[2].

37

Installation testing is a validation method used to reveal the existence of errors in

the install process. Installation testing validates compatibility with other

platforms. Installation has several test cases, which are[27]:

• Ensures all programs are interconnected correctly

• The system options selected by the end-users are compatible as a unit

• The hardware is configured correctly

• All installation files have created the correct content

• And all parts of the system exist.

Combined, the process assures the application functions on target platforms.

Installation testing is employed to validate the options, user data files, and

libraries are loaded correctly[36]. The software must also properly interconnect

with the current system and not create any integration issues. Installation testing

is employed later in the SDLC after the code has matured. Since enterprise

software is designed to operate on a variety of hardware/operating environments,

this form of testing is most effective in validating these test cases. Installation

testing is regarded as a hardware and operating system acceptance test[27].

The installation testing reveals compatibility issues introduced by the software in

test. The test case also locates errors in the installation process[36].

Alpha testing is a controlled test where test-subjects team with the developers to

test the product in a homogenous environment. The developer views the testers

of the software to make certain the product is functioning correctly. Alpha testing

38

adopts the same techniques used in black box testing because test subjects are

not concerned with the code but the functionality of the application.

Alpha testing is employed during the later stages of the coding phase after the

software is matured and near completion. Alpha testing is conducted before beta

testing with partner developers, dedicated client sites, and internal business

units. For example, a software developer of a service desk application (help

desk software) would install the latest version internally and allow service desk

engineers to use the product to eliminate functionality issues in a test

environment.

The outcome of alpha testing produces potential code or design changes [2].

Although, alpha testing does not capture the essence of end-user inference, it

eliminates design and functional errors prior to a longitudinal test (beta test).

Acceptance testing is a level of testing that is used when customized software is

being developed for group or unit and validation is required by the end-users[41].

The software is final test before releasing the product to the business unit.

During this stage of testing the product may be tested for a short period and final

acceptance is conducted where the stakeholders signoff on completion of the

product.

39

Acceptance testing is most effective when business units required a final

approval of the development process. In this scenario, end-users verify the

scope of the application matches their expectations. The acceptance test is the

final stage of testing for small unit based applications. The main focus of

acceptance is to demonstrate that the software is ready for operational use[19].

The test use case validates user requirements, ensures the user is involved,

validates user inference, and completes quality testing.

2.2.1 Limitations of Major Types of Mature Code Development Testing

This study focuses on testing that validates the software in an actual production

setting. Beta testing is the most robust form of software testing providing the

explicit feedback from the target user group. Most of the applications mentioned

in Section 2.2 serve a specific purpose in the testing process; however, their

limitations fall short in total quality management.

Although black box testing is used to validate function issues in software, it does

not take into account actual use cases or all possible use cases. This is

impossible without the influence of external systems. In addition, black box

testing may not reveal any errors. Another limitation of black box testing is that it

is closely managed by product developer unlike beta testing which is executed by

the beta testers. Software developers on support the testing process (e.g.

technical support, customer support, etc.)

40

The limitation with employing integration testing is the level of skilled engineers

required to implement this process appropriately. The engineers must have

experience with the software discipline and this type of testing use case. An

additional limitation of integration testing is the total time it takes to implement

this approach, since each module requires testing prior to introducing it to the

software project. Additionally, integration testing is meticulous in nature and

must be tested thoroughly. The testing technique does not take into account

real-world use cases at this point.

The importance of usability testing is important to measuring the users view of

quality in the application[5]. However, usability testing has it limitations because

it is a very task driven process focusing more on specific tasks or instructions

than full use cases. Usability testing is more scenario-based than reviewing

multiple use cases. In addition, usability testing is performed in a controlled

environment.

Stress testing is a performance validation procedure with a narrow set of test use

cases. This form of testing is limited to a finite set of software programs not

useful for batch processing applications or compiler applications[36]. Also, stress

testing uses a simulated stress load but does not provide the large number of

use cases, which is virtually impossible. Beta testing is a more robust testing

practice because it provides the real world use cases not demonstrated in an

internal testing environment.

41

Another limitation revealed in most forms of code development testing are the

limitations outlined in system testing. System testing is an engineering system

that requires a number of testing activities. Its limitation is based on effective

time utilization because it introduces overlap in some test cases, which creates

redundancy. This form of testing is conducted on internal systems and requires

knowledge of the product and produces the ideal target environment.

Also having a unique set of traits is the beta test. Beta testing uses a base of

end-users (and projected end-users) to validate code prior to final release. It is

also robust in scope. Unlike smoke testing, it is very limited in scope and only

validates a specific test case. Smoke testing is performed in an isolated

environment and by skilled software engineers.

Also limited in scope is installation testing. The largest problem with installation

testing is performed by software developers on internal systems. This form of

testing is not as robust as beta testing because it does not take into account

other environmental issues such as existing applications, limitations of the

hardware, security, etc. The test case is performed by the software development

group, which is most familiar with the expected operations and characteristics of

the application[27].

42

The limitation associated with white box testing is most notably that it is restricted

to internal environments and must be performed by the software developers.

Since white box testing typically analyze the data flows and controls in the

software code to build a test scenario, software engineers with experience are

required[37]. This is an activity with clear objectives and must be performed

internally. White box testing would not be performed in the real production

environment because of the risk associated with the unproven code. This makes

white box testing less robust than beta testing.

Acceptance testing is not robust enough to provide efficiency for enterprise level

software. In addition, acceptance only provides feedback for a small base of

users and not capable of providing the robust level of feedback required for

applications designed to support a larger user base. The major limitation of

alpha testing is it is conducted in a controlled environment. Alpha test is

influenced by the presence of software developers [41].

The limitations in the major types of testing outlined in this section (with the

exception of beta testing) are:

• each provide a narrow scope in software improvement

• some lack a clear set of objectives creating overlap and redundancy

• none take into account actual production data (mimicking production

settings)

43

• a large amount are performed on internal systems which provides a false

perception of completeness

• several lack a true set of design steps

• performed on internal systems only

• require skilled software developers or systems engineers

• and practically all create some level of overlap which impedes progress

and wastes valuable time.

Beta testing is a more comprehensive form of testing because the product is

tested on the target platform. This form of testing increases the confidence level

of the end-user and the direct feedback validates user inference.

2.3 Current Beta Testing Practices and Their Limitations

Today, there are no beta testing standards or industry best practices. However,

most major software manufacturers have beta testing programs devoted to

raising the awareness to its user community that products are adequately beta

tested. The beta testing practices used by most companies are unique to the

specific company only focusing on test duration, the ratio of testers, existence of

errors, and refining of a process.

Companies today advertise openly beta test durations to alert the user base that

the product has been tested over the course of a certain period[22]. The beta

test ends after the testing period if there are not outstanding issues and the

number of participants’ requirements was met. The limitation in this methodology

44

is it does not validate the product has been tested effectively. In addition, this

method does not validate the weakness in the application was tested thoroughly.

Manufacturers also focus on recruiting a set amount of beta testers, based on the

ratio of current end-users. There is typically a set amount of users required to

test products based on some predefined principle. There has also been a shift in

using testing recruiting services to obtain the desired amount of testers for a

product in test. This method is weak because the number of users does not

automatically indicate the product will be tested effectively. In addition, this

method does not account for skill and quality of testers.

Often the key focus for beta testing is to eliminate bugs in the application.

Software testers’ work closely with beta testers to validate the code does not

create errors. However, there is little guidance in the areas that potentially

generate problems when implemented in production.

Beta test plans today are more focused on providing a uniform template for beta

testing products. This activity is driven by process improvement activities. Beta

testing should be unique by product or product domain and influenced by past

data.

The beta testing design provided in this study strengthens limitations in modern

beta testing plans by proposing a software-based method testing design. This

45

process demonstrates the importance metrics is in the improvement of software

testing.

46

Chapter 3

 Software Metrics for Enterprise Software Beta Testing

3.1 Major Features of Common Enterprise Software

This section outlines seven core features of an enterprise application. The core

features are the focus of the beta testing metrics provided in this study.

However, it is important to understand the structure of an enterprise application.

The term “enterprise,” in computing, is a large scalable application designed to

support robust and large transactions in a business environment. Enterprise

level applications are deployed on large networks successfully integrating with

other applications, operating platforms, and networking components. Software

manufacturers develop enterprise software to support a vast user base yet

scalable enough to adapt to diverse environments. Today, general-purpose

enterprise solutions provide out-of-box functionality with software customization

options for specific organizations. However, it is common for software

manufacturers to design proprietary software for a specific company or business

vertical. The enterprise-level software solutions are developed for corporations,

government agencies, hospitals, universities, legal firms, non-profit

organizations, and other large institutions.

Designed to function on large user base infrastructures, enterprise applications

support a single business focus, providing solutions to a number of business

problems (multiple use cases) in a specific focus area. An example is enterprise

47

management applications (EM software), which are designed to support

infrastructure software management having the capacity to perform automatic

software delivery, manage maintenance updates, provide enterprise hardware

and software inventory and reporting (to name just a few features). In this

scenario, software management is the single business focus area, and to solve

multiple business requirements, software management applications manage

support issues for a large user base, update systems simultaneously, controls

inventory, and provide reporting (if required).

The common enterprise software product has various features based on its

explicit design. To meet the demand and expectations of the targeted production

environment, enterprise software (at a minimum) is scalable, network enabled,

customizable, provides multithreading, out-of-box functionality, fault tolerant, and

integrated security. In addition, enterprise software is capable of handling

external and large transaction requests and integrating successfully with existing

production software. Combined, these attributes permit the product to function

effectively in an enterprise environment.

Chapter 1 provided information on the major enterprise software corporations

(Microsoft, IBM, Computer Associates, Oracle etc.) and the individual corporate

direction for beta testing software. These companies develop and manufacture

enterprise applications ranging from network management solutions to security

applications. The most widely accepted enterprise application is software

48

management solutions, which provide help desk functionality, software delivery

options, enterprise license agreement management, asset management,

knowledge database, and reporting features. The help desk (or service desk)

feature of a software management application provides features (components)

that allow end-users (administrators or non-administrators) the ability to manage

problem logs. The software delivery option provides a resource to manage large

system implementations and a utility to push applications and/or maintenance

updates to end-users on a network. Large corporations, with robust networks,

encounter issues managing application licenses or software authorization codes.

Software management applications provide license management features

offering organized license schemas. The asset management component collect

information from enterprise hardware/software, stores the information in a

centralized database, and in turn offers administrators a utility to manage

valuable company resources. Another feature of software management

applications is the knowledge base solution, which provides users with a

database to research solutions to issues. Reporting utilizes information in the

database for trending, updates, and ad-hoc reports. This example of a software

management application provides a basis for understanding of the core features

in a typical enterprise application.

49

Figure 3. Core Features of an Enterprise Application

An enterprise application’s core features are simplified administration, web

enabled components, support multithreading, contain an effective graphical user

interface (GUI), support robust transactions, include fault tolerance components,

and obtain integrated security. Each of these common features operates as a

unit to support the capacity of large and demanding infrastructures (See Figure 3.

Core Features of an Enterprise Application). The core features are valuable in

studying beta testing by revealing which components or modules’ attributes must

be properly tested.

50

3.1.1 System Integration Support

Enterprise application integration is one of the major challenges businesses face

when introducing new applications, software components, into production (i.e. an

enterprise infrastructure). Integration is not just a clean installation of the

application; it includes the deployment of the application into production without

impeding the current infrastructure. Many modern enterprise applications are

following a new demand from corporations to design applications with out-of-the-

box functionality for a specific organization (proprietary). In either case, software

manufacturers design applications to be customizable and communicate with

other internal and external applications.

During the beta testing phase, system integration is tested to insure the product

is functioning in the environment. Software testers validate the application is

operating and has not compromised other applications. Testers also validate

communication is functioning between internal and external systems.

3.1.1.1 Internal System Integration

Inter-company systems are internal applications or a collection of software that

support a company’s daily operation. Inter-company systems integration is the

software’s ability to function with internal systems and not impede current

operations. Inter-company systems includes (but are not limited to) CRM

(customer relationship management) systems, internal financial systems, service

51

desk applications, legacy systems, change control systems and databases

consisting of all the major units supporting the line of business.

3.1.1.2 External System Integration

Extra-company systems are shared systems outside of a corporation but critical

to success of the business. Newly implemented applications are required to

provide support for external systems and not corrupt existing platforms. External

systems are key to maintaining business-to business (B2B) and business-to-

consumer (B2C) relationships, external client support, and other business

functions. Examples of external systems include supplier systems, messaging

servers, vendor assets systems, etc. It is common for enterprise applications to

support EDI (electronic data interchange), which is a standard in e-document

exchange.

Although not mandatory, some manufacturers design enterprise applications to

utilize web services for external system integration. Web services are utilized in

business applications to support point-to-point communication via the Internet. In

addition, software manufacturers design enterprise software with web-enabled

components to help the end-users and expand business relationships.

Specifically, corporations have business relationships established with vendors,

suppliers, partner firms, and clients utilizing special infrastructures to

communicate with external systems.

52

Figure 4. Core B2B Application

Corporations use secured web connections to support B2B and B2C systems.

B2B are trusted relationships established with two or more companies to conduct

business using a specific system or group of systems (See Figure 4. Core B2B

Application). B2C is the same relationship; the difference is the relationship is

established between business and customer (e.g. ecommerce, technical support,

etc).

Corporations utilize secure socket layers (SSL) and/or virtual private networks

(VPN), to establish secured connections with a business to carry out a

transaction. A classic example of this practice is supply chain management

applications (SCM) like those used for online book ordering. Supply chain

53

applications check the availability of books directly with the manufacturer. This

practice streamlines the inventory process and fosters customer service.

3.1.1.3 Message-based System Integration

Enterprise software must conform to its targeted infrastructure by including the

proper communication features required to support other production applications.

Message-based integration assures the product communicates, when necessary,

to other software components and platforms. This is done by requesting a

service or using a standard application-programming interface (API). An API is

employed to make a call to an application to facilitate communication. A

common messaging API in WINTEL and IBM environments is NetBIOS. Open

Database Connectivity ODBC is a standard open API, which facilitates

communication with databases. APIs are characterized as asynchronous or

synchronous, which rely on the source and expectation of the call. The

difference between synchronous and asynchronous APIs is how they

communicate with the host application. Synchronous APIs provide simultaneous

communication with the host application. Asynchronous APIs’ communication is

performed with a specified start and stop point. Often, enterprise software

manufacturers create unique messaging systems or rely on middle-ware

applications to support communication (relatively).

54

3.1.1.4 Customizable Features

When implementing applications in a production environment, regularly

enterprise-level corporations are interested in applications that provide

functionality out-of-the-box. Out-of-box functionality is required to assist in

streamlining the integration of the product reducing the need for expert

integrators or special implementation services. However, there are instances

that require the application to be tailored to perform a specific task.

Customization is a feature of enterprise application that provides the ability to

perform unique adjustments to foster flexibility in software. This is exercised by

creating or updating scripts or rules generated to meet a requirement not offered

in the products in its native format. Customization may be required if an

application does not inherently support an external function or system condition.

An example of customization is adjusting web-enabled applications to support

anti-ad pop up features in web browsers. System support applications (e.g.

helpdesk software or service desk applications) require web deployment to

support the user base of large institutions. Common web interfaces incorporate

a pop-up login screen for authentication purposes. In the case of financial

institutions, which use integrated software to suppress web pop-ups, the

application requires customization to recreate a log-in screen that does not pop-

up for logging into the application.

Enterprise applications are capable of conforming to any environment including

minor customization features that do not ruin the integrity of the application.

55

Customized components are not tested during the beta testing phase. However,

customizable features included in the product specification are tested during the

beta testing phase to assure the product is not compromised after changes are

implemented (i.e. web portal applications, exceptions configured to limit when a

back-up will be executed, etc).

3.1.2 Network Enabled

A vital part of application communication is its ability to support networking

environments. Large corporations have established network infrastructures

linking nodes to servers, mainframes, mid-range, and storage devices.

Enterprise infrastructures have multilayer hardware firewalls, routers, and hubs

used to establish cross-platform communication while protecting the company’s

information. Enterprise software provides support for network communication

and adheres to security policies.

Enterprise applications require robust networking modules, which provide the

ability to communicate via standard communication interfaces. Communication

is facilitated utilizing network protocols such as TCP/IP, IPX/SPX, LDAP, X.500

etc. Enterprise applications must also communicate with an entity’s firewall

(whether it is hardware/software based, or both). Firewalls protect data

externally and internally by managing access. Enterprise network administrators

grant access by specific ports. If an application does not have rights to the

correct ports, errors occur or the application may not function correctly. This is a

difficult feature to design and normally requires customization to adhere to

56

firewall policies. However, some enterprise applications may provide software

wizards to ease firewall administration.

The same wizard features are utilized to assist administrators with configuring

user rights and group policies. Commonly, enterprise applications provide a

base set of user rights to restrict application access. In general, three-levels are

included:

• Administrators - full access to the application (useful when trouble-

shooting and customizing the software).

• Power-User - advance application ability but normally lower than

administrators (provides rights to advance application components).

• and Users - limited in scope providing basic application usage with some

self-service administration function (i.e. changing account password).

Applications use the same footprint to assist administrators in setting up group

policies. All are important in easing the administration of enterprise applications.

3.1.2.1 Web-enabled Components

It is common to find some enterprise applications designed to utilize web

protocols to communicate using the Internet as a global communication

backbone. Other web-enabled applications support HTML, WML, SGML, SOAP,

and a number of web services. Supporting these services, features, and

57

protocols impact the deployment, support, and availability of enterprise

applications.

Applications available via the web are a common expectation in enterprise

applications reducing hardware and administration overhead. Hardware cost is

reduced because web-enabled applications create thin clients utilizing HTTP to

access applications via the Internet (e.g. Internet Explorer, Netscape etc.). Thin

clients are computer systems with no physical implementation (e.g. dumb

terminals, Citrix clients, etc.). Employing thin clients also reduces administration

cost by creating centralized applications environments lowering the cost of

additional hardware for each end-user, reducing licensing cost, and creating a

single point of failure for troubleshooting purposes (among many other

administration requirements).

3.1.3 Effective Graphical User Interfaces (GUI)

Enterprise applications are designed to ease the end-users learning curve by

incorporating a comprehensive graphical user interface (GUI). The GUI is often

well-organized, designed clearly, and properly instruct the end-user upon

execution. GUI’s utilize a well-defined command button, text boxes, drop down

menus, directional arrows, and other options. Since, the GUI function as the

“face” of an application, consumers’ expectations are high and software

developers spend quality time developing this feature.

58

The GUI should include similar appearance whether it is the native, java-based,

or web-based interface. In addition, enterprise software developers are expected

to provide some level of customization, which enhances the user experience by

providing familiarity.

3.1.4 Multithreading

As an application advances, it must be capable of starting other tasks while the

operating system is managing other requests. Multithreading is a feature in

applications which spawns independent execution paths giving applications the

ability to perform tasks simultaneously. This feature increases performance and

accelerates processing.

Multithreading is essential in supporting the graphical user interface (GUI),

integral in servicing multiple clients simultaneously, performing calculations, and

other tasks initiated or requested by the application. The GUI is used to initiate a

thread by the end-user (i.e. to print a document). If multithreading were allowed,

the user would have to wait until the thread is finished before initiating a new

task. This feature also allows multiple clients to function (based on the resources

available).

Today, most operating systems support multitasking enhancing the applications

ability to utilize the processor more efficiently. All operating platforms support

32bit processing from Microsoft Server to IBM z/OS.

59

3.1.5 Robust Transaction Support

Enterprise applications are mission critical software in large corporations and

must operate successfully. When a transaction is required, it must operate

accurately and efficiently each time. Robust transaction support is the ability of

the application to function well when demand is high, and still provide the correct

warning when erroneous data is entered or correct the error. Enterprise

applications must be capable of executing transactions in large volumes

seamlessly. In addition, be capable of differentiating between user inputs and

provide warning if an error occurs (instead of providing a valid incorrect answer).

Examples of robust transactions are those facilitated by financial applications.

Software manufacturers design financial transactions to facilitate check handling

and the distribution of funds to other systems. If a financial application requests

electronic submission of funds to another system, it is critical that the transaction

is performed successfully. This system requires this action to occur at a high

rate (approximately hundreds of transactions per minute). During the transfer of

information to specific accounts, if there are discrepancies in a field (where

information is identical) the system should provide a warning not to continue with

the process.

3.1.6 Fault Tolerance capability

Failover and recovery is an important feature of enterprise software. In meeting

the market demand, enterprise corporations expect software to provide

continuous availability (especially for those entities that have a global presence).

Enterprise software includes features that provide seamless recovery in the

60

event of disaster. If the application fails abruptly, it must have the ability to

recover quickly, limiting the outage time and loss of data. This concept is referred

to as high availability. The application has 24/7 availability features that

constantly store transactions such as failover, which is a second version of the

application. When the first fails this second version is started and information is

switched.

In the case of corporations that utilize enterprise-level service desk applications,

an outage would be detrimental to corporations. For example, most energy

companies employ service desk applications to log power issues from clients (i.e.

reporting a power outage, or natural disaster). In the event of a storm or other

natural disaster, the volume of calls from customers increases. If the service

desk fails, it must be able to recover quickly to support the volume of calls.

3.1.7 Integrated Security Policies

Enterprise software must incorporate a standard layer of security. Security

layers users and groups access levels, data encryption, and data integrity. User

access level includes the application ability to manage specific end-user (and

groups) rights to various components and access to data. Data encryption

protects software information from unauthorized use. Data integrity assures

unauthorized sources do not modify or change data. The integrity of the

application demands that all of these security components work collectively to

protect the application.

61

User and group policies (highlighted in section 3.1.2 Network Enabled), assure

the proper access is provided to the end user base and manages user

accessibility. In a networking environment, administrators establish groups of

users based on some corporate specific access policy or methodology. To foster

current network policies, enterprise applications provide a base set of similar

integrated features to assist in managing function access and data availability.

This section is an important security feature and creates an additional security

layer.

Enterprise software includes an integrated security feature designed to prevent

unauthorized access data generated and utilized. To support this requirement,

enterprise software employs an encryption methodology such as private and

public key encryption to secure data. In the public key scenario, there are two

keys, a public and private key. The public key encrypts the data and the private

key decrypts the data.

Data integrity is also a type of integrated security feature used to assure that

unauthorized users or resources do not modify application data (e.g. external

hackers, Trojan horse programs, virus, or other forms of corruption). This

includes data scanning mechanism, encryption, and authentication to protect the

integrity of the data. Security logs are created to police unauthorized access to

information. Enterprise applications rely on APIs to establish relationships with

62

software firewall applications and virus scanning engines to protect data entering

and exiting an application.

3.2 Beta Testing Objectives

Chapter 1 introduced a core set of beta testing objectives for enterprise software.

The core objectives measure the major attributes of the common enterprise

application (outlined in Section 3.1). In addition, beta testing objectives form the

foundation for the testing design model introduced in this research. The focus in

this section is to provide a detailed description of the beta testing objectives

using real use cases to demonstrate the importance. Future studies will increase

the number of objectives to enhance the beta testing design.

3.2.1 Measuring Environmental-Dependency Issues in Enterprise Software

Enterprise software manufacturers design applications to utilize current

resources to maximize efficiency in its targeted environment. Each requirement

may create a level of dependency, which is related to resources required for

operation such as network services, physical processors, access to data etc. If a

dependency issue occurs, it will generally be discovered during deployment of

the application into a production environment. It is important to test the product

for deployment issues prior to introducing it to the target environment.

For example, legacy systems customarily employ mission critical applications,

which support a large and diverse group of users. Legacy systems’ dependency

on the enclosing environment and other attributes create a level of precaution

during implementation [35]. Understanding this level of precaution, most

63

enterprise corporations have special implementation models used to test

applications for dependency issues prior to releasing to the production

environment.

In this study, environmental dependency is defined as the application’s reliance

on hardware, components, and other applications to function correctly. The

objective is to identify issues that may impede operation (production).

Environmental dependency is a “use" association, which forms within software

systems [8]. In addition, software may create dependencies based on special

customizations. System or application reengineering impacts software

dependencies, which is formed by poor planning or maintenance. All of these

activities influence environmental dependencies in software, creating a direct

effect on deployability.

Legacy systems house applications with limited changes over an extended

length of time. During the application’s operating tenure, the software has

developed hardware and software dependencies. To illustrate this point, job

management applications rely on resources to manage the volume of programs

competing for resources. Programs competing for system resources are subject

to a limited window to utilize the mainframe to execute a job, or program. Most

programs request datasets from external locations such as volume libraries,

DASD, or some database resources. In this case, programs are expecting the

operating application to manage resource utilization and access to information.

64

Changes to the operating application or location of the dataset will create

dependency during operation.

Case 1. Mainframe dependency of older OLE to function with host applications

As Wintel applications are developed to utilize legacy software dependencies are

formed to facilitate communication with heritage applications. Distributed job

management applications are a growing trend bridging the utilization of desktop

operating systems to manage production control in mainframe environments. In

this case, a job management application developed prior to the year 2002 utilized

OLE as a standard for communication. Dependencies were formed because

applications were configured to utilize the OLE framework. However, since 2002

most developers utilize newer communication protocols (such as COM or

DCOM) to support job management applications moving away from the OLE

framework. Enterprise corporations deploying newer job management

applications would encounter dependency issues with newer features because

OS kernel would request services from older APIs. This issue can be reduced

with proper beta testing.

Customization in applications and networks creates environmental

dependencies. Often, enterprise applications require system customizations to

adjust to environment (infrastructure) changes or system dependencies.

Customizations are the direct result of reengineering projects, which promote

system evolution in corporations. Legacy systems often spawn applets that are

65

developed by engineers to adapt to rapid system growth. In Case 1, distributed

job management applications are important to manage mainframe workflows,

assist in building and managing critical path job monitoring, creating reports, and

utilizing the standard task features offered by desktop application (such as drag-

and-drop functionality, multi-tasking, desktop portals, etc.). In this case, vendors

have created new client/server job management applications to manage the flow

of programs executing on a mainframe. However, the new application was

developed with codes that utilize new system communication components (e.g.

Microsoft COM). In this scenario, the legacy application requires common

communication upgrade to maintain dialogue with the distributed application to

function correctly.

