

Optimized Software Component Allocation

On Clustered Application Servers

by
Hsiauh-Tsyr Clara Chang, B.B., M.S., M.S.

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies
in Computing

at

School of Computer Science and Information Systems

Pace University

March 2004

We hereby certify that this dissertation, submitted by Hsiauh-Tsyr Clara Chang, satisfies
the dissertation requirements for the degree of Doctor of Professional Studies in
Computing and has been approved.

___-________________
Lixin Tao Date
Chairperson of Dissertation Committee

___-________________
Fred Grossman Date
Dissertation Committee Member

___-________________
Michael Gargano Date
Dissertation Committee Member

School of Computer Science and Information Systems
Pace University 2004

Abstract

Optimized Software Component Allocation
On Clustered Application Servers

by

Hsiauh-Tsyr Clara Chang, B.B., M.S., M.S.

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies
in Computing

March 2004

In the last decade, online e-commerce businesses, represented by the e-commerce portals,
have grown significantly and become an important sector of world economy. This
dissertation helps address the server scalability problem for supporting the sustainable
growth of the online e-commerce industries.

Most of today's e-commerce portals are implemented with distributed component
technologies and server clusters. Each server application comprises dozens or hundreds
of distributed software components, and each of such components can run on any of a
cluster of application servers connected by a high-speed fiber local area network (LAN).
While multiple server machines support parallel execution of the software components,
inter-server communication is a few orders slower than servers' CPU speed. This research
studies the optimized allocation of software components to server machines to maximize
computation load balance and minimize communication overhead.

Multi-way graph partitioning is first adopted to model the software component allocation
problem. The problem is proved to be NP-hard. A novel graph transformation is
introduced to combine the two conflicting objectives into a single objective function, and
a transformation theorem is proved that problem instances before and after this
transformation are equivalent. Based on careful observation of the properties of the
solution space, a scheme for incremental objective function evaluation is designed to
speed up any iterative solution heuristics to this problem by a factor proportional to the
number of software components involved. Simulated annealing is adopted to solve the
problem. Extensive experimental study shows that the proposed simulated annealing
algorithm can outperform repeated random running in the same amount of time by
16.67% to 100%, and outperform local optimization by 1.92% to 100% with a running
time about 6 to 100 times of that for the latter.

The major contributions of this research include using multi-way graph partitioning to
model a challenging performance problem critical to sustainable growth of e-commerce
portals, creative problem transformation for simplifying a complex problem, and
incremental objective function evaluation that can benefit any iterative solution
heuristics.

Acknowledgements

xyz

 v

Table of Contents

Abstract .. iii

List of Tables .. vii

List of Figures .. viii

List of Algorithms.. ix

Chapter 1 Introduction... 1

1.1 Distributed Software Components as a New Trend of IT Industries.................. 1

1.2 Software Component Allocation Problems .. 4

1.3 Methodologies... 6

1.4 Major Contributions.. 7

1.5 Dissertation Outline .. 8

Chapter 2 Graph Partitioning and Solution Heuristics .. 10

2.1 Graph Partitioning... 10

2.2 Solution Heuristics.. 11

2.2.1 Local Optimization ... 12

2.2.1 Genetic Algorithm .. 13

2.2.2 Simulated Annealing... 14

2.2.3 Tabu Search .. 17

Chapter 3 Problem Formulation and Transformation.. 19

3.1 Problem Statement .. 19

3.1.1 Problem Assumptions ... 19

3.1.2 Problem Statement .. 20

3.2 Problem Formulation as Multi-way Graph Partitioning 20

3.3 NP-hardness of the Problem ... 23

3.4 Problem Transformation ... 24

Chapter 4 Incremental Objective Function Evaluation ... 30

 vi

4.1 Solution Space Neighborhood Design .. 31

4.2 Gain Function for Moves .. 34

4.3 Incremental Gain Function Updating.. 35

Chapter 5 Simulated Annealing Algorithm... 41

5.1 Algorithm Design.. 41

5.2 Experiment Design for Parameter Tuning .. 42

5.3 Parameter Tuning Experiments... 45

Chapter 6 Comparative Study.. 51

6.1 Experiment Design.. 51

6.2 Solution Quality of Simulated Annealing... 52

6.3 Comparisons with Repeat Random Solutions... 57

6.4 Comparisons with Local Optimization ... 63

6.5 Summary of Solution Quality Comparisons ... 69

Chapter 7 Conclusion .. 74

 vii

List of Tables

Table 1 Data files for parameter tuning .. 44

Table 2. Simulated annealing parameter values to be explored.. 44

Table 3 Best parameter values for each problem instance.. 45

Table 4 Parameter values for g40d15c0 sorted by ()π3W .. 46

Table 5 Parameter values for g40d15c0 sorted by ()π1W and ()π2W 46

Table 6 Parameter values for g40d15c0 sorted by running time, ()π1W and ()π2W 47

Table 7 Parameter values for g60d20c0 sorted by ()π3W .. 48

Table 8 Parameter values for g60d20c0 sorted by ()π1W and ()π2W 48

Table 9 Parameter values for g60d20c0 sorted by Running time, ()π1W and ()π2W 49

Table 10 Adopted parameter values for simulated annealing algorithm 50

Table 11 Simulated annealing performance for m=2.. 52

Table 12 Simulated annealing performance for m=4.. 53

Table 13 Simulated annealing performance for m=6.. 55

Table 14 Simulated annealing performance for m=8.. 56

Table 15 Performance comparison between RR and SA (m=2, 4, 6, 8) 58

Table 16 Performance comparison between LO and SA (m=2, 4, 6, 8) 63

Table 17 Comparisons of ()π1W and ()π2W for RR, LO and SA 69

 viii

List of Figures

Figure 1 Local vs. global solutions ... 13

Figure 2 Multi-way graph partitioning ... 22

Figure 3. Example of problem transformation-optimal .. 29

Figure 4. Example of problem transformation-nonoptimal .. 29

Figure 5. Example partitions of 1G , R = 7.. 33

Figure 6. Example partitions of 2G , R = 5 ... 34

Figure 7 Incremental move gain update case 1... 37

Figure 8 Incremental move gain update case 2... 37

Figure 9 Incremental move gain update case 3... 38

Figure 10 Incremental move gain update case 4... 38

Figure 11 Incremental move gain update case 5... 38

Figure 12 Incremental move gain update case 6... 39

Figure 13 Incremental move gain update case 7... 39

Figure 14 Incremental vove gain update case 8.. 40

 ix

List of Algorithms

Algorithm 1. Local optimization.. 12

Algorithm 2. Genetic algorithm.. 14

Algorithm 3. Simulated annealing .. 16

Algorithm 4. Tabu search ... 18

Algorithm 5. Simulated annealing for graph partitioning... 42

 1

Chapter 1

Introduction

In the last decade, online e-commerce businesses, represented by the e-commerce portals,

have grown significantly and become an important sector of world economy. This

dissertation helps address the server scalability problem for supporting the sustainable

growth of the online e-commerce industries.

1.1 Distributed Software Components as a New Trend of IT Industries

Since early 1990s, the IT industries have been shifting their design and implementation

technologies to software frameworks and architectures based on distributed software

components [17][20] to better control the software complexity, promote specialized

computing and system integration, and support middleware for object-oriented

networking. A software component is a software unit that usually exists in binary form,

exposes a public Application Programming Interface (API), and is independently

deployable [20][16][10][18]. Example software component technologies include

Microsoft's dynamic linking libraries, Active-X controls, and COM components; and

Java’s JavaBeans. Software component approach completely separates the usage and

implementation of a software component, and makes it sharable by multiple applications

and easily replaceable. A distributed software component technology further supports

communication abstraction, and uses a generic software framework to provide

 2

transparent communication ability to network-blind software components. Example

distributed software component technologies include Microsoft's DCOM and COM+

[18], Java's Enterprise JavaBeans (EJB) [16], and Object Management Group's CORBA

components [10]. Since 1995, the US Department of Defense mandated that all of its

contracted software projects must be implemented with software component

technologies.

A related new development of the last decade is the ubiquitous networking. Web and

Internet technologies have made online e-business an important branch of world

economy. A typical e-commerce portal has three tiers: the presentation tier (running on a

Web server) for generating presentation documents for a client's Web browser to render,

the business logic tier (running on an application server) for implementation of business

logics for the portal, and the data tier (supported by databases). Both the Web servers and

the application severs are based on distributed component technologies. For example,

both Java's servlets running in a Java servlet container and Microsoft's ASP pages

running on an IIS Web server are (converted into) distributed software components (in a

more general sense), so are the EJBs running in an EJB container on an application server

or the COM+ components running on a .NET Transaction Server [20].

A major challenge for today’s e-commerce portals is their scalability: whether a portal

can provide fast response when the number of their concurrent clients increases. To

provide such scalability, a heavy-duty portal, like yahoo.com, typically uses a cluster of

dozens of server machines, connected through a (relatively) fast fiber local area network

(LAN), for both of its Web servers and application servers. Since the distributed software

components can be independently deployed in any server containers on any of the server

 3

machines and communicate with each other transparently, they can take advantage of the

hardware parallelism among the server machines to improve the portal scalability.

For a particular hosted computation, it will not be over until all of its employed

components finish. Each software component may have different computation load for a

particular use case. Each server machine also may have its own particular computing

ability based on its resources like CPU speed and memory size. While a fiber-based LAN

is faster than its copper version, sending a message through it is still a few orders slower

than today’s CPU speed (partially due to software overhead for buffer copying to support

layered implementation). Communications between two components are much slower if

they are assigned to two different server machines than to the same one. Now we have

the basic form of software component allocation problem: for a particular computation,

what is the optimal allocation of the participating software components to the server

machines so that the computation workload of all the involved server machines are

balanced, and the total load of communications between any pair of involved components

is minimized. We can notice that there are here two conflicting objectives. This problem

will be more complicated when we also consider the management of client session data,

or when different stages of a computation may have different computation and

communication patterns, as we will see in the next section.

While the World Wide Web has had big impact on our society, it only supports a limited

form of client-server software architecture. The IT industries have started to work on the

next wave of Internet revolution: the Application Service Provider model of computing

[20], by which software applications will be maintained by domain experts on service-

provider servers and accessed by clients with Web browsers through service provider’s

 4

portals. This paradigm eliminates software installation on client’s computers, and

promotes specialized computing and service integration. The success of this new

paradigm also heavily depends on whether we can run hosted applications on clustered

servers efficiently. Therefore the importance of the study of efficient software component

allocation problems goes beyond today's Web servers and application servers.

1.2 Software Component Allocation Problems

The potentially important software component allocation problems can be divided into

two categories: static and dynamic, depending on whether the optimized allocations can

be computed off-line or whether the components can migrate across server machines

during execution. Multiple processors could be tightly coupled inside a single server

machine; and a subset of the software components may need to maintain its unique

session data to serve a particular remote client. All these make software component

allocation problems different from the traditional job scheduling on distributed systems

[1][21].

A server cluster typically comprises dozens (50 or more) of server machines, each of

which may have different computation speed, connected by a fiber LAN. In this study we

limit our attention to bus-type LAN, the dominant one in today’s IT industries, for which

all messages will share the same LAN bandwidth, and at any instance, there could be at

most one sender but multiple receivers. The speed for a message to travel the LAN is

much lower than the CPU speed of the server machines.

A hosted software application is typically made up of dozens to hundreds of software

components that could be distributed in any of the component containers running on the

 5

server machines. Without loss of generality, we assume each server machine will run one

component container. For each typical hosted computation, each of the involved software

components has an average computation load and an average communication load with

each of the other participating components. Since the hosted applications are designed for

providing well-defined set of specialized services, it is reasonable to assume that these

average computation load and communication load values could be obtained by profiling

the applications on a single server machine (similar to Unix profiler utility prof).

Now we can model, simplified for essence, a software component allocation problem as a

multi-way graph partitioning problem. We abstract a hosted application as an undirected

graph),(EVG = in which each vertex represents a software component and each edge

represents a runtime communication requirement. Let function +ℜ→Vw :1 (+ℜ is the set

of positive real numbers) represent the average computation load of the software

components, and function +ℜ→Ew :2 represent the average communication load of the

communication requirements. Assume the software components need to run on m server

machines, and },,2,1{: mV L→π represents one of the component assignment. For

each mi ≤≤1 , we use)(iPπ to denote the partition of the vertices (software components)

assigned byπ to server machine i; a fixed real rate ir to represent the relative computing

ability of server machine i (a larger rate implies a slower execution);

and ∑
∈

=
)(

11)())((
iPv

vwiPw
π

π to represent the total computation load of components assigned

to partition i. Let the importance of computation time on the server machines relative to

the communication time on the LAN be represented by a real ratio 10 << t . Now the

 6

question is, how to find an optimal assignment },,2,1{: mV L→π to minimize the

objective function

)()1()()(21 πππ WtWtf ⋅−+⋅=

where)(1 πW represents the degree of load balance as defined below

∑
≤<≤

⋅−⋅=
mji

ji jPwriPwrW
1

111 |))(())((|)(πππ

and)(2 πW represents the total communication cost as defined below

∑
≠

∈=
=

)()(
},{

22)()(

vu
Evue

ewW

ππ

π

Here the summation operator reflects our assumption that all communications share the

same LAN bandwidth.

Since the basic graph bisection problem, for which the partition number is two and the

vertices and edges have uniform weights, is NP-complete [1] and a special case of our

simplified formulation, all the software component allocation problems described in this

proposal are NP-hard.

1.3 Methodologies

The component allocation problem has many variations based on different assumptions,

and this research will focus on the one where the communication cost needs to be

minimized under the constraint that the computation workload is evenly distributed.

 7

Mathematical modeling is the foundation of this research. The properties of the

mathematical model will be studied to derive a problem transformation algorithm that can

convert the two-objective-function optimization problem into an equivalent one with a

single objective function. For efficient problem solution, solution space neighborhood

will be designed to support incremental evaluation of the objective function, which can

benefit any solution algorithm based on iterative solution searches. Simulated annealing

is chosen as the meta-heuristic for deriving a solution heuristic. Experimental

comparisons will be conducted between the proposed simulated annealing algorithm and

repeated random solutions generated in the same amount of time, and between the

proposed simulated annealing algorithm and local optimization for both solution quality

and running time.

1.4 Major Contributions

The major contributions of this research include:

• Using multi-way graph partitioning to model an important application server

performance problem critical to the sustainable growth of online e-commerce

industries.

• Proving that this problem is NP-hard, so no efficient algorithms could ever be

designed to produce optimal solutions to it in practical time.

• Designing a problem transformation algorithm to convert the problem with

multiple objective functions into an equivalent typical combinatorial optimization

problem with a single objective function.

 8

• Designing a scheme for incremental objective function evaluation that can

improve the performance of any iterative solution heuristics.

• Deriving an efficient heuristic solution based on simulated annealing, and

studying the sensitivity of the heuristic to its various parameters.

• Designing experiments to study the performance of our heuristic relative to

repeated random solutions and local optimization.

1.5 Dissertation Outline

The dissertation consists of six chapters described in the following manner:

Chapter 1 introduces the important scalability problem of E-commerce portal servers

and the associated software component allocation problem, presents the solution

methodologies and major contributions of this research.

Chapter 2 provides surveys of commonly used meta-heuristics for combinatorial

optimization problems and describes the characteristics of each heuristic.

Chapter 3 describes the problem formulation for multi-way graph partition and problem

transformation.

Chapter 4 provides the design of solution space neighborhood as well as the incremental

evaluation of the objective function.

Chapter 5 provides the design of a simulated annealing heuristic for the proposed

software component allocation problem, and conducts sensitivity analysis to its various

parameters and cooling schedule.

 9

Chapter 6 uses extensive experimental comparisons to study the performance of the

simulated annealing algorithm relative to repeated random solutions and local

optimization.

Chapter 7 concludes with some observations and future work.

 10

Chapter 2

Graph Partitioning and Solution Heuristics

This chapter surveys the graph partitioning problems as well as the major meta-heuristics

for combinatorial optimization.

2.1 Graph Partitioning

Graph partitioning is one of the richest fields of computing algorithms, with wide

applications in parallel processing, distributed computing, VLSI design and layout,

network partitioning, distributed database design, and sparse matrix factorization

[4][12][1][5][22]. The most popular heuristics for graph partitioning include the

Kernighan-Lin algorithm (KL) [13] for graph bisection and its enhancement variation [4].

