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Abstract 
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by 
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Doctor of Professional Studies 
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March 2004 

In the last decade, online e-commerce businesses, represented by the e-commerce portals, 
have grown significantly and become an important sector of world economy. This 
dissertation helps address the server scalability problem for supporting the sustainable 
growth of the online e-commerce industries. 

Most of today's e-commerce portals are implemented with distributed component 
technologies and server clusters. Each server application comprises dozens or hundreds 
of distributed software components, and each of such components can run on any of a 
cluster of application servers connected by a high-speed fiber local area network (LAN). 
While multiple server machines support parallel execution of the software components, 
inter-server communication is a few orders slower than servers' CPU speed. This research 
studies the optimized allocation of software components to server machines to maximize 
computation load balance and minimize communication overhead. 

Multi-way graph partitioning is first adopted to model the software component allocation 
problem. The problem is proved to be NP-hard. A novel graph transformation is 
introduced to combine the two conflicting objectives into a single objective function, and 
a transformation theorem is proved that problem instances before and after this 
transformation are equivalent. Based on careful observation of the properties of the 
solution space, a scheme for incremental objective function evaluation is designed to 
speed up any iterative solution heuristics to this problem by a factor proportional to the 
number of software components involved. Simulated annealing is adopted to solve the 
problem. Extensive experimental study shows that the proposed simulated annealing 
algorithm can outperform repeated random running in the same amount of time by 
16.67% to 100%, and outperform local optimization by 1.92% to 100% with a running 
time about 6 to 100 times of that for the latter. 

The major contributions of this research include using multi-way graph partitioning to 
model a challenging performance problem critical to sustainable growth of e-commerce 
portals, creative problem transformation for simplifying a complex problem, and 
incremental objective function evaluation that can benefit any iterative solution 
heuristics. 
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Chapter  1  
 

Introduction 

In the last decade, online e-commerce businesses, represented by the e-commerce portals, 

have grown significantly and become an important sector of world economy. This 

dissertation helps address the server scalability problem for supporting the sustainable 

growth of the online e-commerce industries. 

1.1 Distributed Software Components as a New Trend of IT Industries 

Since early 1990s, the IT industries have been shifting their design and implementation 

technologies to software frameworks and architectures based on distributed software 

components [17][20] to better control the software complexity, promote specialized 

computing and system integration, and support middleware for object-oriented 

networking. A software component is a software unit that usually exists in binary form, 

exposes a public Application Programming Interface (API), and is independently 

deployable [20][16][10][18].  Example software component technologies include 

Microsoft's dynamic linking libraries, Active-X controls, and COM components; and 

Java’s JavaBeans. Software component approach completely separates the usage and 

implementation of a software component, and makes it sharable by multiple applications 

and easily replaceable.  A distributed software component technology further supports 

communication abstraction, and uses a generic software framework to provide 
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transparent communication ability to network-blind software components. Example 

distributed software component technologies include Microsoft's DCOM and COM+ 

[18], Java's Enterprise JavaBeans (EJB) [16], and Object Management Group's CORBA 

components [10]. Since 1995, the US Department of Defense mandated that all of its 

contracted software projects must be implemented with software component 

technologies. 

A related new development of the last decade is the ubiquitous networking. Web and 

Internet technologies have made online e-business an important branch of world 

economy. A typical e-commerce portal has three tiers: the presentation tier (running on a 

Web server) for generating presentation documents for a client's Web browser to render, 

the business logic tier (running on an application server) for implementation of business 

logics for the portal, and the data tier (supported by databases). Both the Web servers and 

the application severs are based on distributed component technologies. For example, 

both Java's servlets running in a Java servlet container and Microsoft's ASP pages 

running on an IIS Web server are (converted into) distributed software components (in a 

more general sense), so are the EJBs running in an EJB container on an application server 

or the COM+ components running on a .NET Transaction Server [20]. 

A major challenge for today’s e-commerce portals is their scalability: whether a portal 

can provide fast response when the number of their concurrent clients increases. To 

provide such scalability, a heavy-duty portal, like yahoo.com, typically uses a cluster of 

dozens of server machines, connected through a (relatively) fast fiber local area network 

(LAN), for both of its Web servers and application servers. Since the distributed software 

components can be independently deployed in any server containers on any of the server 
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machines and communicate with each other transparently, they can take advantage of the 

hardware parallelism among the server machines to improve the portal scalability.  

For a particular hosted computation, it will not be over until all of its employed 

components finish. Each software component may have different computation load for a 

particular use case. Each server machine also may have its own particular computing 

ability based on its resources like CPU speed and memory size. While a fiber-based LAN 

is faster than its copper version, sending a message through it is still a few orders slower 

than today’s CPU speed (partially due to software overhead for buffer copying to support 

layered implementation). Communications between two components are much slower if 

they are assigned to two different server machines than to the same one. Now we have 

the basic form of software component allocation problem: for a particular computation, 

what is the optimal allocation of the participating software components to the server 

machines so that the computation workload of all the involved server machines are 

balanced, and the total load of communications between any pair of involved components 

is minimized. We can notice that there are here two conflicting objectives. This problem 

will be more complicated when we also consider the management of client session data, 

or when different stages of a computation may have different computation and 

communication patterns, as we will see in the next section. 

While the World Wide Web has had big impact on our society, it only supports a limited 

form of client-server software architecture. The IT industries have started to work on the 

next wave of Internet revolution: the Application Service Provider model of computing 

[20], by which software applications will be maintained by domain experts on service-

provider servers and accessed by clients with Web browsers through service provider’s 
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portals. This paradigm eliminates software installation on client’s computers, and 

promotes specialized computing and service integration. The success of this new 

paradigm also heavily depends on whether we can run hosted applications on clustered 

servers efficiently. Therefore the importance of the study of efficient software component 

allocation problems goes beyond today's Web servers and application servers. 