Enterprise corporations are most concerned with the effects that new software

and maintenance will have on its current production environment. Software

developers are interested in whether software can adapt to an infrastructure

without creating irreparable effects. Beta testing is an effective testing product to

eliminate the occurrence of errors that may be associated with environmental

dependency issues. Proper beta testing assists in encapsulating and isolating

various forms of application dependencies such as:

• Operating system dependencies (Platform dependencies)

• Resource dependencies (Shared library, databases, network application)

• Hardware dependencies

66

• Protocol dependencies

• Security/Access dependencies

During a beta test, implementation is expected to occur in a “real" production

environment or model environment. If implementation is successful, beta test

managers provide a series of actions to measure environmental dependencies.

If the dependencies have caused an impediment in system production, the

feedback will influence the current application. Developers will add the updates

either via a maintenance release or include it in a future release of the application

in test.

Operating system dependencies are applications needed for OS components,

files, or services to function. The kernel is the core module of operating systems,

which create dependencies in applications and hardware. The operating system

kernel functions as a translator between software and hardware components.

Applications depend on the kernel and are designed specifically to maintain

dialogue with this core feature in the operating system. Because applications are

designed around the OS kernel, changes to operating system impact installed

applications. For instance, most windows applications utilize special executable

routines for specific tasks. If an application request for a specific task and kernel

has changed from 16 to 32 bits, the call will fail. Beta testing provides software

manufacturers with a platform to measure application behavior if the adjustments

are made to the operating system.

67

Resource dependencies require specific components, information, or access to

information to produce a desired result. Applications make calls to a resource to

perform or complete a specific task. By the way of comparison, there are several

application typologies, which require resources. Client/server applications

request access resources on a network. Stand alone applications operate on

systems that request resources from the local machine. Mainframes manage a

large volume of application requests from 3270 terminals.

Client/server applications send requests to special resources to complete a task

(i.e. network resources, datasets, etc). For example, a user of Microsoft Word

attempting to use a component, that was not installed on the local machine

during the initial installation, may require access to the original source if the user

requests usage of the feature at a later time. In this case, the application was

initially installed using a network resource and the application refers back to this

location to install additional components. This type of dependency relies on

network access, availability, and authentication. Any changes to the three will

return an error or failure.

Implemented on the local machine, Stand-alone applications require more

system resources than client/server applications (network applications).

Dependencies are formed on the local machine, which include memory, disk

capacity, additional software resource, and more executable routines. Stand-

68

alone applications use a special memory address for routines, and changes in

the memory address will produce an error in the execution path.

Legacy applications require mainframe resources to function or provide a specific

task. These dependencies are access to DB2 information, mainframe

processors, tape libraries, and other mainframe elements. Legacy applications

are accustomed to limited system changes and develop a number of

environmental dependencies such as sharing like communication interfaces

(highlighted in Case 1).

Case 2.Minimum Hardware Requirements.

Manufacturers of a software product provide software specifications that list the

minimum hardware requirements. These requirements are: minimum storage

required, physical memory, video standards, physical network requirements,

peripheral requirements, prerequisite software, etc. However, manufactures do

not take into account, software already installed on a particular system. In most

cases, existing applications are currently utilizing a portion of the physical and

virtual resource and a new application increases utilization.

Hardware dependencies are related to physical CPU components or peripherals

to deliver a required effect. By way of comparison, consider Case 2. Today,

most desktop publishing applications request a large percentage of available

CPU processing. If an end-user is installing a messaging client that requires

69

equal system CPU processing, this effect will create a conflict. This type of

hardware dependency is exposed during the initial installation of the software

creating a major effect on environmental dependency.

Protocol dependencies are an application’s utilization of a specific messaging

protocol to initiate communication with a desired program or component.

Software in similar domains or manufactured by the same company share a

common communication infrastructure (proprietary protocols). Computer

Associates Common Communication Service (CA-CCS) is utilized to streamline

compatibility and dialogue between Computer Associates mainframe application

(z/OS) and applications on other platforms (e.g. Wintel, Linux, VM etc).[11]

Working closely with TCP/IP, CA-CCS functions as the requestor and establishes

contact and dialogue with Computer Associates products applications. Consider

the job management example; CA-CCS facilitates communication between the

job management application and mainframe automation. The mainframe

automation software, OPS/MVS, manages alerts and sends the request back to

the job management application to start the program. The overall goal of this tool

is to integrate applications and assist in the management of IT resources.[11]

Security dependencies are related to user-authentication requirements for

accessibility purposes. A particular application depends on proper access to

network or components to function effectively. A classic example is a user

requiring a special account to install an application. The software records special

characters into the system registry. If the installed user executes the program, it

70

will perform as designed. However, if another user attempts to execute the same

program the dependencies formed by the application will return errors or not

operate. During beta testing, this security dependency will be exploited if the

user lacks the access right to a required resource. For example, if a user is

installing an enterprise management application that requires system

administrator (sa) access to a local SQL database. In addition, if the installer’s

lack the proper privileges, installation will fail immediately. Using the same

example, enterprise applications require an initial system poll to create business

process views (for system management purposes). If the installer and/or

physical server lack access to a particular subnet (for firewall protection), nodes,

or servers in the targeted subnet will return no data. This is the valuable

feedback beta testing provides to enhance the product. In this case, the

feedback will enhance the installation wizard or provide the user with the correct

information to correct environmental issues.

3.2.2 Function Coverage Completeness

Function coverage completeness is a beta testing objective that validates the

software meets end-user functional expectations (verifying user interface). End-

user functional expectations are verified during beta testing from correlated user

feedback. The information is weighted against specifications from the produce

life cycle’s analysis and design phase to determine the features that require

immediate addition and/or modifications to the product in test. This information,

outlined in a software requirements report, outlines all the features of a specific

application. Software developers reevaluate other requirements or product

71

supplemental requests for future additions or product enhancements. The

outcome of function coverage completeness refines the product in test and

fosters future releases of the product.

Case 3. Beta testing a document management application

Today, document-managing applications are increasing in popularity seeking to

reduce the volume of physical documents, in turn creating a virtual paperless

society and improving document standardization. Document standardization

offers enterprise users’ consistency, advance editing, and security for electronic

documents. In this example, beta testers are testing a popular industry leading

document management application. Beta testers of this product would expect

the product to provide single function document conversion. The beta testers

would also expect the product to offer document compression, minor security,

and backwards compatibility. However, after completely testing the product, beta

testers provided suggestions to have security wizards included with the

application and a request to manage the level of document compression (e.g.

low, medium, and high). Beta testers would also provide negative feedback on

the quality of the document after conversion. The purpose of this test was to

measure the acceptance rate based on expected and desired result.

Before developers proceed to the coding phase, software specifications require

finalization. Product owners utilize a software specification document (SSD) to

correlate and present requirements to a team of developers. The product

72

standards outlined in this document evolve during the design phase of the SDLC,

from the targeted user community, which developers integrate into the

application. However, the user requirements change over the course of the

development process based on need, advancement in technology, or industry

standards. During a software beta test, information from end-user feedback

provides developers with the proper information to qualify whether the software

meets reasonable expectations.

Reasonable expectations are those misinterpreted or under represented features

in software, overlooked during the early stage of development or ignored by

product development. Using Case 3 to illustrate this point, the product lacked

“simple" functionality highlighted by the group of beta testers prior to sending the

document managing application to beta. The single-function document

conversion option, akin to converting a Microsoft Word document to Adobe PDF

format, was a reasonable expectation to the product at the enterprise tier.

However, developers easily overlooked the feature to allow the user to manage

the level of compression to a document. In this example, the function coverage

completeness objective was instrumental in capturing data used to refine the

product in test. In addition, it was effective in presenting the customers

expectation of the product.

Case 4. Expected functionality in Linux Word-processing Application.

An enterprise company is scheduled to release a new Linux word processing

application designed to compete with the major Windows-based word processing

73

applications. The product is currently in the beta testing phase and a few beta

testers of this application are actual database administrators (DBA). The beta

testers have found a missing functionality when performing the “save” option on

the local machine. The testers believe the product should provide the option to

allow end users to save information to a comma-delimited flat file. When the

beta testers select the print option, they are provided a base set of printers.

However, there are no options to print to a flat file. Since DBAs often utilize flat

files to create comma-delimited documents to easily upload information to a

database management system (DBMS). The beta testers of the product consider

this a major requirement.

Integrating information into the current product, based on the level of feedback

received from beta testers. Case 4 provides a classic example of the developers

overlooking common functionality. Here the beta testers were able to provide

information that required additions to the product to satisfy function

completeness.

3.2.3 Measuring Localization Specification in Enterprise Software

Enterprise corporations generate a large volume of its revenue in the global

market. The LISA organization, a localization standards organization supporting

major IT manufacturers and professionals in streaming business on a global

platform, estimates that 20 of the largest IT companies are generating between 3

billion to 15 billion annually in revenue (estimates are stated in USD)[28].

Generating this amount of revenue in the foreign market creates challenges to

74

focus on the proper testing and localizing of enterprise applications. Beta testing

is critical in providing a proper evaluation process to cultivate enterprise software

and assure the product will function as designed in the foreign market.

Beta testing is the final evaluation phase for localized software. In this phase,

software is tested by foreign (or target) environments to validate the product is

functioning correctly. More importantly is if the translation is functioning properly,

software components meet foreign requirements (does not violate foreign

policies) and content is demonstrated appropriately.

Localization specifications are components and functions added to software,

which permit the application to function in foreign countries. More importantly,

localization specification is a process by which software is analyzed and adapted

to the requirements of other countries, making the software more usable for

customers in targeted countries[10]. Localized software provides multi-lingual

functionality, data exchange, prepares applications for foreign standards, assures

the product operates with special peripherals and assists in meeting foreign

country infrastructures. Beta testing supports the evaluation of localized

functionality in software by recruiting clients with production environments in

targeted countries to test global software features. The outcome of testing

localization specification validates the product will work effectively in foreign

information environments.

75

Localization is a common process in enterprise application because of the

diverse level of end-users. Diverse users from foreign countries present unique

challenges and various standards, different infrastructures, and multiple

languages barriers. Localization is taking a product and changing it to assure

that it is linguistically and culturally appropriate to the target locale (e.g. country,

foreign region and language) where it will be sold and implemented[28].

Language barriers present major challenges for software developers. These

barriers are formed when developing multi-lingual functionality, especially in the

GUI design, and matching usage issues[17].

Case 5. Function mapping in localized software.

Enterprise software providers are often faced with language barriers, which

create terminology issues. These same issues regularly create screen layout

issues when the character type and font change to adjust to the local language of

country that utilizes a particular application. Another large issue is function

mapping where implication changes in other countries. To illustrate this point,

end-users selecting the “Save” option in an application must yield the same

results regardless of language. If the word “save” has dissimilar meanings,

application mapping is employed to resolve this conflict.

An additional measurable localization feature is data exchange. LISA assists IT

professionals in globalization, internalization, translation, and localization. This

organization has over 400 corporate technology manufacturers and service

providers creating a globalization community. An important goal of localization is

managing data exchange to assure the quality of data, terminology, and

76

information exchange is accurate and consistent. To assist corporations, The

LISA organization has two standards benefiting data exchange translation

memory.

TBX and TMX are vendor neutral open extensible markup language (XML)

standards used to streamline the flow of data between foreign systems. XML is a

method used to create common information formats to share data on the World

Wide Web, intranets, and other web-enabled applications[6]. TBX is used to

manage terminological data. This standard benefits terminology consistency in

software packages and service related research. In addition, TBX promotes a

centralized approach to terminology information, creating one database for

terminology data in software. This standard provides an open methodology to

allow terminological information to be more standardized and accessible to the

public, producing a positive impact on industry localization.

As TBX provides an open XML standard structure, TMX mirrors this approach

providing a standard for translation memory. Translation memory matches

application sources and targets language segments. The translated data is

stored in a database for future reuse [53]. TMX is a non-vendor XML standard

streaming exchange of data between vendors without losing or corrupting data.

For example, a translation memory database pairs equivalent sources to target

language segments (e.g. sentences), together with the software, when provided

with a source language input to translate, will search in the database and retrieve

77

samples that closely match the input. The concept is target-language

components can then serve as models for the translator[52].

Localization also assures the product conforms to foreign country specific

peripherals or special input devices. A classic example is the use of specially

mapped foreign language keyboards (non-English) end-users. This device must

be properly tested to eliminate any character mapping problems.

3.2.4 Testing Enterprise Software Robustness

Manufacturers employ various forms of software testing techniques utilizing

standards, best practices, and procedures. However, it is difficult to measure or

predict the correct outcome when an application encounters a unique production

exception. For example, what happens if a user has an unusual delay between

data entry? How does the application react to a warm reboot or if the operating

environment hibernates? What effect does the application provide if a user

enters erroneous data? If an exception occurs does the application respond

favorably to these issues? Does the application predict this situation and make

adjustments to continue processing? This objective measures how enterprise

software responds to user habits capturing usage patterns used to improve the

software. Testing software robustness validates dependability and anecdotally

assures stability in enterprise software. Beta testing provides a platform to

measure software robustness, which is the degree a software elements functions

correctly when presented with a stressful environment or exceptional input[23].

78

Case 6. Multithreading Exception in a server management application.

An administrator of an enterprise management application launched multiple

instances of an alert management option to monitor a set of forty application-tier

servers. The alerts were configured to monitor high CPU usage for the targeted

servers. In the event of high utilization, it was configured to trigger email

messages to on-call administrators. However, the software’s multithreading

feature was not designed to manage a large amount of instances of a single

component, causing the application to crash the operating system.

Developers of software have limited resources when benchmarking the

performance of an application. If performance issues are discovered during the

initial internal test, the product is tweaked based on the specific internal settings.

Beta testing is the most effective method to test the product because of the “real"

infrastructure issues it provides and user inference can be verified. Case 6

provides a typical example of stressful conditions exposing the robustness of an

application. Users often stretch the limitation of application based on available

resources. If an application that monitors servers in an enterprise, supports

multithreading, and an administrator opens 40 instances of a single application to

monitor 40 different servers causing the software to end abnormally. Here the

end-user created a unique stressful situation with the application in test. The

developer of this application will utilize the system dump to address this situation.

79

Case 7. Windows XP Service Pack 2 created exception errors for third party

back-up applications.

Microsoft Corporation released a major maintenance update for its popular

windows operating system Windows XP Service pack 2. However, it created

several exception errors with major software manufacturers. In particular, end-

users who upgraded to Windows XP SP2 home edition, were unable to utilize a

major enterprise third party application to perform full backups after installing the

new service pack. The issue was created by Windows XP’s new firewall

restrictions. Microsoft released a fix requiring users of the product to create an

exception in the firewall option in the Windows XP Suite of desktop operating

systems.[29].

In Case 7, the manufacturer was unable to predict exception errors with third

party applications. Enterprise software developers do not focus on exceptional

operation conditions when developing software[44]. The objective of software

developers is to design enterprise software to adjust to exceptional conditions.

There are several testing tools, benchmarking applications, and testing

methodologies used to accomplish this goal. The Ballista testing methodology is

used to simulate faults in an application and filter situations, which provide

abnormal behavior[25]. Special APIs are used to introduce faults to the

application under test and another applet is used to monitor and record results,

creating a close comparison to beta testing because this test uses API instead of

a source code.

80

Outside of internal rigorous benchmarking and testing, enterprise applications

employ components to foster dependability to include fault tolerance techniques,

testing and debugging, and quality management[48]. Dependable software is

required on the enterprise level and encompasses the applications ability to

never fail in production. The benefit of using beta testing to collect “actual”

production data (correlated from user usage patterns) is to improve the

applications reaction to exceptions. Beta testing is more practical because it

provides data used to improve dependability, which directly impacts stability.

3.2.5 Measuring Software Vulnerabilities

Today, security violations are common and the culprit of most system exceptions.

Software vulnerabilities are creating issues with system outages, denial of

services (DoS), an influx in spyware, and Trojan horse viruses. Security

violations have affected how corporations secure environments to limit the

amount and type of access to technological assets (e.g. data, shared resources

etc.). Vulnerabilities are managed from two perspectives, which include limiting

external access to secured entities and managing internal access to resources.

Managing technological resources is an evolving task that requires the

employment of several tools to assist in managing this need, which include:

• Information Firewalls (software/hardware)

• Administrator monitoring and information logging

81

• Access management software

• And security alerts (automation) software to name a few.

Corporations require an extensive level of security to be included with the

operating system (e.g. Linux, Windows XP/2000/2003, IBM z/OS etc.). Equally,

the security expectation is also implied for enterprise software providing an

additional layer of security and the elimination of vulnerabilities.

Modern enterprise applications include security levels, designed to restrict

access level to the applications and/or specific components of the application,

which adhere to other security policies. It is important that the software does not

compromise established enterprise security and user policies (i.e. end-user

access to trusted domains), current firewall standards, access to information or

data resources and access/content filtering. Enterprise applications inherit

established infrastructure security databases such as Microsoft active directory,

which uses directories to locate the proper user rights for a specific application.

In addition, user access has special security to coordinate admission to required

data resources in an enterprise. Firewall access is important when access to

resources is required in another subnet of a network or external access. Filtering

is a process of using special strings to limit admittance to internal resources.

Filtering is a process used by a large majority of security tools.

82

Case 8. Software vulnerability in the implementation of SNMP opens the network

to DoS vulnerabilities.

Enterprise software corporations with software that requires Simple Networking

Management Protocol (SNMP) version. 1 are vulnerable to the potential of a

denial of service (DoS) attack. The DoS is exposed because an attacker utilizing

a special script to intercept network information used by SNMP to manage alerts

and other dialogue. IBM posted a vulnerability disclosure to its website informing

end-users of vulnerabilities in a number of applications, which employs this

version of SNMP[21]. The disclosures suggest the utilization of ingress filtering

to eliminate the vulnerability. Ingress filtering manages the flow of network traffic

as information enters a network based on rules established by the

administrator[7]. Ingress filtering prohibits external traffic to internal services.

This is normally implemented using a firewall.

The SNMP vulnerability (highlighted in Case 8) influenced how enterprise

software utilizes this protocol for communication. Enterprise software

manufacturers are faced with the challenge of how to use SNMP in the future to

eliminate this vulnerability. In this case, a beta tester would evaluate whether the

firewall security is in place to properly secure SNMP v.1 and eliminate any

conditions that create a security risk to the corporation. In addition, the test

validates firewall standards are not compromised during implementation. Beta

testing also confirms other security issues, such as data can be accessed without

83

violating security, user access is configured properly and other security related

issues.

3.2.6 Feedback from User Interface Accessibility

User interface accessibility (UIA) is comprised of features in software designed to

assist end-users with physical disabilities, dexterity, or special limitations. UIA is

designed to enhance and ease the software transition (operation). Governed by

the Rehabilitation Act of 1998, UI accessibility requires software manufacturers to

modify technology for individuals with physical disabilities. From a development

perspective, it is easier to manage accessibility requirements during the design

and specification phase. In addition, testing is simple because most accessibility

options are direct. However, there are cases of accessibility exceptions, which

were not part of the product scope during the early development phase.

Case 9. Enterprise Management Profiles

An end-user of an enterprise management application has carpal tunnel

syndrome in both wrists. He is in the process of building a network profile that

will monitor a subnet of applications for server outages. The EM applications

require the end user to drag network components to specific repository. Because

of his limitations in using the mouse, the drag-and-drop feature is limiting this

ability to build the required profile. During beta testing this issue was reported

and the software developers added a screen to the application enhancing the

drag-and-drop feature by allowing the end user to delay when dragging items to

a repository or using a component select feature. This feature allows the end-

84

user to select the desired network components and add them to the desired

repository.

Software developers simulate standard accessibility components in enterprise

software. Standard components are keyboard shortcuts, screen and color

augmentations, command line options, accessibility scripts, and special sound

notifications. Keyboard shortcuts used to correlate a set of actions into one key.

Screen and color augmentations are used to enhance the view of applications for

individuals with visual limitations (i.e. the screen can be customized to increase

the monitor view above 200%). Special command line options and accessibility

scripts are utilized for end-users who may have dexterity issues using a mouse.

With this option, users enter or execute a script (which in this example, is a single

term resulting in the execution of a batch file) or use a special command to carry

out a task or series of tasks. End-users with auditory challenges utilize sound

accessibility, which encompasses the employment of more screen colors and

pop messages for assistance with application alerts. These options are easier to

simulate internally.

3.2.7 Feedback from User Interface Usability

Enterprise software companies are faced with the challenge of designing

software to meet a robust user base. This encompasses designing a software

interface that is functional but practical to the common user. In addition, the

software should reduce the learning curve and provide interface consistency.

85

Corporations have focused a large amount of time on research and development

with the purpose of enhancing the end-user experience.

The pressure from major buyers of enterprise software has forced software

manufacturers to focus on usability. The Boeing corporation, the worlds leading

manufacturer of commercial and government aircrafts, believes usability is the

most significant factor of total cost of ownership (based on an internal study)[49].

The aerospace giant seeks to eliminate usability issues prior to considering the

software for its production environment. To assist software manufacturers with

standardizing usability concerns, the National Institute of Standards and

Technology has created a Common Industry Format for Usability Test reports

(CIFs) now adopted by major enterprise software producers.

CIFs are reports, generated from usability tests, used by major software

suppliers as templates to validate the product demonstrates ease of use. The

purpose of CIFs are to challenge corporations to understand the needs of end-

users; establish a common usability reporting format for sharing usability test

data; determine the value of usability reports; and determine the value of usability

information for software procurement[5]. Major software manufacturers, such as

Microsoft, has adopted CIF to enhance UI usability in its suite of windows based

operation systems[49].

86

As user interface usability (UI usability) is the ease to which a user adapts to

software, usability testing measures user adaptation at the graphical user

interface layer. This is important because software developers often misinterpret

user requirement in the specification phase. Commonly, end-users discover UI

anomalies after the product is implemented or the application is used for the first

time.

Case 10. Word-processing Document Wrapping Issue

Users of a popular word-processing (WP) application noticed significant changes

when upgrading from WP version 2.0 to the new version 3.0. The changes to the

application included new toolbars, input options, and organization of special

components. The most significant change is the actual document area is now

cluttered with new toolbars that were not in version 2.0. In addition, when users

open documents created in WP 2.0 the data does not wrap causing the user to

reduce the size (and font in some cases) to fit the new screen layout. This is a

serious concern with experienced users of the product.

One of the most common UI usability issues are user interfaces that reduces the

practicality and impacts the functionality of the application. In Case 10, the

manufacturer of the WP application introduced layout changes to the application,

which impacted the usable area designated for managing, creating, and updating

documents. The addition of new toolbars and attributes (new application

features) also reduced the usable area and created view issues when the user

opened older file versions. In this example, developers of the software clearly

87

overlooked the impact of the end-users functional area and changes to older

documents during internal testing creating functional issues. Beta testing is

designed to assist the software developers with relevant user feedback on

functionality issues.

Case 11. DB2 Tuning Difficulties

A large tax consulting organization purchased a third-party DB2 resource

performance and optimization application to address resource intensive DB2

application SQL statements. However, end-users have not accepted the

application because of its lack of interface consistency with other DB2

applications, which include difficulty to navigate using TSO terminals, and

difficulty in understanding how to generate reports (to include the quality of

statistical output). The organization has decided to shelve the product costing

the company thousands of dollars in licensing cost.

An increased focus on UI usability, by software manufacturers, influences the

end-users learning curve because of application consistency. Case 11 provides

an example of end-users unfamiliarity with a product leading to non-acceptance.

In this case, the product developer must focus on revamping the product to be

more consistent with the software it is developed to support. Actual field testing

provides the most prevalent feedback for UI usability. Beta testers of software

provide the first level of usability issues in software providing quality feedback

used to impact final release of the product.

88

3.3 Major Categorized Software Attributes for Beta Testing

The core objectives of beta testing software is to assist beta test managers and

software developers in structuring the focus of a product ready for beta testing.

However, this segment outlines software attributes for each product to enrich the

outcome of each objective. The software attributes are essential parts of the

common enterprise application, which requires validation to achieve a specific

testing objective. Attributes are characteristics of an enterprise application that

are can be represented by a numerical value. The Attributes are segregated into

sections, and weights are assigned, by the potential level of problems they create

in production. Since, some attributes provide multiple objectives, overlapping is

common. This section outlines and describes the significance of each attribute.

An overall mapping of attributes to objectives is provided in Table 1.

Table 1. Beta Testing Objectives Attributes Mapping Table

Attributes Variable Environmental
Dependency

Function
Coverage

Completeness
Localization Robustness Software

Vulnerability UI Accessibility UI
Usability

class inheritances CI ●
code locale CL ●
incoming client
service request

CS ●
CPU utilization CU ●
program switches
lacking default
clause

DC ●

changes to dynamic
data

DD ●
dynamic link library
requirements

DL ●
fonts effect on UI FE ●
firewall port required. FP ● ●
hardware and
software
requirements

HR ●

89

Attributes Variable Environmental
Dependency

Function
Coverage

Completeness
Localization Robustness Software

Vulnerability UI Accessibility UI
Usability

user interface
controls

IC ●
special input devices ID ●
languages supported LS ●
message boxes MB ●
multitask command
buttons

MC ● ●
multiple system
requirements

MS ●
network connections
required

NC ● ●
open API OA ● ●
physical processors
required

PP ●
amount of source
code

SC ●
special fonts SF ●
special hardware
requirements

SH ●
screens affected by
font adjustments

SA ●
screen traversal ST ●
special user
accounts required.

SU ● ●
software wizards SW ● ●
amount of threads
generated

TG ● ●
use case totals UC ● ●
user interface
complexity

UI ●
user-levels UL ●
UI responses
required

UR ●
unrestricted text
fields

UT ● ● ●
web portals required WP ● ●
web service request
requirements

WS ●

90

3.3.1 Environmental Dependencies Attributes for Beta Testing

The focus of the environmental dependencies objective is to test an applications

reliance on hardware, shared software attributes, and other application to

validate the required dependency does not impede operation. The essential

attributes highlighted in this objective are:

1) physical processors – the minimum number of physical processors

required for operation

2) network connection – the total number of network connections (node-to-

node) requirements

3) multiple system requirements – the amount of sub-systems required for

operation (e.g. cluster requirements)

4) CPU utilization – CPU utilization required to manage tasks generated by

the software

5) dynamic link library (DLL) – total number of shared files or access to

shared files required to function effectively

6) security access rights:

a. firewall port access - the total number of physical ports required

(both suggested and required)

b. user account stack - requirements for special user accounts to

operate the software

7) web portals – the maximum number of web portals supported by the

software

91

8) incoming client request - the expected amount of clients requesting

services

9) open API – the number of open API required to support the application

10) web services requirement - The required amount of web services

needed

11) threads generated – the total number of threads generated by the

application

Each attribute is unique in measuring the environmental impact on its targeted

environment.