Johnson et al. [12] performed an extensive study of the simulated annealing algorithm for

the graph bisection problem and observed that simulated annealing on the average

performed better than KL. Bui et al. [1] developed a genetic algorithm for multi-way

graph partitioning, and conducted extensive experimental evaluations of the related

algorithms to show its superior performance. Tao et al. [21], as well as many other

researchers, used graph partitioning to address the problem of optimized allocation of

processes/jobs to the processors in a distributed environment. Tao et al. [22] proposed

stochastic probe, a new effective and generic meta-heuristic, and demonstrated its

superior performance in multi-way graph partitioning.

 11

The existing studies of graph partitioning usually simplify the problem constraints

described in this research by dropping the weights of the vertices or edges.

2.2 Solution Heuristics

For NP-hard problems, we can only obtain optimal solutions for small problem instances.

For practical problem instance sizes, heuristics must be used to find optimized solutions

within reasonable time frame. Unlike algorithms, heuristics do not guarantee optimal. A

heuristic is an algorithm that tries to find good solutions to a problem but it cannot

guarantee its success. Most heuristics are not established on rigid mathematical analysis,

but on human intuitions, understanding of the properties of the problem at hand, and

experiments. The value of a heuristic must be based on performance comparisons among

competing heuristics. The most important performance metrics are solution quality and

running time.

The term meta-heuristics, first introduced in Glover [6], derives from the composition of

two Greek words. The suffix meta means “beyond, in an upper level” and heuristic

means “to find, discover”. A meta-heuristic is a strategy that guides the search process, or

an abstraction of a class of similar heuristics. Meta-heuristics are approximate and

usually non-deterministic, not problem-specific. It may incorporate mechanisms to avoid

getting trapped in confined areas of the search space. The basic concepts of meta-

heuristic permit an abstract level description. And it may make use of domain-specific

knowledge in the form of heuristics that are controlled by the upper level strategy. More

advanced meta-heuristics are used to guide the solution searches today [1]. To effectively

 12

resolve a problem based on a meta-heuristic, we need to have more understanding of the

characteristics of the problem, and creatively design and implement the major

components of the meta-heuristics. As a consequence, using a meta-heuristic to propose

an effective heuristic to solve an NP-hard problem is an action of research.

In the following we outline the most important meta-heuristics from a conceptual point of

view.

2.2.1 Local Optimization

A general heuristic search technique, local optimization is also called greedy algorithm or

hill-climbing. It attempts to improve on the solution by a series of incremental, local

changes. Each move is only performed if the resulting solution is better than the current

solution. The algorithm stops as soon as it finds a local minimum. The high level

algorithm is sketched in Algorithm 1.

Algorithm 1. Local optimization

1. Get an initial solution S .
2. While there is an untested neighbor of S do the following.

2.1 Let S ′ be an untested neighbor of S .
2.2 If () ()StSt coscos <′ , set SS ′= .

3. Return S .

Local optimization starts from a random initial solution, and it keeps migrating to better

neighbors in the solution space. If all neighbors of the current partition are worse, then

the algorithm stops. This scheme can only find local optimal solutions that are better than

all of their neighbors but they may not be the global optimal solutions, as illustrated in

Figure 1.

 13

Figure 1 Local vs. global solutions

2.2.1 Genetic Algorithm

Generic algorithm is an iterative procedure maintaining population of structures that are

candidate solutions to specific domain challenges. During each generation the structures

in the current population are rated for their effectiveness as solutions, and on the basis of

these evaluations, a new population of candidate structures is formed using specific

“genetic operators” such as reproduction, crossover, and mutation. It is based on the

analogy of combinatorial optimization to the mechanics of natural selection and natural

genetics. Its application in combinatorial optimization area can be traced back in early

1960s [8].

A genetic algorithm starts with a set of initial solutions (chromosomes), called a

population. This population then evolves into different populations for hundreds of

iterations. At the end, the algorithm returns the best member of the population as the

solution to the problem. For each iteration or generation, the evolution process proceeds

as follows. Two members of the population are chosen based on some probability

 14

distribution. These two members are then combined through a crossover operator to

produce an offspring. With a low probability, this offspring is then modified by a

mutation operator to introduce unexplored search space to the population, enhancing the

diversity of the population (the degree of difference among chromosomes in the

population). The offspring is tested to see if it is suitable for the population. If it is, a

replacement scheme is used to select a member of the population and replace it with the

new offspring. Now we have a new population and the evolution process is repeated until

certain condition is met, for example, after a fixed number of generations. This genetic

algorithm generates only one offspring per generation. Such a genetic algorithm is called

steady-state genetic algorithm [24][19], as opposed to a generational genetic algorithm

that replaces the whole population or a large subset of the population per generation. A

typical structure of a steady-state genetic algorithm is given in Algorithm 2 [2].

Algorithm 2. Genetic algorithm

1. Create initial population of fixed size.
2. Do the following

2.1 Choose parent1 and parent2 from population.
2.2 Offspring = crossover (parent1, parent2).
2.3 Mutation (offspring).
2.4 If suited (offspring), then
 Replace (population, offspring);

 Until (stopping condition).
3. Return the best answer.

2.2.2 Simulated Annealing

Simulated annealing is commonly said to be the oldest among the meta-heuristics and

surely one of the first algorithms that has an explicit strategy to escape from local

minima. The origins of the algorithm are in statistical mechanics (Metropolis algorithm)

 15

and it was first presented as a search algorithm for combinatorial optimization problems

in Kirkpatrick [14]. In 1983, Kirkpatrick and his coworkers proposed a method of using a

Metropolis Monte Carlo simulation to find the lowest energy (most stable) orientation of

a system. Their method is based upon the procedure used to make the strongest possible

glass. This procedure heats the glass to a high temperature so that the glass is a liquid and

the atoms can move relatively freely. The temperature of the glass is slowly lowered so

that at each temperature the atoms can move enough to begin adopting the most stable

orientation. If the glass is cooled slowly enough, the atoms are able to “relax” into the

most stable orientation. If the temperature is lowered rapidly, some atoms may get stuck

in foreign positions. The slow cooling process is known as annealing, and so their

method is known as Simulated Annealing.

The simulated annealing heuristic starts by generating an initial solution (either randomly

or heuristically constructed) and initializing the temperature parameter T. Then, at each

iteration, a neighbor solution is randomly sampled and it is accepted as new current

solution depending on the current cost, neighbor cost and temperature. If the neighbor

improves the current cost, then the neighbor becomes the new current solution for the

next iteration. If the neighbor worsens the current cost, it will be accepted as the new

current solution with a probability. When the temperature is high, the probability is not

sensitive to how worse the neighbor is. But when the temperature is low, the probability

to accept a worsening neighbor will shrink with the extent of the worsening. When no

improvement in solution cost happens for a period of time, the temperature will be

decreased by a very small amount, and the above looping repeats. The process will stop

when some termination criteria is met [23].

 16

Simulated annealing is unique among all the other meta-heuristics for combinatorial

optimization in that it has been mathematically proven to converge to the global optimum

is the temperature is reduced sufficiently slowly. But this theoretical result is not too

interesting to practitioners since very few real world problems will be able to afford such

excessive execution time [23]. A simulated annealing heuristic is based on the following

pseudo-code in Algorithm 3.

Algorithm 3. Simulated annealing

1. Get an initial solution S .
2. Get an initial temperature 0>T .
3. While not yet frozen do the following.
 3.1 Perform the following loop L times.
 3.1.1 Pick a random neighbor S ′of S .
 3.1.2 Let () ()StSt coscos −′=∆ .
 3.1.3 If 0≤∆ (downhill move),
 Set SS ′= .
 3.1.4 If 0>∆ (uphill move),

 Set SS ′= with probability Te ∆− .
 3.2 Set rTT = (reduce temperature).
4. Return S .

Simulated annealing approach involves a pair of nested loops and two additional

parameters, a cooling ratio r, which is between zero and one, and an integer temperature

length L. In step 3 of the above algorithm, the term frozen refers to a state in which no

further improvement in ()Stcos seems likely. The most important of this process is the

loop at Step 3.1. Note that Te ∆− will be a number in the interval ()1,0 when ∆ and T

are positive, and rightfully can be interpreted as a probability that depends on ∆ and T .

The probability that an uphill move of size ∆ will be accepted diminishes as the

 17

temperature declines, and, for a fixed temperature T , small uphill moves have higher

probabilities of acceptance than large ones [12].

While comparing local optimization and simulated annealing, we find they mainly differ

in the extent to accept worsening neighbors. For simulated annealing, it starts with

random walk in the solution space. When a random neighbor is better, it always takes it.

But if the neighbor is worsening, its possibility of accepting it is reduced slowly.

Simulated annealing becomes local optimization when the temperature is very low.

Johnson made a critical evaluation for the performance of the simulated annealing

approach to the graph partition problem and compared its performance with that of the

Kernighan-Lin approach. In general, simulated annealing is time-consuming, but it has

been very successfully applied to numerous combinatorial optimization problems.

2.2.3 Tabu Search

Tabu search is among the most cited and used meta-heuristics for combinatorial

optimization problems. The basic ideas were first introduced in Glover [6][7] since 1986.

It explicitly uses the history of the search, both to escape from local optima and to

implement an explorative strategy. Tabu search applies a best improvement local search

as basic ingredient and uses a short-term memory to escape from local optima and to

avoid cycles. The short-term memory is implemented as a tabu list that keeps track of the

most recently visited solutions and forbids moves toward them. The neighborhood of the

current solution is thus restricted to the solutions that do not belong to the tabu list. Tabu

means prohibition here.

 18

The advocates of tabu search disagree with the analogy of optimization process to metal

annealing process. They argued that when a hunter entered in an unfamiliar environment,

he will not search randomly first but zero in to the area that appears most promising in

finding games. This is similar to the greedy local optimization algorithm. Only when

neighboring areas are all worse than the current area will the hunter be willing to search

through worsening neighboring areas in hope of finding a better local optimum.

Tabu search differs from simulated annealing at two key aspects. It is more aggressive

and deterministic. A tabu search heuristic starts by generating a random partition as the

current solution. It then executes a loop until some stopping criteria are reached. During

each iteration, the current solution is replaced with its best neighbor that is not tabued on

the tabu list. The high level algorithm is sketched in Algorithm 4.

Algorithm 4. Tabu search

1. Get a random initial solution S .
2. While stop criterion not met do:

2.1 Let S ′ be a neighbor of S maximizing
 () ()StSt coscos −′=∆ and not visited
 in the last t iterations.
2.2 Set SS ′= .

3. Return the best S visited.

 19

Chapter 3

Problem Formulation and Transformation

In this chapter, we formulate the optimized software component allocation problem as a

multi-way graph partitioning problem, prove it to be NP-hard, and simplify it with a

problem transformation algorithm. The results in this chapter, as well as those in Chapter

4, are foundations of this research and can support any solution methodologies.

3.1 Problem Statement

3.1.1 Problem Assumptions

A scalable application server is implemented by a cluster of server machines connected

by a high-speed fiber local area network (LAN). The LAN operates in a bus mode, like

Ethernet, so all inter-machine communications share the same LAN bandwidth. The

inter-machine communications are much slower than server machine CPU speed and thus

should be avoided if possible. All the server machines have the same computation power,

and no residual computation (all server machine resources are ready for use).

Server applications are implemented with distributed component technologies. A server

application comprises dozens of software components that may need to communicate

with each other at running time. The execution of an application will not be over until all

the participating components finish their computation. Each software component can run

transparently on any of the server machines and communicate with each other. Inter-

 20

component communications are much slower if the senders and receivers are allocated on

different server machines. Based on a profiler utility, it is known for each typical use case

the average computation load of each participating software component and the average

communication load between each pair of software components.

3.1.2 Problem Statement

Given the above assumptions, how to allocate the software components to the application

server machines so that the communication overhead is minimized under the constraint

that the computation workload is distributed evenly across the server machines.

3.2 Problem Formulation as Multi-way Graph Partitioning

A component-based server application can be modeled as a graph: each vertex

representing a software component, each edge representing a communication requirement

between a pair of incident software components at running time. We can use vertex

weights to represent a component’s computation load, and edge weights represent the

potential communication load between the two incident components. The application

server machines can be represented as partitions of the software components. To

minimize the computation work load, we need to allocate the vertices to the partitions so

that the vertex weights are evenly distributed across the partitions. To minimize the inter-

machine communication overhead, we need to allocate the vertices so that the summation

of the edge weights for those edges crossing the partitions (the two incident vertices of an

edge belonging to two partitions) will be minimized. Here the summation operator is used

to model our assumption that all inter-machine communications share the same LAN

bandwidth, as is the case for most of today’s enterprise-quality e-commerce portals.

 21

Given an undirected graph ()EVG ,= , an integer m (||1 Vm ≤≤), and two weight

functions IVw →:1 and IEw →:2 (I is the set of positive integers), an m-way

partitioning π of G is a function { }mV ...,,2,1: →π such that

() () ()mPPPV πππ ∪∪∪= ...21 , where () (){ }ivVviP =∈= ππ for mi ≤≤1 . For any

subset VC ⊆ , let () ()∑ ∈
=

Cv
vwCw 11 . Our objective is to derive m-way partitioning π

that can minimize

() ()
{ }
() ()

∑
≠
∈=

=

vu
Evue

ewW
ππ

π
,

22

under the constraint that

() ()() ()()∑
≤≤≤

−=
mji

jPwiPwW
1

111 πππ

is minimal. We call ()vw1 the vertex weight of vertex v, ()ew2 the edge weight of edge e.

We call ()π1W the balance measure that measures the evenness of the computation load

distribution, and ()π2W the weighted cut size that measures the total cost of

communications across the LAN. Informally, we want to partition the graph vertices into

mutually exclusive subsets so that the total weight of the edges crossing the subsets is

minimized under the condition that the vertex weights are distributed evenly among the

subsets.

It can be observed that this problem is unusual in the combinatorial optimization

literature since it contains two objective functions, one of which is embedded in the

problem constraint; and these two objective functions conflict with each other: for

 22

example, while allocating all vertices to the same partition can minimize the weighted cut

size, it will be the worst case for vertex weight distribution.

As examples, Figure 2 shows two different schemes of partitioning a set of five vertices

into two or three partitions. The numbers inside the vertices are vertex weights. The

numbers beside edges are edge weights. In Figure 2 (a), the five vertices are allocated

into two partitions: partition 1 has a total vertex weight of 7, partition 2 has a total vertex

weight of 5, thus ()π1W = |57| − = 2; and the allocation has a weighted cut size ()π2W

of 7. In Figure 2 (b), the five vertices are allocated into three partitions: partition 1 has a

total vertex weight of 4, partition 2 has a total vertex weight of 5, partition 3 has a total

vertex weight of 3, thus ()π1W = |35||34||54| −+−+− = 1 + 1 + 2 = 4; and the

allocation has a weighted cut size ()π2W of 8.

(a) (b)

Figure 2 Multi-way graph partitioning

 23

3.3 NP-hardness of the Problem

Now we prove that the multi-way graph partitioning problem described in this

dissertation is NP-hard.

NP-Hardness Theorem: The multi-way graph partitioning problem described in

this research is NP-hard. �

Proof: We first prove that graph bisection is a special case of our multi-way graph

partitioning.

Given any graph),(EVG = where ||V is even, the graph bisection problem

seeks a bisection of V into the left and right two partitions 1P and 2P so that

|||| 21 PP = and |},},,{|{| 21 PvPuvueEe ∈∈=∈ , the number of edges crossing

the two partitions, is minimized. Given any problem instance for graph bisection,

we can construct a corresponding problem instance for the multi-way graph

partitioning problem by letting 2=m , 1)(1 =vw for all Vv∈ , and 1)(2 =ew for

all Ee∈ . Suppose we get π as one of the optimal solutions for this multi-way

partitioning problem instance, then 0)(1 =πW must be true since ||V is even and

all vertices have the same unit weight, and)(2 πW is minimized. Since all edges

have the same unit weight,)(2 πW is exactly the same as the number of edges

crossing the two partitions. Therefore we can conclude that, given any graph

bisection problem instance, we can solve it as a multi-way graph partitioning

problem, and the resulting optimal solution to the multi-way partitioning problem

instance is also an optimal solution to the original graph bisection problem

 24

instance. Therefore graph bisection problem is a special case of our multi-way

graph partitioning problem.

But it is well known that graph bisection is an NP-complete problem [3]. If our

multi-way graph partitioning problem were not NP-hard, it would imply that

graph bisection were not NP-complete, a contradiction. Therefore we conclude

that our multi-way graph partitioning problem is NP-hard. �

Since the multi-way graph partitioning problem is NP-hard, it is impossible to have

algorithms to solve its practical problem instances within realistic time frames. We have

to resort to heuristic approaches to search for optimized solutions within time frames

suitable for the particular application domains.