Applications requiring a high-demand utilization are commonly employed on

computers with multiple processors. Multi-processor systems are computers with

two or more physical processors. Multiple processors are used for applications

that support load balancing (clustering), robust transactions, and servicing

requests from a large user base. However, each processor creates a new

dependency because of the amount of CPUs required to manage enterprise-level

activity.

Network connections are the number of communication requirements to support

a specific platform or user base. Applications supporting multiple network

connections create unique dependencies for each. For example, email

applications require a number of messaging protocols to function effectively such

as SMTP, POP3, and x.400 (for European users). All of the applications rely on

92

TCP/IP in a network environment. If a connection is eliminated the application

may return errors because of the dependency to that communication conduit.

During the beta testing phase, each network connection requires testing to

validate each network connection.

Multiple system requirements are attributes of an enterprise application that

require access to different platforms to operate successfully (e.g. sub-systems).

This scenario is referred to as clustering environments, which creates the highest

form of dependencies because each entity relies on another. Clustering is a

concept used for high availability in computing environments, which is the

connection of multiple systems to form one unit. This interconnection is formed

by multiple computers (i.e. application server, storage server, DASD), databases,

and other systems. In job management environments a sysplex is created to

support the executions of multiple programs in an environment. However, if the

shared DASD is unavailable the entire system could fail. This attribute is

essential to account for when planning to beta test a product.

Developers of software provide a system resource baseline (recommendation)

for applications. The baseline is based on minimum and recommended ratio,

which is derived from the applications sensitivity to CPU utilization. If the

sensitivity to CPU utilization is low the opportunity to develop a dependency is

minimized. In this scenario, beta testers will install the product on systems at the

lowest baseline (provided by the software manufacturer) and the best

93

recommended. To illustrate this point, Microsoft Exchange 2003 is a messaging

server application designed to support enterprise email. This application

recommends the minimum processor configuration to be an Intel Pentium or

compatible 133-megahertz (MHz) and recommended Intel Pentium or compatible

733-MHz processor[33]. The developers of the application have set a baseline

for the product, however, sensitivity is measured after implementing the

application to a production setting. The CPU utilization attribute will expose

dependencies during the installation of the product by introducing system

degradation.

Environmental dependencies are also created by data or resources stored in

dynamic link libraries (DLL). Applications that require access to shared DLL

(DLL provided by an operating environment or application) initiate a level of

dependency. In this case, the more DLL required the greater the dependency.

A classic example is spreadsheet applications. For most of its processing,

access to DLL are required to facilitate special printing functions, complex

calculations, access to embedded objects, database access, and special

character utilization (to name a few). Each DLL requirement creates a special

test case and requires validation in the beta testing phase.

Security dependencies are introduced when applications require access to

special ports on an enterprise firewall. Additional security dependencies are

created when the application requires special user accounts to function

94

effectively. An example of these attributes is an application that requires access

to multiple firewalls and bridges such as agent management software. Agent

management applications require an environment discovery prior to building

special alerts (e.g. utilization high alerts, storage capacity alerts, etc.). This

discovery requires special access to firewall ports to build the database. In

addition to port access special accounts are required to initiate discovery (e.g.

administrator accounts, power user etc.). If accesses to these ports are not

available, the application will return unfavorable results thus forming a

dependency.

Web portal requirements are measurable attributes valuable to the enterprise

dependencies objective. Portals are individual web accessible content collected

on a single screen creating a customized Internet gateway. Each portal requests

a separate service for a specific task. Many portals request increased

environmental dependencies because of the amount of common gateway

interface (CGI) and client service requests required to facilitate the demand. A

prime example is Yahoo! Incorporated provides one of the most widely used

portals to web users[54]. This website contains individual portals servicing

access to music, eMail, instant messenger, stock quotes, news bloggers, and

other valuable web resources. In this example, each resource requires a large

amount of scripts and services to function effectively, thus increasing the amount

of client services and CGI creating more dependencies. These are valuable

95

performance attributes increasing the amount of dependencies for a particular

application.

Like CGI and other services, open application programming interfaces (open

API) create dependency requirements because each API demand initiates a

separate request for service. If a windows-based application initiates peer

access with another application on the same network, it will employ NetBIOS to

request the services required to exchange messages. Other open API includes

MAPI and ODBC commonly used with enterprise applications.

Web services are an additional attribute of enterprise dependency objective

facilitating the exchange of data via the internet. Examples of web services are

applications that use XML to create standardization for document data exchange,

an application that uses Google to search for resources on the web, or electronic

data interchange (EDI). Each separate web service creates a unique

dependency.

Client service requests are based on the number of services required for

operation. Client services initiate or facilitate some action requested (or required

by the application). However, services may also act as a facilitator to accept

request from an external entity (i.e. messenger service handles alert request). It

is important to measure the expected amount of requests to test the scalability of

96

an application. If requests are high the number of use cases increases creating

the potential for a problem.

Adjacent to accounting for the expected amount of requests for client services

are the amount of threads required by the program. Threads are individual

program instructions initiated by a program to execute a specific tasks. Each

thread requires hardware or system resources. If the amount of threads required

is high it will create a large demand for resources increasing the level of

environmental dependency.

3.3.2 Function Coverage Completeness Attributes for Beta Testing

The focus of the function coverage completeness objective is to validate that the

application in beta meets the customer expectations. This objective matches the

goal of the application with user inference, which is the essence of beta testing.

The attributes outlined for function coverage completeness are:

1. hardware and software requirements – the system requirements provided

by the software manufacturer

2. use cases – variations of actual usages of the software (derived from the

product specifications)

3. software wizards – provides assistance with robust tasks

4. Unrestricted text fields – the input area on a UI that require static data

from the end-user

97

Customer expectations are refined with ease of use. However, ease of use is

perception managed by the application design. Hardware and software

requirements are those physical resources necessary to operate the application.

Complexities increase when the amount of requirements is more than the

average application in its domain, which consist of hardware and operating

system requirements. If the software is complex, it lowers the functional

coverage of the application and may require a special skill to implement the

product.

Enterprise applications include a set of product specifications, which describes

how the product is designed to function. Each specification represents a classic

specific use case. More specifications increases the difficulty in creating use for

test purposes because end-user environments are unique and may create

dissimilar challenges.

Akin to switches, enterprise applications provide software wizards’ design to

ease application usage by assisting users through a series of instructions to fulfill

an operation or task. Wizards are helpful to train the user through use cases.

However, they are often complex and require dedicated threads. If an

application offers a large volume of wizards, the complexity of the application

increases which negatively influences the software coverage.

98

Unrestricted text fields are an attribute of function coverage completeness that if

provided in abundance lowers expectations of the user. Unrestricted text fields

require static data from the end-users. End-users prefer user interfaces that

require a limited amount of data or most of the data is provided using more drop-

down boxes or options.

3.3.3 Localization Attributes for Beta Testing

Enterprise software adjusted to function in foreign countries are properly

localized. However, the extent of localization is managing language and

conversation changes in the application. The attributes of the localization

objectives are:

1. special input devices – peripherals used to enter data or information

into the software

2. languages supported – the total foreign languages supported

3. font effect on UI – adjustments foreign font changes make to the user

interface

4. screens affected by font adjustments – the number of screens affected

by foreign font changes

5. code locale – the number of code locale used to make geographical

adjustments in the program.

99

Each attribute is unique in its ability to provide functional software to the targeted

foreign market.

When software is localized for other countries, there are occasions when special

foreign input peripherals are required to optimize utilization of the application

(e.g. Hebrew Keyboard, Portuguese layout, and other foreign proprietary

keyboards) . For example, software localized for the Japanese market may

require a kanji keyboard to optimize utilization of the software. Each special

input device requires special experts for beta testing to receive user approval.

Another attribute important to software localization is the number of foreign

languages supported by the application. More languages extend the testing time

required to validate no language or translation errors exist in the application. If

the number of countries’ languages supported are low, it will reduce localization

testing time.

As languages change, special characters are employed to provide UI, which is

readable by the targeted market. The fonts required for foreign markets may

have some effect on the UI layout. In this case, each screen requires validation

to assure font changes do not negatively affect UI. For example, if an application

is targeted for the Japanese market, changes in the Japanese character expand

and reduce the size of the UI. As changes are statically implemented, several

100

screens will be affected. If font changes are high, the beta testing time is

negatively impacted.

Code locale (or locale objects) is important to localized software. Code locales

manipulate programming terms to adjust to foreign languages and regions. It

affects time, dates, metric systems, etc. For example, displaying a number for a

specific country is a locale operation because the number must be formatted

according to the conventions of the end-user's country, region, or culture[47].

However, many code locales create more problems and increase the level of

maintenance and manipulation. In addition, each locale requires validation in the

beta testing phase, which impact the test time.

3.3.4 Robustness Attributes for Beta Testing

The focus of the robustness objective is to identify wrong data, and validate how

user errors and usage patterns impact the software (error handling). The

attributes outlined in this objective seek to measure those features that will

strengthen the robustness of enterprise applications. There are nine attributes:

1. software use cases – variations of actual usages of the software (derived

from the product specifications

2. user interface complexity - the total number of input fields and command

buttons on a user interface

3. unrestricted text fields – the input area on a UI that requires static data

from the end-user

101

4. amount of source code – the total of lines-of-code in the entire application

5. amount threads generated – total threads generated by software

dedicated to request made by the application

6. class inheritances – total amount of properties derived from the main class

(general class)

7. multitask command buttons – amount of single UI input options that initiate

a series of functions

8. user-levels - the end-user accounts and/or user stack levels required to

successfully execute an application

9. changes to dynamic data – the amount of updates made to data that is

managed or shared with the operating environment.

10. program switch statements lacking a default clause – switches not created

dynamically or provided by the software documentation.

Software use cases are the amount of outcomes or scenarios an application

provides based on request from the end-user(s). The amount of use cases are

derived from the list of specifications provided by the software manufacturer. If

the amount of use cases is large, the complexity of the application is increased.

If use cases are low, it decreases the likelihood of usage errors and streamlines

validating the robustness of an application. For example, a virus protection

application is more robust than a photo editing application because the virus

software has less use cases. The average virus protection application is limited

to scanning the files of a system for potential viruses and protects the system

102

from future threats. However, photo-editing application typically provides a large

list of photo editing specifications, which may complicate the outcome of a

specific task.

Complexities of the user interface are the amount of data input fields, restricted

text boxes, combo boxes, radio buttons, and drop down boxes in the user

interface. If there are a large number of input locations, attributes requiring some

action, or an abundance of buttons, the probability of an error increases and data

sequence complications increase. To illustrate this point, users of most

eCommerce sites are required to submit a large amount of data when ordering a

product or service. If the user enters the wrong data, or fails to enter the required

information the application may provide some adverse reaction (or do nothing).

In addition, this increases the complexity of the application.

Lowering the amount of unrestricted text boxes decreases the amount of end-

user errors. Unrestricted text boxes on a user interface include blank text boxes,

empty input cells, and label boxes. All of the input fields are unique in the

information required to initiate a specific task or yield a result. An increased

amount of unrestricted input fields negatively affect the type of data, the desired

result, and the flow of data increasing the complexity of the software. For

example, users of a helpdesk application use online forms to open a problem

request. One of the input devices requires the user to enter the date of the

problem in a specific format (i.e. yyyyddmm – Year, two-digit date, two-digit

103

month). However, the user enters the date incorrectly. The application may

immediately alert the users of the error, accept the data and store the results

creating invalid record locators, or do nothing.

Although seamless to the end-user, the amount of source code in an application

affects the robustness of an application. If the amount of source lines of code is

large, software testing is extended and often require more physical resources. In

addition, in the event of an error where a software fix is required, implementing

the fix into the current code is complicated requiring greater compilation time[24].

Another coding attribute are software threads. Software produces separate

threads to facilitate request initiated by the program user. However, if an

application generates too many threads, control issues surface and resource

over load increases. For example an application has initiated a series of threads

to validate the user access level, request access to a data resource located in a

storage area networks (SAN), and resources from the operating system kernel.

If a thread initiated for resources on an unavailable SAN, the software loses

control of thread and could potential create an error. The same scenario requires

a large volume of data to be written to facilitate the request, which in excess

increases the probability of a system overload.

Sub-classes inherit properties from general classes. In programs designed to

use many levels of classes increases the complexity of the application and

104

introduces the potential of future errors. If a program inherits a class, currently

utilized by another object (or program) the potential for errors are prevalent. If

the number of class inheritance is low, the properties are more precise.

Software project complexities occur when multi-command buttons are present.

Multi-tasked command buttons are those functional attributes of UI that initiate a

specific set or series of tasks when executed by the end-user. Project

complexities are measured by how many separate functions or scenarios are

created when a button is selected on any functional option on a form. A single

functional attribute responsible for multiple tasks introduces robustness issues

because many threads are required. This scenario may confuse the end user

and increase the probability of errors.

User level requirements are the amount and types of specific end-user accounts

required for an application. If multiple levels of user accounts are mandatory, the

risk of erroneous data increases (or introduction of user errors). To illustrate this

point, if a knowledge base application that allows multiple accesses to the library

stores data, any user could add or delete important information. In this scenario,

beta testers must validate each user-level use case to eliminate the potential for

errors. If user level access is low, testing is limited and robustness is stable.

Often software extracts data from a database (or data storage source) and is

replaced by an application. However, there are instances when the operating

105

environment dynamically changes or reallocates the information. Applications

using the Microsoft platform have access to the Dynamic Data Exchange

Management Library (DDEML) to share dynamic data. If multiple applications in

a windows environment are using the DDEML to share common data, conflicts

occur (i.e. resources cause an application to stall) when the data is changed prior

to the application returning the data. This conflict causes data corruption. In

instances where large volumes of changes are required to dynamic data, an

extensive test is required to validate most uses cases. The lower the number of

required updates reduces the probability of future problems.

Developers of software include a number of code switches used to change the

type of execution based on a set value. A default switch in the application

provides the specific clause to the end-user without end-user intervention. This

attribute focuses on the non-default switches in a program. For example, in

legacy application, batch programs are often initiated from a command line on

the console. When an operator executes a batch program, the program name is

followed by a switch that controls how the program executes. If the application

contains a high amount of non-default switches, software coverage is low.

3.3.5 Software Vulnerability Attributes for Beta Testing

The software vulnerability objective measures the application to exploit potential

security violations. The objective’s attributes measure the features of software,

106

which requires communication for operation. The attributes identified in this

objective are:

1. web portals – the maximum amount of web portals supported by the

software

2. open API – the amount of open APIs required to support the

application

3. network connection – the total number of network connections (node-

to-node) requirements

4. firewall port access - the amount and type of physical ports required

5. user accounts – total number of user accounts required

Web portals (described in section 3.3.2) utilize various services to provide a

single collection of content. Since this technology initiates communication

dialogue with the service provider there is potential for security vulnerabilities.

This is extreme in cases that allow instant message portals, push updates, web

mail, and content bloggers (e.g. stock tickers, news updates, technology alerts,

etc.). As web portals are created the level of vulnerabilities increase with each

additional web service request.

Additional security vulnerability is the software utilization of open application

programming interfaces (open API). This attribute measures the risk associated

with the employment of standardized API to communicate with other software or

systems. Today, worm and Trojan horse viruses are created to utilize MAPI to

107

transmit the virus to other systems. Again, if the requirement of many open API

is mandatory, this increases the vulnerability level in the software.

Network connectivity is a standard in common enterprise applications. Network

connections are the conduit used to maintain communication. However, each

connection, if not properly secured, presents a vulnerability. If the number of

connections required is large (system to system), the risk of exposure increases.

Firewalls are designed to manage and monitor the traffic in a networking

environment. However, many enterprise applications require access to firewall

ports for operation. Applications requiring access to common firewall ports

increase the risk of system attacks thus, lowering the security of the application.

Enterprise monitoring applications often rely heavily on access to firewall ports to

monitor system states to generate system alerts. Each special port request

increases the risk of vulnerability in the software in the environment.

Enterprise applications are designed to support a robust user base. However,

access to the system heightens the level of security complexity. Access to the

system requires monitoring to eliminate the existence of user-based threats.

Using messaging software to illustrate this point, eMail servers support a large

volume of users. Most of the system viruses enter and exit enterprises using

messaging. Software developers of applications that allow a large base of users

must thoroughly test attributes, which reduce vulnerability in the software.

108

3.3.6 UI Accessibility Attributes for Beta Testing

User interface accessibility (UIA) objective of beta testing validates the features

of an application designed to assist end-users with special physical needs. The

attributes for UIA are formulated differently from other objectives. Since most

accessibility attributes are seamless and can be thoroughly tested by the internal

group of developers, the amounts of UIA attributes are limited to:

1) the amount of special fonts

2) and special hardware dependencies

Both attributes are unique in collecting information used to improve the

experience of users with limited capabilities.

Special fonts are a style of character used to provide special UI presentation for

end-users with visual challenges. Operating platforms provide a special

repository used to store shared fonts. Users with special visual challenges

require fonts which are legible and contain basic dark colors. Applications

designed with visual accessibility features, such as the ability to enlarge the size

of text, must be thoroughly tested. To illustrate this point, most word processors

applications have visual accessibility features which offer the end-user the ability

to increase the size of tool bars eliminating the words associated with a specific

command button (i.e. the print button would replace the word “Print” with a

special printer character). If the amount of special fonts provided by the

application is low, it limits the accessibility of the application.

109

 Applications should be designed with accessibility features not relying on special

hardware to function appropriately. If an application requires such additional

hardware as the use of a special magnification screen for the monitor or special

function character type keyboards it creates hardware dependencies.

3.3.7 UI Usability Attributes for Beta Testing

User interface usability is the key goal of beta testing. This objective focuses on

validating that the graphical user interface is simple and promotes ease of use.

There are several attributes that form the nucleus of this objective, which are:

1. user interface controls – the UI graphical fields and option

a. calendar control

b. radio buttons (option)

c. check boxes

d. command button

e. combo box

2. multitask command buttons – amount of single UI input options that initiate

a series of functions

3. unrestricted text fields – the input area on a UI that requires static data

from the end-user

4. screen traversal in an application – the debt of each individual screen

5. UI responses required – total message box that prompt some response

from the end-user

110

6. messages boxes – the text boxes which prompts warning, error, or

provide instructions to the user. This attribute is more concerned with the

code provided and the amount of shared meanings per code.

7. software wizards – provide assistance with robust task

The attributes are designed to measure the graphical user interface providing an

overview, which is used to eliminate UI complexities.

User interface controls are application objects that allow an end-user to initiate a

task, control the screen, or spawn an action. The most common types of UI

controls are command buttons, radio buttons, check boxes, combo boxes, link

bards, calendar controls, and scroll bars. Software that contains a large volume

of controls increases usage complexity, broadens the amount of use cases, and

increases the users’ learning curve.

Multi-tasked command buttons are UI functional attributes that initiate a specific

set or series of tasks when executed by the end-user. When the muti-tasked

command buttons are large in volume, it reduces the software simplicity because

a user is not able to control the flow of the application, reducing the learning

curve. If the user of a database application selects the “eliminate redundancy”

command button, it will run a query that eliminates data based on a set of

predefined key fields and generate a report. Most end users would view this

command as complex.

111

A large volume of unrestricted input devices lowers the end-users learning curve.

Unrestricted input devices are text boxes or input cells that require static data

from the end-user. If the UI has too many unrestricted text boxes it increases the

complexity of the application and users may lose control. The most common

example are eForms, which collect user data and store it in a database.

The amount of traversal a screen provides is an essential attribute of UI usability.

This attribute measures the debts of a form to determine the level of complexity

in application (e.g. sub menus). If a screen is nested with many successors, the

flow may become confusing to the end-user creating usage problems.

Another feature of UI that increases the software complexity is the amount of

responses required for message boxes (e.g. non-warning messages). UI

responses are the request for a specific action to be delivered by the application.

For instance the logon/logoff boxes, save message boxes, print boxes, etc.

There are also responses, which verify an action prior to initiation. Although

helpful to end-users, a large volume creates complexities and reduces usability

of the application.

Applications often provide message boxes instructing the user of some action or

prompting the user prior to executing a command. If an error or warning occurs,

the message box displays a code and commonly an explanation of the code,

112

which may include several meaning per code. This is not ideal for an application

because it confuses the end-user in-turn negatively affecting usability.

Wizards are designed to assist a user in streamlining use cases. They are also

used to train users on a process; however, a large volume of wizards included

with an application increases the complexity of the application by introducing

steps in a process that are not needed or desired by the end-user. For example,

if a system administrator uses the “user creation wizard” to create a new user

account on a network, the wizard will create an account based on responses by

the administrator. However, if the administrator needs to restrict certain access

this feature does not allow fine-tuning. In this case, it would be more efficient to

create the account natively.

3.4 New Software Metrics for Predicting the Priority of Beta Testing

Objectives

The next step in identifying which objectives are more vulnerable for a product or

class of products is to use attribute weights and apply the correct formula

definition. Each objective contains a metric and set weighted attributes, which

apply to the general enterprise application. Prior to each beta test, enterprise

software developers utilize metrics to better manage the pending project. The

outcomes will provide a prediction for the area requiring the most attention, assist

software manufacturers in determining how to allocate time during the beta

testing process, assist in questionnaire design, and assist in the prediction of

total beta testing durations.

113

In this section, attributes from two small samples will be used to demonstrate

how the vulnerable points are properly calculated. The first application is a

government imaging application that is designed to store ship requisitions for a

commissioned war ship. The images are stored on a secured database and

extracted using secured front-end proprietary application. This application is

web-based and designed for users with special physical limitations.

The second application is an enterprise check processing application designed

for a major bank with a global presence. The check processing application is

designed to handle a high volume of personal checks assisting in the posting of

funds in accounts in a shorter period.

3.4.1 Environmental Dependency Metrics

Outlined in Section 3.3.1 environmental dependency is important to the beta

testing process to measure the impact of application dependencies on operation

of the software product. Definition 1 is used to calculate the vulnerable point for

environmental dependency.

Using data collected from defense imaging application, first Algorithm 1 is used

to calculate the proper attribute weights for the current project (See Table 2).

After attributes are weighted, Definition 1 provides a predicted risk value of

2.714, which is an average problem for this application.

114

The calculations are demonstrated as:

e = 1(.082) + 4(.102) + 3(.082) + 3(.102) + 2(.082) + 3(.061) + 3(.061) + 3(.102) + 3(.082)
 + 3(.102) + 2(.061) +2(.082)
e = 0.082 + 0.408 + 0.245 + 0.306 + 0.163 + 0.184 + 0.184 + 0.306 + 0.245 + 0.306 + 0.122
 + 0.163
e = 2.714

Definition 1: Metric for predicting the vulnerable points of software
environmental dependency is a function of:
e= w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 + w7x7 + w8x8 + w9x9 + w10x10 + 11x11 w12x12

where x1 is the number of threads generated;
 x2 is the number of CPU utilization;
 x3 is the number of DLL required;
 x4 is the number of firewall ports required;
 x5 is the expected amount of incoming client service request;
 x6 is the number of systems required;
 x7 is the number of network connections required;
 x8 is the number of open API;
 x9 is the number of physical processors required;
 x10 is the number of special user accounts required;
 x11 is the number of web portals required;
 x12 is the web service request requirements
 and w1, w2, w3,…. and w12 are their weights for relative importance.

Table 2. Environmental Dependency Metrics Data

Environmental Dependency

Normalized
Attribute

Value
Weight i Attributes

x w
1 amount of threads generated 1 0.082
2 CPU utilization 4 0.102
3 dynamic link library requirements 3 0.082
4 firewall port required. 3 0.102
5 incoming client service request 2 0.082
6 multiple system requirements 3 0.061
7 network connections required 3 0.061
8 open API 3 0.102
9 physical processors required 3 0.082
10 special user accounts required. 3 0.102
11 web portals required 2 0.061
12 web service request requirements 2 0.082

115

3.4.2 Function Coverage Completeness Metrics

As outlined in Section 3.3.2 function coverage completeness validates customer

expectations. In this example, data collected from the check processing

application is utilized. Algorithm 1 is used to calculate weights for each attribute

(Table 3). After securing the correct weights, Definition 2 is employed to predict

the risk level for this objective, which is later compared with other objectives.

The calculated risk value for function coverage completeness is 2.70 predicting

an average level problem for this project. The calculations for this objective are:

f = 3(.167) + 3(.333) + 3(.250) + 2(.250)
f = .501 + .999 + .750 + .500
f = 2.750

Definition 2: Metric for predicting the vulnerable points of function coverage
completeness is a function of:

f = w1x1 + w2x2 + w3x3 + w4 x4

where x1 is the number of hardware and software requirements
 x2 is the number software wizards;
 x3 is the number of unrestricted text fields;
 x4 is the number of use case totals;
and w1, w2, w3, and w4 are their weights for relative importance.

Table 3. Function Coverage Completeness Metrics Data

Function Coverage Completeness

Normalized
Attribute

Value
Weight i Attributes

x w
1 hardware and software requirements 3 0.167
2 software wizards 3 0.333
3 unrestricted text fields 3 0.250
4 use case totals 2 0.250

116

3.4.3 Localization Metrics

Repeating the process in Section 3.5.2, the data collected from the check

processing application is used to demonstrate how to obtain the vulnerable point

for localization, which is focused on measuring proper preparation for the global

market. While the localization attributes are limited, the weights assigned to

each are larger to compensate for a partial set of variables. Using the

information in Table 4. Definition 3 is used to calculate the predicted risk value for

localization is 3.421. The calculations for this objective are:

l = 3(.263) + 3(.211) + 4(.158) + 3(.105) + 4(.263)
l =.789 + .632 + .632 + .316 + 1.053
l = 3.422

Definition 3: Metric for predicting the vulnerable points of localization is a
function of:

l = w1x1 + w2x2 + w3x3 + w4x4+ w5x5

where x1 is the number of code locale (locale objects);
 x2 is the number of fonts effect on UI;
 x3 is the number of languages supported;
 x5 i is the number of special input devices;
 x5 i is the number of screens affected by font adjustments;
and w1, w2, w3,w4 and w5 are their weights for relative importance.

Table 4. Localization Metrics Data

Localization
Normalized

Attribute
Value

Weight i Attributes

x w
1 code locale 3 0.263
2 fonts effect on UI 3 0.211
3 languages supported 4 0.158
4 special input devices 3 0.105
5 screens affected by font adjustments 4 0.263

117

3.4.4 Robustness Metrics

In this section, metrics collected from the imaging application are used to

demonstrate how to obtain the vulnerable points for the robustness objective.

Table 5 was constructed by implementing Algorithm 1 to secure the proper

weights for each attribute. After applying Definition 4, the predicted risk value for

the robustness objective 2.514. The calculations are as follows:

r = 3(.135) + 2(.152) + 4(.152) + 2(.091) + 2(.091) + 1(.121) + 2(.061) + 1(.121) + 3(.091)
 + 3(.061)
r = .405 + .162 + .541 + .054 + .162 + .027 + .216 + .135 + .405 + .405
r = 2.514

Definition 4: Metric for predicting the vulnerable points of robustness is a
function of:
r = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 + w7x7 + w8x8 + w9x9 + w10x10

 where x1 is the number of lines of source code;
 x2 is the number of threads generated;
 x3 is the number of changes to dynamic data;
 x4 is the number of class inheritances;
 x5 is the number multitask command buttons;
 x6 is the number of program switches lacking a default clause;
 x7 is the number of use case totals;
 x8 is the number of unrestricted text fields;
 x9 is the number of user interface complexity;
 x10 is the number of user levels;
and w1, w2, w3,…. and w10 are their weights for relative importance.

Table 5. Robustness Metrics Data Table

Robustness
Normalized

Attribute
Value

Weight i Attributes

x w
1 number of lines of source code 1 0.082
2 amount of threads generated 4 0.102
3 changes to dynamic data 3 0.082
4 class inheritances 3 0.102

118

Robustness
Normalized

Attribute
Value

Weight i Attributes

x w
5 multitask command buttons 2 0.082
6 program switches lacking default clause 3 0.061
7 use case totals 3 0.061
8 unrestricted text fields 3 0.102
9 user interface complexity 3 0.082
10 user-levels 3 0.102

3.4.5 Software Vulnerability Metrics

The check processing system is used as an example to demonstrate the metric

used to predicted risk value for software vulnerabilities. In this example, this

measure would be extremely important to this type of application that handles

financial data. The attribute values outlined in Table 6 are employed by the

metric described in Definition 5 to calculate which is 2.941

s = 3(.294) + 3(.235) + 3(.118) + 3(.294) + 2(.059)
s = .882 + .706 + .353 + .882 + .118
s = 2.941

Definition 5: Metric for predicting the vulnerable points of software vulnerability
is a function of:

s(x1, x2, x3, x4, x5) = w1x1 + w2x2 + w3x3 + w4 x4 + w5x5
where x1 is the number of firewall ports required;
 x2 is the number of network connections required;
 x3 is the number of open API;
 x4 is the number of special user accounts required;
 x5 is the number of web portals required;
 and w1, w2, w3,w4, and w5 are their weights for relative importance.

119

Table 6. Software Vulnerability Metrics Data Table

Software Vulnerability
Normalized

Attribute
Value

Weight i Attributes

x w
1 firewall port required 5 0.294
2 network connections required 4 0.235
3 open API 2 0.118
4 special user accounts required 5 0.294
5 web portals required 1 0.059

3.4.6 UI Accessibility Metrics

UI Accessibility is another beta testing objective that is limited in the number of

attributes (limited to just two). Its limitation is because the operating environment

manages most accessibility features. However, to provide an example of how

applications designed for end-user with physical challenges variables are utilized

from the imaging application since the imaging application was designed to

support a large base of end-users with disabilities. Using the attributes in Table

7, definition provides a vulnerable point for UI accessibility as 2.1 indicating the

potential of a moderate problem.

a = 1(.4) + 3(.6)
a = 4.2
a = 2.200

Definition 6: Metric for predicting the vulnerable points of UI Accessibility is a
function of:
a = w1x1 + w2x2
where x1 is the number of fonts effect on UI;
 x2 is the number of languages supported;
and w1 and w2 are their weights for relative importance.

120

Table 7. UI Accessibility Metrics Data Table

UI Accessibility
Normalized

Attribute
Value

Weight i Attributes

x w
1 special fonts 1 0.400
2 special hardware requirements 3 0.600

3.4.7 UI Usability Metrics

In this section, Definition 7 is employed to calculate the vulnerable points for the

check processing application. The object is to predict the vulnerable point to

assist software developers in predicting the impact of usability prior to beta

testing. Here values from Table 8 are utilized to obtain the predicted risk value of

UI usability as 3.08.

u = 4(.208) + 2(.125) + 5(.208) + 3(.208) + 1(.125) + 2(.083) + 1(.042)
u = .833 + .250 + 1.042 + .625 + .125 + .167 + .042
u = 3.084

Definition 7: Metric for predicting the vulnerable points of user interface usability
is a function of:
u = w1x1 + w2x2 + w3x3+ w4x4+ w5x5+ w6x6 + w7x7

where x1 is the number of message boxes;
 x2 is the number of multitask command buttons;
 x3 is the number of screen traversal;
 x4 is the number of software wizards;
 x5 is the number of UI responses required;
 x6 is the number of user interface controls;
 x7 is the number of unrestricted text fields;
and w1, w2, w3, w4, w5, w6, and w7 are their weights for relative importance.

121

Table 8. UI Usability Metrics Data Table

UI Usability
Normalized

Attribute
Value

Weight i Attributes

x w
1 message boxes 4 0.208
2 multitask command buttons 2 0.125
3 screen traversal 5 0.208
4 software wizards 3 0.208
5 UI responses required 1 0.125
6 user interface controls1 2 0.083
7 unrestricted text fields 1 0.042

3.5 Metrics Function Training for Software Attributes

The essence of beta testing design is the utilization of software-metrics to

measure the vulnerability of objectives. The objectives are impacted by

attributes, which are those essential parts of an application that influence a

specific beta testing objective. The attributes have quantitative values (weights)

used to predict the level of complexity for a particular product. The outcome

provides software manufacturers with a baseline of specific areas requiring the

most focus during a beta test.

This section outlines and provides the appropriate steps required to assign

suitable weights to attributes (metrics). The overall objective is for the weights to

mature through a learning process, which forms by the accumulation of beta

testing feedback for products in a similar domain. However, the methods

provided in this study will be suitable for common enterprise software.

122

Software metrics for beta testing design are the measurements of software

properties to formulate a test plan before the product enters the beta testing

phase. The metrics results predict areas of vulnerabilities (risk) used to prioritize

testing criteria such as required skill and size of beta testers, assistance in

developing testing questionnaire, time required to test product; and how to

manage testing feedback. This section demonstrates how to obtain good

software metrics and the application of the metric functions.

The model in this study was influenced by trainable pattern classifiers originally

introduced by Nils J. Nilsson in Learning Machines: Foundations of trainable

pattern-classifying systems published in 1965. Nilsson believed machines learn

by past experience. His trainable pattern classifiers were instrumental in

predicting chance of rain based on the categorizing of a set outcome [from 1 to

3]. His model used a set of attributes in a pattern, and patterns to be categorized

into pattern classifiers to produce an outcome[38]. The objective value functions

in this research are a component of Nilsson’s linear discriminant function that

classifies values of parameters into families (a set).

The essence of beta testing design is the understanding of testing objective risk

level prior to preparing a product for beta testing. Risk value is best assessed

through application attributes, which determines where potential issues lie within

an enterprise product. In this study, risk is determined by a value from 1 to 5

where 1 represents a low level of potential problems during production and 5

123

denotes the potential for strong problems. The process assists in software

process improvement, which influences software quality.

A detailed set of steps creates a structure process for obtaining good software

metrics. The steps are collecting attribute values, normalizing attribute values,

weights initialization (required for initial usage of software based metrics), and

using objective functions to calculate predicted risk levels. After the project has

completed the software metrics process and beta testing is complete, the actual

values are collected and the metric training process is employed on future

projects to receive better predictions (See Figure 5).

124

Figure 5. Software Metrics Process Flow

125

3.5.1 Collecting Actual Attribute Values

Beta testing design starts with a software project that has finished the

development process and is then ready for beta testing. Prior to starting the

beta test, attribute values are collected in each objective. An example is the

attribute value for number of source lines of code = 4 million or the number of

firewall ports = 7. The complete list of attributes is outlined in Section 3.3 Major

Categorized Software Attributes for Beta Testing. After each attribute value is

recorded, the values will require normalization.

3.5.2 Normalizing Attribute Values

Normalization is a process used to bring an attribute value within the range of 1

to 5. This process improves the accuracy of the predicted function value

revealing the level of risk associated with an objective. Normalization is achieved

in the understanding of minimum and maximum values for a specific attribute,

making normalization unique for each attribute.

Minimum and maximum values for attributes are based on past software projects

and may vary by software and software domain. In this study, the attribute

minimum and maximum values were determined from past projects using the

statistical mode. For example, a sample of minimum and maximum attributes

was collected for an enterprise application for the group of attributes in the

Software Vulnerability objectives. After reviewing the attribute values from past

software projects it was determined that the application (and like applications)

require access to between 0 and 20 firewall ports (using the statistical mode). In

126

the project, the actual attribute value for number of firewall ports is 7. The

attribute value must be normalized to fit within the range of 1 to 5. In this case,

the minimum and maximum function is used to scale the value between the

target range. The minimum and maximum function is:

()i min
max min min

max min

a - a_ _
a - a

normalized attribute value r r r = × − +

Where ai is the non-normalized attribute, amin is minimum value of the attributes

range, amax is the maximum value of the attribute range, rmin is the minimum

value of the new ranges (desired) range, and rmax is the maximum value of the

new range. The normalized attribute value is rounded up to the nearest whole

number. Using this formula, the attribute value of 7 is normalized to 2. The

normalization process is not project, but attribute specific. Minimum and

maximum values improve over time and are adjusted from a case-by-case

objective.

After all attributes are standardized to obtain normalized attributes values, the

weights are required to measure the level of relative importance to the objective.

If the software metrics function is utilized for the first time, weights initialization is

required. Software that has utilized the software metrics process for past

projects, applies the learning process to improve weights.

127

3.5.3 Initializing Attribute Weights

The initialization of attribute weights is determined by data from past beta tests.

Since the applications are experienced products, past data is used to determine

attributes weights using empirical knowledge. Weights must be expressed by

real numbers with all attribute weights totaling 1 for each objective. A more

structural approach to obtain real number values for each objective is to assign

estimated weights, based on numeric value from 1 to 5. The value range is

based on the level of problem relevant to the attribute (i.e. The number 1

represents low problem and number 5 is a more problematic attribute). After the

estimated weights are assigned (within range), the values are converted to

weights (real numbers) using a weight initialization function. The total of all

weights must equal 1. The weight initialization function is:

1

i
i

n

i
i

ew
e

=

=

∑

where wi is the weight, ei is the estimated weight. This process is not required for

future projects, because the training process will be employed to manipulate

weights.

3.5.4 Training Future Functions

Software metrics based approach to beta testing design is a process that learns

with experience and metric functions improve in accuracy with frequent

utilization. The learning process is employed on future beta testing products by

reviewing results and feedback from past projects to determine an actual risk

128

value. The actual risk value is compared to the predicted risk value from

previous tests to incorporate adjustments to the training process. The purpose of

this method is to improve the risk predictions.

The training process introduces a learning sub-model that takes into account the

attribute weights from previous projects and the normalized attribute value of the

current project to generate a new weight. The new weight is then applied to the

objective metric function to calculate the predicted risk value. There are two

different formulas in the learning process. To determine the correct formula, a

comparison of the actual and predicted risk value is required.

(1)()
5

i
i i

xy r w r= • ± −

The two formulas are:

Formula A) (1)()
5

i
i i

xy r w r= • + − where yi is the new

attribute weight, r is a real number between 0
and 1, wi is the weight from previous beta test,
and xi is the normalized attribute value for the
current project.

Formula B) (1)()
5

i
i i

xy r w r= • − − where yi is the new

attribute weight, r is a real number between 0
and 1, wi is the weight from previous beta test,
and xi is the normalized attribute value for the
current project.

Formula A. is applied when the predicted risk value is lower than the actual risk

value. For example, when a product is ready for beta testing, objective metrics

are used to obtain the predicted risk values for each objective. The values are

used to build the current beta test design. After completion of the project, the

129

results and feedback is used to determine the actual risk value. In this scenario if

the predicted risk value for Robustness was 2 and the actual risk value was 3,

formula a. (1)()
5

i
i i

xy r w r= • + − , is used to train the weights for the next beta

test of this product. If the predicted metric value for enterprise dependency was

4 and the actual metric value is 2, then Formula B. (1)()
5

i
i i

xy r w r= • − − , is

used to train weights for the next beta test.

In this study, r = .95 because the value represents the standard confidence

coefficient. This means the current sample is expected to contain the true mean

and computed confidence interval is 95%[46]. However, the actual percentage

values in each formula may be adjusted to match the proportion of past data.

After training the weights, the values are applied to the objective metric functions

to predict risk levels.

If the predicted risk value and actual risk value are equal, the learning process is

not required. This will hold true case until a change to the actual risk value is

prompted by a change in the product.

3.5.5 Objective Metric Functions

After weights are initialized or trained, the objective value function is employed to

calculate the predicted risk value. The predicted risk value is a number between

1 and 5 that exposes areas of weaknesses in the product. The prediction

130

provides guidance in how to prepare the current beta testing project. The

predicted risk value numbers are assigned a level, which are:

• 1 = Low Problem
• 2 = Moderate Problem
• 3 = Average Problem
• 4 = Significant Problem
• 5 = Strong Problem

To calculate the objective metric risk value for a specific objective the following

formula is used:

1
_ _

n

i i
i

objective metric value w x
=

=∑

where i is an instance of an attribute, wi is the weight of an attribute, xi is the

normalized attribute value. The objective metric value is calculated for all 7

objectives of an enterprise product.

3.6 Example Practice of Objective Metric Function

In this section, an example from a medium-sized enterprise product is used to

demonstrate how the objective metric function is used to predict the risk value for

the software vulnerability objective. Three algorithms are used to calculate the

predicted risk value for each objective. The major steps in calculating the

predicted risk value for an objective are as follows:

1. a completed enterprise that has been beta tested in the past;

2. the attributes’ values are determined;

131

3. the minimum and maximum values are determined based on historical

data (this step is only performed once);

4. actual attribute values are converted to normalized attribute values;

5. weights are initialized for product that have not used the software metrics

process in the past (only required one time);

6. the objective metric function is used to calculate the predicted risk value;

7. and the training formula is used after actual risk value is determined

(actual risk value is determined after the current beta test and impacted

from past projects).

Three algorithms are provided in this study to calculate the predicted risk values

for each objective.

The first algorithm (Algorithm 1. Weights Initialization) is used for projects that

have completed a non-software metrics-based beta test. These products have

completed other types of software beta test but are using the software metric

approach to beta testing design for the first time. Since products in this category

have no prior experience with this process, weights will require initialization.

132

Algorithm 1. Weights Initialization

1) Completed enterprise software that has accomplished a beta test in the past
2) Provide attribute values for each attribute for all 7 objectives (ai)
3) Review the Min/Max values for each attribute
4) Normalize all attribute values to a range between 1 and 5

()i min
max min min

max min

a - a
a - a

ix r r r = × − +

where xi is the normalized value, ai is the actual attribute value, amin is minimum value of the attributes
range, amax is the maximum value of the attribute range, rmin is the minimum value of the new ranges
(desired) range, and rmax is the maximum value of the new range.
5) Initialize weights for current project

1

i
i

n

i
i

ew
e

=

=

∑

where wi is the weight of relative importance, ei is the estimated weight where i is an instance of an
attribute, wi is the weight of an attribute, xi is the normalized attribute value
6) Calculate the predicted objective risk value for each objective

1
_

n

i i
i

risk value w x
=

=∑

where i is an instance of an attribute, wi is the weight of an attribute, xi is the normalized attribute value

The second algorithm (Algorithm 2. Function Learning Process) is used for

software that has completed the software metrics-based process. The function

learning process is used to train the metric functions to improve risk predictions,

after the actual risk values are determined at the end of a complete beta test

project.

133

Algorithm 2. Function Learning Process

1) Compare the actual metric risk value from each objective to the predict risk value from previous

beta test. If predicted risk value > actual risk value goto (a). If predicted risk value < actual risk
value goto (b). if the predicted risk value = risk value then skip to 3)

(1)()
5

i
i i

xy r w r= • − −

where yi is the new attribute weight, r is a real number between
0 and 1, wi is the weight from previous beta test, and xi is the
normalized attribute value for current project.

(a) (1)()
5

i
i i

xy r w r= • + −

where yi is the new attribute weight, r is a real number between
0 and 1, wi is the weight from previous beta test, and xi is the
normalized attribute value for current project.

2) If total weights ≠ 1 then scale weights using formula

1

i
i

n

i
i

yw
y

n
=

=

∑

where yi is the trained weight for the current project, n =1

3) goto Algorithm 3

The third algorithm (Algorithm 3. Standard Objective Risk Level Function) is used

when product has experience using the metric functions and weights initialization

is not required.

Algorithm 3. Standard Objective Risk Level Function

1) Completed enterprise software that is ready for beta testing.
2) Provide attribute values for each attribute in all 7 objectives (ai).
3) review the Min/Max values for each attribute
4) Normalize all attribute values between 1 and 5

()i min
max min min

max min

a - a
a - a

ix r r r = × − +

where xi is the normalized value, ai is the actual attribute value, amin is minimum value of the attributes
range, amax is the maximum value of the attribute range, rmin is the minimum value of the new ranges
(desired) range, and rmax is the maximum value of the new range.

5) Calculate the predicted objective risk value for each objective

1
_

n

i i
i

risk value w x
=

=∑

where i is an instance of an attribute, wi is the weight of an attribute, xi is the normalized attribute value

134

3.6.1 Weights Initialization Process

In this section, Algorithm 1 is used to calculate the predicted risk value for the

software vulnerability objective.

Step 1. The completed enterprise product is a medium-sized enterprise product

that has completed a beta test in the past 18 months. The data from the past

test is used to determine the weights and instrumental in normalizing the values.

Step 2. The attribute values for this objective are provided by development for

the current application and are later normalized to a range of 1 to 5. Outlined in

Table 1., the non-normalized attribute values (a. attribute) are:

number of firewall ports = 5
number of network connections = 4
number of open API = 3
number of special user account = 5
number of web portals = 6

Although the values (as is) appear to be within the correct range, the

normalization process will change the value based on the minimum and

maximum attribute range for the project.

Step 3. Normalization is the process of converting the actual attribute value into

a range between 1 and 5, used to better assess risk. However, it is important to

understand the minimum and maximum values for attributes, which differs by

application domain. In this scenario, the min/max values are determined by

taking the statistical mode of past projects and using the min/max function to

construct a normalization matrix for determining the normalized value of an

attribute.

135

 Min Max
firewall port 0 20
network connections 1 7
open API 0 9
special user accounts 0 7
web portals 0 12

Step 4. In Step 4, the values are applied to the min/max function to convert

actual attribute value to normalized attribute value. The result is rounded up to

the nearest whole number between 1 and 5. Using the min/max function, the

normalization calculations are:

firewall port network connections open API

()

()

() ()

1

1

1

1

5 - 0 5 1 1
20 - 0
5 4 1
20
.25 5

1.25

x

x

x
x

 = × − +

 = × +

= ×

=

()

()

() ()

2

2

2

2

4 - 1 5 1 1
7 - 1
3 4 1
6
.5 5

2.5

x

x

x
x

 = × − +

 = × +

= ×

=

()

()

() ()

3

3

3

3

3 - 0 5 1 1
9 - 0
3 4 1
9
.333 5

1.667

x

x

x
x

 = × − +

 = × +

= ×

=

x1 = 2 x2 = 3 x3 = 2

special user accounts web portals

()

()

() ()

4

4

4

4

5 - 0 5 1 1
7 - 0
5 4 1
7
.714 5

3.57

x

x

x
x

 = × − +

 = × +

= ×

=

()

()

() ()

5

5

5

5

6 - 0 5 1 1
12- 0
6 4 1

12
.5 5

2.5

x

x

x
x

 = × − +

 = × +

= ×

=

x4 = 4 x5 = 3

The normalized values will be multiplied by the attribute weight to determine the

predicted risk value.

Step 5. The attribute weights are determined using a sub-model that is based on

product experience. In this scenario, the target product has completed a beta

test and weights require initialization because the product is using the software

136

metrics-based process for the first time. Based on experience weights are

determined and must be real numbers with all values equaling 1 for the objective.

However, a more structured method is employed to initialize weights for the first

time. The weight initialization formula is calculated using the formula:

1

i
i

n

i
i

ew
e

=

=

∑

where ei is a number from 1 to 5, and ei is the estimated weight based on

previous projects. The number 1 is used for attributes with least problems and 5

are more problematic attributes. The values are converted to real numbers for

usage with the objective function. For example, based on experience the

attributes for the software vulnerability are:

 Estimate

Weights
number of Firewall ports 5
number of network connections 4
number of open API 3
number of special user account 4
number of special users accounts 5

The estimated weights are converted to real numbers totaling 1. The

calculations used to convert estimated weights to proper weights (real numbers)

are as follows:

()

1

1 2 3 4 5

i
i

n

i
i

i
i

ew
e

ew
e e e e e

=

+ + + +

=

=

∑

137

firewall port network connections open API

()

()

()

1
1

1 2 3 4 5

1

1

1

5
5 4 3 4 5
5
21

.238

ew
e e e e e

w

w

w

+ + + +

+ + + +

=

=

=

=

()

()

()

2
2

1 2 3 4 5

2

2

2

4
5 4 3 4 5
4
21

.190

ew
e e e e e

w

w

w

+ + + +

+ + + +

=

=

=

=

()

()

()

3
3

1 2 3 4 5

3

3

3

3
5 4 3 4 5
3
21

.143

ew
e e e e e

w

w

w

+ + + +

+ + + +

=

=

=

=

special user accounts web portals

()

()

()

4
4

1 2 3 4 5

4

4

4

4
5 4 3 4 5
4
21

.190

ew
e e e e e

w

w

w

+ + + +

+ + + +

=

=

=

=

()

()

()

5
5

1 2 3 4 5

5

5

5

5
5 4 3 4 5
5
21

.238

ew
e e e e e

w

w

w

+ + + +

+ + + +

=

=

=

=

Step 6. After the attributes are normalized and weights are determined, the

objective metric function is employed to calculate risk. Objective function for the

software vulnerability objective is:

1
_ _

n

i i
i

objective metric value w x
=

=∑

For the software vulnerability the objective metric function is:

In this case, s = w1x1 + w2x2 + w3x3+ w4x4+ w5x5
where s is the software vulnerability objective, x1 is the normalized number of
threads generated; x2 is the normalized number of network connections required;
x3 is the normalized number of open API; x4 is the normalized number of special
user accounts required; x5 is the normalized number of web portals required; and
w1, w2, w3,w4, and w5 are their weights for relative importance.

The values are calculated as:
s = .238(2) + .190(3) +.143(2) +.190(4) +.238(3)
s = .476 + .571 +.286 +.762 +.714
s = 2.810

which provide a predicted risk value for software vulnerability as 2.81. The

predicted value is measured against other values to determine priority of events

138

with designing the beta test. After the completion of the beta test, the predicted

value is compared to the actual risk value for training future tests.

Table 9. Software Vulnerability Weights Initialization Data

Software Vulnerability

 I. Weight A. Value N. Value

i
Attribute Name

wi ai xi
Total

1 firewall port 0.238 5 2 0.476
2 network connections 0.190 4 3 0.571
3 open API 0.143 3 2 0.286
4 special user accounts 0.190 5 4 0.762
5 web portals 0.238 6 3 0.714

 Totals 1.000 2.810

3.6.2 Weights Stabilization Process

As this software metrics based process matures, the weights are stabilized and

risk value prediction becomes more streamlined. This is done by using the

function learning process, which adjusts the weights for the new project by

incorporating older weights with new values to determine the importance of

attributes. This is achieved after products have completed a few beta tests using

the software metrics-based approach.

Using the metrics from the previous case and applying Algorithm, the above test

has completed a previous beta test and the actual risk value for the software

vulnerability objective is 3. The predicted risk value from the previous test was

2.810. The weights for the current project will be trained to receive a better

predicted risk value for use in the beta testing design. The training process

begins after completing steps 1 – 4 (which mirrors activities from Step 1, 2, 3,

and 4 from the previous section).

139

New Step 5. The new Step 5. weights stabilization (for Project 2)uses a different

set of functions to train weights for use with the current project. Since the actual

predicted value from the previous project (2.810) is lower than the actual risk

value (3), which was determined at the end of the previous project. In this

scenario the correct formula is:

Based on the learning function formula (1)()
5

i
i i

xy r w r= • ± − the actual

risk value is greater than the predicted risk value. So the correct formula used to

train the weights is yi = r.wi + (1 – r) (xi / 5), where yi is the new attribute weight, r

is .95, wi is the weight from past beta test, and xi is the normalized attribute value

for current project.

firewall port network connections open API

1

1

1

1

2.95(.238) (.05)()
5

.95(.238) .05(.4)

.226 .02

.246

y

y
y
y

= +

= +
= +
=

2

2

2

2

3.95(.238) (.05)()
5

.95(.190) .05(.6)

.181 .03

.211

y

y
y
y

= +

= +
= +
=

3

3

3

3

2.95(.238) (.05)()
5

.95(.143) .05(.4)

.136 .02

.156

y

y
y
y

= +

= +
= +
=

special user accounts web portals

4

4

4

4

4.95(.238) (.05)()
5

.95(.190) .05(.8)

.181 .04

.221

y

y
y
y

= +

= +
= +
=

5

5

5

5

3.95(.238) (.05)()
5

.95(.238) .05(.6)

.226 .03

.256

y

y
y
y

= +

= +
= +
=

After calculating the trained weights, the sum must equal 1. If value is higher or

lower than 1, yi must be scaled to equal 1 (see A. Value in Table 3). To scale the

140

weights to 1, the weights adjustment formula (similar to initial weights function) is

used to scale up or down the weights.

()

1

1 2 3 4 5

i
i

n

i
i

i
i

yw
y

n

yw
y y y y y

=

+ + + +

=

=

∑

firewall port network connections open API

()

()

()

1
1

1 2 3 4 5

1

1

1

.246
.246 .211 .156 .221 .256
.246
1.090

.226

yw
y y y y y

w

w

w

+ + + +

+ + + +

=

=

=

=

()

()

()

2
2

1 2 3 4 5

2

2

1

.211
.246 .211 .156 .221 .256
.211

1.090
.194

yw
y y y y y

w

w

w

+ + + +

+ + + +

=

=

=

=

()

()

()

3
3

1 2 3 4 5

3

3

3

.156
.246 .211 .156 .221 .256
.156
1.090

.143

yw
y y y y y

w

w

w

+ + + +

+ + + +

=

=

=

=

special user accounts web portals

()

()

()

4
4

1 2 3 4 5

4

4

4

.221
.246 .211 .156 .221 .256
.221

1.090
.203

yw
y y y y y

w

w

w

+ + + +

+ + + +

=

=

=

=

()

()

()

5
5

1 2 3 4 5

5

5

5

.256
.246 .211 .156 .221 .256
.256
1.090

.235

yw
y y y y y

w

w

w

+ + + +

+ + + +

=

=

=

=

After the weights are scaled, they are applied to the objective value function to

obtain the predicted risk value for the current project.