3.4 Problem Transformation

The multi-way graph partitioning problem formulated in this research differs from

traditional combinatorial optimization problems in its two objective functions, one of

which is embedded in the problem constraint. In this section we introduce a problem

transformation algorithm to convert any instance of this problem into another problem

instance of an equivalent simpler problem with only a single objective function.

Other reason for our introduction of the problem transformation is for efficient evaluation

of the objective function. The time complexity of an iterative algorithm is largely

determined by the efficiency by which the objective functions and the constraint

conditions are evaluated. Since the move (operation) for each iteration only makes local

changes to the current solution, it is desirable to have the ability to incremental update the

 25

old value of the objective function to obtain its new one after the move. While)(2 πW

allows simple incremental update after each vertex move or vertex exchange operation,

()π1W needs at least)(mO update steps after each of such operations. The new objective

function resulting from our problem transformation is easier for incremental evaluation,

as shown in Chapter 4.

Graph Transformation Algorithm: Given an undirected graph ()EVG ,= that is

needs to be divided into m partitions, we transform G into another complete graph

()∗∗ = EVG , where },|},{{ VvuvuE ∈=∗ , and define a new edge weight function

+ℜ→*
3 : Ew (+ℜ is the set of all positive real numbers) such that

() () () ()
() ()

{ }
{ } EEvue

Evue
Rvwuw

ewRvwuw
ew

−∈=
∈=



 −

= *
11

211
3 , if

 ; , if

where R is a positive real number called the augmenting factor. The corresponding
new m-way graph partitioning problem is to find an m-way partition π of graph *G
to maximize its objective function

() ∑
≠
∈=

=

)()(
},{

33
*

)(

vu
Evue

ewW

ππ

π

Problem Transformation Theorem: Given any instance of the multi-way graph

partitioning problem, if the value of R in the graph transformation is larger than the

total edge weight of G, or ∑
∈Ee

ew)(3 , a solution π that maximizes)(3 πW will also

minimize)(2 πW under the constraint that ()π1W is minimized. �

But before we can prove this theorem, we need some preparations.

 26

Definition: Given a positive integer k , a partition of integer k is a set of positive

integers { }mkkk ,...,, 21 ()km ≤ such that ∑ =
=

m

i ikk
1

. �

Max-Prod-Min-Diff Theorem: Given positive integers m and k such that

km ≤ , any partition of k into { }mkkkP ,...,, 21= maximizing ∑ ≤≤≤ mji ji kk
1

 will

minimize ∑ ≤<≤
−

mji ji kk
1

. �

First we prove the following two lemmas.

Lemma 1: Let x and y be positive integers. If 1+> yx , then

() ()2222 11 ++−>+ yxyx . �

Proof: If 1+> yx , then 1212 +>− yx . Therefore,

1212 2222 ++−>−+− yyyxxx , or () () 2222 11 yyxx −+>−− . So we have

the lemma. �

Lemma 2: Let m and k ()km ≤ be positive integers and { }mkkkP ,...,, 21= a

partition of k . Assume that there exists a pair x and y in P such that 1>− yx .

Let 1' −= xx , 1+=′ yy , and { } { }yxyxPP ′′∪−=′ ,, . We have

∑∑
′∈

≤<≤
∈
≤<≤

−>−

Pkk
mji

ji

Pkk
mji

ji

jiji

kkkk
,

1
,

1

 (1)

and

∑∑
′∈

≤<≤
∈
≤<≤

<

Pkk
mji

ji

Pkk
mji

ji

jiji

kkkk
,

1
,

1

 (2)

 27

�

Proof: We can partition P into { } { } 321 PyPxPP ∪∪∪∪= , where:

1P —the set of numbers in P that are greater than or equal to x ,

2P —the set of numbers in P that are smaller than x and great than y ,

3P —the set of numbers in P that are equal to or smaller than y .

Let 1N , 2N , 3N be the cardinalities of 1P , 2P , and 3P respectively. We

have mNNN =++++ 321 11 , and

() ()∑∑
∈
≤<≤

′∈
≤<≤

+−−−+−−−+−=−

Pkk
mji

ji

Pkk
mji

ji

jiji

NNNNNNkkkk
,

1
321321

,
1

11

 ()2

,
1

12 Nkk
Pkk
mji

ji

ji

+−−= ∑
∈
≤<≤

.

So we have Inequality (1).

Because 1+> yx , from Lemma 1, we have 2222 yxyx ′+′>+ . Since

()
{ }

()
{ }

∑ ∑ ∑∑
∈
≤<≤

′′∉
≤≤

′∈
≤<≤

∉
≤≤

+′+′+=+++=

Pkk
mji

yxk
ml

Pkk
mji

jilji

yxk
ml

l

ji l jil

kkyxkkkyxkk
,

1
,

1
,

1

222

,
1

2222 22 ,

we have Inequality (2). �

Proof of Max-Prod-Min-Diff Theorem: Since partition { }mkkkP ,...,, 21=

maximizes ∑ ≤<≤ mji jikk
1

, by Lemma 2, there can be no Pyx ∈, such that

 28

1+> yx . On the other hand, if max ()P -min () 1≤P , then ∑ ≤<≤
−

mji ji kk
1

 must

reach its smallest possible value ()rmr − , where r is the remainder of mk / . The

theorem is thus proved. �

Proof of Problem Transformation Theorem: It has been proven by Lee et al. [15]

that, if ∑
∈

>
Ee

ewR)(2 , any partitioning π that maximizes

() ∑∑
≤<≤

≠
∈=

−==
mji

vu
Evue

WjPwiPwRewW
1

211

)()(
},{

33)())(())(()(
*

ππ ππ

ππ

will minimize)(2 πW under the constraint that

∑
≤<≤ mji

jPwiPw
1

11))(())((ππ

is maximized. Now we only need to prove that maximizing

∑
≤<≤ mji

jPwiPw
1

11))(())((ππ is equivalent to minimizing ()π1W . But this follows

directly from our Max-Prod-Min-Diff Theorem above. �

The following is an example for the graph transformation. The vertex weights are marked

inside the vertices. The edge weights are marked along the edges. Figure 3 (a) shows the

original graph to be bisected, and Figure 3 (b) shows its equivalent complete graph

obtained from our graph transformation. The two partitions are separated by a dotted line.

Since the total edge weights is 6, we set 716 =+=R .

()π1W = 0, ()π2W = 2 ()π3W = 173

 29

(a) (b)

Figure 3. Example of problem transformation-optimal

Figure 3 (a) shows () 0|)32()41(|1 =+−+=πW and () 2112 =+=πW . Let uv represent

the edge weight }),({3 vuw . Figure 3 (b) shows 13172121 =−××=vv ,

2173131 =××=vv , 26274141 =−××=vv , 40273232 =−××=vv ,

5674242 =××=vv , 83174343 =−××=vv . () 173835621133 =+++=πW . On the

another hand, if we partition the graph as in Figure 4 (c) and Figure 4 (d), then

() 4|)21()43(|1 =+−+=πW , () 4222 =+=πW , () 143405621263 =+++=πW . This

example confirms that a solution π with larger value for ()π3W will have smaller values

for ()π1W and ()π2W .

()π1W = 4, ()π2W = 4 ()π3W = 143

(c) (d)

Figure 4. Example of problem transformation-nonoptimal

 30

Chapter 4

Incremental Objective Function Evaluation

Most meta-heuristics are based on iterative moves in the solution space. During each

iteration, the current solution is perturbed by a move to obtain its neighbor. No matter

which meta-heuristic is adopted, the running time of the resulting heuristics will be

dominated by the evaluation time for the objective functions.

In this research we design a scheme to support incremental evaluation of the objective

function)(3 πW to reduce its evaluation time. The idea is, since each move only perturbs

the current solution locally, we could avoid the evaluation of the entire objective function

by modifying its most recent old value. We introduce a gain function for each move so

that the new value of the objective function after a move equals to the function value

immediately before the move plus the gain of the move. We use a gain table to support

the incremental update of the gain value for all valid moves. This methodology is based

on runtime/memory tradeoffs, often observed in the design of efficient algorithms like

dynamic programming.

But first we need to design the types of moves in the solution space and the

corresponding solution space neighborhood.

 31

4.1 Solution Space Neighborhood Design

Let X be the set of all mappings { }mV ,...,2,1→ . X is the solution space here. The

transformed multi-way graph partitioning problem can be presented as

maximize () XW ∈ππ :3

where ()π3W is the new objective function.

A wide range of heuristic algorithms for solving problems capable of being written in this

form can be characterized conveniently by reference to sequences of moves that lead

from one trial solution (selected X∈π) to another. Let S be the set of all defined moves.

We use)(πS (X∈π) to denote the subset of moves in S applicable to π . For any

)(πSs∈ ,)(πs , the new solution obtained by applying move s to π , is called a neighbor

of π . We call)}(|)({ ππ Sss ∈ the neighborhood of solution π . If)(')(ππ ss ≠ for any

pair of different moves)(', πSss ∈ , we can use |)(| πS to denote the neighborhood size

of solution π .

In order to optimize the algorithm performance, S should be defines with the following

properties [23][22]:

• Reachability: Given any two solutions π and π ′ in X , it should be possible to

apply a sequence of moves in S to reach π ′ from π . This property will greatly

increase the probability for an algorithm to converge to the global optimum.

• Efficiency: Given any solution X∈π and Ss∈ , the cost of ()πs can be easily

evaluated by incrementally updating the cost of π . This will allow us to avoid

 32

evaluating the cost (objective) function ()π3W during each iteration, an operation

having time complexity ()2||VO .

• Injectiveness: Given two different moves s , Ss ∈′ , for any X∈π , () ()ππ ss ′≠ .

This will make sure that each neighbor of the current solution will be checked

only once for the current neighborhood search.

For graph partitioning, vertex move and vertex exchange are two popular categories of

moves. Let 1S be the set of all moves for moving one vertex away from its current

partition, and 2S the set of all moves for exchanging two vertices possessed by two

different partitions. Both 1S and 2S enjoy the injectiveness property. The cost of the

current solution can be incrementally updated for moves from both 1S and 2S , as will be

explained in the next section. Many graph partitioning algorithms [12][15] favor 1S since

it has smaller neighborhood size ()1|| −mV , while the average neighborhood size for 2S

is ()2||VO . We can make the following two further observations about the reachability of

1S and 2S .

• 1S also enjoys the reachability property. But if we only allow vertex moves that

will not worsen the cost of the current partitioning by

))min()(max()max(221 wwwR −−⋅ or more (this is the case when the simulated

annealing is in its low-temperature phases, or when the tabu search always has

moves with gains of smaller absolute value), then this reachability cannot always

be realized. For example, for the graph bisection of 1G in Figure 5(a), no

 33

sequence of vertex moves can transform it to the optimal bisection of 1G in Figure

5 (c) unless we accept moves that will reduce ()π3W by 27. Figure 5 (b) shows an

example vertex move for the bisection in Figure 5 (a). Our claim can be proved by

generalizing the weights in 1G .

() 243 =πW () 183 =πW () 263 =πW

(a) (b) (c)

Figure 5. Example partitions of 1G , R = 7

• In general 2S does not have the reachability property. For instance, given the

graph bisection of 2G in Figure 6 (a), vertex exchanges will never lead us to the

optimal bisection of 2G in Figure 6 (b) (while vertex moves do) because they

cannot change the cardinality of each partition. However, we can easily transform

the bisection in Figure 6 (a) to that in Figure 6 (c) by exchanging vertices 2v and

4v .

() 433 =πW () 1233 =πW

 34

(a) (b)

Figure 6. Example partitions of 2G , R = 5

For simplicity, this research only uses vertex moves in 1S in its solution heuristics.

Vertex exchanges are left for future work.

4.2 Gain Function for Moves

The strategy for our incremental objective function evaluation is implemented through

defining a gain function for evaluating the profit (improvement in objective function

value) of making a solution space move.

Given the current partition π and a move ()πSs∈ , we call ()() ()ππ 33 WsW − the gain of

move s .

Given a partition π of G , for any 1Ss∈ , the gain for moving any vertex ()iPv π∈ to

partition ()jPπ ()mji ≤≤ ,1 can be defined to be

()
()()

∑ ∑
∈ ∈

−=
iPu jPu

vuwvuwjvg
π π

}),({}),({, 331 ,

and for any 2Ss∈ , the gain for exchanging any pair of vertices)(iPu π∈ and)(jPv π∈
)(ji ≠ can be defined to be

 35

))(()(}),({2,,, 3112 vuwivgjugvug ++=

because we can view the vertex exchange as consisting of two consecutive vertex moves.

Since 2g can be defined in terms of 1g , in the following we only need to consider the

incremental update of 1g after each vertex move.

Let π be the current solution with objective function value)(3 πW , 1Ss∈ moves vertex v

from its current containing partition to partition j, and 'π be the new solution resulting

from applying move s to solution π . It follows from the definitions that

),()()'(133 jvgWW += ππ . Therefore, the problem of incremental evaluation of objective

function)(3 πW is now reduced to the problem of incremental evaluation of the gain

function),(1 jvg for all mj ≤≤1 and all })(|{ juVuv ≠∈∈ π .

4.3 Incremental Gain Function Updating

We maintain the values of function),(1 jvg in a 2-D table. As long as we have updated

values of function),(1 jvg for all combinations of mj ≤≤1 and })(|{ juVuv ≠∈∈ π ,

we can find the new objective function value after a move by just adding its gain to the

old objective function value, in constant time. But based on the definition of gain

function ()1g , it can be verified that after moving vertex)(iPv π∈ to partition

)(jPπ (ji ≠), the gain function ()1g can be incrementally updated as follows in |)(|VO :

Case 1:),(),(' 11 jvgivg −=

 36

Case 2:),,(),(),(' 111 jvgkvgkvg −= },{ jik ∉

Case 3: }),,({2),(),(' 311 vuwjugjug +=)(iPu π∈∀

Case 4: }),,({),(),(' 311 vuwkugkug += },{),(jikiPu ∉∈∀ π

Case 5: }),,({2),(),(' 311 vuwiugiug −=)(jPu π∈∀

Case 6: }),,({),(),(' 311 vuwkugkug −= },{),(jikjPu ∉∈∀ π

Case 7: }),,({),(),(' 311 vuwiugiug −=)()(jPiPu ππ ∪∉∀

Case 8: }),,({),(),(' 311 vuwjugjug +=)()(jPiPu ππ ∪∉∀

where ()'1g marks the new value of ()1g . The significant speedup of |)(|VO , made

possible by our methodology for incremental objective function evaluation, can benefit

any solution heuristic for this particular problem.

In the following figures we provide one general example for each of the cases for

incremental update of the gain function. They can be treated as informal proof for the

correctness of this evaluation algorithm. For each of the cases, vertex v of partition i is

being moved to another partition j, the left figure shows the partial partitioning just

before the move, and the right figure shows the partial partitioning just after the move.

 37

) { }() { }()(avwbvwivg ,,, 331 −=) { }() { }()(()ivgbvwavwivg ,,,, 1331 −=−=′

Figure 7 Incremental move gain update case 1

) { }() { }()(avwbvwkvg ,,, 331 −=

) { }() { }()(avwcvwjvg ,,, 331 −=

) { }() { }()(cvwbvwkvg ,,, 331 −=′

) () ()(jvgkvgkvg ,,, 111 −=′

Figure 8 Incremental move gain update case 2

) { }() { }) { }()((auwvuwcuwjug ,,,, 3331 −−=) { }) { }() { }()((auwcuwvuwjug ,,,, 3331 −+=′

))({ })((vuwjugjug ,2,, 311 +=′

 38

Figure 9 Incremental move gain update case 3

) { }() { }) { }()((auwvuwbuwkug ,,,, 3331 −−=) { }() { }()(auwbuwkug ,,, 331 −=′

))({ })((vuwkugkug ,,, 311 +=′

Figure 10 Incremental move gain update case 4

)({ }() { }() { }()cuwauwvuwiug ,,,, 3331 −+=) { }() { }) { }()((cuwvuwauwiug ,,,, 3331 −−=′

)(() { }()vuwiugiug ,2,, 311 −=′

Figure 11 Incremental move gain update case 5

 39

) { }() { }()(buwcuwkug ,,, 331 −=) { }() { }) { }()((buwvuwcuwkug ,,,, 3331 −−=′

))({ })((vuwkugkug ,,, 311 −=′

Figure 12 Incremental move gain update case 6

) { }() { }) { }()((cuwvuwauwiug ,,,, 3331 −+=) { }() { })((cuwauwiug ,,, 331 −=′

))({ })((vuwiugiug ,,, 311 −=′

Figure 13 Incremental move gain update case 7

 40

) { }() { })((cuwbuwjug ,,, 331 −=) { }() { })({ }()(cuwvuwbuwjug ,,,, 3331 −+=′

))({ })((vuwjugjug ,,, 311 +=′

Figure 14 Incremental vove gain update case 8

 41

Chapter 5

Simulated Annealing Algorithm

The design of the simulated annealing algorithm will be explored in this chapter.