141

New Step 6. The objective risk value function for the software vulnerability

objective uses the function:

s = w1x1 + w2x2 + w3x3+ w4x4+ w5x5
s = .226(2) + .194(3) +.143(2) +.203(4) +.235(3)
s = .452 + .581 +.286 +.811 +.705
s = 2.834

The predicted risk value is 2.834 after applying the objective risk value function

for software vulnerability, which is close to the actual metric value (3) (See Result

in Table 10). In Table 11 the learning process was executed 6 times (six

experiments) to demonstrate how the weights are stabilized and the prediction is

improved. After five applications the predicted risk value improved to 2.905,

which is .095 from the actual risk value of 3.

Table 10. Software Vulnerability Function Training Data

Software Vulnerability

 N. Weight A. Value N. Value

i
Attribute Name

yi wi xi
Total

1 firewall port 0.246 0.226 2 0.452
2 network connections 0.211 0.194 3 0.581
3 open API 0.156 0.143 2 0.286
4 special user accounts 0.221 0.203 4 0.811
5 web portals 0.256 0.235 3 0.705

 Totals 1.090 1.000 2.834

142

Table 11. Functions Stabilization Data Set

Software Vulnerability Experiment 1 Experiment 2

Attribute Name Weight I. Weight A.Value N. Value Total L Weight A Weight Value Total L Weight A Weight Value Total
firewall port required 5 0.238 5 2 0.476 0.246 0.226 2 0.452 0.254 0.216 2 0.432

network connections required 4 0.190 4 3 0.571 0.211 0.194 3 0.581 0.230 0.196 3 0.588

open API 3 0.143 3 2 0.286 0.156 0.143 2 0.286 0.168 0.143 2 0.286

special user accounts required 4 0.190 5 4 0.762 0.221 0.203 4 0.811 0.250 0.213 4 0.850

web portals required 5 0.238 6 3 0.714 0.256 0.235 3 0.705 0.273 0.233 3 0.698

 21 1.000 2.810 1.090 1.000 2.834 1.176 1.000 2.854

Experiment 3 Experiment 4 Experiment 5

firewall port required L Weight A Weight Value Total L Weight A Weight Value Total L Weight A Weight Value Total
network connections required 0.261 0.208 2 0.416 0.268 0.201 2 0.402 0.275 0.195 2 0.390

open API 0.249 0.198 3 0.594 0.266 0.200 3 0.599 0.283 0.201 3 0.604

special user accounts required 0.180 0.143 2 0.286 0.191 0.143 2 0.286 0.201 0.143 2 0.286

web portals required 0.277 0.221 4 0.883 0.304 0.228 4 0.910 0.328 0.233 4 0.933

 0.290 0.231 3 0.692 0.305 0.229 3 0.686 0.320 0.227 3 0.682

 1.257 1.000 2.870 1.334 1.000 2.884 1.407 1.000 2.895

Experiment 6

firewall port required L Weight A Weight Value Total
network connections required 0.281 0.190 2 0.381

open API 0.299 0.202 3 0.607

special user accounts required 0.211 0.143 2 0.286

web portals required 0.352 0.238 4 0.953

 0.334 0.226 3 0.678

 1.477 1.000 2.905

142

143

3.7 Example of Deriving Beta Testing Metrics

In this section, the metrics are utilized to demonstrate the application of the

software metric functions on a real medium application. The purpose is to show

how the metrics provide results for enterprise level software. The first

experiment is on a medium size accounting application designed to support a

major energy company. The software was designed to support end-to-end

processing of lease and royalty distribution for land owners that have a contract

with the energy company. The contract allows the energy company to drill oil

and other natural resources from the land.

The software is designed to support the energy company’s finance business unit.

This form-intensive application facilitates the payment process handling

calculations, currency transfers, balancing accounts, and other finance

operations. The current application supports up to 50 consecutive end-users to

include web-based users. This application was designed using a culmination of

tools to include a major database application, multiple systems, and a web

(based development tool) to support remote users. The data for this sample was

collected from the project development manager who is also responsible for

managing quality control efforts. The product has just completed a beta test for

version 4.0 of this application. The new version supports more users and new

database application.

144

3.7.1 Weights Initialization Process for Accounting Software

This step in the process was for the purpose of collecting the attribute values for

each objective (See Table 12). Reviewing the data from past beta tests the

project development manager provided minimum and maximum values for each

attribute. After the data was collected Algorithm 1 was employed because

weights initialization is required. In Table 13 E. Weight represented the

estimated weight based on experience with the product. The weights were

initialized using step 5 in the Algorithm. N. Weight represents the weight for this

project. After weights are initialized the objective function value was used to

calculate the predicted risk level for each (Table 13). The predicted risk values

are in bold.

Table 12. Accounting Software Actual Attribute Values

Actual Attribute Value
CI CS CL CU DC DD DL FE
60 43 3 40 0 140 3 1
FP HR IC ID LS MB MC MS
4 7 535 1 3 38 4 2

NC OA PP SA SC SF SH ST
3 5 16 75 1200 1 1 37

SU SW TG UC UI UL UR UT
3 2 55 10 535 4 15 120

WP WS
3 3

145

Table 13. Accounting Application Prediction Data Set

Environmental Dependency

Attribute Name Weight N. Weight Value N. Value Total
amount of threads generated 5 0.116 55 1 0.116
CPU utilization 5 0.116 40 2 0.233
dynamic link library requirements 2 0.047 3 1 0.047
Firewall port required. 4 0.093 4 2 0.186
incoming client service request 4 0.093 43 3 0.279
multiple system requirements 2 0.047 2 1 0.047
network connections required 4 0.093 3 3 0.279
open API 4 0.093 5 3 0.279
physical processors required 5 0.116 16 3 0.349
special user accounts required. 1 0.023 3 3 0.070
web portals required 3 0.070 3 2 0.140
web service request requirements 4 0.093 3 1 0.093

 43 1.000 25 2.116

Function Coverage Completeness

Attribute Name Weight N. Weight Value N. Value Total
hardware and software requirements 4 0.286 7 1 0.286
software wizards 3 0.214 2 1 0.214
unrestricted text fields 3 0.214 120 1 0.214
use case totals 4 0.286 10 2 0.571
 14 1.000 5 1.286

Localization

Attribute Name Weight N. Weight Value N. Value Total
code locale 5 0.263 3 2 0.526
fonts effect on UI 3 0.158 1 1 0.158
languages supported 5 0.263 3 2 0.526
special input devices 2 0.105 1 1 0.105
screens affected by font adjustments

4 0.211 75 2 0.421

 19 1.000 8 1.737

146

Robustness

Attribute Name Weight N. Weight Value N. Value Total
number of lines of source code 2 0.054 1200 1 0.054
amount of threads generated 3 0.081 16 1 0.081
changes to dynamic data 4 0.108 140 1 0.108
class inheritances 5 0.135 60 2 0.270
multitask command buttons 5 0.135 4 1 0.135
program switches lacking default
clause 3 0.081 1 3 0.243
use case totals 3 0.081 10 2 0.162
unrestricted text fields 5 0.135 120 1 0.135
user interface complexity 4 0.108 535 3 0.324
user-levels 3 0.081 4 1 0.081

 37 1.000 16 1.595

Software Vulnerability

Attribute Name Weight N. Weight Value N. Value Total
Firewall port required 5 0.294 4 2 0.588
network connections required 4 0.235 3 3 0.706
open API 2 0.118 5 3 0.353
special user accounts required 5 0.294 3 3 0.882
web portals required 1 0.059 3 2 0.118

 17 1.000 2.647

UI Accessibility

Attribute Name Weight N. Weight Value N. Value Total
special fonts 5 1.000 1 1.000
special hardware requirements 0 0.000 0 0.000

 5 1.000 1.000

UI Usability

Attribute Name Weight N. Weight Value N. Value Total
message boxes 3 0.136 38 1 0.136
multitask command buttons 3 0.136 4 1 0.136
screen traversal 5 0.227 15 5 1.136
software wizards 1 0.045 2 1 0.045
UI responses required 3 0.136 15 1 0.136
User interface controls 3 0.136 320 2 0.273
unrestricted text fields 4 0.182 120 1 0.182

 22 1.000 2.045

147

After applying the attributes values to the proper objective metrics, the risk levels

points are calculated for comparison. The predicted risk values for each

objective are: e = 2.116, f = 1.286, l = 1.737, r =1.595, s = 2.647, a = 1.000,

u = 2.045, predicting a higher risk value for software vulnerability and enterprise

dependency than any other objective.

The project manager provided a set of actual risk values based on feedback

received from the current beta testing. The actual risk values are highlighted in

Table 14. The project manager received favorable results from the group of beta

testers only handling a small set of issues and a few usability changes.

Table 14. Actual Risk Values vs. Predicted Risk Values for

Accounting Application

 Environmental
Dependency

Function
Coverage

Completeness
Localization Robustness Software

Vulnerability
UI

Accessibility
UI

Usability

PRV 2.116 1.286 1.737 1.595 2.647 1 2.045

ARV 3 3 2 2 3 1 3

3.7.2 Training Future Functions For Accounting Software

This section will employ Algorithms to demonstrate the effectiveness of the

training process. Algorithm 2 (in section 3.71) was executed. The actual risk

values (ARV) are compared to the predicted risk values (PRV) to determine the

correct training formula. In this case, PRV < ARV for all objectives, so the

formula: yi = r.wi + (1-r)(xi / 5), where yi is the new attribute weight, r = .95, wi is

the weight from past beta tests, and xi is the normalized attribute value for current

project. The calculations for this experiment are highlighted in Table 16. The

148

results are presented in Table 15 demonstrating an improvement in the risk

predictions.

Table 15. PRV vs. ARV Comparisons for Accounting Software after Training

the Functions

 Environmental
Dependency

Function
Coverage

Completeness
Localization Robustness Software

Vulnerability
UI

Accessibility
UI

Usability

PRV 2.184 1.291 1.738 1.653 2.657 1 2.134

ARV 3 3 2 2 3 1 3

149

Table 16. Accounting Software Function Training Data Set

Environmental Dependency

Attribute Name L Weight A Weight Value Total
amount of threads generated 0.120 0.100 1 0.100
CPU utilization 0.130 0.109 2 0.217
dynamic link library requirements 0.054 0.045 1 0.045
firewall port required. 0.108 0.090 2 0.181
incoming client service request 0.118 0.099 3 0.296
multiple system requirements 0.054 0.045 1 0.045
network connections required 0.118 0.099 3 0.296
open API 0.118 0.099 3 0.296
physical processors required 0.140 0.117 3 0.351
special user accounts required. 0.052 0.043 3 0.130
web portals required 0.086 0.072 2 0.144
web service request requirements 0.098 0.082 1 0.082

 1.200 1.000 2.184

Robustness

Attribute Name L Weight A Weight Value Total
number of lines of source code 0.061 0.055 1 0.055
amount of threads generated 0.087 0.078 1 0.078
changes to dynamic data 0.113 0.102 1 0.102
class inheritances 0.148 0.134 2 0.267
multitask command buttons 0.138 0.125 1 0.125
program switches lacking default clause 0.107 0.096 3 0.289
use case totals 0.097 0.087 2 0.175
unrestricted text fields 0.138 0.125 1 0.125
user interface complexity 0.133 0.120 3 0.359
user-levels 0.087 0.078 1 0.078

 1.110 1.000 1.653

Function Coverage Completeness

Attribute Name L Weight A Weight Value Total
hardware and software
requirements 0.281 0.281 1 0.281
software wizards 0.214 0.214 1 0.214
unrestricted text fields 0.214 0.214 1 0.214
use case totals 0.291 0.291 2 0.583

 1.000 1.000 1.291

Localization

Attribute Name L Weight A Weight Value Total
code locale 0.270 0.262 2 0.524
fonts effect on UI 0.160 0.155 1 0.155
languages supported 0.270 0.262 2 0.524
special input devices 0.110 0.107 1 0.107
screens affected by font adjustments

0.220 0.214 2 0.427
 1.030 1.000 1.738

149

150

Software Vulnerability

Attribute Name L Weight A Weight Value Total
firewall port required 0.299 0.277 2 0.554
network connections required 0.254 0.235 3 0.704
open API 0.142 0.131 3 0.394
special user accounts required 0.309 0.286 3 0.859
web portals required 0.076 0.070 2 0.141
 1.080 1.000 2.653

UI Accessibility

Attribute Name L Weight A Weight Value Total
firewall port required 0.960 1.000 1 1.000
network connections required 0.000 0.000 0 0.000
 0.960 1.000 1.000

UI Usability

Attribute Name L Weight A Weight Value Total
message boxes 0.140 0.130 1 0.130
multitask command buttons 0.140 0.130 1 0.130
screen traversal 0.266 0.249 5 1.243
software wizards 0.053 0.050 1 0.050
UI responses required 0.140 0.130 1 0.130
user interface controls 0.150 0.140 2 0.280
unrestricted text fields 0.183 0.171 1 0.171

 1.070 1.000 2.134

150

151

Chapter 4

Software Metrics-Based Approach to Beta Testing Design

4.1 Major Components of a Beta Testing Design

Currently, there are no known formal industry standards or models used by

enterprise software manufacturers to manage beta testing software. Most

modern beta testing process models are proprietary and change based on

historical data (the results of prior beta tests). Enterprise software developers

rely on strict time duration and a set amount of beta testers (clientele) as a model

to guide the beta testing process. Good beta testing design is accomplished by

an understanding of important areas that have the potential to cause problems in

a production environment and have “real-world” testers validate potential issues

and provide feedback. This study provides a software metrics-based approach

to generating a formal design for enterprise software beta testing.

This research introduces five major components of beta testing design (see

Figure 6). The five components are influenced by the predicted risk values

derived from the metric functions for each beta testing objective. The first

component is selecting the proper group of beta testers (beta testing clientele)

based on results received from the software metrics. The second component

involves understanding important software components that require special

attention based on the predicted value levels. Constructing a questionnaire, as

an instrument to collect feedback and to guide beta testers, is the third

component of the beta testing design provided in the study. The fourth

152

component of the beta testing design is determining the size of beta testers

required to validate the product in beta. The final (fifth) component is to

determine the duration of beta test answering the question: How long should the

product remain in the beta testing phase?.

Beta testing design provides a formal framework used to guide software

manufacturers in planning the beta testing process. In addition, the beta testing

design assists software manufacturers with properly focusing time and tasks, in

preparation for beta testing a product. The outcome of this methodology is

improved quality in the final product, in addition to saving cost and building

positive relationships with the user base community.

153

Figure 6. Beta Testing Design Process Model

4.2 Software Metrics-Based Beta Testing Design

Prior to beta testing a product, beta test managers (or lead software developers)

must predict areas of the software that have potential to create problems or

issues if introduced to a production environment without proper testing. After

beta test managers determine the product is complete and ready for beta testing,

attribute data is collected from the current product to apply to software metrics.

In cases where products have completed beta testing in the past, beta test

managers will review data from prior projects (or similar) for trending purposes.

The Enterprise Software Profile (See Appendix A) is used to collect the required

product data and the appropriate algorithms are employed to obtain predictions.

Based on prediction results (received from objective metric functions), beta test

154

managers will proceed with the design of the beta testing. The next set of sub-

sections outlines the impact software metrics has on the beta testing design.

4.2.1 Identify Beta Testing Priority Clientele Groups

Identifying the type of beta testing clientele groups is essential to the testing

process. The concept of beta testing relies on validating the software in a “real"

environment to assure the product functions as designed. In addition, the

product gains final approval from the target group of end-users. Craig and

Jaskiel stated in their book, Systematic Software Testing, “Many users will not

have any experience in testing, but their knowledge of the business function may

make them valuable additions in spite of their lack of experience[13].” It is

important to have beta testers from multiple tiers and level of experience with the

application.

The software metrics results assist beta test managers in prioritizing the type of

testing clientele to solicit for the beta test. For example, if the objective metric

value for localization is at a level where it presents a high potential of problems,

the beta test managers will recruit a class of beta testers from target foreign

countries (i.e. if the product is localized for Germany, German end-users will be

recruited to beta test the product). The same holds true in a similar scenario

where the objective metric value is high for environmental dependency. This

indicates testers with administrator or engineering backgrounds are required.

Other metric results will provide guidance in additional types of testers required

for the beta test.

155

The testing user group is an organization of qualified end-users offers some

influence of the product in beta. Testing user groups also provides support

during the testing phase and provides a forum where testers can exchange

ideas, offer information, and give advice that will improve the product in beta[34].

In this study, beta testers are classified into several categories. There are

several groups of end-users targeted for beta testing. The testing groups are:

• System Engineers

• New end user groups

• Experienced user groups

• Regional experience end user Group

• Regional system engineers

• Accessibility User Group

System Engineers are users with special administrator rights to the environment

the product will be installed. System engineers have administrator privileges (or

special access) to hardware, software, secured areas, network components, and

databases. In an enterprise environment, the system administrator may be

several people or a special department[15]. New end user groups are software

end-users with no formal experience with the product. Most new end-users have

direct interest in the product to meet a specific need, training requirements, or

other significant interest.

156

Experienced user groups are end-users with prior or current knowledge of the

software and software domain. The experienced user group understands the

functionality and uses the product in production environment. Regional

experience end user groups are end-users in target countries with prior or current

knowledge of the application and application domain. The regional experience

user group has used the product for a significant period and clearly understands

the functionality of the product. Regional based system engineers are end-users

with administrator or system rights in the target country the application will be

installed. Regional based system engineers must have rights (or access) to

hardware, software, secured areas, databases, and network resources.

Accessibility specific user Group is the end-user base that has special challenges

such as sight, hearing, and physical disabilities that hinder usage of the

application. This base of end-users requires the adjustments in order operate

the software.

4.2.2 Identify Priority Functions/GUI Components for Beta Testing

When planning a beta test, testing managers’ focus on areas that require the

most attention during the testing process. Currently, beta test managers focus

on “new” features or use cases as priority. The software metric based approach

will guide beta test managers with prioritizing the features, functions, and

software sectors of an application requiring validation in the beta testing process.

In a scenario where the objective metric value is high for software vulnerability,

the beta tester will need to add a higher priority to assure security features are

157

not vulnerable. If there are several areas that indicate the potential for risk, beta

test managers will provide high priority to the trouble areas.

4.2.3 Design Questionnaires for Controlling Beta Testing Priorities

Beta testing products are implemented with minimum intervention from the

software manufacturer’s developers. However, beta test managers design

testing questionnaires to provide testers with a level of guidance in areas with

high significance and to generate feedback from the testing group. Software

metrics are effective in assisting beta testing managers in customizing

questionnaires based on the level of results received from metrics. Today,

questionnaires are designed by past tests, where problems were introduced

during testing, new features, components and use cases. Software metrics

provide additional information to assist in prioritizing information and controlling

the design of the questionnaire. To illustrate this point, if environmental

dependency yields results that indicate a high risk of problems, beta test

managers will design questionnaires to focus on deployability of the product.

4.2.4 Minimal Beta Testing Clientele Size Prediction

Today, industry software manufacturers use fixed beta testing size constraints to

validate a successful beta test. Software manufacturers are focused on

eliminating the amount of bugs in applications prior to release believing the more

testers the higher chance of eliminating bugs. Most software manufacturers

continue the beta testing process until a set amount of testers is participating in

the beta test (Table 1.).

158

Software metrics provide a more structured method for predicting the clientele

size requirements for beta testing enterprise software. If a software metric-based

design model were used for prior beta testing, beta testing managers could use

trending (past results) to predict the size required for the new product or products

from a similar application domain. For example, if past tests yielded higher or

similar numbers for the UI usability objective, and the number of beta testers that

are actual or potential end-users (non-administrators) of the product was low, the

new metric results will indicate that current and future tests will require more end-

users to beta test the product. Past results impact the number of beta testers

required for current project.

Table 17. Sample Beta Testing User Group

Estimated User Base Beta Testers Required
 Percentage of user base
Below 500 users 5%
500 – 2500 10%
2500 or More 15%

4.2.5 Minimal Beta Testing Duration Prediction

Beta testing time is important to the success of the beta process. However,

predicting the duration of a beta test requires historical data and the expected

amount of feedback. Historical data influences the results received from prior

tests. Beta test managers use both the current and prior data derived from

software metrics to set the testing duration. The amount of feedback required is

another variable that impacts the duration of a beta test. In the case where

products that yield a high vulnerability metric result for robustness and usability

159

for past and current project, the beta managers can use results from past beta

test to predict the length of time. For instance, if the past test was 3-months and

beta test managers believe more time was needed to receive better feedback,

the new test should be planned for longer.

4.3 Formal Procedure for Beta Testing Design

Step 1. Identify beta testing priority clientele groups

Review the PRV for each objective. Risk levels determine the importance of

engineers that should be targeted for the beta testers. Start with the objective

that yields the highest predicted risk level and match the required user group for

beta testing the objective. Below is a list of required engineers based on the

outcome of risk levels.

Environmental Dependency

Systems Engineers – are significant because end-users with systems experience

have special rights to target environment and will provide the most effective

feedback system related issues, concerns, and/or enhancement

recommendation.

Experienced Users Group - is required because experienced end-users use

advanced features in the application that could potentially uncover software

errors. The software errors in this case may be dependency related.

160

Function Coverage Completeness

Experienced User Group – are vital because they are capable of providing

complete feedback on the software coverage because of tenure with the product.

New Users Group – are significant because expectations of the product are set

with need based on the product description. The new end-user group provides

novel feedback on current features versus expected and desired functionality.

Localization

Regional Experience User Group – are best suited for localization beta testing

because they are more skilled with the product and can test localized

functionality to reveal potential issues in the product.

Regional Systems Engineers – are most efficient when beta testing localization

because system experience may be required to validate some system issues

experienced with the product in test. The experience base of foreign systems

engineers will have the access to infrastructure resources to effectively

implement the software product into production.

Robustness

New User Group – are significant to this process because they will introduce the

majority of usage errors (operator errors). The objective captures usage patterns

to improve error handling in the software.

161

Experienced User Group – are best suited for robustness provided this base of

users may introduce usage patterns not covered in the design phase, which may

result in the discovery of errors. Experienced users also provide a more

seasoned level of usage patterns.

Software Vulnerability

System Engineers – are essential to beta testing software vulnerability because

of their access and experience with the infrastructure. Systems engineers will

provide good feedback on enhancements, requirements or features in the

application that will reduce the level of vulnerability introduced by the application.

Experienced User Group – is important to this objective based on their

understanding of the product (and product domain). The experienced users will

provide valuable feedback on requirements and desired functionality. This

information will assist developers in planning ways to lower vulnerability based

on need and demand.

UI Accessibility

Accessibility User Group – is required for beta testing this objective because

users with special challenges will provide the essential feedback required.

UI Usability

Experienced User Group – is always essential when beta testing usability

because tenure with the product provides the comparison feedback. Comparison

feedback is based on past products versus new product functionality.

162

New User Group – is vital when testing usability features in the application

providing integral feedback on GUI, features, and ease of use. The ease of use

feedback influences the current and future release of the product in test.

Table 18 is useful to quickly identify the type of user group required based on

PRV.

Table 18. Required Type of User Group for Beta Test Based on PRV

Clientele Groups

Objectives System
Engineers

Experience
User Group

New User
Group

Regional
Experienced
User Group

Regional
New User

Group
Accessibility
User Group

Environmental
Dependency ● ●

Function Coverage
Completeness ● ●

Localization ● ●

Robustness ● ●

Software
Vulnerability ● ●

User Interface
Accessibility ●
User Interface
Usability ● ●

Step 2. Identify priority functions/GUI components

Again, the PRV for the current beta testing project is reviewed. The risk levels

will reveal areas that require the most focus.

If PRV reveal priority should be given to:

• Environmental Dependency - the following product function requires

special attention:

o Product installation

o Advance features

163

o Benchmark product for degradation issues (i.e. bottlenecks, high

utilization)

o Validate access to resources (i.e. resources, sub networks, etc).

o Web based resources are functional (i.e. portals, web-based forms,

etc)

o Web services are functional

• Function Coverage Completeness - the following product functions must

be validated:

o Software wizards

o Graphical user interface is comprehensive

o Test each product use case

• Localization - the following product functions require validation:

o Font changes maintain organization of all forms

o Language changes are effective

o Special devices are operable

o Time/Country/Currency changes are functioning

• Robustness - the following function requires attention:

o Graphical user interface handles input errors

o Error message are comprehensive and user understands the

nature of the problem

o All user groups are working according to access levels

164

• Software Vulnerability - the following software components must be

validated:

o User access levels are secure

o Application access to bridges and routers are not creating

vulnerabilities

o Web portals are operable and not introducing security issues

o Network protocols are encrypting data correctly and not exposing

the current infrastructure

o APIs are secure

• UI Accessibility - the following software components require validation:

o Test fonts are readable to users with limited sight

o Special peripherals are operable at the same accuracy and

response time as original peripherals (i.e. special carpal tunnel

mouse works the same as regular mouse)

• UI Usability - the following software components require special attention

o Test GUI to assure ease of use

o Message boxes provide accurate instructions

o Software wizards are operable and yield exact results

o GUI controls are operable and well organized

o Navigation thorough the software provides hints and does not

confuse the end user.

165

Step 3. Design questionnaires for controlling beta testing priorities

Review the PRV for each objective. Place objectives in order by risk level. The

questionnaire will be outlined based on the required feedback. This information

will guide the end-user in testing features of the application that provided a higher

risk value. Below are examples of questions and components that can be used

to build the testing questionnaire.

Environmental Dependency solicits feedback on:

• Product installation: Capture user experiences with installing the product

• Usage of Advanced Features: Suggest information on advanced features

• Utilization: Did the product introduce any high utilization issues

• Bottlenecks: Did the product introduce degradation to the current system

or network

• Access to Resources: Did the product gain access to additional resources,

networks, or databases with ease?

• Web resources: Capture users experience with web based resources, etc.

Function Coverage Completeness solicits feedback on:

• Software wizards: Does the software wizard yield the appropriate

outcomes? Or do software wizards assist in easing the experience with

the application?