Sensitivity analysis will be conducted on the multiple parameters of the algorithm to find

their best values.

5.1 Algorithm Design

Simulated annealing is a meta-heuristic that attempts to avoid entrapment in poor local

optima by allowing occasional downhill moves. Our algorithm for the multi-way graph

partitioning problem based on simulated annealing is outlined in Algorithm 5. We just

call it the simulated annealing algorithm for convenience. This procedure is performed

under the influence of a random number generator and a control parameter called the

temperature. As typically implemented, the simulated annealing approach involves a pair

of nested loops and two additional parameters, a cooling ratio r, which is between zero

and one, and an integer temperature length L. The most important of this process is the

loop at Step 3.1. Note that Te /∆ will be a number in the interval (0, 1) when T is positive

and∆ is negative, and rightfully can be interpreted as a probability that depends on ∆ and

T. The probability that a downhill move will be accepted diminishes as the temperature

declines, and, for a fixed temperature T, small downhill moves have higher probabilities

 42

of acceptance than large ones [12][23]. This particular method of operation is motivated

by a physical analogy, best described in terms of the physics of crystal growth [14]. It has

been proven that the algorithm will converge to a global optimum if the temperature is

lowered exponentially and the initial temperature is chosen sufficiently high [11].

Algorithm 5. Simulated annealing for graph partitioning

1. Get a random initial solution π .
2. Get an initial temperature T > 0 .
3. While stop criterion not met do the following.
 3.1 Perform the following loop L times.
 3.1.1 Let π ′ be a random neighbor of π .
 3.1.2 Let () ()ππ 33 WW −′=∆ .
 3.1.3 If 0≥∆ (uphill move),
 Set ππ ′= .
 3.1.4 If 0<∆ (downhill move),

 Set ππ ′= with probability Te /∆ .
 3.2 Set TrT ⋅= (reduce temperature).
4. Return the best π visited.

5.2 Experiment Design for Parameter Tuning

There are four parameters, described below, that must find their optimized values for

achieving the best performance of the simulated annealing algorithm. These parameters

are inter-related and have major effect on solution quality and algorithm running time.

1. Initial temperature-- 0t : Simulated annealing algorithms are in general time

consuming in their execution. The choice t0 has a direct effect on the annealing

schedule. If 0t is too high, the algorithm’s initial random walking will be

 43

prolonged without benefit. Conversely, if t0 is too slow, the algorithm will be

lead to entrapment in poor local optima.

2. Temperature reduction ratio-- r : This is also a major factor to affect the

execution of the algorithm. Ratio r is a real number in the interval (0, 1). If r is

too large, temperature will be reduced vigorously, and the algorithm will be lead

to entrapment in poor local optima. If r is too small, algorithm execution will be

significantly prolonged.

3. Number of consecutive non-improvement iterations before the temperature

is reduced—l: This is to control the number of non-improvement iterations

before the temperature is reduced. If l is too large, the execution time will be

spent on inefficient solution hunting. If l is too small, the solution neighborhoods

will not be explored thoroughly.

4. Number of consecutive non-improvement iterations before algorithm

termination-- k : This is to control the number of non-improvement iterations

before the termination of the algorithm. If k is too large, the execution time will

be increased without profits. If k is too small, the alternative solution

neighborhoods will not be explored thoroughly due to rushed termination.

In this research, 50 random problem instances are generated for algorithm performance

evaluation. Their numbers of vertices range from 20 to 200, expected degrees of each

vertex (number of incident edges) range from 8 to 30, both vertex weights and edge

weights range from 1 to 5, and the number of partitions range from 2 to 8.

 44

For parameter tuning in this chapter, we choose the following five problem instances

from our 50 problem instances to conduct experiments, one instance for each vertex

number. We call the five problem instances our training set.

Table 1 Data files for parameter tuning

Data Files Vertex
Number

Expected
Degree

Vertex Weights
(Min-Max)

Edge Weights
(Min-Max)

g20d8c0 20 8 1-5 1-5
g40d15c0 40 15 1-5 1-5
g60d20c0 60 20 1-5 1-5
g100d30c0 100 30 1-5 1-5
g200d30c0 200 30 1-5 1-5

All experiments are conducted on a Pentium(R) 4 PC with a 2.53GHz CPU and 512 MB

of RAM, running Microsoft Windows XP Professional.

After initial experimental exploration for the training set, we find the following ranges of

values for the four parameters are more promising and worth further investigation.

Table 2. Simulated annealing parameter values to be explored

Name Parameter Values

Initial Temperature t0 5,10,15,20,25,30,35,40,45,50

Cooling rate r 0.90, 0.95, 0.99, 0.995, 0.9995

Number of consecutive
non-improvement Iterations
before the temperature is
rduced

l 100,200,300,400,500,600,700,800,

900,1000,1100,1200,1300,1400,1500,

1600,1700,1800,1900,2000

Number of consecutive
non-improvement iterations
before algorithm
termination

k 20,40,60,80,100,120,140,160,180,200,

220,240,260,280,300,320,340,360,380,400

 45

The search for optimal parameter values is the most difficult one since the parameters are

not independent. Based on the above parameter value ranges, there are

000,202020510 =××× different combinations. We use a driver program to

systematically generate performance data for all these combinations for our training set,

with partition number ranges 2, 4, 6, and 8.

5.3 Parameter Tuning Experiments

We run all the 20,000 parameter value combinations for each of the problem instances in

the training set with partition numbers ranging 2, 4, 6 and 8. Table 3 shows the best

parameter values for each pair of the problem instances and the partition numbers that

maximize ()π3W .

Table 3 Best parameter values for each problem instance

Data File m ()π3W ()π1W ()π2W t0 r l k
g20d8c0 2 514346 0 0 15 0.9 700 80
g20d8c0 4 771487 0 2 20 0.9995 300 160
g20d8c0 6 856902 8 6 10 0.995 1100 200
g20d8c0 8 899611 16 16 5 0.9995 1200 200
g40d15c0 2 6067005 0 0 5 0.99 100 20
g40d15c0 4 9099624 4 0 20 0.995 300 300
g40d15c0 6 10110476 8 7 45 0.9995 500 320
g40d15c0 8 10615837 12 20 20 0.9995 400 80
g60d20c0 2 31271405 1 0 20 0.995 800 20
g60d20c0 4 46907027 3 0 35 0.9995 1300 160
g60d20c0 6 52118889 5 2 40 0.995 1000 40
g60d20c0 8 54724823 7 16 15 0.95 700 140
g100d30c0 2 225610743 0 0 20 0.9995 600 80
g100d30c0 4 338416042 0 1 10 0.95 400 400
g100d30c0 6 376011993 8 1 35 0.99 800 200

 46

g100d30c0 8 394818687 0 9 50 0.95 300 280
g200d30c0 2 1385000130 1 0 35 0.9995 1200 80
g200d30c0 4 2077500109 3 0 20 0.995 500 180
g200d30c0 6 2308327443 9 2 5 0.995 1600 180
g200d30c0 8 2423749881 7 3 50 0.9 1800 380

The following Table 4 through Table 9 present partial experiment result data for

problem instances g40d15co and g60d20c0, with m being 4, from different presentation

angles.

Table 4 Parameter values for g40d15c0 sorted by ()π3W

Data File m ()π3W ()π1W ()π2W Time(ms) t0 r l k
g40d15c0 4 9099624 4 0 750 20 0.995 300 300
g40d15c0 4 9099624 4 5 1812 35 0.995 1100 200
g40d15c0 4 9099623 4 5 3782 45 0.9 1500 320
g40d15c0 4 9099623 4 5 3594 40 0.95 1600 280
g40d15c0 4 9099622 4 0 3953 35 0.9995 1800 280
g40d15c0 4 9099622 4 9 1906 10 0.9 900 260
g40d15c0 4 9099621 4 0 406 40 0.995 800 60
g40d15c0 4 9099621 4 0 875 10 0.9 1700 60
g40d15c0 4 9099621 4 10 3328 20 0.99 1800 220
g40d15c0 4 9099621 4 10 4719 5 0.9995 1900 300
g40d15c0 4 9099619 4 6 500 25 0.99 500 120
g40d15c0 4 9099619 4 10 1000 5 0.9 600 200
g40d15c0 4 9099618 4 0 344 20 0.95 100 400
g40d15c0 4 9099618 4 5 2625 35 0.995 1600 200
g40d15c0 4 9099618 4 9 250 5 0.99 100 260
g40d15c0 4 9099618 4 9 1875 30 0.99 1400 160
g40d15c0 4 9099618 4 10 2594 15 0.9 2000 160
g40d15c0 4 9099617 4 5 62 15 0.995 200 40
g40d15c0 4 9099617 4 5 3234 50 0.99 1100 360
g40d15c0 4 9099617 4 9 62 25 0.99 200 40

Table 5 Parameter values for g40d15c0 sorted by ()π1W and ()π2W

Data File m ()π3W ()π1W ()π2W Time(ms) t0 r l k
g40d15c0 4 9099624 4 0 750 20 0.995 300 300
g40d15c0 4 9099622 4 0 3953 35 0.9995 1800 280

 47

g40d15c0 4 9099621 4 0 406 40 0.995 800 60
g40d15c0 4 9099621 4 0 875 10 0.9 1700 60
g40d15c0 4 9099618 4 0 344 20 0.95 100 400
g40d15c0 4 9099615 4 0 1969 5 0.9 1200 200
g40d15c0 4 9099615 4 0 2765 50 0.995 900 380
g40d15c0 4 9099613 4 0 3812 30 0.9995 1800 260
g40d15c0 4 9099612 4 0 1297 20 0.99 2000 80
g40d15c0 4 9099612 4 0 2531 5 0.99 800 400
g40d15c0 4 9099610 4 0 4453 45 0.995 1500 380
g40d15c0 4 9099609 4 0 703 35 0.9 1000 80
g40d15c0 4 9099609 4 0 984 10 0.9995 500 240
g40d15c0 4 9099609 4 0 3063 30 0.9995 1000 380
g40d15c0 4 9099608 4 0 94 20 0.995 500 20
g40d15c0 4 9099608 4 0 3765 40 0.9 1700 280
g40d15c0 4 9099606 4 0 3312 10 0.9 1400 280
g40d15c0 4 9099605 4 0 1078 15 0.99 1100 120
g40d15c0 4 9099605 4 0 3578 10 0.9995 1800 240
g40d15c0 4 9099604 4 0 250 5 0.9995 100 300

Table 6 Parameter values for g40d15c0 sorted by running time, ()π1W and ()π2W

Data File m ()π3W ()π1W ()π2W Time(ms) t0 r l k
g40d15c0 4 9099568 4 0 15 30 0.9995 100 20
g40d15c0 4 9099559 4 0 16 40 0.995 100 20
g40d15c0 4 9099559 4 0 16 15 0.95 100 20
g40d15c0 4 9099531 4 0 16 30 0.99 100 20
g40d15c0 4 9099594 4 0 31 45 0.95 100 20
g40d15c0 4 9099580 4 0 31 45 0.9995 200 20
g40d15c0 4 9099564 4 0 31 10 0.9995 100 20
g40d15c0 4 9099559 4 0 47 15 0.995 200 20
g40d15c0 4 9099558 4 0 47 25 0.99 200 20
g40d15c0 4 9099545 4 0 47 35 0.95 200 20
g40d15c0 4 9099540 4 0 47 30 0.9 100 60
g40d15c0 4 9099528 4 0 47 30 0.95 200 20
g40d15c0 4 9099500 4 0 47 25 0.9995 100 40
g40d15c0 4 9099587 4 0 63 5 0.99 100 60
g40d15c0 4 9099558 4 0 63 35 0.95 100 40
g40d15c0 4 9099590 4 0 78 40 0.95 100 60
g40d15c0 4 9099580 4 0 78 5 0.995 500 20
g40d15c0 4 9099567 4 0 78 5 0.99 500 20
g40d15c0 4 9099567 4 0 78 10 0.9 100 80
g40d15c0 4 9099562 4 0 78 35 0.9 200 40

 48

Table 7 Parameter values for g60d20c0 sorted by ()π3W

Data File m ()π3W ()π1W ()π2W Time (ms) t0 r l k
g60d20c0 4 46907027 3 0 4907 35 0.9995 1300 160
g60d20c0 4 46907027 3 2 3578 30 0.95 500 360
g60d20c0 4 46907027 3 2 6422 50 0.9995 1300 200
g60d20c0 4 46907027 3 2 8266 40 0.95 1500 280
g60d20c0 4 46907027 3 7 1703 10 0.995 1600 60
g60d20c0 4 46907027 3 7 6610 50 0.99 1100 220
g60d20c0 4 46907026 3 1 10203 35 0.9995 1300 240
g60d20c0 4 46907026 3 2 1547 20 0.995 800 60
g60d20c0 4 46907026 3 2 2547 45 0.9995 1100 80
g60d20c0 4 46907026 3 7 1562 20 0.9995 700 40
g60d20c0 4 46907026 3 7 10938 10 0.99 2000 280
g60d20c0 4 46907026 3 7 21219 20 0.9995 2000 400
g60d20c0 4 46907025 3 1 985 30 0.995 200 120
g60d20c0 4 46907025 3 1 9735 45 0.9995 1300 340
g60d20c0 4 46907025 3 2 3438 50 0.95 500 300
g60d20c0 4 46907025 3 2 13234 35 0.995 1400 320
g60d20c0 4 46907025 3 7 812 25 0.99 100 280
g60d20c0 4 46907025 3 7 1297 25 0.9995 400 80
g60d20c0 4 46907025 3 7 4734 30 0.95 700 360
g60d20c0 4 46907024 3 0 891 5 0.95 300 160

Table 8 Parameter values for g60d20c0 sorted by ()π1W and ()π2W

Data File m ()π3W ()π1W ()π2W Time (ms) t0 r l k
g60d20c0 4 46907027 3 0 4907 35 0.9995 1300 160
g60d20c0 4 46907024 3 0 891 5 0.95 300 160
g60d20c0 4 46907022 3 0 3860 5 0.995 1600 140
g60d20c0 4 46907020 3 0 1610 35 0.95 700 80
g60d20c0 4 46907018 3 0 656 45 0.99 500 60
g60d20c0 4 46907017 3 0 1000 35 0.99 500 60
g60d20c0 4 46907015 3 0 813 5 0.995 1100 20
g60d20c0 4 46907005 3 0 3844 5 0.99 700 260
g60d20c0 4 46907003 3 0 2188 35 0.9 400 300
g60d20c0 4 46907001 3 0 14141 45 0.9995 1500 200
g60d20c0 4 46907001 3 0 1094 10 0.99 200 280
g60d20c0 4 46906999 3 0 7125 40 0.9995 500 360
g60d20c0 4 46906999 3 0 1203 35 0.995 100 180
g60d20c0 4 46906998 3 0 4297 40 0.99 600 240

 49

g60d20c0 4 46906998 3 0 6422 10 0.9995 1400 180
g60d20c0 4 46906997 3 0 2156 5 0.95 400 320
g60d20c0 4 46906997 3 0 2515 5 0.995 900 140
g60d20c0 4 46906996 3 0 7438 10 0.95 1500 280
g60d20c0 4 46906996 3 0 735 5 0.99 500 80
g60d20c0 4 46906994 3 0 1344 35 0.99 400 100

Table 9 Parameter values for g60d20c0 sorted by Running time, ()π1W and ()π2W

Data File m ()π3W ()π1W ()π2W Time(ms) t0 r l k
g60d20c0 4 46906943 3 0 109 45 0.95 300 20
g60d20c0 4 46906950 3 0 125 50 0.9 100 40
g60d20c0 4 46906913 3 0 125 40 0.995 100 60
g60d20c0 4 46906923 3 0 188 20 0.9995 100 100
g60d20c0 4 46906918 3 0 203 45 0.99 100 60
g60d20c0 4 46906944 3 0 219 50 0.9995 400 20
g60d20c0 4 46906930 3 0 219 50 0.9995 500 20
g60d20c0 4 46906921 3 0 250 35 0.99 200 60
g60d20c0 4 46906926 3 0 281 15 0.9995 100 80
g60d20c0 4 46906920 3 0 281 5 0.95 100 140
g60d20c0 4 46906903 3 0 328 50 0.995 600 20
g60d20c0 4 46906946 3 0 343 45 0.99 300 60
g60d20c0 4 46906993 3 0 359 20 0.95 100 180
g60d20c0 4 46906916 3 0 375 50 0.9995 100 180
g60d20c0 4 46906944 3 0 391 35 0.99 100 100
g60d20c0 4 46906971 3 0 406 15 0.9 200 100
g60d20c0 4 46906931 3 0 422 25 0.9995 900 20
g60d20c0 4 46906910 3 0 422 45 0.9995 900 20
g60d20c0 4 46906906 3 0 422 25 0.95 100 180
g60d20c0 4 46906986 3 0 500 30 0.9 100 260

Compromising solution quality and algorithm running time, we decided to use the

following parameter values for our simulated annealing algorithm for all the 50 problem

instances for performance evaluation. These fixed set of parameter values will be used in

the next chapter to compare our simulated annealing algorithm with repeated random

solutions and local optimization.

 50

Table 10 Adopted parameter values for simulated annealing algorithm

t0 r l k
20 0.9995 400 80

 51

Chapter 6

Comparative Study

For combinatorial optimization problems like graph partitioning, comparative study of

algorithms solving the same problem is fundamental to evaluating the algorithm quality.

In this chapter, we design experiments to compare the solution quality and running time

for simulated annealing, local optimization and repeat random algorithms.

6.1 Experiment Design

In this research, 50 random problem instances are generated for algorithm performance

evaluation. Their numbers of vertices range from 20 to 200, expected degrees of each

vertex (number of incident edges) range from 8 to 30, both vertex weights and edge

weights range from 1 to 5, and the number of partitions range from 2 to 8.

All experiments are conducted on a Pentium(R) 4 PC with a 2.53GHz CPU and 512 MB

of RAM, running Microsoft Windows XP Professional.

We run simulated annealing with selective parameter values. The running time will be

generated from 50 problem instances individually. With the same time basis, the

reference algorithms could adopt it for comparability.

The repeat random algorithm and the local optimization algorithm will be used as

reference algorithms to solving the multi-way graph partitioning problem. For the

 52

repeated random algorithm, random solutions will be generated for as long as its

competitor for each problem instance, and report the best solution found.

The parameter values for simulated annealing are selected in Chapter 5: t0 =20,

r =0.9995, l =400 and k = 80.

6.2 Solution Quality of Simulated Annealing

This section reports solution quality and running time of our simulated annealing
algorithm for each of the 50 benchmark problem instances, with the partition number
ranging 2, 4, 6, and 8.

Table 11 Simulated annealing performance for m=2

Data File m ()π3W ()π1W ()π2W Time (ms)
g20d8c0 2 514325 0 0 94
g20d8c1 2 413319 1 0 78
g20d8c2 2 437130 0 0 78
g20d8c3 2 417943 1 0 78
g20d8c4 2 524557 0 0 78
g20d8c5 2 397501 1 0 109
g20d8c6 2 446573 1 0 78
g20d8c7 2 400651 0 0 78
g20d8c8 2 443486 1 0 78
g20d8c9 2 458351 1 0 94
g40d15c0 2 6066948 0 0 250
g40d15c1 2 8854484 0 0 265
g40d15c2 2 5338715 0 0 250
g40d15c3 2 5741993 1 0 297
g40d15c4 2 6515626 1 0 297
g40d15c5 2 6245558 0 0 281
g40d15c6 2 6132098 0 0 265
g40d15c7 2 6864784 0 0 282
g40d15c8 2 7047044 0 0 250
g40d15c9 2 7500066 1 0 265
g60d20c0 2 31271320 1 0 687
g60d20c1 2 33031198 1 0 750
g60d20c2 2 28902854 0 0 547
g60d20c3 2 28974294 0 0 671

 53

g60d20c4 2 33351726 0 0 563
g60d20c5 2 31094151 0 5 546
g60d20c6 2 29845372 1 0 766
g60d20c7 2 29834714 0 0 562
g60d20c8 2 28687775 1 0 719
g60d20c9 2 27935910 1 0 812
g100d30c0 2 225610506 0 0 1563
g100d30c1 2 206073682 1 0 1859
g100d30c2 2 163223962 1 0 2687
g100d30c3 2 203382372 0 0 2781
g100d30c4 2 205191680 1 0 3140
g100d30c5 2 231988111 0 0 1563
g100d30c6 2 176986562 1 0 1531
g100d30c7 2 174884899 1 0 2234
g100d30c8 2 219606111 0 0 1516
g100d30c9 2 206095952 0 0 1562
g200d30c0 2 1384999918 1 0 7515
g200d30c1 2 1705949627 0 0 6344
g200d30c2 2 1751191478 0 0 6453
g200d30c3 2 1647418644 1 0 11531
g200d30c4 2 1522644568 1 0 8235
g200d30c5 2 1628774697 0 0 6312
g200d30c6 2 1735164179 0 0 6546
g200d30c7 2 1705365555 0 0 6547
g200d30c8 2 1542222944 1 0 15391
g200d30c9 2 1619136838 0 0 6468

Table 12 Simulated annealing performance for m=4

Data File m ()π3W ()π1W ()π2W Time (ms)
g20d8c0 4 771450 0 4 110
g20d8c1 4 619996 3 2 125
g20d8c2 4 655714 0 0 109
g20d8c3 4 626903 3 4 109
g20d8c4 4 786843 0 11 94
g20d8c5 4 596222 3 2 93
g20d8c6 4 669863 3 0 110
g20d8c7 4 600757 4 3 94
g20d8c8 4 665259 3 3 94
g20d8c9 4 687549 3 5 125
g40d15c0 4 9099584 4 5 250

 54

g40d15c1 4 13281707 0 4 329
g40d15c2 4 8007178 4 5 297
g40d15c3 4 8612991 3 0 406
g40d15c4 4 9773502 3 0 344
g40d15c5 4 9368366 0 5 266
g40d15c6 4 9198164 0 3 266
g40d15c7 4 10296274 4 0 390
g40d15c8 4 10570565 0 0 328
g40d15c9 4 11250049 3 5 391
g60d20c0 4 46906932 3 1 1094
g60d20c1 4 49546762 3 0 1437
g60d20c2 4 43352454 4 1 813
g60d20c3 4 43459798 4 1 625
g60d20c4 4 50027679 0 0 844
g60d20c5 4 46639526 4 7 578
g60d20c6 4 44767946 3 3 1032
g60d20c7 4 44752097 0 0 563
g60d20c8 4 43031562 3 7 2125
g60d20c9 4 41903789 3 0 1594
g100d30c0 4 338415957 0 1 1484
g100d30c1 4 309110542 3 0 2266
g100d30c2 4 244835849 3 8 2484
g100d30c3 4 305073479 0 0 1469
g100d30c4 4 307787433 3 0 3063
g100d30c5 4 347982191 0 6 1469
g100d30c6 4 265479793 3 2 3640
g100d30c7 4 262327273 3 0 3250
g100d30c8 4 329409214 0 0 1500
g100d30c9 4 309139572 4 0 2578
g200d30c0 4 2077499709 3 1 9703
g200d30c1 4 2558924617 0 0 5875
g200d30c2 4 2626778410 4 0 13188
g200d30c3 4 2471128183 3 3 10672
g200d30c4 4 2283966643 3 0 30984
g200d30c5 4 2443152900 4 0 8812
g200d30c6 4 2602746182 0 0 5797
g200d30c7 4 2558048394 0 3 7390
g200d30c8 4 2313334399 3 0 9922
g200d30c9 4 2428696598 4 0 10203

 55

Table 13 Simulated annealing performance for m=6

Data File m ()π3W ()π1W ()π2W Time (ms)
g20d8c0 6 856891 8 5 109
g20d8c1 6 688874 5 10 94
g20d8c2 6 728285 8 8 110
g20d8c3 6 696537 5 18 78
g20d8c4 6 874254 0 15 109
g20d8c5 6 662473 5 15 94
g20d8c6 6 744313 5 2 93
g20d8c7 6 667450 8 11 94
g20d8c8 6 739159 5 7 78
g20d8c9 6 763921 5 13 79
g40d15c0 6 10110433 8 10 547
g40d15c1 6 14756220 8 8 422
g40d15c2 6 8896624 8 18 250
g40d15c3 6 9569962 5 22 391
g40d15c4 6 10859451 5 10 281
g40d15c5 6 10409292 0 6 250
g40d15c6 6 10219025 8 3 407
g40d15c7 6 11440119 8 4 344
g40d15c8 6 11743724 8 9 562
g40d15c9 6 12499477 9 18 359
g60d20c0 6 52118856 5 6 1032
g60d20c1 6 55050712 9 6 1594
g60d20c2 6 48168986 8 11 610
g60d20c3 6 48288281 8 5 1094
g60d20c4 6 55586359 0 5 625
g60d20c5 6 51821233 8 23 1015
g60d20c6 6 49740977 9 6 829
g60d20c7 6 49722211 8 16 812
g60d20c8 6 47811720 9 21 781
g60d20c9 6 46559751 5 6 1250
g100d30c0 6 376011828 8 5 2953
g100d30c1 6 343452935 9 13 3016
g100d30c2 6 272039791 5 24 2594
g100d30c3 6 338964736 8 10 1375
g100d30c4 6 341982896 9 8 1578
g100d30c5 6 386640729 8 2 3907
g100d30c6 6 294974452 9 4 2968
g100d30c7 6 291471702 9 10 1657
g100d30c8 6 366004348 8 9 1609

 56

g100d30c9 6 343487342 8 2 1516
g200d30c0 6 2308326999 9 6 5844
g200d30c1 6 2843249599 0 3 6531
g200d30c2 6 2918640546 8 0 12813
g200d30c3 6 2745697834 5 2 11391
g200d30c4 6 2537740634 5 8 9610
g200d30c5 6 2714624312 0 10 5343
g200d30c6 6 2891940251 0 3 5375
g200d30c7 6 2842264270 8 8 7719
g200d30c8 6 2570371315 5 5 9157
g200d30c9 6 2698549725 8 7 8922

Table 14 Simulated annealing performance for m=8

Data File m ()π3W ()π1W ()π2W Time (ms)
g20d8c0 8 899601 16 16 94
g20d8c1 8 723029 15 38 78
g20d8c2 8 764992 0 25 78
g20d8c3 8 731382 7 30 78
g20d8c4 8 917384 16 53 78
g20d8c5 8 695368 15 20 78
g20d8c6 8 781104 19 21 109
g20d8c7 8 700801 12 30 78
g20d8c8 8 775862 15 20 94
g20d8c9 8 801866 15 29 93
g40d15c0 8 10615837 12 20 250
g40d15c1 8 15493444 14 23 235
g40d15c2 8 9341391 12 39 406
g40d15c3 8 10048468 7 31 266
g40d15c4 8 11401395 15 19 234
g40d15c5 8 10929718 0 24 234
g40d15c6 8 10729409 16 14 360
g40d15c7 8 12012031 12 24 422
g40d15c8 8 12330287 16 35 359
g40d15c9 8 13125054 7 41 250
g60d20c0 8 54724782 7 19 921
g60d20c1 8 57802669 15 19 2703
g60d20c2 8 50577252 12 15 484
g60d20c3 8 50702496 12 9 1125
g60d20c4 8 58365606 0 4 484

 57

g60d20c5 8 54412076 12 23 687
g60d20c6 8 52229256 7 12 1172
g60d20c7 8 52210763 0 21 485
g60d20c8 8 50203498 7 35 1297
g60d20c9 8 48887739 7 18 1078
g100d30c0 8 394818502 0 15 1250
g100d30c1 8 360628853 7 30 2235
g100d30c2 8 285637264 15 33 2890
g100d30c3 8 355919084 0 25 1328
g100d30c4 8 359085238 7 13 2093
g100d30c5 8 405970040 16 4 3078
g100d30c6 8 309726273 7 22 2562
g100d30c7 8 306048457 7 23 3078
g100d30c8 8 384301950 16 13 3250
g100d30c9 8 360661223 12 17 1344
g200d30c0 8 2423749569 7 6 9094
g200d30c1 8 2985393923 16 14 15594
g200d30c2 8 3064571656 12 2 8188
g200d30c3 8 2882982787 7 2 8000
g200d30c4 8 2664618549 15 18 9453
g200d30c5 8 2850341735 12 9 11312
g200d30c6 8 3036518744 16 11 7954
g200d30c7 8 2984389893 0 12 4921
g200d30c8 8 2698880766 15 5 6406
g200d30c9 8 2833476281 12 14 7922

6.3 Comparisons with Repeat Random Solutions

For each combination of problem instances and partition numbers, we run Repeated

Random for the same amount of time as our simulated annealing algorithm and compare

the resulting solution quality for Repeated Random with that for simulated annealing.

The resulting data are reported in Table 15. In this table, RR denotes Random Repeat,

SA denotes Simulated Annealing, and Diff% is the difference between the summation of

()π1W and ()π2W for Repeated Random and the summation of ()π1W and ()π2W for

simulated annealing, divided by the latter summation. In the last Result column, SA=RR

 58

means that SA and RR have the same solution quality, and SA>RR means that SA

outperforms RR.

Table 15 Performance comparison between RR and SA (m=2, 4, 6, 8)

Data
Files m ()π3W

()π1W
RR

()π2W
RR

()π1W
SA

()π2W
SA

()π1W
Diff.

()π2W
Diff. Diff. % Result

g20d8c0 2 514328 0 0 0 0 0 0 0.00% SA=RR
g20d8c1 2 413352 1 0 1 0 0 0 0.00% SA=RR
g20d8c2 2 437165 0 0 0 0 0 0 0.00% SA=RR
g20d8c3 2 417969 1 0 1 0 0 0 0.00% SA=RR
g20d8c4 2 524580 0 0 0 0 0 0 0.00% SA=RR
g20d8c5 2 397510 1 0 1 0 0 0 0.00% SA=RR
g20d8c6 2 446607 1 0 1 0 0 0 0.00% SA=RR
g20d8c7 2 400663 0 0 0 0 0 0 0.00% SA=RR
g20d8c8 2 443523 1 0 1 0 0 0 0.00% SA=RR
g20d8c9 2 458382 1 1 1 0 0 1 50.00% SA>RR
g40d15c0 2 6067000 0 0 0 0 0 0 0.00% SA=RR
g40d15c1 2 8854525 0 0 0 0 0 0 0.00% SA=RR
g40d15c2 2 5338709 0 5 0 0 0 5 100.00% SA=RR
g40d15c3 2 5742002 1 0 1 0 0 0 0.00% SA=RR
g40d15c4 2 6515679 1 0 1 0 0 0 0.00% SA=RR
g40d15c5 2 6245604 0 0 0 0 0 0 0.00% SA=RR
g40d15c6 2 6132178 0 0 0 0 0 0 0.00% SA=RR
g40d15c7 2 6864822 0 0 0 0 0 0 0.00% SA=RR
g40d15c8 2 7047096 0 0 0 0 0 0 0.00% SA=RR
g40d15c9 2 7500090 1 0 1 0 0 0 0.00% SA=RR
g60d20c0 2 31271366 1 1 1 0 0 1 50.00% SA>RR
g60d20c1 2 33031255 1 0 1 0 0 0 0.00% SA=RR
g60d20c2 2 28902854 0 0 0 0 0 0 0.00% SA=RR
g60d20c3 2 28974425 0 0 0 0 0 0 0.00% SA=RR
g60d20c4 2 33351852 0 0 0 0 0 0 0.00% SA=RR
g60d20c5 2 31094276 0 5 0 5 0 0 0.00% SA=RR
g60d20c6 2 29845363 1 3 1 0 0 3 75.00% SA>RR
g60d20c7 2 29834768 0 0 0 0 0 0 0.00% SA=RR
g60d20c8 2 28687760 1 0 1 0 0 0 0.00% SA=RR
g60d20c9 2 27935895 1 0 1 0 0 0 0.00% SA=RR
g100d30c0 2 225610683 0 0 0 0 0 0 0.00% SA=RR
g100d30c1 2 206073734 1 0 1 0 0 0 0.00% SA=RR
g100d30c2 2 163223939 1 3 1 0 0 3 75.00% SA>RR
g100d30c3 2 203382396 0 0 0 0 0 0 0.00% SA=RR
g100d30c4 2 205191662 1 0 1 0 0 0 0.00% SA=RR