• Graphical user interface: Are the screens providing the appropriate

amount of information to receive the desired outcome?

• Use Case: Are the product specifications accurate and complete?

166

Localization solicits feedback on:

• Font Change: Does the character changes for desired country maintain

organization to all screens?

• Language Support: Is the desired language correct and effective?

• Special Localized Peripherals: Does the specially mapped peripherals

operate effectively?

• Conversion Changes: Does the Time/Country/Currency provide accurate

translations?

Robustness solicits feedback on:

• Input Errors: Does the graphical user interface alert user of errors?

• Message Boxes/Alerts: Are the error message boxes comprehensive and

does the end-user understand the nature of the problem?

Software Vulnerability solicits feedback on:

• User Access: Do the user level requirements create vulnerabilities in the

product? Are the access levels secure?

• Router/Bridge Access: Does the number of port requirements create

software and/or network vulnerabilities?

• Web Accessible Features: Are the web accessible features operable? Do

the web features create security concerns/issues?

• Network Connections: Do network protocols communicate correctly?

Does the level of network protocols required creating network

vulnerabilities or violations?

167

• API: Does utilization of the current APIs create network issues?

 UI Accessibility solicits feedback on:

• Accessibility Fonts: Do accessibility fonts create a readable user display?

• Accessibility Hardware: Are the special accessibility peripherals operable

with the same accuracy and response time as original peripherals?

UI Usability solicits feedback on:

• GUI: Does the graphical user interface provide ease of use?

• Message Boxes: Do the message boxes provide accurate instructions?

• Software Wizards: Do the software wizards assist in complex tasks? Are

the software wizards useful in yielding exact results?

• GUI Controls: Are GUI controls operable and well organized?

• Application Navigation: Is navigating through the software complex?

Additional questions may be added based on level and experience with the

application to enhance the questionnaire.

Step 4. Predict minimal beta testing clientele size

Review PRV for the current project. Find the mean of predicted risk levels using

the following formula

1

1 n

i
i

X X
n =

= ∑

Add all PRV to get the total sum. Divide total by 7. The answer is rounded to the

nearest whole number.

168

Use the following matrix to match the mean of predicted risk levels for the current

project to obtain minimum beta testing clientele size.

Average Risk Level Current user Base

1 1%
2 4%
3 6%
4 8%
5 10%

This is just a base set of data. The actual percentages will change with

experience and past data.

Step 5. Predict minimal beta testing duration

Review the PRV for the current project. Match the current PRV with the matrix

provided below. Add the number of weeks to get the minimum predicted number

of weeks for the current project. The information provided in this matrix can be

changed to match past data.

Predicted Risk Level Minimum Weeks
1 2
2 2.5
3 3
4 4
5 5

4.4 An Example of the Beta Testing Design

Beta testing design is essential to outlining and organizing a beta test. In the

case of the accounting software (used as an example in section 3.7), the

predicted risk levels for each objective are highlighted in Table 19. Beta test

managers must pay attention to these objectives when designing the beta test.

169

Table 19. Accounting Software - Predicted Objective Metrics Results

Environmental
Dependency

Function
Coverage

Completeness
Localization Robustness Software

Vulnerability
UI

Accessibility
UI

Usability

2.17 1.29 1.74 1.60 2.65 1 2.05

Applying the five components of beta testing design, the first area of focus is to

identify and prioritize beta testing clientele groups. In this scenario, software

vulnerability and environmental dependency objectives yield risk values higher

than others, although for this application it has moderate risk levels the beta

testing design is still effective.

Step 1. Identify beta testing priority clientele groups

After reviewing the PRV for the current project, results suggest focus on the

software vulnerability, environmental dependency, and UI usability objectives.

Reviewing the suggested users in Table 18, experienced users and systems

engineers are the most targeted clientele for this beta test. A small group of new

end-users is required for UI usability testing objective and recommended group

of Regional Experienced testers are required for the localization objective.

Step 2. Identify priority functions/GUI components

In the second step, PRV levels for software vulnerability, environmental

dependency, and UI usability objectives suggest priority for the following

components:

Software vulnerability

• User access levels are secure

170

• Application access to bridges and routers are not creating vulnerabilities

• Web portals are operable and not introducing security issues

• Network protocols are encrypting data correctly and not exposing the

current infrastructure

• APIs are secure

Environmental dependency

• Product installation

• Advance features

• Benchmark product for degradation issues (i.e. bottlenecks, high

utilization)

• Validate access to resources (e.g. resources, sub networks, etc).

• Web based resources are functional (e.g. portals, web-based forms, etc)

• Web services are functional

UI usability

• Test GUI to assure ease of use

• Message boxes provide accurate instructions

• Software wizards are operable and yield exact results

• GUI controls are operable and well-organized

• Navigation through the software provides hints and does not confuse the

end user.

The beta testing design suggests priority should focus on the aforementioned

components. However, other components are tested at the discretion of the beta

test manager.

171

Step 3. Design questionnaires for controlling beta testing priorities

In Step 3. A customized questionnaire is created based on the severity and level

of PRV. In this case, The PRV for the software vulnerability, environmental

dependency, and UI usability required more focus (yielding PRV values of 2.56,

2.17, and 2.05 respectively). Attention is also given to other objectives to provide

a comprehensive questionnaire. Using these guidelines, the Sample Beta

Testing Questionnaire (Figure 7) is used to demonstrate how the PRV impact the

design of this document.

172

Figure 7. Sample Beta Testing Questionnaire

Product Name:

Date:

Beta Tester Name:

Beta Tester Company Name:

Beta Tester Role:

Years of Experience with Product:

Product Description

Section 1. Environmental Dependency
The focus of the environmental dependency objective is to measure software dependence on hardware,
shared software components, and other supplemental software to confirm that the required dependency
does not impede operation. After installing the product in your environment, test the product to assure that
the product has successfully installed without introducing any problems. Please answer the questions below
and rate the product based on your experience during implementation.

Installation Questions Yes No Not

Applicable

Did you install the product on each of the supported platforms
(i.e. windows, UNIX, etc)? � � �

Did the product introduce degradation after installation? � � �

Did the product increase system utilization after installation? � � �

Does the advance install feature function correctly? � � �

Poor Below
Average Average Good Excellent

Rating
1 2 3 4 5

Rate your overall experience installing the
product. � � � � �
Rate your experience using the advanced install
features included with this application. � � � � �
Rate the usefulness of the wizards during the
installation of the application. � � � � �

Rate the product’s overall utilization of CPU. � � � � �

Based on your experience please provide additional information that will enhance the
installation process.

173

System Integration Questions Yes No Not

Applicable

Did you encounter major issues integrating the current product to
your current environment? � � �

If yes, please explain the problem(s):

Does the product integrate with external systems? � � �

Poor Below
Average Average Good Excellent

Rating
1 2 3 4 5

Rate the product’s integration and ability to
communicate with current systems and
applications.

� � � � �

Resource Dependency Questions Yes No Not

Applicable

Do the web-based resources function as designed? � � �

Do the web-based resources provide ease of use? � � �
Do the web-based resources support the current thin client
infrastructure? � � �

Poor Below
Average Average Good Excellent

Rating
1 2 3 4 5

Rate the overall usefulness of the web based
resources � � � � �

Please provide any additional comments.

174

Section 2. Software Function Coverage
The focus of software function coverage is to confirm that the software meets customer expectations.
Based on your operational experience with this application, please answer the questions below and rate the
product.

Software Wizard Questions Yes No Not

Applicable

Do the software wizards assist in ease of use with the application? � � �

Do the software wizards increase productivity? � � �
Do the software wizards enhance overall operation of the
application? � � �
Does each software wizard yield the expected outcome based on
the wizard’s description? � � �

Poor Below
Average Average Good Excellent

Rating
1 2 3 4 5

Rate the usefulness of the wizards during the
installation of the application. � � � � �
Rate the overall effectiveness of the software
wizards based on your experience with each
section.

� � � � �

Forms Questions Yes No Not

Applicable

Do the screens and forms provide the appropriate amount of
information to receive the desired outcome? � � �

Are the screens easy to use? � � �

Are the screens/forms easy to navigate? � � �

Poor Below
Average Average Good Excellent

Rating
1 2 3 4 5

Rate your overall experience using the forms in
this application. � � � � �

Application Specification Questions Yes No Not

Applicable

Are the product specifications comprehensive? � � �

Poor Below
Average Average Good Excellent

Rating
1 2 3 4 5

Rate how the product meets your overall
expectation. � � � � �

175

Based on your experiences, what enhancements would you recommend to improve your
expectations of this product.

176

Section 3. Software Globalization/Localization
The software localization section collects feedback on adjustments to the software to prepare the application
for deployment in foreign countries. Based on adjustments to language changes, conversion changes, and
hardware mapping, please answer the questions below and provide a rating for the localized features in this
product.

Localization Questions Yes No Not

Applicable

Does the semantic change to the appropriate country language
create organizational issues on the graphical user interface (form
change)?

� � �

If yes, please describe the issue

Are there any language issues in the application? � � �

If yes, please describe the issue.

Do the specially mapped peripherals operate effectively? � � �
Are the time/date changes correct in the application after
installation? � � �

Are there any conversion issues (date/currency/metric)? � � �

Poor Below
Average Average Good Excellent

Rating
1 2 3 4 5

Rate the overall application adaptation to the
targeted country infrastructure. � � � � �

Based on your experiences, what enhancements would you recommend to improve the
localization/globalization features in this application

177

Section 4. Software Robustness
The focus of the software robustness is to recognize incorrect application data and the impact of user errors,
and to capture usage patterns to measure how it impact the software. In this section, feedback is required
on how the applications respond to errors. In addition, feedback is required on warning and error messages.
Please answer the questions below and provide a rating based on the robustness features in this
application.

Error-handling Questions Yes No Not

Applicable

Does the graphical user interface alert the end-user of an error? � � �
In the event of an error, does the application respond
appropriately? � � �

Is the description of the error understandable? � � �

If the application provides a warning, is it comprehensive? � � �

Describe the type of error encounter and the action taken to resolve the error.

Poor Below

Average Average Good Excellent
Rating

1 2 3 4 5

Rate the application’s ability to handle errors. � � � � �

Based on your experiences, what enhancements would you recommend to improve how
the application handles errors or warnings.

178

Section 5. Software Vulnerability
The software vulnerability validations are potential security violations focusing on vulnerabilities in
communication and other components in the application which may introduce or create security violations.
Please answer the questions below and provide a rating based on security vulnerabilities in this application.

Software Security Questions Yes No Not

Applicable

Do the user level requirements create vulnerabilities in the product? � � �

If yes, please explain the security violations.

Are the port access levels secure? � � �
Does the number of port requirements create software and/or
network vulnerabilities? � � �

If yes, please explain the nature of the vulnerability and the port number..

Are the web accessible features operable? � � �

If yes, do the web features create security concerns/issues? � � �

Please explain the security concerns

Do the network protocols communicate correctly? � � �
Does the level of network protocols required create network
vulnerabilities and/or violations? � � �

If yes, please explain the vulnerabilities and/or violations.

Does the utilization of the API required by this application create
infrastructure security violations? � � �

Does this product create or introduce any security violations? � � �

If yes, please explain the security violations.

179

Poor Below
Average Average Good Excellent

Rating
1 2 3 4 5

Rate the overall security of this application. � � � � �

Based on your experiences, what enhancements would you recommend to improve the
security of this application.

180

Section 6. User Interface Accessibility
The user interface accessibility (UIA) are features of an application that are designed to assist end-users
with special physical needs. Please answer the questions below and provide a rating for the accessibility
features in this application.

Accessibility Questions Yes No Not

Applicable

Does the accessibility fonts included with this application create a
more readable user display? � � �

Are the usability peripherals operable? � � �

Poor Below
Average Average Good Excellent

Rating
1 2 3 4 5

Rate the accuracy of the accessibility peripherals. � � � � �
Rate your overall experience with the accessibility
features in this application. � � � � �

Based on your experiences, what enhancements would you recommend to improve the
accessibility features of this application.

181

Section 7. Software Usability
The software usability section is used to validates that the graphical user interface is simple and promotes
ease of use. The usability feedback is used to enhance the overall utilization of the software. Based on
your experience with the application, please answer the questions below and provide a rating for the
usability features in this application.

User Interface Questions Yes No Not

Applicable

Does the graphical user interface provide ease of use?
 � � �

If no, please explain why:

Do the message boxes provide accurate instructions? � � �
Are the GUI controls operable and well organized?
 � � �

Do the software wizards assist in complex tasks? � � �

Are the software wizards useful in yielding exact results? � � �

If no, please explain issues with results provided by use of software wizards:

Does the help menu prove clear instructions on how to perform a
task? � � �

Is navigating through the software complex? � � �

Poor Below
Average Average Good Excellent

Rating
1 2 3 4 5

Please rate the overall layout of screens and
menus.
Rate the overall experience with form
instructions.

Rate how user friendly the application is.

Based on your experiences, what enhancements would you recommend to improve the
usability features of this application.

182

Step 4. Predict minimum beta testing clientele size

The PRV was reviewed for current project. The following mean formula is

employed to receive the average risk level for this project.

1

1 n

i
i

X X
n =

= ∑

= (2.17 + 1.29 + 1.74 + 1.60 + 2.65 + 1 + 2.05) / 7
= 12.5 / 7
= 1.79
= 2
The total is rounded to nearest whole number.

Using the matrix provided below, the PRV suggests a minimum size of 4% of the
current customer base.

Average Risk Level Current user Base
1 1%
2 4%
3 6%
4 8%
5 10%

This is just a base set of data. The actual percentages will change with

experience and past data.

Step 5. Predict minimal beta testing duration

The PRV was reviewed for the current project and matched to recommend

minimum number of weeks. The matrix provided below is used as an instrument

to calculate the minimum predicted beta testing duration. Add the number of

weeks to get the minimum predicted number of weeks for the current project.

The information provided in this matrix will improve with experience.

183

Predicted Risk Level Minimum Weeks

1 2
2 2.5
3 3
4 4
5 5

Environmental dependency 2 2.5
Function coverage completeness 1 2
Localization 2 2.5
Robustness 2 2.5
Software Vulnerability 3 3
UI Accessibility 1 2
UI Usability 2 2.5
 17 weeks

184

Chapter 5

Beta Testing Case Studies

In this chapter, two real-world enterprise products were used to demonstrate the

effectiveness of the software metrics based beta testing design provided in this

study. The two products are a major enterprise infrastructure monitoring

application and a similar enterprise virtualization monitoring software. The

products have participated in a beta test in the past 8 months and feedback from

the test was used correctly measure the actual metric values. The data used in

this chapter was collected using a survey and face-to-face interviews. Also,

issue logs were used to measure historical data. This experiment was conducted

over a two-month period and closely monitored by the researcher.

5.1 Enterprise Infrastructure Monitoring Application

Enterprise infrastructure monitoring is a growing trend in business application

because of the demand created by solution services such as ERP, CRM, and

other business applications. The increase in data exchange has increased the

number of bottlenecks because of the sheer demand of data exchange and

network communication. The product used in this section is a robust application

that helps corporations in managing network resources, providing a large number

of services to assist in better managing the network.

5.1.1 Product Overview

The first enterprise product is infrastructure management application, responsible

for monitoring the health and availability of resources for robust environments.

185

The product uses agents’ technology to monitor hardware and software in the

environment to provide real-time feedback in the event of issues. The product

also includes neural nets technology used to implement predictive management

useful in predicting system bottlenecks, possible software and hardware failure,

security issues and other infrastructure related issues. In addition, the agents’

technology sends alerts supporting rules-based methodology.

This enterprise product was designed to support a diverse environment

supporting nearly every available operating system and environment, major

enterprise databases, hardware platforms, messaging infrastructures, etc. The

application is designed to support out-of-the-box functionality and collect

information automatically. However, installation may require assistance from the

support group for complex environments. In addition, the product requires a SQL

database to store information, and a separate server to manage the alerts. The

application managers require WINTEL or LINUX servers but may be

administered remotely using a java based application or web browser.

As a major competitor in the EIM market space, this product supports over 6000

different companies in 15 different countries. The product is also built to support

every major business sector providing real-time analysis for a host of different

applications.

Data for this experiment was collected using the Enterprise Product Profile in

Appendix A, the company’s internal issue log, and face-to-face interviews. The

186

beta test manager used several resources to provide accurate information

including polling several senior developers and benchmark utility. This enterprise

application has just completed a 5-month beta test that validated a new version

of the software. An interview was conducted with the beta test manager after

receiving the data to discuss the information in the Enterprise Product Profile,

which provided attributes values and actual risk values for each objective and

reviewed minimum and maximum values for this application based on past data

and similar application in this domain.

5.1.2 Metric Function Outcomes for Enterprise Infrastructure Monitoring Software

In this experiment the product is using the software metrics-based process for

the first time. Based on the information collected from the developers for this

product, Algorithm 1 is utilized to calculate the data that will result in predicted

risk values for each objective.

The experiment began with collecting the actual attributes values for the EIM

software and normalizing each attribute value to a positive range 1 to 5. The

Min/Max formula was used to normalize each value.

()i min
max min min

max min

a - a
a - a

ix r r r = × − +

The normalized attribute values are collected in Table 20, which provided the

attribute values and normalized attribute values. Column 1 – Attribute Names

are the name of each attribute for this application. Column 2 – Max is the

187

maximum values this application based on past data and other applications in the

industry. Column 3 – is the actual attribute value collected from the software

manufacturer using the Enterprise Software Profile in Appendix A. Column 4 – is

the normalized attribute value after applying the Min/Max formula.

Table 20. Enterprise Monitoring Software Maximum Values And

Normalization Data Set

Attribute Name Max Value Normalized

amount of source code 5E+07 20000000 2
amount of threads generated 1500 834 3

changes to dynamic data 100 20 1
class inheritances 200 60 2

code locale 15 3 1
CPU utilization 100 90 5

dynamic link library requirements 1000 800 4
firewall port required. 20 15 4

fonts effect on UI 5 3 3
hardware and software requirements 10 10 5

incoming client service request 900 420 3
languages supported 20 9 3

message boxes 2100 160 1
multiple system requirements 10 3 2

multitask command buttons 200 13 1
network connections required 7 4 3

open API 9 3 2
physical processors required 32 4 1

program switches lacking default clause 30 7 2
screen traversal 15 7 3

screens affected by font adjustments 500 170 2
software wizards 30 1 1

special fonts 10 0
special hardware requirements 10 0 0

special input devices 10 3 2
special user accounts required. 7 5 4

UI responses required 100 48 3
unrestricted text fields 1500 320 2

use case totals 40 7 1
user interface complexity 2000 950 3

user interface controls 1400 295 2

188

Attribute Name Max Value Normalized

user-levels 25 7 2
web portals required 12 1 1

web service request requirements 15 0 0

After normalizing the attribute values, the weight initialization function is used to

surmise weights for this product. The developers, based on empirical evidence,

provide the estimated weights that were converted into tangible weights.

The calculations for this project are outlined in Appendix B1. Column 1 – is the

formal attribute name for the software in test. Column 2 – E. Weight - is the

estimated (guessed) weight provided by the beta test manager based on the

potential for problem in production. Column 3 – Weight - is the calculated weight

that was obtained using the following formula:

1

i
i

n

i
i

yW
y

n
=

=

∑

Column 4 – N. Value is the normalized values calculated earlier. And Column 5

– Total is the metric function for the specific objective providing the predicted risk

value.

1
_ _

n

i i
i

objective metric value w x
=

=∑

189

The objective risk functions were used to calculate risk prediction for each

objective (results outline in Table 21). The risk values demonstrate a priority to

software vulnerability (3.35), environmental dependency (3.27), and function

coverage completeness objectives (3.11) all indicating that the level of risk for

these objectives is average. The UI accessibility function was not used in this

experiment because the product does not provide custom accessibility features

relying on the operation platform to provide and manage these attributes. The

predictions provided by the objective functions will assist with building the beta

testing design for the current project.

Table 21. Predicted Risk Value For Infrastructure Monitoring Software

Environmental
Dependency

Function
Coverage

Completeness
Localization Robustness Software

Vulnerability
UI

Accessibility
UI

Usability

3.273 3.111 2.250 1.912 3.353 0 2.125

This experiment closely matched actual risk levels provided by the beta test

director. The actual risk values (ARV) for each objective was based on results of

the actual beta test. The values were:

• Environmental Dependency = 4

• Function Coverage Completeness = 3

• Localization = 3

• Robustness = 3

• Software Vulnerability = 4

• UI Usability = 3

190

Prediction of risk values matures with experience, as stated earlier in this study.

A demonstration of the training process for this product is discussed in Section

5.1.4.

5.1.3 Applying Beta Testing Design to Enterprise Infrastructure Monitoring
Software

There are five steps in the beta testing design and the predicted values guides in

carefully planning this activity. In this scenario, the major focus is validating and

eliminating the potential for software vulnerabilities, testing environmental

dependencies and validating user inference. Following the steps of effective

beta testing design, the predictions suggest:

The risk values for environmental dependency (3.27) and software vulnerability

(3.35) suggest a large majority of the beta testers for this application should have

engineering backgrounds with experience in enterprise management

applications. Engineers must have administrator privileges in the current

environment to test software dependency, firewall ports, network connection, and

other connectivity features. In addition, the engineers must provide feedback on

the function coverage of the application and make suggestions on areas of

improvement.

Step 1. Identify beta testing priority clientele groups

In step one, the PRV was reviewed for each objective and focus was devoted to

the environmental dependency, function coverage completeness, software

191

vulnerability, and localization. To best prepare the for the current beta test, Table

18 is used to map the required types of clientele required which are (in order of

importance)

a. Experienced user group (environmental dependency, function

coverage completeness, and software vulnerability)

b. System engineers (environmental dependency and software

vulnerability)

c. Regional Experience user group (localization)

d. Regional new user group (localization)

e. New user group (function coverage completeness)

Fundamentally, the openness of this application sparks a great concern for the

security of environment when using a tool that requires an immense level of

communication to function optimally. Additionally, the large level of

dependencies, such as the CPU utilization (peeks to 90%), creates an elevated

risk in production, and priority to these issues is important. Priority must also

focus on environmental dependency related activity providing attention to

attributes in this objective yielding a normalized value greater than 3. Special

environmental and security validation is required for the number of firewall ports,

network connections, special user accounts, etc. The large number of

unrestricted test fields (320) impact the function coverage completeness

objective and may create issues with new and experienced users, and a small

set of regional based beta testers are required to support localization objective

initiatives.

192

Step 2. Identify priority functions/GUI components

The second step in the beta testing design process, the PRV levels for software

vulnerability, environmental dependency, and function objectives suggest priority

for the following components:

Environmental dependency

• Product installation

• Benchmark product for degradation issues (e.g. bottlenecks, high

utilization)

• Validate access to resources (e.g. resources, sub networks, etc).

• Web services are functional

Software vulnerability

• User access levels are secure

• Application access to bridges and routers are not creating vulnerabilities –

currently 15 ports are required for optimal operation of this product

• Network protocols are encrypting data correctly and not exposing the

current infrastructure – a large number of different network connections

are required

Function Coverage Completeness

• Software wizards

193

• Graphical user interface is comprehensive there are high number of

unrestricted text fields

• Test each product use case

The application provided risk values suggesting component priority must focus

on security attributes, such as reviewing whether the firewall requirements

creates additional security risk. Also, attention must be devoted to validating

whether the amount of required special user accounts create security

vulnerabilities possibly violating infrastructure access standards. There are also

environmental dependencies and function coverage completeness attributes that

require special attention because normalized values were high.

Step 3. Design questionnaires for controlling beta testing priorities

The third step of the beta test design process is building a testing questionnaire

to assist in guiding testing priorities. In this step of the process, focus is on the

environmental dependency, software vulnerability, and function coverage

completeness first. Secondary focus must validate other objectives. Based on

the importance of issues, this step requires questions in the following areas:

Environmental Dependency

• Product installation: Capture user experiences with installation of the

product

• Usage of Advanced Features: Suggest information on advanced features

194

• Utilization: Did the product introduce any high utilization issues

• Bottlenecks: Did the product introduce degradation to the current system

or network

• Access to Resources: Did the product gain access to additional resources,

networks, or databases with ease?

Function Coverage Completeness:

• Software wizards: Do the software wizards yield the appropriate

outcomes? Or do software wizards assist in easing the experience with

the application?

• Graphical user interface: Are the screens providing the appropriate

amount of information to receive the desired outcome? Did the end-user

find many unrestricted fields to be cumbersome?

• Use Case: Are the product specifications accurate and complete?

Software Vulnerability:

• User Access: Do the user level requirements create vulnerabilities in the

product? Are the access levels secure?

• Router/Bridge Access: Does the number of port requirements create

software and/or network vulnerabilities?

• Network Connections: Do network protocols communicate correctly? Is

the level of network protocols required creating network vulnerabilities or

violations?

195

Additional questions may be added based on level and experience with the

application to enhance the questionnaire.

Design of the questionnaires is critical in any beta test design. The predicted

values assist in providing signs of vulnerabilities in the application that leads to

guidance in areas of significance. In addition, the predicted values provide a

strategy for promoting feedback in important areas. In this case, risk values

suggest building a questionnaire to spawn feedback in the areas of weakness in

security and dependencies. In addition, the questionnaire must assure the

product meets the customers’ expectations, strategically requesting feedback on

the design and operation of the software in test. A sample questionnaire is

provided in Chapter 4, Section 4.4 (An Example of the Beta Testing Design) on

page 172.

Step 4. Predict minimal beta testing clientele size

The fourth step of this methodology uses all PRV for each objective in the current

project to predict minimum beta testing clientele size for a successful test.

However, past data improves the accuracy of determining minimum size.

However in this case we use the formula:

1

1 n

i
i

X X
n =

= ∑

196

(3.27 3.11 2.25 1.91 3.35 0 2.13) / 7
(16.02) / 7
2.28

X
X
X

= + + + + + +

=

=

or 2

Use the following matrix to decide the minimum beta testing clientele size.

Average Risk Level Current user Base
1 1%
2 4%
3 6%
4 8%
5 10%

This is just a base set of data. The actual percentages will change with

experience and past data.

In this scenario, the minimum client size prediction is impacted by the predicted

values for each objective. The values predict 4% of the total user base assures

the product is being tested by the optimal number of engineers to enrich the

feedback required for a product of this size. However, past data plays an

important role in understanding the size requirements and helps build on the

success of future predictions. In this experiment, the risk values suggest using

beta testers with current software experience making it easier to limit the types of

clients to testers with engineering experience. A percentage of the current user

base may be targeted to participate in this beta testing process. If future risk

values yield similar results, the current test will assist with providing a more

precise size for other tests.

197

Step 5. Predict minimal beta testing duration

The fifth step collects the PRV for each objective to estimate the minimum beta

testing duration. The values are matched with matrix provided below to obtain

the estimated weeks per objective. The estimated weeks for each objective are

added to get the total minimum of weeks for the entire project.

Predicted Risk Level Minimum Weeks

1 2
2 2.5
3 3
4 4
5 5

Environmental dependency 3.27 3
Function coverage completeness 3.11 3
Localization 2.25 2.5
Robustness 1.91 2.5
Software Vulnerability 3.35 3
UI Accessibility 0 0
UI Usability 2.13 2.5
 16.5 weeks

The estimated average time to test a product of this size is 16.5 weeks or

approximately 4 months. However, past data assist with better predictions of

time and manufacturers must pay close attention to results from previous tests to

manage future tests.

Here, the risk level predictions provide a foundation for adapting the beta test to

better manage and improve the process through the metrics.

198

5.1.4 Applying the Function Training Process to Enterprise Infrastructure

Monitoring Software

The training process is essential in the model, learning from past data. This

example demonstrates how the learning process improves the prediction by

adjusting the weights to conform to historical data. The past data is adjusted by

taking a percentage of the past weights from the completed projects and adding

or subtracting the answer by a percentage of the normalized value of the current

project.

Prior to using the training process, the predicted risk value (PRV) from the

previous beta test must be compared to the actual risk value (ARV) determined

at the end of the previous project. In this case, an interview was conducted with

the beta test manager of this product to validate the actual risk value was

accurate based on the outcome of the past beta test. The results of the actual

risk values are:

To train the weights, the learning function formula (1)()
5

i
i i

xy r w r= • ± − is

used. In this scenario r = .95, representing past weights. The two formulas are

applied based on the comparison of PRV to ARV. If PRV > ARV then Formula A

Objective PRV ARV
Enterprise Dependency 3.27 4
Function Coverage Completeness 3.11 3
Localization 2.25 3
Robustness 1.91 3
Software Vulnerability 3.35 4
UI Usability 2.13 3

199

- yi = .r.wi – (1 – r)(xi / 5) is used. In this scenario, this applies to the function

coverage completeness objective. If PRV < ARV then

Formula B - yi = .r.wi + (1 – r)(xi / 5 is used to adjust weights for the current

project, which applies to all other objectives.

The outcome of these formulas is provided in Appendix B3. Column 1 – Attribute

Name is the name of the actual software attribute. Column 2 – is the outcome of

applying either formula A or Formula B.

After calculating the trained weights for the current project, the values are scaled

up or down so that the sum of all weights equal one. The following formula was

used to scale the weights:

1

i
i

n

i
i

yW
y

n
=

=

∑

The outcomes are in Column 3 – A. Weight, which represents the adjusted

weight, in Appendix B3. After applying the adjusted weights to the correct

objective function, the predicted risk values are calculated, applying the

applicable objective metric functions. The calculation totals are outlined in

Column 5 – Totals representing the results of using the correct objective metric

function. The last column in each objective represents the experienced predicted

risk value.

200

This experiment demonstrated an improvement in the prediction of risk value for

all objectives, with the prediction for software vulnerability and localization

objectives demonstrated the closest to actual value (see Table 22). This learning

process continues to improve over time and the weights become more stable

with each application of these functions.

Table 22. Comparison of Risk Values For EM Software – Training Process

 Environmental
Dependency

Function
Coverage

Completeness
Localization Robustness Software

Vulnerability
UI

Usability

ARV 4 3 3 3 4 3

PRV 3.314 3.054 2.408 1.953 3.879 2.138

5.2 Enterprise Virtualization Monitoring Software

This section presents the outcome of the second real-world experiment. The

second enterprise product is a virtualization monitoring application used to

support enterprise virtualization infrastructure, virtual private networks, SAN’s.

Virtualization involves combining software, network, and hardware resources to

emulate a computer system. The concept allows end-users to get the most value

out of a computer system without focusing on special implementation, physical

location, and presentation[45].

5.2.1 Product Overview

The second test was conducted on an enterprise virtual infrastructure

management application designed to support corporate virtualization projects

201

and infrastructure. Virtualization supports a technology shift to an on-demand

computing trend. This trend offers corporations the capability of multi-execution

environments, resource sharing, and system emulation.

This product optimizes virtual resources providing dynamic reconfiguration of

resources, utilization monitoring, managing dynamic resources, automatic

discovery of resource utilization, business process mapping, and session policy

configuration. Dynamic reconfiguration is the process of reallocation onboard

resources in Sun environments. This process will detach and reattach resources

without requiring a system reboot. The product also supports utilization

monitoring, providing metrics to a single interface, which may be accessed via a

web interface. The application automatically manages dynamic resources in real

time, allocating resources when services are required. In addition to managing

resources, the application discovers new dynamic resources and provides instant

metrics (both hardware and software). Resource allocation is managed by

business process maps to assure the correct amount of resources are available

for a business unit. The application is also intelligent enough to manage

allocation of resources by custom policies.

This product was designed to support out-of-the-box functionality providing

seamless installation and integration. The product requires a Windows NT

Based, UNIX, LINUX servers. Additional proprietary agents are required to

manage monitoring and alerts. This product is designed to support enterprise-

202

level organizations with an approximate user base of 300 end-users for a single

installation. The product is also developed to support nine different foreign

languages and countries.

The data for this application was collected from a group of software developers

responsible for full life-cycle development. The development director verified the

information and interview was conducted to review the information. This product

had just completed a 3-month beta testing process sent out to 30 different beta

testing sites.

5.2.2 Metric Function Outcomes for Enterprise Virtualization Monitoring Software

Using the same approach and methodology identical to the product in Section

5.1.2, this product is using the software metrics-based process for the first time.

Based on the attribute information provided by the software development team,

Algorithm 1 is employed to calculate the data that will result in predicted risk

values for each objective.

The experiment began with collecting the actual attributes values for the current

project and normalizing each attribute value to a positive range 1 to 5. The

Min/Max formula was used to normalize each value.

()i min
max min min

max min

a - a
a - a

ix r r r = × − +

Again, the normalized attribute values are collected in Table 23, which provided

the attribute values and normalized attribute values. Column 1 – Attribute

203

Names are the official attribute name for the application in test. Column 2 – Max

is the maximum values of this application based on past data and other

applications in the industry. Column 3 – is the actual attribute value collected

from software manufacturer using the Enterprise Software Profile in Appendix A.

Column 4 – is the normalized attribute value after applying the Min/Max formula.

Table 23. Enterprise Virtualization Monitoring Software Maximum Values
and Normalization Data Set

Attribute Name Max Value Normalized

amount of source code 3E+07 3000000 1
amount of threads generated 750 395 3

changes to dynamic data 50 0 0
class inheritances 100 60 3

code locale 7 3 3
CPU utilization 100 60 3

dynamic link library requirements 500 80 1
firewall port required. 20 8 2

fonts effect on UI 5 3 3
hardware and software requirements 10 3 2

incoming client service request 900 140 1
languages supported 20 9 3

message boxes 1200 80 1
multiple system requirements 5 2 2

multitask command buttons 100 9 1
network connections required 7 4 3

open API 5 1 1
physical processors required 4 2 3

program switches lacking default clause 15 7 3
screen traversal 10 5 3

screens affected by font adjustments 500 70 1
software wizards 30 9 2

special fonts 10 0 0
special hardware requirements 10 0 0

special input devices 10 0 0
special user accounts required. 7 5 4

UI responses required 50 24 3
unrestricted text fields 750 78 1

204

Attribute Name Max Value Normalized

use case totals 20 3 1
user interface complexity 1000 380 2

user interface controls 600 150 2
user-levels 10 4 2

web portals required 12 1 1
web service request requirements 15 2 1

After normalizing the attribute values, the first experiment for this product is to

initialize the weights for this product. The developers provided estimated

weights, which then were converted into real numbers for use with objective

functions.

The calculations for this project are outlined in Appendix C2. Column 1 – is the

formal attribute name. Column 2 – E. Weight - is the estimated weight provided

by the beta test manager based on the potential for problems in production.

Column 3 – Weight - is the calculated weight that was obtained using the

following formula:

1

i
i

n

i
i

yW
y

n
=

=

∑

Column 4 – N. Value is the normalized values calculated earlier. Column 5 –

Total is the metric function for the specific objective providing the predicted risk

value.

205

1
_ _

n

i i
i

objective metric value w x
=

=∑

After employing the appropriate objective metric value function, the results

predicted an average potential of problems for activities in the software

vulnerability objective (2.65). Other moderate problems were predicted in the

localization objective and environmental dependency objectives (Outlined in

Table 24).

Table 24. Predicted Risk Values For Virtualization Monitoring Software

Environmental
Dependency

Function
Coverage

Completeness
Localization Robustness Software

Vulnerability
UI

Accessibility
UI

Usability

2.200 1.778 2.500 1.931 2.637 0 1.700

Again, this experiment closely matched actual risk levels provided by the beta

test director. The actual risk values (ARV) for each objective was based on

results of the actual beta test. The values were:

• Environmental Dependency = 3

• Function Coverage Completeness = 2

• Localization = 3

• Robustness = 3

• Software Vulnerability = 3

• UI Usability = 3

A demonstration of the training process for this product is discussed in Section

5.2.4.

206

5.2.3 Applying Beta Testing Design to Enterprise Infrastructure Monitoring

Software

The PRV obtained for this project is applied to the beta testing design to assist in

planning the pending beta test. Because of the experience of this product, there

are no objectives providing the prediction of significant issues in production.

However, there are few objectives that require special attention, which are the

software vulnerability (2.65), localization (2.50), and environmental dependency

(2.20) objectives. This indicates that testing priority should concentrate on

validating potential security issues and testing the product in global

environments.

Step 1. Identify beta testing priority clientele groups

In step one, the PRV was reviewed for each objective and focus was devoted to

the environmental dependency, software vulnerability, and localization. To best

prepare for the current beta test, Table 18 is used to map the required types of

clientele required which are (in order of importance)

(1) Experienced user group (environmental dependency, function

coverage completeness, and software vulnerability)

(2) System engineers (environmental dependency and software

vulnerability)

(3) Regional experience user group (localization)

(4) Regional new user group (localization)

(5) New user group (function coverage completeness)

207

Step 2. Identify priority functions/GUI components

The second step in the beta testing design process, the PRV levels for software

vulnerability, environmental dependency, and function objectives suggest priority

for the following components:

Environmental dependency

• Product installation

• Benchmark product for degradation issues (i.e. bottlenecks, high

utilization)

• Validate access to resources (e.g. resources, sub networks, etc).

• Web services are functional

Software vulnerability

• User access levels are secure

• Application access to bridges and routers are not creating vulnerabilities –

currently 15 ports are required for optimal operation of this product

• Network protocols are encrypting data correctly and not exposing the

current infrastructure – a large number of different network connections

are required

Localization - the following product functions require validation:

• Font changes maintains organization of all forms

• Language changes are effective

• Special devices are operable

• Time/Country/Currency changes are functioning

208

Step 3. Design questionnaires for controlling beta testing priorities

The third step of the beta test design process is building a testing questionnaire

to assist in guiding testing priorities. In this step of the process, focus is on the

environmental dependency, software vulnerability, and function coverage

completeness first. Secondary focus must validate other objectives. Based on

the importance of issues, this step requires questions in the following areas:

Environmental Dependency

• Product installation: Capture user experiences with installing the product

• Usage of Advance Features: Suggest information on advance features

• Utilization: Did the product introduce any high utilization issues

• Bottlenecks: Did the product introduce degradation to the current system

or network

• Access to Resources: Did the product gain access to additional resources,

networks, or databases with ease?

Software Vulnerability :

• User Access: Do the user level requirements create vulnerabilities in the

product? Are the access levels secure?

• Router/Bridge Access: Does the number of port requirements create

software and/or network vulnerabilities?

• Network Connections: Do network protocols communicate correctly? Is

the level of network protocols required to create network vulnerabilities or

violations?

Localization:

209

• Font Change: Do the character changes for desired country maintain

organization to all screens?

• Language Support: Is the desired language correct and effective?

• Special Localized Peripherals: Do the specially mapped peripherals

operate effectively?

• Conversion Changes: Does the Time/Country/Currency provide accurate

translations?

Additional questions may be added based on level and experience with the

application to enhance the questionnaire. A sample questionnaire is provided in

Chapter 4, Section 4.4 (An Example of the Beta Testing Design) on page 172.

Step 4. Predict minimal beta testing clientele size

The fourth step of this methodology, uses all PRV for each objective in the

current project to predict minimum beta testing clientele size for a successful test.

However, past data improves the accuracy of determining minimum size.

However in this case we use the formula:

1

1 n

i
i

X X
n =

= ∑

(2.2 1.78 2.5 1.93 2.65 0 1.7) / 7
(12.76) / 7
1.82

X
X
X

= + + + + + +

=

=

or 2

Use the following matrix to decide the minimum beta testing clientele size.

210

Average Risk Level Current user Base

1 1%
2 4%
3 6%
4 8%
5 10%

This is just a base set of data. The actual percentages will change with

experience and past data.

In this scenario, the minimum client size prediction is impacted by the predicted

values for each objective. The values predict a minimum of 4% of the total user

base to assure the products beta test provides optimal acceptance by the current

user group.

Step 5. Predict minimal beta testing duration

The fifth step collects the PRV for each objective to estimate the minimum beta

testing duration. The values are matched with matrix provided below to obtain

the estimated weeks per objective. The objective risk values are rounded to the

nearest whole number to match predicted risk level with the suggested minimum

weeks per objective. The estimated weeks for each objective are added to get

the total minimum of weeks for the entire project.

Predicted Risk Level Minimum Weeks
1 2
2 2.5
3 3
4 4
5 5

211

Environmental dependency 2.20 2.5
Function coverage completeness 1.78 2.5
Localization 2.50 3
Robustness 1.93 2.5
Software Vulnerability 2.65 3
UI Accessibility 0 0
UI Usability 1.70 2.5
 16 weeks

The estimated average time to test a product of this size is 16 weeks or

approximately 4 months. However, past data assist with better predictions of

time and manufacturers must pay close attention to results from previous tests to

manage future tests.

5.2.4 Applying the Function Training Process to Enterprise Virtualization

Monitoring Software

Again, the training process is employed to demonstrate how the weights are

stabilized and the functions improve the overall predictions. Here the objective

risk value predictions are compared to actual risk provided by the results,

feedback and information provided after the actual beta test. In this case,

developers closely reviewed feedback from the users issues, and enhancements

to provide the following actual risk values:

Objective PRV ARV
Enterprise Dependency 2.20 3
Function Coverage Completeness 1.78 2
Localization 2.50 3
Robustness 1.93 3
Software Vulnerability 2.65 2
UI Usability 1.70 3

212

 To train the weights, the learning function formula (1)()
5

i
i i

xy r w r= • ± − is

used. In this scenario r = .95, representing past weights. The two formulas are

applied based on the comparison of PRV to ARV. If PRV > ARV then Formula A

- yi = .r.wi – (1 – r)(xi / 5) is used. In this scenario, this applies to the software

vulnerability objectives.

If PRV < ARV then Fomula B - yi = .r.wi + (1 – r)(xi / 5) is used to adjust weights

for the current project, which applies to all other objectives.

The outcome of these formulas is provided in Appendix C3. Column 1 – Attribute

Name is the actual attribute title. Column 2 – is the outcome of applying either

formula A or Formula B.

After calculating the trained weights for the current project, the values are scaled

up or down so that the sum of all weights equal one. The following formula was

used to scale the weights:

1

i
i

n

i
i

yW
y

n
=

=

∑

The outcomes are in Column 3 – A. Weight, which represents the adjusted

weight, in Appendix C3. After applying the adjusted weights to the correct

213

objective function, the predicted risk values are calculated, applying the

applicable objective metric functions. The calculation totals are outlined in

Column 5 – Totals representing the results of using the correct objective metric

function. The last column in each objective represents the experienced predicted

risk value.

Again, this experimented confirmed improvement in the prediction of risk value

for all objectives, with the prediction for software vulnerability and localization

objectives demonstrated the closest to actual value (outlined in Table 25). This

learning process continues to improve over time and the weights become more

stable with each application of these functions.

Table 25. Comparison of Risk Values after Training Process

 Environmental
Dependency

Function
Coverage

Completeness
Localization Robustness Software

Vulnerability
UI

Usability

ARV 3 2 3 3 3 3

PRV 2.283 1.803 2.472 1.986 2.625 1.764

5.3 Comparison of Current Beta Testing Design Process

Both products use similar methodologies when testing enterprise products. The

current product utilizes a beta testing process that is a standard software

improvement template. The process is used for every product in beta regardless

of class. There are a set amount of clients required for each product, the

questionnaire template focuses more on generic quality of service than seeking

to solicit feedback based on the potential of problems in the test product. In

214

addition, the current questionnaire has a major marketing focus. Time

constraints are based on the amount of users actually participating in the

program; since the product stays in beta until they have the required amount of

users enrolled in the beta test. Another factor impacting time is the amount of

“new” features in the product.

The beta testing design process in this study is far better for process

improvements because it uses the current attributes of the application to expose

weakness. This method provides a more customized beta testing, allowing the

manufacturer to streamline areas of improvement, guide feedback in weak areas

in the product, better measure test time durations, increase the amount and class

of beta testers required, and gauge how to better manage feedback. In addition,

the beta testing design process learns and adjusts to historical data in a more

structured manner. This process actually improves the application beta testing

process based on principles of the application and not a global standard

template.

215

Chapter 6

Conclusion

The results of this study demonstrated how measuring software attributes of a

finished enterprise application support the design of a beta test. The metric

functions used in this study provided close risk predictions for each major

objective and the functions demonstrated the ability to learn with experience,

which is useful in providing closer predictions. The process serves as a major

contribution in the improvement of software processes and the quality of

enterprise applications. In addition, the objectives, attributes, and design

components are valuable in channeling focus in the important areas of an

application and assisting with prioritizing goals in a beta test practice.

6.1 Major Contributions

Today’s beta testing methodologies only focus on the size of beta testing

clientele, duration of the beta test, and the number of errors in the application.

This study provides a quantitative approach to this problem. The methodology

reveals the potential risk for a given sector of the application allowing

adjustments to improve the testing process, leading to a quality application and

better management of time and resources. The methodology provides seven

beta testing objectives and a focused set of software validation goals. Each

objective contains software attributes that highlight principle parts of the software

that have the potential to create issues in a production environment. Software

metric functions are used to calculate predicted risk values and a set of training

216

metrics are used to demonstrate how the functions learn with experience. The

training process improves predictions over time.

Another major contribution is the beta testing design. The design process

provides a framework for planning a successful beta test. The beta testing

design uses software metric functions to influence the five-step process. In

addition, the beta testing design provided in this study improves with frequent

use because of the impact of past data.

6.2 Limitations of the Study

There are several limitations in this study. These limitations will influence the

maturity of this model with future research. The software metrics-based model

supports only enterprise level software, which are applications designed to for a

business entity requiring little to no modifications. The model was also designed

for beta testing, not other forms of end-user product validation testing. The

results of this study were limited to a small sample to test the efficiency of

predicted risk values to influence beta testing design.

The beta testing design model in this study supports enterprise level applications,

which are outlined in Section 3.1 of this dissertation. Beta testing is more

common in the business community because of the use of enterprise level

applications. There are other applications that could benefit from this model such

as open source applications, customized educational and business applications,

and system-based software.

217

This study focuses on beta testing as the most robust form of end-user software

validation for enterprise level applications. Other forms of end-user software

validation such as agile testing and maturity models were not used to influence

this study. Agile testing focuses on agile development projects and maturity

models concentrate on, but are not limited to, government and military process

improvements.

This study provides only a framework to design a beta test. The framework is

proven to be effective, but only a sample of three products were utilized to

demonstrate the effectiveness of the model. Each limitation will impact the

development of this model and improve the value of properly planning a beta

test.

6.3 Future Works

There are several recommended projects that will extend this study and impact

future research of software metrics-based beta design modeling. Since this

model was limited to a few enterprise testing samples, a more longitudinal study

is recommended to prove the effectiveness of predicted risk values in beta

testing design. This requires implementing this methodology on different

products and application domains over a finite period. A larger study will improve

the effectiveness of the functions and affects the accuracy of minimum and

maximum attribute values.

218

After the process has matured, other objectives may be introduced to the

process. Also, the function could be expanded to raise the range of the risk

levels to illustrate more diversity in the perception of issues in an objective over a

period of time. Future works may also integrate agile development projects to

demonstrate the importance of agile testing as a compliment of beta testing. In

addition, future studies may test the effectiveness of the model on open-source,

customized business/education software, and system specific applications.

219

Appendix A

Sample Enterprise Software Profile

ENTERPRISE SOFTWARE PROFILE

Product Name:

Product Version:

Date:

Product Description

Objective Name: Environmental Dependency

Description
The focus of the environmental dependency objective is to test the software reliance on hardware, shared software components, and other
supplemental software to validate the required dependency does not impede operation.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Environmental Dependency � � � � � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential level of problems the attribute may
create. Next, provide the numeric value based on what is requested in each section. (e.g. Total Number of Threads Generated = 7.
This represents the maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of threads generated � � � � �
total amount of CPU utilization � � � � �

220

Objective Name: Function Coverage Completeness

Description
The focus of the function coverage completeness objective is to validate that the software in the beta testing cycle meets the customer
expectations. This objective validates user inference, which is the essence of beta testing.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Function Coverage Completeness � � � � � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential level of problems the attribute
may create. Next, provide the numeric value based on what is requested in each section. (e.g. Total Number of Threads
Generated = 7. This represents the maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes
1 2 3 4 5

Value

total number of hardware and supplemental software
requirements

� � � � �

total number of software wizards � � � � �

total number of unrestricted text fields � � � � �

total number of use case(s) � � � � �

221

Objective Name: Localization

Description
Enterprise software adjusted to function in foreign countries are properly localized. However, the extent of localization is managing language and
conversation changes in the application.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Localization � � � � � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential level of problems the attribute may
create. Next, provide the numeric value based on what is requested in each section. (e.g. Total Number of Threads Generated = 7.
This represents the maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes
1 2 3 4 5

Value

total number of code locales � � � � �
total number of fonts effecting UI � � � � �

total number of languages supported � � � � �

total number of special input devices required � � � � �
total number of screens affected by font adjustments � � � � �

222

Objective Name: Robustness

Description
The focus of the robustness objective is to identify incorrect data and how user errors and usage patterns impact software.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Robustness � � � � � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential level of problems the attribute may
create. Next, provide the numeric value based on what is requested in each section. (e.g. Total Number of Threads Generated = 7.
This represents the maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total lines of source code � � � � �
total number of threads generated � � � � �
total number of changes to dynamic data � � � � �
total number of class inheritances � � � � �
total number of multitask command buttons � � � � �
total number of program switches lacking default
clause � � � � �

total software use cases � � � � �
total number of unrestricted text fields � � � � �
total number of input fields and command buttons on
a user interface (UI complexity) � � � � �

total number of end-user accounts and/or user stack
levels required (user-levels) � � � � �

223

Objective Name: Software Vulnerabilities

Description
The software vulnerability validation objective measures the application to exploit potential security violations focusing on vulnerabilities in
communication.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Software Vulnerabilities � � � � � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential level of problems the attribute may
create. Next, provide the numeric value based on what is requested in each section. (e.g. Total Number of Threads Generated = 7.
This represents the maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes
1 2 3 4 5

Value

total number of firewall ports required � � � � �
total number of network connections required � � � � �
total number of open API(s) required � � � � �
total number of special user accounts required � � � � �
total number of web portals required � � � � �

Objective Name: UI Accessibility

Description
The User interface accessibility (UIA) objective of beta testing validates the features of an application designed to assist end-users with special
physical needs.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem Objective Name

0 1 2 3 4 5
UI Accessibility � � � � � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential level of problems the attribute may create. Next,
provide the numeric value based on what is requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the maximum
number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of special fonts required � � � � �
total number of special hardware requirements � � � � �

224

Objective Name: UI Usability

Description
This objective focuses on validating that the graphical user interface is simple and promotes ease of use.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

UI Usability � � � � � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential level of problems the attribute may
create. Next, provide the numeric value based on what is requested in each section. (e.g. Total Number of Threads Generated = 7.
This represents the maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Value
Attributes

1 2 3 4 5
total number of message boxes � � � � �
total number of multitask command buttons � � � � �

total number of screen traversals � � � � �

total number of software wizards � � � � �

total number of message boxes requiring response (or
action) from user � � � � �

total number of user interface controls
(i.e. requires manipulation by user such as control buttons, slide bars,
etc.)

� � � � �

total number of unrestricted text fields � � � � �

225

Appendix B1

Enterprise Software Profile for Enterprise Management Software

ENTERPRISE SOFTWARE PROFILE

Product Name: Enterprise Infrastructure Monitoring Software

Product Version: 12.1

Date: March 12, 2005

Product Description
The software is a robust application that manages corporations network resources, providing a large number of
system services to assist in better managing the network.