 59

g100d30c5 2 231988261 0 0 0 0 0 0 0.00% SA=RR
g100d30c6 2 176986509 1 0 1 0 0 0 0.00% SA=RR
g100d30c7 2 174884885 1 0 1 0 0 0 0.00% SA=RR
g100d30c8 2 219606207 0 0 0 0 0 0 0.00% SA=RR
g100d30c9 2 206096042 0 0 0 0 0 0 0.00% SA=RR
g200d30c0 2 1384999812 1 1 1 0 0 1 50.00% SA>RR
g200d30c1 2 1705949878 0 0 0 0 0 0 0.00% SA=RR
g200d30c2 2 1751191510 0 0 0 0 0 0 0.00% SA=RR
g200d30c3 2 1647418744 1 0 1 0 0 0 0.00% SA=RR
g200d30c4 2 1522644433 1 0 1 0 0 0 0.00% SA=RR
g200d30c5 2 1628774676 0 0 0 0 0 0 0.00% SA=RR
g200d30c6 2 1735164215 0 0 0 0 0 0 0.00% SA=RR
g200d30c7 2 1705365752 0 0 0 0 0 0 0.00% SA=RR
g200d30c8 2 1542222935 1 0 1 0 0 0 0.00% SA=RR
g200d30c9 2 1619137070 0 0 0 0 0 0 0.00% SA=RR
g20d8c0 4 771015 6 6 0 4 6 2 66.67% SA>RR
g20d8c1 4 619982 3 3 3 2 0 1 16.67% SA>RR
g20d8c2 4 655271 6 4 0 0 6 4 100.00% SA=RR
g20d8c3 4 626884 3 9 3 4 0 5 41.67% SA>RR
g20d8c4 4 786250 6 9 0 11 6 -2 26.67% SA>RR
g20d8c5 4 596205 3 10 3 2 0 8 61.54% SA>RR
g20d8c6 4 669461 7 2 3 0 4 2 66.67% SA>RR
g20d8c7 4 600727 4 3 4 3 0 0 0.00% SA=RR
g20d8c8 4 665213 3 3 3 3 0 0 0.00% SA=RR
g20d8c9 4 687015 7 5 3 5 4 0 33.33% SA>RR
g40d15c0 4 9096036 10 9 4 5 6 4 52.63% SA>RR
g40d15c1 4 13275947 10 4 0 4 10 0 71.43% SA>RR
g40d15c2 4 8005348 6 5 4 5 2 0 18.18% SA>RR
g40d15c3 4 8611129 7 7 3 0 4 7 78.57% SA>RR
g40d15c4 4 9771437 7 1 3 0 4 1 62.50% SA>RR
g40d15c5 4 9366611 6 5 0 5 6 0 54.55% SA>RR
g40d15c6 4 9196337 6 3 0 3 6 0 66.67% SA>RR
g40d15c7 4 10292562 10 1 4 0 6 1 63.64% SA>RR
g40d15c8 4 10570599 0 5 0 0 0 5 100.00% SA>RR
g40d15c9 4 11246399 9 13 3 5 6 8 63.64% SA>RR
g60d20c0 4 46906901 3 7 3 1 0 6 60.00% SA>RR
g60d20c1 4 49539286 9 0 3 0 6 0 66.67% SA>RR
g60d20c2 4 43352399 4 6 4 1 0 5 50.00% SA>RR
g60d20c3 4 43452777 10 4 4 1 6 3 64.29% SA>RR
g60d20c4 4 50024025 6 1 0 0 6 1 100.00% SA>RR
g60d20c5 4 46631960 10 7 4 7 6 0 35.29% SA>RR
g60d20c6 4 44757216 11 4 3 3 8 1 60.00% SA>RR

 60

g60d20c7 4 44748545 6 0 0 0 6 0 100.00% SA>RR
g60d20c8 4 43027921 7 8 3 7 4 1 33.33% SA>RR
g60d20c9 4 41892789 9 0 3 0 6 0 66.67% SA>RR
g100d30c0 4 338319002 18 6 0 1 18 5 95.83% SA>RR
g100d30c1 4 309091721 9 4 3 0 6 4 76.92% SA>RR
g100d30c2 4 244826717 7 9 3 8 4 1 31.25% SA>RR
g100d30c3 4 305064573 6 5 0 0 6 5 100.00% SA>RR
g100d30c4 4 307759365 11 3 3 0 8 3 78.57% SA>RR
g100d30c5 4 347954278 10 6 0 6 10 0 62.50% SA>RR
g100d30c6 4 265470529 7 7 3 2 4 5 64.29% SA>RR
g100d30c7 4 262309230 9 5 3 0 6 5 78.57% SA>RR
g100d30c8 4 329382809 10 2 0 0 10 2 100.00% SA>RR
g100d30c9 4 309139393 4 4 4 0 0 4 50.00% SA>RR
g200d30c0 4 2077481903 7 1 3 1 4 0 50.00% SA>RR
g200d30c1 4 2558796967 16 0 0 0 16 0 100.00% SA>RR
g200d30c2 4 2626617110 18 0 4 0 14 0 77.78% SA>RR
g200d30c3 4 2471056278 13 2 3 3 10 -1 60.00% SA>RR
g200d30c4 4 2283930334 9 5 3 0 6 5 78.57% SA>RR
g200d30c5 4 2443004976 16 0 4 0 12 0 75.00% SA>RR
g200d30c6 4 2602653404 14 2 0 0 14 2 100.00% SA>RR
g200d30c7 4 2557994544 10 0 0 3 10 -3 70.00% SA>RR
g200d30c8 4 2313206084 17 2 3 0 14 2 84.21% SA>RR
g200d30c9 4 2428660203 10 3 4 0 6 3 69.23% SA>RR
g20d8c0 6 854652 26 14 8 5 18 9 67.50% SA>RR
g20d8c1 6 685335 23 18 5 10 18 8 63.41% SA>RR
g20d8c2 6 727002 22 12 8 8 14 4 52.94% SA>RR
g20d8c3 6 693793 27 24 5 18 22 6 54.90% SA>RR
g20d8c4 6 872499 18 23 0 15 18 8 63.41% SA>RR
g20d8c5 6 661990 13 14 5 15 8 -1 25.93% SA>RR
g20d8c6 6 742169 27 7 5 2 22 5 79.41% SA>RR
g20d8c7 6 665769 24 19 8 11 16 8 55.81% SA>RR
g20d8c8 6 738663 13 14 5 7 8 7 55.56% SA>RR
g20d8c9 6 760241 31 23 5 13 26 10 66.67% SA>RR
g40d15c0 6 10105170 22 15 8 10 14 5 51.35% SA>RR
g40d15c1 6 14738938 36 8 8 8 28 0 63.64% SA>RR
g40d15c2 6 8884282 30 13 8 18 22 -5 39.53% SA>RR
g40d15c3 6 9553736 29 21 5 22 24 -1 46.00% SA>RR
g40d15c4 6 10853479 21 11 5 10 16 1 53.13% SA>RR
g40d15c5 6 10398861 24 6 0 6 24 0 80.00% SA>RR
g40d15c6 6 10208030 30 8 8 3 22 5 71.05% SA>RR
g40d15c7 6 11434549 22 12 8 4 14 8 64.71% SA>RR
g40d15c8 6 11731111 28 18 8 9 20 9 63.04% SA>RR

 61

g40d15c9 6 12488601 29 22 9 18 20 4 47.06% SA>RR
g60d20c0 6 52082207 35 15 5 6 30 9 78.00% SA>RR
g60d20c1 6 54998878 43 6 9 6 34 0 69.39% SA>RR
g60d20c2 6 48106890 46 19 8 11 38 8 70.77% SA>RR
g60d20c3 6 48256795 36 9 8 5 28 4 71.11% SA>RR
g60d20c4 6 55553771 34 6 0 5 34 1 87.50% SA>RR
g60d20c5 6 51779847 38 15 8 23 30 -8 41.51% SA>RR
g60d20c6 6 49719563 29 8 9 6 20 2 59.46% SA>RR
g60d20c7 6 49701035 28 8 8 16 20 -8 33.33% SA>RR
g60d20c8 6 47752978 47 20 9 21 38 -1 55.22% SA>RR
g60d20c9 6 46523199 37 8 5 6 32 2 75.56% SA>RR
g100d30c0 6 375923630 36 16 8 5 28 11 75.00% SA>RR
g100d30c1 6 343312727 43 7 9 13 34 -6 56.00% SA>RR
g100d30c2 6 271931353 37 26 5 24 32 2 53.97% SA>RR
g100d30c3 6 338726979 60 14 8 10 52 4 75.68% SA>RR
g100d30c4 6 341889733 37 7 9 8 28 -1 61.36% SA>RR
g100d30c5 6 386482631 46 7 8 2 38 5 81.13% SA>RR
g100d30c6 6 294846942 41 18 9 4 32 14 77.97% SA>RR
g100d30c7 6 291363782 41 14 9 10 32 4 65.45% SA>RR
g100d30c8 6 365793178 56 11 8 9 48 2 74.63% SA>RR
g100d30c9 6 343324512 48 9 8 2 40 7 82.46% SA>RR
g200d30c0 6 2307763475 67 7 9 6 58 1 79.73% SA>RR
g200d30c1 6 2842775723 58 2 0 3 58 -1 95.00% SA>RR
g200d30c2 6 2918247153 52 5 8 0 44 5 85.96% SA>RR
g200d30c3 6 2744892799 79 2 5 2 74 0 91.36% SA>RR
g200d30c4 6 2537415706 47 4 5 8 42 -4 74.51% SA>RR
g200d30c5 6 2714218014 52 10 0 10 52 0 83.87% SA>RR
g200d30c6 6 2891365601 64 3 0 3 64 0 95.52% SA>RR
g200d30c7 6 2841509116 76 6 8 8 68 -2 80.49% SA>RR
g200d30c8 6 2569969149 53 7 5 5 48 2 83.33% SA>RR
g200d30c9 6 2698169272 52 5 8 7 44 -2 73.68% SA>RR
g20d8c0 8 896484 40 25 16 16 24 9 50.77% SA>RR
g20d8c1 8 718304 53 36 15 38 38 -2 40.45% SA>RR
g20d8c2 8 761992 40 27 0 25 40 2 62.69% SA>RR
g20d8c3 8 728607 39 34 7 30 32 4 49.32% SA>RR
g20d8c4 8 912136 56 58 16 53 40 5 39.47% SA>RR
g20d8c5 8 690328 55 29 15 20 40 9 58.33% SA>RR
g20d8c6 8 777701 53 24 19 21 34 3 48.05% SA>RR
g20d8c7 8 698700 38 35 12 30 26 5 42.47% SA>RR
g20d8c8 8 773482 41 23 15 20 26 3 45.31% SA>RR
g20d8c9 8 798156 49 42 15 29 34 13 51.65% SA>RR
g40d15c0 8 10584441 76 25 12 20 64 5 68.32% SA>RR

 62

g40d15c1 8 15483859 44 19 14 23 30 -4 41.27% SA>RR
g40d15c2 8 9320189 60 38 12 39 48 -1 47.96% SA>RR
g40d15c3 8 10023247 63 35 7 31 56 4 61.22% SA>RR
g40d15c4 8 11385588 53 33 15 19 38 14 60.47% SA>RR
g40d15c5 8 10900243 74 20 0 24 74 -4 74.47% SA>RR
g40d15c6 8 10714795 54 22 16 14 38 8 60.53% SA>RR
g40d15c7 8 11995353 54 27 12 24 42 3 55.56% SA>RR
g40d15c8 8 12286252 82 36 16 35 66 1 56.78% SA>RR
g40d15c9 8 13107008 57 38 7 41 50 -3 49.47% SA>RR
g60d20c0 8 54647925 83 32 7 19 76 13 77.39% SA>RR
g60d20c1 8 57739726 73 25 15 19 58 6 65.31% SA>RR
g60d20c2 8 50478646 92 31 12 15 80 16 78.05% SA>RR
g60d20c3 8 50593990 98 13 12 9 86 4 81.08% SA>RR
g60d20c4 8 58282416 86 7 0 4 86 3 95.70% SA>RR
g60d20c5 8 54325669 86 26 12 23 74 3 68.75% SA>RR
g60d20c6 8 52143650 85 14 7 12 78 2 80.81% SA>RR
g60d20c7 8 52150807 72 18 0 21 72 -3 76.67% SA>RR
g60d20c8 8 50045973 119 27 7 35 112 -8 71.23% SA>RR
g60d20c9 8 48836582 67 23 7 18 60 5 72.22% SA>RR
g100d30c0 8 394668642 72 16 0 15 72 1 82.95% SA>RR
g100d30c1 8 360469882 75 28 7 30 68 -2 64.08% SA>RR
g100d30c2 8 285303243 105 32 15 33 90 -1 64.96% SA>RR
g100d30c3 8 355628475 102 22 0 25 102 -3 79.84% SA>RR
g100d30c4 8 358647852 125 14 7 13 118 1 85.61% SA>RR
g100d30c5 8 405700422 98 9 16 4 82 5 81.31% SA>RR
g100d30c6 8 309280568 125 26 7 22 118 4 80.79% SA>RR
g100d30c7 8 305805603 85 23 7 23 78 0 72.22% SA>RR
g100d30c8 8 384046751 94 12 16 13 78 -1 72.64% SA>RR
g100d30c9 8 360308613 108 18 12 17 96 1 76.98% SA>RR
g200d30c0 8 2422869176 127 11 7 6 120 5 90.58% SA>RR
g200d30c1 8 2983134602 196 12 16 14 180 -2 85.58% SA>RR
g200d30c2 8 3063123661 156 2 12 2 144 0 91.14% SA>RR
g200d30c3 8 2880460853 215 7 7 2 208 5 95.95% SA>RR
g200d30c4 8 2663932791 111 17 15 18 96 -1 74.22% SA>RR
g200d30c5 8 2849492245 114 14 12 9 102 5 83.59% SA>RR
g200d30c6 8 3035017644 164 10 16 11 148 -1 84.48% SA>RR
g200d30c7 8 2982717938 174 15 0 12 174 3 93.65% SA>RR
g200d30c8 8 2698350513 95 7 15 5 80 2 80.39% SA>RR
g200d30c9 8 2832733666 116 16 12 14 104 2 80.30% SA>RR

From Table 15 we can conclude that simulated annealing is better than Repeat Random

when the partition number is large and the vertex number is larger. For graph bisection

 63

(partition number = 2), simulated annealing and Repeat Random generate similar results.

In terms of the summation of ()π1W and ()π2W , simulated annealing outperforms Repeat

Random by 16.67% to 100%.

6.4 Comparisons with Local Optimization

For each combination of problem instances and partition numbers, we run Local

Optimization and our simulated annealing algorithm and compare the resulting solution

quality for Local Optimization with that for simulated annealing. The resulting data are

reported in Table 16. In this table, LO denotes Local Optimization, SA denotes

Simulated Annealing, and Diff% is the difference between the summation of ()π1W and

()π2W for Local Optimization and the summation of ()π1W and ()π2W for simulated

annealing, divided by the latter summation. In the last Result column, SA=LO means that

SA and LO have the same solution quality, and SA>LO means that SA outperforms LO.

Table 16 Performance comparison between LO and SA (m=2, 4, 6, 8)

Data
Files m

()π3W
LO

()π1W
LO

()π2W
LO

()π1W
SA

()π2W
SA

()π1W
Diff.