Objective Name: Environmental Dependency

Description
The focus of the environmental dependency objective is to test the software reliance on hardware, shared software
components, and other supplemental software to validate the required dependency does not impede operation.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Environmental Dependency � � � � ● �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of threads generated � � ● � � 834

226

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

 total amount of CPU utilization � � ● � � 90

total number of dynamic link library files
required � � ● � � 800

total number of firewall ports required � � � � ● 15

estimated number of incoming client
service request(s) � � ● � � 420

total number of multiple systems required � ● � � � 3

total number of network connections
required � � � ● � 4

total number of open API(s) required � ● � � � 3

total number of physical processors
required � ● � � � 3

total number of special user accounts
required � � � � ● 5

total number of web portals required ● � � � � 1

total number of web service request(s)
required � ● � � � 2

227

Objective Name: Function Coverage Completeness

Description
The focus of the function coverage completeness objective is to validate that the software in the beta testing cycle
meets the customer expectations. This objective validates user inference, which is the essence of beta testing.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Function Coverage Completeness � � � ● � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of hardware and
supplemental software requirements � � � ● � 5

total number of software wizards � � � ● � 4

total number of unrestricted text fields � � ● � � 320

total number of use case(s) � ● � � � 7

228

Objective Name: Localization

Description
Enterprise software adjusted to function in foreign countries are properly localized. However, the extent of
localization is managing language and conversation changes in the application.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Localization � � � ● � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of code locales � � � ● � 3

total number of fonts effecting UI � � � � ● 3

total number of languages supported � � � ● � 9

total number of special input devices
required � ● � � � 3

total number of screens affected by font
adjustments � � � � ● 170

229

Objective Name: Robustness

Description
The focus of the robustness objective is to identify incorrect data and how user errors and usage patterns impact
software.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Robustness � � � ● � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total lines of source code � � � � ● 200

total number of threads generated � � � � ● 834

total number of changes to dynamic data � � ● � � 20

total number of class inheritances � � ● � � 60

total number of multitask command buttons � � ● � � 13

total number of program switches lacking
default clause � ● � � � 7

total software use cases � � � ● � 7

total number of unrestricted text fields � � � ● � 320

total number of input fields and command
buttons on a user interface (UI complexity) � ● � � � 950

total number of end-user accounts and/or
user stack levels required (user-levels) � � ● � � 7

230

Objective Name: Software Vulnerabilities

Description
The software vulnerability validation objective measures the application to exploit potential security violations
focusing on vulnerabilities in communication.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Software Vulnerabilities � � � � ● �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of firewall ports required � � � � ● 15

total number of network connections
required � � � ● � 4

total number of open API(s) required � ● � � � 3

total number of special user accounts
required � � � � ● 5

total number of web portals required ● � � � � 1

231

Objective Name: UI Accessibility

Description
The User interface accessibility (UIA) objective of beta testing validates the features of an application designed to
assist end-users with special physical needs.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

UI Accessibility � � � � � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of special fonts required � � � � � 0

total number of special hardware
requirements � � � � � 0

232

Objective Name: UI Usability

Description
This objective focuses on validating that the graphical user interface is simple and promotes ease of use.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

UI Usability � � � ● � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of message boxes � � ● � � 160

total number of multitask command buttons � � ● � � 13

total number of screen traversals � � � � ● 7

total number of software wizards ● � � � � 1

total number of message boxes requiring
response (or action) from user � � � � ● 48

total number of user interface controls
(i.e. requires manipulation by user such as control
buttons, slide bars, etc.)

� � ● � � 295

total number of unrestricted text fields � � � ● � 320

233

Appendix B2

Calculations for Enterprise Management Software
Weights Initialization Process

Environmental Dependency

Attribute Name Weight N. Weight N. Value Total
amount of threads generated 3 0.091 3 0.273
CPU utilization 3 0.091 5 0.455
dynamic link library requirements 3 0.091 4 0.364
Firewall port required. 5 0.152 4 0.606
incoming client service request 3 0.091 3 0.273
multiple system requirements 2 0.061 2 0.121
network connections required 4 0.121 3 0.364
open API 2 0.061 2 0.121
physical processors required 2 0.061 1 0.061
special user accounts required. 5 0.152 4 0.606
web portals required 1 0.030 1 0.030
web service request requirements 0 0.000 0 0.000

 33 1.000 32 3.273

Function Coverage Completeness

Attribute Name Weight N. Weight N. Value Total
hardware and software requirements 3 0.333 5 1.667

software wizards 1 0.111 1 0.111
unrestricted text fields 3 0.333 2 0.667
use case totals 2 0.222 3 0.667

 9 1.000 11 3.111

Localization

Attribute Name Weight N. Weight N. Value Total
code locale 4 0.200 1 0.200

fonts effect on UI 5 0.250 3 0.750
languages supported 4 0.200 3 0.600
special input devices 2 0.100 2 0.200
screens affected by font adjustments 5 0.250 2 0.500

 20 1.000 11 2.250

234

Robustness

Attribute Name Weight N. Weight N. Value Total
number of lines of source code 5 0.147 2 0.294
amount of threads generated 5 0.147 3 0.441
changes to dynamic data 3 0.088 1 0.088
class inheritances 3 0.088 2 0.176
multitask command buttons 3 0.088 1 0.088
program switches lacking default clause 2 0.059 2 0.118
use case totals 4 0.118 1 0.118
unrestricted text fields 4 0.118 2 0.235
user interface complexity 2 0.059 3 0.176
user-levels 3 0.088 2 0.176

 34 1.000 19 1.912

Software Vulnerability

Attribute Name Weight N. Weight N. Value Total
Firewall port required 5 0.294 4 1.176
network connections required 4 0.235 3 0.706
open API 2 0.118 2 0.235
special user accounts required 5 0.294 4 1.176
web portals required 1 0.059 1 0.059

 17 1.000 3.353

UI Usability

Attribute Name Weight N. Weight N. Value Total
message boxes 3 0.125 1 0.125
multitask command buttons 3 0.125 1 0.125
screen traversal 5 0.208 3 0.625
software wizards 1 0.042 1 0.042
UI responses required 5 0.208 3 0.625
User interface controls 3 0.125 2 0.250
unrestricted text fields 4 0.167 2 0.333

 24 1.000 2.125

235

Appendix B3

Calculations for Enterprise Management Software
Function Training Process

Environmental Dependency

Attribute Name L Weight A Weight Value Total
amount of threads generated 0.116 0.092 3 0.275
CPU utilization 0.136 0.107 5 0.537
dynamic link library requirements 0.126 0.099 4 0.398
Firewall port required. 0.184 0.145 4 0.579
incoming client service request 0.116 0.092 3 0.275
multiple system requirements 0.078 0.061 2 0.122

network connections required 0.145 0.114 3 0.343
open API 0.078 0.061 2 0.122
physical processors required 0.068 0.053 1 0.053

special user accounts required. 0.184 0.145 4 0.579

web portals required 0.039 0.031 1 0.031
web service request requirements 0.000 0.000 0 0.000

 1.270 1.000 3.314

Function Coverage Completeness

Attribute Name L Weight A Weight Value Total
hardware and software requirements 0.267 0.317 5 1.587

software wizards 0.096 0.114 1 0.114
unrestricted text fields 0.297 0.353 2 0.706
use case totals 0.181 0.216 3 0.647

 0.840 1.000 3.054

Localization

Attribute Name L Weight A Weight Value Total
code locale 0.200 0.189 1 0.200

fonts effect on UI 0.268 0.252 3 0.803
languages supported 0.220 0.208 3 0.660
special input devices 0.115 0.108 2 0.230
screens affected by font adjustments 0.258 0.243 2 0.515

 1.060 1.000 2.408

236

Robustness

Attribute Name L Weight A Weight Value Total
number of lines of source code 0.160 0.140 2 0.280
amount of threads generated 0.170 0.149 3 0.447
changes to dynamic data 0.094 0.082 1 0.082
class inheritances 0.104 0.091 2 0.182
multitask command buttons 0.094 0.082 1 0.082
program switches lacking default clause 0.076 0.067 2 0.133
use case totals 0.122 0.107 1 0.107
unrestricted text fields 0.132 0.116 2 0.231
user interface complexity 0.086 0.075 3 0.226
user-levels 0.104 0.091 2 0.182

 1.140 1.000 1.953

Software Vulnerability

Attribute Name L Weight A Weight Value Total
Firewall port required 0.319 0.293 3 0.879
network connections required 0.254 0.233 5 1.163
open API 0.132 0.121 4 0.484
special user accounts required 0.319 0.293 4 1.172
web portals required 0.066 0.060 3 0.181

 1.090 1.000 2 3.879

UI Usability

Attribute Name L Weight A Weight Value Total
message boxes 0.129 0.119 1 0.119
multitask command buttons 0.129 0.119 1 0.119
screen traversal 0.228 0.211 3 0.633
software wizards 0.050 0.046 1 0.046
UI responses required 0.228 0.211 3 0.633
User interface controls 0.139 0.128 2 0.257
unrestricted text fields 0.178 0.165 2 0.330

 1.080 1.000 2.138

237

Appendix C1

Enterprise Software Profile for Enterprise Virtualization
Monitoring Software

ENTERPRISE SOFTWARE PROFILE

Product Name: Enterprise Virtualization Monitoring Software

Product Version: 11.0

Date: March 1, 2005

Product Description
The software is a robust virtualization monitoring application used to support enterprise infrastructure, virtual
private networks, on demand computing, and SAN’s.

Objective Name: Environmental Dependency

Description
The focus of the environmental dependency objective is to test the software reliance on hardware, shared software
components, and other supplemental software to validate the required dependency does not impede operation.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Environmental Dependency � � � ● � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

238

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of threads generated � � � ● � 395

 total amount of CPU utilization � � ● � � 60

total number of dynamic link library files
required � � ● � � 80

total number of firewall ports required � � � ● � 8

estimated number of incoming client
service request(s) � � ● � � 140

total number of multiple systems required ● � � � � 2

total number of network connections
required � ● � � � 4

total number of open API(s) required � ● � � � 1

total number of physical processors
required � ● � � � 2

total number of special user accounts
required � � ● � � 5

total number of web portals required ● � � � � 1

total number of web service request(s)
required � ● � � � 2

239

Objective Name: Function Coverage Completeness

Description
The focus of the function coverage completeness objective is to validate that the software in the beta testing cycle
meets the customer expectations. This objective validates user inference, which is the essence of beta testing.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Function Coverage Completeness � � ● � � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of hardware and
supplemental software requirements � � � � ● 3

total number of software wizards � � � ● � 9

total number of unrestricted text fields � � � � ● 78

total number of use case(s) � � � ● � 3

240

Objective Name: Localization

Description
Enterprise software adjusted to function in foreign countries are properly localized. However, the extent of
localization is managing language and conversation changes in the application.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Localization � � � ● � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of code locales � � ● � � 3

total number of fonts effecting UI � � � � ● 3

total number of languages supported � � � ● � 9

total number of special input devices
required � � � � � 0

total number of screens affected by font
adjustments � � � ● � 70

241

Objective Name: Robustness

Description
The focus of the robustness objective is to identify incorrect data and how user errors and usage patterns impact
software.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Robustness � � � ● � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Value
Attributes

1 2 3 4 5
total lines of source code � � ● � � 3M

total number of threads generated � � ● � � 395

total number of changes to dynamic data � � � � � 0

total number of class inheritances � � ● � � 40

total number of multitask command buttons � � ● � � 9

total number of program switches lacking
default clause � � � � ● 7

total software use cases � � � ● � 3

total number of unrestricted text fields � � ● � � 78

total number of input fields and command
buttons on a user interface (UI complexity) � � ● � � 380

total number of end-user accounts and/or
user stack levels required (user-levels) � ● � � � 4

242

Objective Name: Software Vulnerabilities

Description
The software vulnerability validation objective measures the application to exploit potential security violations
focusing on vulnerabilities in communication.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

Software Vulnerabilities � � � ● � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of firewall ports required � � � � ● 8

total number of network connections
required � � � ● � 4

total number of open API(s) required � ● � � � 1

total number of special user accounts
required � � � � ● 5

total number of web portals required ● � � � � 1

243

Objective Name: UI Accessibility

Description
The User interface accessibility (UIA) objective of beta testing validates the features of an application designed to
assist end-users with special physical needs.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

UI Accessibility � � � � � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Attributes

1 2 3 4 5

Value

total number of special fonts required � � � � � 0

total number of special hardware
requirements � � � � � 0

244

Objective Name: UI Usability

Description
This objective focuses on validating that the graphical user interface is simple and promotes ease of use.

Step 1.
Please provide an actual rating based on your experience with the product.

Actual Rating
No

Problem
Low

Problem
Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Objective Name
0 1 2 3 4 5

UI Usability � � � ● � �

Step 2.
Please review the product attributes below. Based on your experience first provide the potential
level of problems the attribute may create. Next, provide the numeric value based on what is
requested in each section. (e.g. Total Number of Threads Generated = 7. This represents the
maximum number of threads generated during a single instance of the application.)

Level of Problem
Relevant to the Attribute

Low
Problem

Moderate
Problem

Average
Problem

Significant
Problem

Strong
Problem

Value
Attributes

1 2 3 4 5
total number of message boxes � � ● � � 80

total number of multitask command buttons � � ● � � 9

total number of screen traversals � ● � � � 5

total number of software wizards ● � � � � 9

total number of message boxes requiring
response (or action) from user � � ● � � 24

total number of user interface controls
(i.e. requires manipulation by user such as control
buttons, slide bars, etc.)

� � ● � � 150

total number of unrestricted text fields � � � � ● 78

245

Appendix C2

Calculations for Enterprise Virtualization Monitoring Software
Weights Initialization Process

Environmental Dependency

Attribute Name Weight N. Weight N. Value Total
amount of threads generated 4 0.133 3 0.400
CPU utilization 3 0.100 3 0.300
dynamic link library requirements 3 0.100 1 0.100

Firewall port required. 4 0.133 2 0.267
incoming client service request 3 0.100 1 0.100
multiple system requirements 1 0.033 2 0.067
network connections required 2 0.067 3 0.200
open API 2 0.067 1 0.067
physical processors required 2 0.067 3 0.200
special user accounts required. 3 0.100 4 0.400

web portals required 1 0.033 1 0.033
web service request requirements 2 0.067 1 0.067

 30 1.000 25 2.200

Function Coverage Completeness

Attribute Name Weight N. Weight N. Value Total
hardware and software requirements 5 0.278 3 0.833
software wizards 4 0.222 2 0.444
unrestricted text fields 5 0.278 1 0.278
use case totals 4 0.222 1 0.222

 18 1.000 7 1.778

Localization

Attribute Name Weight N. Weight N. Value Total
code locale 3 0.188 3 0.563
fonts effect on UI 5 0.313 3 0.938
languages supported 4 0.250 3 0.750
special input devices 0 0.000 0 0.000
screens affected by font adjustments 4 0.250 1 0.250

 16 1.000 10 2.500

246

Robustness

Attribute Name Weight N. Weight N. Value Total
number of lines of source code 3 0.103 1 0.103
amount of threads generated 3 0.103 3 0.310
changes to dynamic data 0 0.000 0 0.000
class inheritances 3 0.103 3 0.310
multitask command buttons 3 0.103 1 0.103
program switches lacking default clause 5 0.172 3 0.517

use case totals 4 0.138 1 0.138
unrestricted text fields 3 0.103 1 0.103

user interface complexity 3 0.103 2 0.207
user-levels 2 0.069 2 0.138

 29 1.000 17 1.931

Software Vulnerability

Attribute Name Weight N. Weight N. Value Total
Firewall port required 5 0.294 2 0.588
network connections required 4 0.235 3 0.706
open API 2 0.118 1 0.118
special user accounts required 5 0.294 4 1.176
web portals required 1 0.059 1 0.059

 17 1.000 2.647

UI Usability

Attribute Name Weight N. Weight N. Value Total
message boxes 3 0.150 1 0.150
multitask command buttons 3 0.150 1 0.150
screen traversal 2 0.100 3 0.300
software wizards 1 0.050 2 0.100
UI responses required 3 0.150 3 0.450
User interface controls 3 0.150 2 0.300
unrestricted text fields 5 0.250 1 0.250

 20 1.000 1.700

247

Appendix C3

Calculations for Virtualization Monitoring Software
Function Training Process

Environmental Dependency

Attribute Name L Weight A Weight Value Total
amount of threads generated 0.157 0.131 3 0.392
CPU utilization 0.125 0.104 3 0.313
dynamic link library requirements 0.105 0.088 1 0.088

Firewall port required. 0.147 0.122 2 0.244
incoming client service request 0.105 0.088 1 0.088
multiple system requirements 0.052 0.043 2 0.086
network connections required 0.093 0.078 3 0.233
open API 0.073 0.061 1 0.061
physical processors required 0.093 0.078 3 0.233
special user accounts required. 0.135 0.113 4 0.450

web portals required 0.042 0.035 1 0.035
web service request requirements 0.073 0.061 1 0.061

 1.200 1.000 2.283

Function Coverage Completeness

Attribute Name L Weight A Weight Value Total
hardware and software
requirements

0.294
0.288

3
0.864

software wizards 0.231 0.227 2 0.453
unrestricted text fields 0.274 0.269 1 0.269
use case totals 0.221 0.217 1 0.217

 1.020 1.000 1.803

Localization

Attribute Name L Weight A Weight Value Total
code locale 0.208 0.191 3 0.573
fonts effect on UI 0.327 0.300 3 0.900
languages supported 0.268 0.245 3 0.736
special input devices 0.000 0.000 0 0.000
screens affected by font
adjustments

0.288 0.264 1 0.264

 1.090 1.000 2.472

248

Robustness

Attribute Name L Weight A Weight Value Total
number of lines of source code 0.108 0.097 1 0.097
amount of threads generated 0.128 0.115 3 0.344
changes to dynamic data 0.000 0.000 0 0.000
class inheritances 0.128 0.115 3 0.344
multitask command buttons 0.108 0.097 1 0.097
program switches lacking default
clause

0.194 0.173 3 0.519

use case totals 0.141 0.126 1 0.126
unrestricted text fields 0.108 0.097 1 0.097

user interface complexity 0.118 0.106 2 0.211
user-levels 0.086 0.076 2 0.153

 1.120 1.000 1.986

Software Vulnerability

Attribute Name L Weight A Weight Value Total
Firewall port required 0.259 0.309 2 0.618
network connections required 0.194 0.230 3 0.691
open API 0.102 0.121 1 0.121
special user accounts required 0.239 0.285 4 1.140
web portals required 0.046 0.055 1 0.055

 0.840 1.000 2 2.625

UI Usability

Attribute Name L Weight A Weight Value Total
message boxes 0.153 0.141 1 0.141
multitask command buttons 0.153 0.141 1 0.141
screen traversal 0.125 0.116 3 0.347
software wizards 0.068 0.063 2 0.125
UI responses required 0.173 0.160 3 0.479
User interface controls 0.163 0.150 2 0.301
unrestricted text fields 0.248 0.229 1 0.229

 1.080 1.000 1.764

249

Bibliography

[1] Amazon.com, "Sports & Outdoors Beta", accessed on: July 29,2004,

available: http://www.amazon.com/exec/obidos/subst/misc/sporting-
goods-beta-launch-no-link-pop-.

[2] Ash, Lydia, The Web Testing Companion - The Insider's Guide to Efficient

and Effective Tests. Indianapolis: Wiley Publishing, Inc., 2003.

[3] Beck, Kent, Extreme Programming Explained:Embrace Change: Addison-

Wesley, 1999.

[4] BetaNews Inc., "The Betanews.com - website", accessed on: August

6,2004, available: www.betanews.com

[5] Bevan, Nigel, "Common Industry Format Usability Tests," presented at

Usability Professionals Association, Scottsdale, Arizona, June 29 - July 2,
1999, pp. 1 - 6.

[6] Bray, Tim, and J. Paoli, at el., "Extensible Markup Language", World Wide

Web Consortium (W3C), accessed on: April 20,2005, available:
http://www.w3.org/TR/xml11/

[7] Carnegie Mellon Software Engineering Institute, "CERT Advisory CA-

2002-03 Multiple Vulnerabilities in Many Implementations of Simple
Network Management Protocol (SNMP)", CERT Coordination Center,
accessed on: 12/2004,2004, available: http://www.cert.org/advisories/CA-
2002-03.html

[8] Carzanigayz, Antonio, and A. Fuggetta, and at el., "A Characterization

Framework for Software Deployment Technologies," CS Dept. Univ. of
Colorado, Boulder 1998.

[9] Cianfrani, Charles A., and J. West, ISO 9001: 2000 Explained (ISO 9000

Series), 2 ed. Portland: ASQ Quality Press, 2001.

[10] Collins, Rosann Webb, and, "Software Localization for Internet Software:

Issues and Methods," IEEE Software, vol. March/April 2002, pp. 74 - 80,
2002.

[11] Computer Associates Inc., "CA Common Product Services Component -

Getting Started", Computer Associates, accessed on: 11/2,2004,

[12] Computer Associates Inc., "CA Open and Selective Beta Programs",

accessed on: August 22,2004, available: http://www3.ca.com/betas/

250

[13] Craig, Rick, and S. P. Jaskiel, Systematic Software Testing. Norwood,

MA: Artech House Publishers, 2002.

[14] DeMarco, Tom, Controlling Software Projects: Management,

Measurement and Estimation. New Jersey: Yourdan Press, 1982.

[15] Dyson, Peter, Dictionary of Networking, vol. 3. Alameda, CA: Sybex

Incorporated, 1999.

[16] Fine, Michael R., Beta Testing for Better Software. New York: Wiley

Computer Publishing, 2002.

[17] Gabbert, Paula, and, "Globalization and the Computing Curriculum," ACM

SIGCSE Bulletin, vol. 35, 2003.

[18] Google Inc., "Google Alerts Beta Web Application", accessed on: Sept

15,2004, available: http://www.google.com/alerts

[19] Hetzel, Bill, The Complete Guide to Software Testing, vol. 2. New York:

John Wiley & Sons, 1998.

[20] Hodge, Susan, Computers: Systems, Terms and Acronyms, 14 ed.

Casselberry: SemCo Enterprises, Inc., 2003.

[21] IBM Corporation, "SNMP product vulnerabilities in IBM Tivoli Products",

IBM Corporation, accessed on: 12/2004,2004, available: http://www-
1.ibm.com/support/

[22] IBM Rational, "IBM Software Support: Rational Software Support: Beta

programs", accessed on: 8/6,2004, available: http://www-
306.ibm.com/software/rational/support/beta.html

[23] IEEE Std 610., and, "IEEE Standard Glossary of Software Engineering

Terminology," IEEE Computer Society, 1990.

[24] Intel, "Taking Advantage of Usability Features of the Intel C++ Compliler

8.1 for Linux", Intel Corporation, accessed on: 1/29,2005, available:
http://www.intel.com/cd/ids/developer/asmo-
na/eng/microprocessors/pca/195905.htm?page=3

[25] Kropp, N.P., P. J. Koopman, "Automated Robustness Testing of Off-the-

Shelf Software Components," presented at The Twenty-Eighth Annual
Intertational Symposium on Fault Tolerant Computing, Munich, Germany
pp. 230.

251

[26] Lethbridge, Timothy, and Robert Laganiere, Object-Oriented Software
Engineering, vol. 1, 1 ed. Maidenhead: McGraw-Hill Education, 2001.

[27] Li, Eldon Y., and, "Software Testing In A System Development Process: A

Life Cycle Perspective," Journal of System Management, vol. 41, pp. 23 -
31, 1990.

[28] LISA Organization, "Welcome to Localization Industry Standards

Association:LISA", accessed on: 12/1,2004, available: http://www.lisa.org/

[29] Microsoft Corporation, "Article: 873165 ", Microsoft Corporation

Knowledge Base, available: http://support.microsoft.com

[30] Microsoft Corporation, "The Customer Experience Improvement Program",

accessed on: August 15,2004, available:
http://www.microsoft.com/products/ceip/

[31] Microsoft Corporation, "Microsoft Technet Network", accessed on:

October 6,2004, available: http://www.microsoft.com/technet/default.mspx

[32] Microsoft Corporation, "Microsoft TechNet Virtual Lab", accessed on:

August 6, 2004,2004, available:
http://www.microsoft.com/technet/traincert/virtuallab/default.mspx

[33] Microsoft Corporation, "System Requirements for Exchange Server 2003",

Microsoft Corporation, accessed on: February 10,2005, available:
http://www.microsoft.com/exchange/evaluation/sysreqs/2003.asp

[34] Microsoft Press, "Microsoft Press Computer and Internet Dictionary," vol.

2004, 3rd ed: Microsoft Corporation, 1997.

[35] Mossienko, Maxim, and at el., "Towards managing environment

dependence during legacy systems renovation and maintenance,"
presented at Third IEEE International Workshop on Source Code Analysis
and Manipulation, Amsterdam, The Netherlands pp. 10.

[36] Myers, Glenford J., The Art of Software Testing. New York: John Wiley &

Sons, 1979.

[37] National Coordination Office for Information Technology Research and

Development, "High Confidence Software and Systems Research Needs,"
High Confidence Software And Systems Coordinating Group, Ed.:
Interagency Working Group on Information Technology Research and
Development, 2004, pp. 48.

252

[38] Nilsson, Nils J., Learning Machines: Foundation of Trainable Pattern-
classifying systems. Menlo Park, California: Stanford Research Institute,
1965.

[39] O.j.Dahl, and E. Dijkstra, Structured Programming. New York: Academic

Press, 1972.

[40] Oracle, "Oracle Technology Network", accessed on: August 8,2004,

available: http://www.oracle.com/webapps

[41] Pressman, Roger, and B. Jones, Software Engineering: A Practitioner's

Approach, 5th ed. New York: McGraw-Hill, 2001.

[42] Raynus, Joseph, Software Process Improvement with CMM. Norwood:

Artech House, 1999.

[43] Section508.gov, "508 Law - The Rehabilitation Act", accessed on: July

16,2004, available:
http://www.section508.gov/index.cfm?FuseAction=Content&ID=3

[44] Shelton, Charles P., P. Koopman, K. Devale, "Robustness Testing of the

Microsoft Win32 API," presented at International Conference on
Dependable Systems and Networks (DSN 2000), New York, New York

[45] Singh, Amit, "An Introduction to Virtualization", kernelthread.com,

accessed on: April,2005, available:
http://www.kernelthread.com/publications/virtualization/

[46] Snedecor, George W, and W. Cochran, Statistical Methods. Ames, Iowa:

Iowa State University Press, 1989.

[47] Sun Microsystems, Inc., "Java 2 SDK SE Developers Documentation",

Sun Microsystems, accessed on: March 17,2005,

[48] Tang, Dong, M. Hecht, "Evaluation of Software Dependability Based on

Stability Test Data," presented at Twenty-Fifth International Symposium
on Fault-Tolerant Computing, Pasadena, California, June 27 - 30, 1995,

[49] Thibodeau, Patrick, "Users Begin to Demand Software Usability Tests",

ComputerWorld, accessed on: 5/3/2003,2003, available:
http://www.computerworld.com/printthis/2002/0,4814,76154,00.html

[50] U.S. Department of Health and Human Services, "Usability.gov:Usability

Basics", accessed on: March,2005, available:
http://www.usability.gov/index.html

253

[51] Whittaker, James A., and, "What is software testing? And why is it so
hard?" IEEE Software, vol. January/February 2000, pp. 77 - 78, 2000.

[52] Whyman, Edward K., and H. L. Somers, "Evaluation Metrics for a

Translation Memory System," Software-Practice and Experience, vol. 29,
pp. 1265 - 1284, 1999.

[53] WorldLingo, "Glossary of Terms", WorldLingo, accessed on: 12/1,2004,

available: http://www.worldlingo.com/resources/glossary.html

[54] Yahoo Incorporated, "Yahoo.com", Yahoo! accessed on: February 1,2005,

available: http://www.yahoo.com/