()π2W
Diff. Diff. % Result

g20d8c0 2 514334 0 0 0 0 0 0 0.00% SA=LO
g20d8c1 2 413341 1 0 1 0 0 0 0.00% SA=LO
g20d8c2 2 437151 0 0 0 0 0 0 0.00% SA=LO
g20d8c3 2 417955 1 0 1 0 0 0 0.00% SA=LO
g20d8c4 2 524575 0 0 0 0 0 0 0.00% SA=LO
g20d8c5 2 397498 1 5 1 0 0 5 83.33% SA>LO
g20d8c6 2 446601 1 0 1 0 0 0 0.00% SA=LO
g20d8c7 2 400641 0 0 0 0 0 0 0.00% SA=LO
g20d8c8 2 443508 1 0 1 0 0 0 0.00% SA=LO
g20d8c9 2 458365 1 1 1 0 0 1 50.00% SA>LO
g40d15c0 2 6066969 0 1 0 0 0 1 100.00% SA>LO
g40d15c1 2 8854514 0 0 0 0 0 0 0.00% SA=LO
g40d15c2 2 5338716 0 5 0 0 0 5 100.00% SA>LO
g40d15c3 2 5742026 1 0 1 0 0 0 0.00% SA=LO

 64

g40d15c4 2 6515694 1 0 1 0 0 0 0.00% SA=LO
g40d15c5 2 6245600 0 2 0 0 0 2 100.00% SA>LO
g40d15c6 2 6132147 0 3 0 0 0 3 100.00% SA>LO
g40d15c7 2 6864803 0 0 0 0 0 0 0.00% SA=LO
g40d15c8 2 7047078 0 0 0 0 0 0 0.00% SA=LO
g40d15c9 2 7500013 1 4 1 0 0 4 80.00% SA>LO
g60d20c0 2 31271250 1 1 1 0 0 1 50.00% SA>LO
g60d20c1 2 33031146 1 0 1 0 0 0 0.00% SA=LO
g60d20c2 2 28902754 0 0 0 0 0 0 0.00% SA=LO
g60d20c3 2 28974316 0 1 0 0 0 1 100.00% SA>LO
g60d20c4 2 33351754 0 0 0 0 0 0 0.00% SA=LO
g60d20c5 2 31094195 0 5 0 5 0 0 0.00% SA=LO
g60d20c6 2 29845272 1 3 1 0 0 3 75.00% SA>LO
g60d20c7 2 29834662 0 0 0 0 0 0 0.00% SA=LO
g60d20c8 2 28687686 1 0 1 0 0 0 0.00% SA=LO
g60d20c9 2 27935824 1 0 1 0 0 0 0.00% SA=LO
g100d30c0 2 225610511 0 0 0 0 0 0 0.00% SA=LO
g100d30c1 2 206073651 1 0 1 0 0 0 0.00% SA=LO
g100d30c2 2 163223911 1 0 1 0 0 0 0.00% SA=LO
g100d30c3 2 203382267 0 0 0 0 0 0 0.00% SA=LO
g100d30c4 2 205191572 1 0 1 0 0 0 0.00% SA=LO
g100d30c5 2 231987925 0 0 0 0 0 0 0.00% SA=LO
g100d30c6 2 176986484 1 0 1 0 0 0 0.00% SA=LO
g100d30c7 2 174884793 1 0 1 0 0 0 0.00% SA=LO
g100d30c8 2 219606035 0 0 0 0 0 0 0.00% SA=LO
g100d30c9 2 206095919 0 0 0 0 0 0 0.00% SA=LO
g200d30c0 2 1384999832 1 1 1 0 0 1 50.00% SA>LO
g200d30c1 2 1705949570 0 0 0 0 0 0 0.00% SA=LO
g200d30c2 2 1751191201 0 0 0 0 0 0 0.00% SA=LO
g200d30c3 2 1647418647 1 0 1 0 0 0 0.00% SA=LO
g200d30c4 2 1522644381 1 0 1 0 0 0 0.00% SA=LO
g200d30c5 2 1628774459 0 0 0 0 0 0 0.00% SA=LO
g200d30c6 2 1735163940 0 0 0 0 0 0 0.00% SA=LO
g200d30c7 2 1705365512 0 0 0 0 0 0 0.00% SA=LO
g200d30c8 2 1542222814 1 0 1 0 0 0 0.00% SA=LO
g200d30c9 2 1619136837 0 1 0 0 0 1 100.00% SA>LO
g20d8c0 4 771472 0 4 0 4 0 0 0.00% SA=LO
g20d8c1 4 620015 3 5 3 2 0 3 37.50% SA>LO
g20d8c2 4 655726 0 4 0 0 0 4 100.00% SA>LO
g20d8c3 4 626891 3 9 3 4 0 5 41.67% SA>LO
g20d8c4 4 786837 0 13 0 11 0 2 15.38% SA>LO
g20d8c5 4 596222 3 8 3 2 0 6 54.55% SA>LO

 65

g20d8c6 4 669882 3 2 3 0 0 2 40.00% SA>LO
g20d8c7 4 600761 4 7 4 3 0 4 36.36% SA>LO
g20d8c8 4 665242 3 5 3 3 0 2 25.00% SA>LO
g20d8c9 4 687545 3 8 3 5 0 3 27.27% SA>LO
g40d15c0 4 9099585 4 9 4 5 0 4 30.77% SA>LO
g40d15c1 4 13281721 0 8 0 4 0 4 50.00% SA>LO
g40d15c2 4 8007193 4 5 4 5 0 0 0.00% SA=LO
g40d15c3 4 8613004 3 7 3 0 0 7 70.00% SA>LO
g40d15c4 4 9773509 3 5 3 0 0 5 62.50% SA>LO
g40d15c5 4 9368386 0 7 0 5 0 2 28.57% SA>LO
g40d15c6 4 9198193 0 3 0 3 0 0 0.00% SA=LO
g40d15c7 4 10296304 4 1 4 0 0 1 20.00% SA>LO
g40d15c8 4 10570604 0 10 0 0 0 10 100.00% SA>LO
g40d15c9 4 11250081 3 9 3 5 0 4 33.33% SA>LO
g60d20c0 4 46906934 3 6 3 1 0 5 55.56% SA>LO
g60d20c1 4 49546703 3 0 3 0 0 0 0.00% SA=LO
g60d20c2 4 43352376 4 2 4 1 0 1 16.67% SA>LO
g60d20c3 4 43459767 4 5 4 1 0 4 44.44% SA>LO
g60d20c4 4 50027664 0 1 0 0 0 1 100.00% SA>LO
g60d20c5 4 46639442 4 12 4 7 0 5 31.25% SA>LO
g60d20c6 4 44767962 3 4 3 3 0 1 14.29% SA>LO
g60d20c7 4 44752032 0 0 0 0 0 0 0.00% SA=LO
g60d20c8 4 43031562 3 8 3 7 0 1 9.09% SA>LO
g60d20c9 4 41903765 3 4 3 0 0 4 57.14% SA>LO
g100d30c0 4 338415875 0 5 0 1 0 4 80.00% SA>LO
g100d30c1 4 309110374 3 4 3 0 0 4 57.14% SA>LO
g100d30c2 4 244835848 3 9 3 8 0 1 8.33% SA>LO
g100d30c3 4 305073412 0 5 0 0 0 5 100.00% SA>LO
g100d30c4 4 307787271 3 3 3 0 0 3 50.00% SA>LO
g100d30c5 4 347982149 0 7 0 6 0 1 14.29% SA>LO
g100d30c6 4 265479656 3 7 3 2 0 5 50.00% SA>LO
g100d30c7 4 262327210 3 2 3 0 0 2 40.00% SA>LO
g100d30c8 4 329409082 0 5 0 0 0 5 100.00% SA>LO
g100d30c9 4 309139530 4 4 4 0 0 4 50.00% SA>LO
g200d30c0 4 2077499676 3 2 3 1 0 1 20.00% SA>LO
g200d30c1 4 2558924455 0 0 0 0 0 0 0.00% SA=LO
g200d30c2 4 2626778230 4 0 4 0 0 0 0.00% SA=LO
g200d30c3 4 2471128054 3 5 3 3 0 2 25.00% SA>LO
g200d30c4 4 2283966634 3 5 3 0 0 5 62.50% SA>LO
g200d30c5 4 2443152833 4 0 4 0 0 0 0.00% SA=LO
g200d30c6 4 2602746069 0 2 0 0 0 2 100.00% SA>LO
g200d30c7 4 2558048376 0 8 0 3 0 5 62.50% SA>LO

 66

g200d30c8 4 2313334176 3 2 3 0 0 2 40.00% SA>LO
g200d30c9 4 2428696576 4 3 4 0 0 3 42.86% SA>LO
g20d8c0 6 856898 8 6 8 5 0 1 7.14% SA>LO
g20d8c1 6 688885 5 12 5 10 0 2 11.76% SA>LO
g20d8c2 6 728302 8 12 8 8 0 4 20.00% SA>LO
g20d8c3 6 696576 5 19 5 18 0 1 4.17% SA>LO
g20d8c4 6 874266 0 19 0 15 0 4 21.05% SA>LO
g20d8c5 6 662464 5 20 5 15 0 5 20.00% SA>LO
g20d8c6 6 744309 5 6 5 2 0 4 36.36% SA>LO
g20d8c7 6 667455 8 16 8 11 0 5 20.83% SA>LO
g20d8c8 6 739166 5 8 5 7 0 1 7.69% SA>LO
g20d8c9 6 763940 5 14 5 13 0 1 5.26% SA>LO
g40d15c0 6 10110439 8 14 8 10 0 4 18.18% SA>LO
g40d15c1 6 14756216 8 9 8 8 0 1 5.88% SA>LO
g40d15c2 6 8896675 8 23 8 18 0 5 16.13% SA>LO
g40d15c3 6 9570014 5 27 5 22 0 5 15.63% SA>LO
g40d15c4 6 10859415 5 14 5 10 0 4 21.05% SA>LO
g40d15c5 6 10409298 0 10 0 6 0 4 40.00% SA>LO
g40d15c6 6 10219050 8 7 8 3 0 4 26.67% SA>LO
g40d15c7 6 11440104 8 10 8 4 0 6 33.33% SA>LO
g40d15c8 6 11743750 8 11 8 9 0 2 10.53% SA>LO
g40d15c9 6 12499480 9 22 9 18 0 4 12.90% SA>LO
g60d20c0 6 52118786 5 14 5 6 0 8 42.11% SA>LO
g60d20c1 6 55050682 9 10 9 6 0 4 21.05% SA>LO
g60d20c2 6 48168919 8 14 8 11 0 3 13.64% SA>LO
g60d20c3 6 48288230 8 9 8 5 0 4 23.53% SA>LO
g60d20c4 6 55586325 0 6 0 5 0 1 16.67% SA>LO
g60d20c5 6 51821197 8 25 8 23 0 2 6.06% SA>LO
g60d20c6 6 49740961 9 8 9 6 0 2 11.76% SA>LO
g60d20c7 6 49722188 8 16 8 16 0 0 0.00% SA=LO
g60d20c8 6 47811646 9 25 9 21 0 4 11.76% SA>LO
g60d20c9 6 46559724 5 10 5 6 0 4 26.67% SA>LO
g100d30c0 6 376011795 8 17 8 5 0 12 48.00% SA>LO
g100d30c1 6 343453002 9 18 9 13 0 5 18.52% SA>LO
g100d30c2 6 272039748 5 27 5 24 0 3 9.38% SA>LO
g100d30c3 6 338964698 8 12 8 10 0 2 10.00% SA>LO
g100d30c4 6 341982832 9 10 9 8 0 2 10.53% SA>LO
g100d30c5 6 386640701 8 7 8 2 0 5 33.33% SA>LO
g100d30c6 6 294974441 9 13 9 4 0 9 40.91% SA>LO
g100d30c7 6 291471700 9 14 9 10 0 4 17.39% SA>LO
g100d30c8 6 366004391 8 14 8 9 0 5 22.73% SA>LO
g100d30c9 6 343487333 8 9 8 2 0 7 41.18% SA>LO

 67

g200d30c0 6 2308327186 9 7 9 6 0 1 6.25% SA>LO
g200d30c1 6 2843249420 0 5 0 3 0 2 40.00% SA>LO
g200d30c2 6 2918640509 8 5 8 0 0 5 38.46% SA>LO
g200d30c3 6 2745697734 5 5 5 2 0 3 30.00% SA>LO
g200d30c4 6 2537740740 5 11 5 8 0 3 18.75% SA>LO
g200d30c5 6 2714624314 0 10 0 10 0 0 0.00% SA=LO
g200d30c6 6 2891940118 0 3 0 3 0 0 0.00% SA=LO
g200d30c7 6 2842264272 8 9 8 8 0 1 5.88% SA>LO
g200d30c8 6 2570371328 5 7 5 5 0 2 16.67% SA>LO
g200d30c9 6 2698549741 8 8 8 7 0 1 6.25% SA>LO
g20d8c0 8 899608 16 21 16 16 0 5 13.51% SA>LO
g20d8c1 8 723028 15 41 15 38 0 3 5.36% SA>LO
g20d8c2 8 764583 14 24 0 25 14 -1 34.21% SA>LO
g20d8c3 8 730837 19 27 7 30 12 -3 19.57% SA>LO
g20d8c4 8 916814 22 54 16 53 6 1 9.21% SA>LO
g20d8c5 8 695356 15 30 15 20 0 10 22.22% SA>LO
g20d8c6 8 781101 19 22 19 21 0 1 2.44% SA>LO
g20d8c7 8 700803 12 32 12 30 0 2 4.55% SA>LO
g20d8c8 8 775871 15 23 15 20 0 3 7.89% SA>LO
g20d8c9 8 801875 15 32 15 29 0 3 6.38% SA>LO
g40d15c0 8 10615883 12 22 12 20 0 2 5.88% SA>LO
g40d15c1 8 15493452 14 24 14 23 0 1 2.63% SA>LO
g40d15c2 8 9341382 12 40 12 39 0 1 1.92% SA>LO
g40d15c3 8 10048476 7 33 7 31 0 2 5.00% SA>LO
g40d15c4 8 11401411 15 30 15 19 0 11 24.44% SA>LO
g40d15c5 8 10929760 0 27 0 24 0 3 11.11% SA>LO
g40d15c6 8 10729407 16 19 16 14 0 5 14.29% SA>LO
g40d15c7 8 12011991 12 26 12 24 0 2 5.26% SA>LO
g40d15c8 8 12330288 16 38 16 35 0 3 5.88% SA>LO
g40d15c9 8 13125073 7 46 7 41 0 5 10.42% SA>LO
g60d20c0 8 54724752 7 28 7 19 0 9 34.62% SA>LO
g60d20c1 8 57802658 15 20 15 19 0 1 2.94% SA>LO
g60d20c2 8 50577216 12 19 12 15 0 4 14.81% SA>LO
g60d20c3 8 50702473 12 13 12 9 0 4 19.05% SA>LO
g60d20c4 8 58365642 0 7 0 4 0 3 75.00% SA>LO
g60d20c5 8 54412051 12 35 12 23 0 12 34.29% SA>LO
g60d20c6 8 52229244 7 14 7 12 0 2 10.53% SA>LO
g60d20c7 8 52210787 0 25 0 21 0 4 19.05% SA>LO
g60d20c8 8 50203484 7 37 7 35 0 2 4.76% SA>LO
g60d20c9 8 48887731 7 25 7 18 0 7 28.00% SA>LO
g100d30c0 8 394818477 0 24 0 15 0 9 60.00% SA>LO
g100d30c1 8 360628818 7 33 7 30 0 3 8.11% SA>LO

 68

g100d30c2 8 285637226 15 40 15 33 0 7 14.58% SA>LO
g100d30c3 8 355919030 0 27 0 25 0 2 8.00% SA>LO
g100d30c4 8 359085203 7 14 7 13 0 1 5.00% SA>LO
g100d30c5 8 405969937 16 9 16 4 0 5 25.00% SA>LO
g100d30c6 8 309726257 7 26 7 22 0 4 13.79% SA>LO
g100d30c7 8 306048434 7 25 7 23 0 2 6.67% SA>LO
g100d30c8 8 384301935 16 14 16 13 0 1 3.45% SA>LO
g100d30c9 8 360661242 12 18 12 17 0 1 3.45% SA>LO
g200d30c0 8 2423749484 7 13 7 6 0 7 53.85% SA>LO
g200d30c1 8 2985393878 16 16 16 14 0 2 6.67% SA>LO
g200d30c2 8 3064571547 12 5 12 2 0 3 21.43% SA>LO
g200d30c3 8 2882982712 7 7 7 2 0 5 55.56% SA>LO
g200d30c4 8 2664618735 15 22 15 18 0 4 12.12% SA>LO
g200d30c5 8 2850341650 12 15 12 9 0 6 28.57% SA>LO
g200d30c6 8 3036518778 16 14 16 11 0 3 11.11% SA>LO
g200d30c7 8 2984389772 0 13 0 12 0 1 8.33% SA>LO
g200d30c8 8 2698880793 15 9 15 5 0 4 20.00% SA>LO
g200d30c9 8 2833476297 12 19 12 14 0 5 19.23% SA>LO

From Table 16 we can conclude that the performance for simulated annealing is

improved in ()π1W and ()π2W when either vertex number or partition number increases.

Graph bisections show the same result for local optimization and simulated annealing.

When the partition number increases to 4, 6 and 8, the performance is obviously better in

simulated annealing. In terms of the summation of ()π1W and ()π2W , simulated

annealing outperforms local optimization by 1.92 % to 100%.

But simulated annealing runs much longer than local optimization. For our benchmark

problem instances, simulated annealing runs about 6 to 100 times longer than local

optimization.

 69

6.5 Summary of Solution Quality Comparisons

Table 17 compares values for both ()π1W and ()π2W among Repeated Random, Local

Optimization, and Simulated Annealing.

Table 17 Comparisons of ()π1W and ()π2W for RR, LO and SA

Data
Files m

()π1W
RR

()π2W
RR

()π1W
LO

()π2W
LO

()π1W
LO

()π2W
SA

Result

g20d8c0 2 0 0 0 0 0 0 SA=LO=RR
g20d8c1 2 1 0 1 0 1 0 SA=LO=RR
g20d8c2 2 0 0 0 0 0 0 SA=LO=RR
g20d8c3 2 1 0 1 0 1 0 SA=LO=RR
g20d8c4 2 0 0 0 0 0 0 SA=LO=RR
g20d8c5 2 1 0 1 5 1 0 SA=RR>LO
g20d8c6 2 1 0 1 0 1 0 SA=LO=RR
g20d8c7 2 0 0 0 0 0 0 SA=LO=RR
g20d8c8 2 1 0 1 0 1 0 SA=LO=RR
g20d8c9 2 1 1 1 1 1 0 SA>LO=RR
g40d15c0 2 0 0 0 1 0 0 SA=RR>LO
g40d15c1 2 0 0 0 0 0 0 SA=LO=RR
g40d15c2 2 0 5 0 5 0 0 SA>LO=RR
g40d15c3 2 1 0 1 0 1 0 SA=LO=RR
g40d15c4 2 1 0 1 0 1 0 SA=LO=RR
g40d15c5 2 0 0 0 2 0 0 SA=RR>LO
g40d15c6 2 0 0 0 3 0 0 SA=RR>LO
g40d15c7 2 0 0 0 0 0 0 SA=LO=RR
g40d15c8 2 0 0 0 0 0 0 SA=LO=RR
g40d15c9 2 1 0 1 4 1 0 SA=RR>LO
g60d20c0 2 1 1 1 1 1 0 SA>LO=RR
g60d20c1 2 1 0 1 0 1 0 SA=LO=RR
g60d20c2 2 0 0 0 0 0 0 SA=LO=RR
g60d20c3 2 0 0 0 1 0 0 SA=RR>LO
g60d20c4 2 0 0 0 0 0 0 SA=LO=RR
g60d20c5 2 0 5 0 5 0 5 SA=LO=RR
g60d20c6 2 1 3 1 3 1 0 SA>LO=RR
g60d20c7 2 0 0 0 0 0 0 SA=LO=RR
g60d20c8 2 1 0 1 0 1 0 SA=LO=RR
g60d20c9 2 1 0 1 0 1 0 SA=LO=RR

 70

g100d30c0 2 0 0 0 0 0 0 SA=LO=RR
g100d30c1 2 1 0 1 0 1 0 SA=LO=RR
g100d30c2 2 1 3 1 0 1 0 SA=LO>RR
g100d30c3 2 0 0 0 0 0 0 SA=LO=RR
g100d30c4 2 1 0 1 0 1 0 SA=LO=RR
g100d30c5 2 0 0 0 0 0 0 SA=LO=RR
g100d30c6 2 1 0 1 0 1 0 SA=LO=RR
g100d30c7 2 1 0 1 0 1 0 SA=LO=RR
g100d30c8 2 0 0 0 0 0 0 SA=LO=RR
g100d30c9 2 0 0 0 0 0 0 SA=LO=RR
g200d30c0 2 1 1 1 1 1 0 SA>LO=RR
g200d30c1 2 0 0 0 0 0 0 SA=LO=RR
g200d30c2 2 0 0 0 0 0 0 SA=LO=RR
g200d30c3 2 1 0 1 0 1 0 SA=LO=RR
g200d30c4 2 1 0 1 0 1 0 SA=LO=RR
g200d30c5 2 0 0 0 0 0 0 SA=LO=RR
g200d30c6 2 0 0 0 0 0 0 SA=LO=RR
g200d30c7 2 0 0 0 0 0 0 SA=LO=RR
g200d30c8 2 1 0 1 0 1 0 SA=LO=RR
g200d30c9 2 0 0 0 1 0 0 SA=RR>LO
g20d8c0 4 6 6 0 4 0 4 SA=LO>RR
g20d8c1 4 3 3 3 5 3 2 SA>RR>LO
g20d8c2 4 6 4 0 4 0 0 SA>LO>RR
g20d8c3 4 3 9 3 9 3 4 SA>LO=RR
g20d8c4 4 6 9 0 13 0 11 SA>LO>RR
g20d8c5 4 3 10 3 8 3 2 SA>LO>RR
g20d8c6 4 7 2 3 2 3 0 SA>LO>RR
g20d8c7 4 4 3 4 7 4 3 SA=RR>LO
g20d8c8 4 3 3 3 5 3 3 SA=RR>LO
g20d8c9 4 7 5 3 8 3 5 SA>LO>RR
g40d15c0 4 10 9 4 9 4 5 SA>LO>RR
g40d15c1 4 10 4 0 8 0 4 SA>LO>RR
g40d15c2 4 6 5 4 5 4 5 SA=LO>RR
g40d15c3 4 7 7 3 7 3 0 SA>LO>RR
g40d15c4 4 7 1 3 5 3 0 SA>LO>RR
g40d15c5 4 6 5 0 7 0 5 SA>LO>RR
g40d15c6 4 6 3 0 3 0 3 SA=LO>RR
g40d15c7 4 10 1 4 1 4 0 SA>LO>RR
g40d15c8 4 0 5 0 10 0 0 SA>RR>LO
g40d15c9 4 9 13 3 9 3 5 SA>LO>RR
g60d20c0 4 3 7 3 6 3 1 SA>RR>LO
g60d20c1 4 9 0 3 0 3 0 SA=LO>RR

 71

g60d20c2 4 4 6 4 2 4 1 SA>RR>LO
g60d20c3 4 10 4 4 5 4 1 SA>RR>LO
g60d20c4 4 6 1 0 1 0 0 SA>RR>LO
g60d20c5 4 10 7 4 12 4 7 SA>RR>LO
g60d20c6 4 11 4 3 4 3 3 SA>RR>LO
g60d20c7 4 6 0 0 0 0 0 SA=LO>RR
g60d20c8 4 7 8 3 8 3 7 SA>RR>LO
g60d20c9 4 9 0 3 4 3 0 SA>RR>LO
g100d30c0 4 18 6 0 5 0 1 SA>RR>LO
g100d30c1 4 9 4 3 4 3 0 SA>RR>LO
g100d30c2 4 7 9 3 9 3 8 SA>RR>LO
g100d30c3 4 6 5 0 5 0 0 SA>RR>LO
g100d30c4 4 11 3 3 3 3 0 SA>RR>LO
g100d30c5 4 10 6 0 7 0 6 SA>RR>LO
g100d30c6 4 7 7 3 7 3 2 SA>RR>LO
g100d30c7 4 9 5 3 2 3 0 SA>RR>LO
g100d30c8 4 10 2 0 5 0 0 SA>RR>LO
g100d30c9 4 4 4 4 4 4 0 SA>LO=RR
g200d30c0 4 7 1 3 2 3 1 SA>RR>LO
g200d30c1 4 16 0 0 0 0 0 SA=LO>RR
g200d30c2 4 18 0 4 0 4 0 SA=LO>RR
g200d30c3 4 13 2 3 5 3 3 SA>RR>LO
g200d30c4 4 9 5 3 5 3 0 SA>RR>LO
g200d30c5 4 16 0 4 0 4 0 SA=LO>RR
g200d30c6 4 14 2 0 2 0 0 SA>LO>RR
g200d30c7 4 10 0 0 8 0 3 SA>LO>RR
g200d30c8 4 17 2 3 2 3 0 SA>LO>RR
g200d30c9 4 10 3 4 3 4 0 SA>LO>RR
g20d8c0 6 26 14 8 6 8 5 SA>LO>RR
g20d8c1 6 23 18 5 12 5 10 SA>LO>RR
g20d8c2 6 22 12 8 12 8 8 SA>LO>RR
g20d8c3 6 27 24 5 19 5 18 SA>LO>RR
g20d8c4 6 18 23 0 19 0 15 SA>LO>RR
g20d8c5 6 13 14 5 20 5 15 SA>LO>RR
g20d8c6 6 27 7 5 6 5 2 SA>LO>RR
g20d8c7 6 24 19 8 16 8 11 SA>LO>RR
g20d8c8 6 13 14 5 8 5 7 SA>LO>RR
g20d8c9 6 31 23 5 14 5 13 SA>LO>RR
g40d15c0 6 22 15 8 14 8 10 SA>LO>RR
g40d15c1 6 36 8 8 9 8 8 SA>LO>RR
g40d15c2 6 30 13 8 23 8 18 SA>LO>RR
g40d15c3 6 29 21 5 27 5 22 SA>LO>RR

 72

g40d15c4 6 21 11 5 14 5 10 SA>LO>RR
g40d15c5 6 24 6 0 10 0 6 SA>LO>RR
g40d15c6 6 30 8 8 7 8 3 SA>LO>RR
g40d15c7 6 22 12 8 10 8 4 SA>LO>RR
g40d15c8 6 28 18 8 11 8 9 SA>LO>RR
g40d15c9 6 29 22 9 22 9 18 SA>LO>RR
g60d20c0 6 35 15 5 14 5 6 SA>LO>RR
g60d20c1 6 43 6 9 10 9 6 SA>LO>RR
g60d20c2 6 46 19 8 14 8 11 SA>LO>RR
g60d20c3 6 36 9 8 9 8 5 SA>LO>RR
g60d20c4 6 34 6 0 6 0 5 SA>LO>RR
g60d20c5 6 38 15 8 25 8 23 SA>LO>RR
g60d20c6 6 29 8 9 8 9 6 SA>LO>RR
g60d20c7 6 28 8 8 16 8 16 SA>LO>RR
g60d20c8 6 47 20 9 25 9 21 SA>LO>RR
g60d20c9 6 37 8 5 10 5 6 SA>LO>RR
g100d30c0 6 36 16 8 17 8 5 SA>LO>RR
g100d30c1 6 43 7 9 18 9 13 SA>LO>RR
g100d30c2 6 37 26 5 27 5 24 SA>LO>RR
g100d30c3 6 60 14 8 12 8 10 SA>LO>RR
g100d30c4 6 37 7 9 10 9 8 SA>LO>RR
g100d30c5 6 46 7 8 7 8 2 SA>LO>RR
g100d30c6 6 41 18 9 13 9 4 SA>LO>RR
g100d30c7 6 41 14 9 14 9 10 SA>LO>RR
g100d30c8 6 56 11 8 14 8 9 SA>LO>RR
g100d30c9 6 48 9 8 9 8 2 SA>LO>RR
g200d30c0 6 67 7 9 7 9 6 SA>LO>RR
g200d30c1 6 58 2 0 5 0 3 SA>LO>RR
g200d30c2 6 52 5 8 5 8 0 SA>LO>RR
g200d30c3 6 79 2 5 5 5 2 SA>LO>RR
g200d30c4 6 47 4 5 11 5 8 SA>LO>RR
g200d30c5 6 52 10 0 10 0 10 SA=LO>RR
g200d30c6 6 64 3 0 3 0 3 SA=LO>RR
g200d30c7 6 76 6 8 9 8 8 SA>LO>RR
g200d30c8 6 53 7 5 7 5 5 SA>LO>RR
g200d30c9 6 52 5 8 8 8 7 SA>LO>RR
g20d8c0 8 40 25 16 21 16 16 SA>LO>RR
g20d8c1 8 53 36 15 41 15 38 SA>LO>RR
g20d8c2 8 40 27 14 24 0 25 SA>LO>RR
g20d8c3 8 39 34 19 27 7 30 SA>LO>RR
g20d8c4 8 56 58 22 54 16 53 SA>LO>RR
g20d8c5 8 55 29 15 30 15 20 SA>LO>RR

 73

g20d8c6 8 53 24 19 22 19 21 SA>LO>RR
g20d8c7 8 38 35 12 32 12 30 SA>LO>RR
g20d8c8 8 41 23 15 23 15 20 SA>LO>RR
g20d8c9 8 49 42 15 32 15 29 SA>LO>RR
g40d15c0 8 76 25 12 22 12 20 SA>LO>RR
g40d15c1 8 44 19 14 24 14 23 SA>LO>RR
g40d15c2 8 60 38 12 40 12 39 SA>LO>RR
g40d15c3 8 63 35 7 33 7 31 SA>LO>RR
g40d15c4 8 53 33 15 30 15 19 SA>LO>RR

Based on the above table we can observe that the performance for SA is equal to those

for LO and RR when the vertex number is small or the partition number is small, and the

performance for SA is better than LO, which is in turn better than RR, when the vertex

number is large and the partition number is large.

 74

Chapter 7

Conclusion

This dissertation used multi-way graph partitioning to model the distributed component

allocation problem on clustered application servers, and used simulated annealing as the

meta-heuristic for deriving efficient solution heuristics for optimized distributed

component allocations that will maximize computation work load balance and minimize

inter-machine communication overhead. The efficient solution to this problem has

important implications in improving the scalability and availability of today’s e-

commerce portals.

The major contributions of this research include:

• Adopting multi-way graph partition as the mathematical model for addressing a

practical problem critical to the performance of e-commerce portals.

• Proving that this problem is NP-hard, so no efficient algorithms could ever be

designed to produce optimal solutions to it in practical time.

• Designing a problem transformation algorithm to convert the problem with

multiple objective functions into an equivalent typical combinatorial optimization

problem.

• Studying and designing efficient solution neighborhood structures

 75

• Deriving incremental objective function evaluation that can improve the

performance of any iterative solution heuristics.

• Deriving efficient heuristic solutions based on simulated annealing, and studying

the sensitivity of its performance to its parameter values.

Potential future works include

• Adopting more recent research results in simulated annealing;

• Adopting alternative meta-heuristics like tabu search;

• Extending the mathematical model to reflect more complex properties of hosted

computing based on distributed components.

 76

References

[1] Christian Blum, “Metaheuristics in combinatorial optimization: overview and
conceptual comparison,” ACM Computing Surveys, Vol. 35, No. 3, September 2003,
pp. 268-308

[2] T. N. Bui and B. R. Moon, “Genetic Algorithm and Graph Partitioning,” IEEE
Trans. On Computers, vol. 45, no. 7, July 1986

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979

[4] F. Glover and G. A. Kochenberger, Handbook of Metaheuristics, Kluwer Academic
Publishers, 2003

[5] F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997

[6] F. Glover, “Future Paths for integer programming and links to artificial
intelligence,” Computers and Operations Research, 13, 1986, 533-549

[7] F. Glover , “Heuristics for integer programming using surrogate constraints,” Dec.
Sci., 8, 1977, 156-166

[8] D.E. Goldberg, “Genetic Algorithm in Search, Optimization & Machine Learning,”
Addison Wesley, 1989

[9] A. Goscinski, Distributed Operating Systems: The Logical Design, Addison-
Wesley, Reading, Mass., 1991

[10] Object Management Group, www.omg.org

[11] B. Hajek, “Cooling schedules for optimal annealing.” Math Operations Research,
13, 311-329, 1988

[12] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimization by
Simulated Annealing: an Experimental Evaluation; Part I, Graph Partitioning,”
Operations Research, vol. 37, issue 6 (Nov.-Dec.), 1989, pp. 865-892.

[13] B. W. Kernighan and S. Lin, “An efficient Heuristic procedure for partitioning
graphs,” Bell System Tech. Journal, vol. 49, Feb., 1970, pp.291-307

[14] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated
annealing,” Science, 220, May 1983, pp. 671-680

[15] C. H. Lee, C.I. Park and M. Kim, “An efficient algorithm for graph-partitioning
problem using a problem transformation method,” Computer-Aided Design, 21,
1989, pp. 611-618

 77

[16] Sun Microsystems, “The J2EE 1.4 Tutorial,” http://java.sun.com/j2ee/1.4/docs/
tutorial/doc, (current February 2004)

[17] T. Mowbray and R. Zahavi, The Essential CORBA: Systems Integration Using
Distributed Objects, John Wiley & Sons, New York, 1995

[18] D. S. Platt, Understanding COM+, Microsoft Press, 2000

[19] G. Svswerda. “Uniform Crossover in Genetic Algorithms,” Proc. Third Int’l Conf.
Genetic Algorithms, pp. 2-9, 1989

[20] L. Tao., “Shifting Paradigms with the Application Service Provider Model,” IEEE
Computer Magazine, Oct. 2001, pp. 32-39

[21] L. Tao, B. Narahari, and Y.C. Zhao, “Assigning Task Modules to Processors in a
Distributed System,” Journal of Combinatorial Mathematics and Combinatorial
Computing, 14, 1993. pp. 97-135

[22] L. Tao and Y.C. Zhao, “Multi-Way Graph Partition by Stochastic Probe,”
International Journal of Computers & Operations Research, Vol. 20, No. 3, 1993.
pp. 321-347

[23] L. Tao, “Research Incubator: Combinatorial Optimization,” Technical Report #198
CSIS, Pace University, NY, http://csis.pace.edu/~lixin/dps (current February 2004)

[24] D. Whitley and J. Kauth, “Genitor: A Different Genetic Algorithm,” Proc. Rocky
Mowztuin Conf. Artificial Intelligence, pp. 118-130,1988