1.2 Software Component Allocation Problems 

The potentially important software component allocation problems can be divided into 

two categories: static and dynamic, depending on whether the optimized allocations can 

be computed off-line or whether the components can migrate across server machines 

during execution. Multiple processors could be tightly coupled inside a single server 

machine; and a subset of the software components may need to maintain its unique 

session data to serve a particular remote client. All these make software component 

allocation problems different from the traditional job scheduling on distributed systems 

[1][21]. 

A server cluster typically comprises dozens (50 or more) of server machines, each of 

which may have different computation speed, connected by a fiber LAN. In this study we 

limit our attention to bus-type LAN, the dominant one in today’s IT industries, for which 

all messages will share the same LAN bandwidth, and at any instance, there could be at 

most one sender but multiple receivers. The speed for a message to travel the LAN is 

much lower than the CPU speed of the server machines.  

A hosted software application is typically made up of dozens to hundreds of software 

components that could be distributed in any of the component containers running on the 
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server machines. Without loss of generality, we assume each server machine will run one 

component container. For each typical hosted computation, each of the involved software 

components has an average computation load and an average communication load with 

each of the other participating components. Since the hosted applications are designed for 

providing well-defined set of specialized services, it is reasonable to assume that these 

average computation load and communication load values could be obtained by profiling 

the applications on a single server machine (similar to Unix profiler utility prof). 

Now we can model, simplified for essence, a software component allocation problem as a 

multi-way graph partitioning problem. We abstract a hosted application as an undirected 

graph ),( EVG = in which each vertex represents a software component and each edge 

represents a runtime communication requirement. Let function +ℜ→Vw :1  ( +ℜ is the set 

of positive real numbers) represent the average computation load of the software 

components, and function +ℜ→Ew :2  represent the average communication load of the 

communication requirements. Assume the software components need to run on m server 

machines, and },,2,1{: mV L→π  represents one of the component assignment. For 

each mi ≤≤1 , we use )(iPπ  to denote the partition of the vertices (software components) 

assigned byπ to server machine i; a fixed real rate ir  to represent the relative computing 

ability of server machine i (a larger rate implies a slower execution); 

and ∑
∈

=
)(

11 )())((
iPv

vwiPw
π

π  to represent the total computation load of components assigned 

to partition i. Let the importance of computation time on the server machines relative to 

the communication time on the LAN be represented by a real ratio 10 << t .  Now the 
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question is, how to find an optimal assignment },,2,1{: mV L→π  to minimize the 

objective function  

)()1()()( 21 πππ WtWtf ⋅−+⋅=  

where )(1 πW  represents the degree of load balance as defined below 

∑
≤<≤

⋅−⋅=
mji

ji jPwriPwrW
1

111 |))(())((|)( πππ  

and )(2 πW  represents the total communication cost as defined below 

∑
≠

∈=
=

)()(
},{

22 )()(

vu
Evue

ewW

ππ

π  

Here the summation operator reflects our assumption that all communications share the 

same LAN bandwidth.  

Since the basic graph bisection problem, for which the partition number is two and the 

vertices and edges have uniform weights, is NP-complete [1] and a special case of our 

simplified formulation, all the software component allocation problems described in this 

proposal are NP-hard. 

1.3 Methodologies 

The component allocation problem has many variations based on different assumptions, 

and this research will focus on the one where the communication cost needs to be 

minimized under the constraint that the computation workload is evenly distributed. 
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Mathematical modeling is the foundation of this research. The properties of the 

mathematical model will be studied to derive a problem transformation algorithm that can 

convert the two-objective-function optimization problem into an equivalent one with a 

single objective function. For efficient problem solution, solution space neighborhood 

will be designed to support incremental evaluation of the objective function, which can 

benefit any solution algorithm based on iterative solution searches. Simulated annealing 

is chosen as the meta-heuristic for deriving a solution heuristic. Experimental 

comparisons will be conducted between the proposed simulated annealing algorithm and 

repeated random solutions generated in the same amount of time, and between the 

proposed simulated annealing algorithm and local optimization for both solution quality 

and running time. 

1.4 Major Contributions 

The major contributions of this research include: 

• Using multi-way graph partitioning to model an important application server 

performance problem critical to the sustainable growth of online e-commerce 

industries. 

• Proving that this problem is NP-hard, so no efficient algorithms could ever be 

designed to produce optimal solutions to it in practical time. 

• Designing a problem transformation algorithm to convert the problem with 

multiple objective functions into an equivalent typical combinatorial optimization 

problem with a single objective function. 
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• Designing a scheme for incremental objective function evaluation that can 

improve the performance of any iterative solution heuristics. 

• Deriving an efficient heuristic solution based on simulated annealing, and 

studying the sensitivity of the heuristic to its various parameters. 

• Designing experiments to study the performance of our heuristic relative to 

repeated random solutions and local optimization. 

1.5 Dissertation Outline 

The dissertation consists of six chapters described in the following manner: 

Chapter 1 introduces the important scalability problem of E-commerce portal servers 

and the associated software component allocation problem, presents the solution 

methodologies and major contributions of this research. 

Chapter 2 provides surveys of commonly used meta-heuristics for combinatorial 

optimization problems and describes the characteristics of each heuristic. 

Chapter 3 describes the problem formulation for multi-way graph partition and problem 

transformation.  

Chapter 4 provides the design of solution space neighborhood as well as the incremental 

evaluation of the objective function. 

Chapter 5 provides the design of a simulated annealing heuristic for the proposed 

software component allocation problem, and conducts sensitivity analysis to its various 

parameters and cooling schedule. 
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Chapter 6 uses extensive experimental comparisons to study the performance of the 

simulated annealing algorithm relative to repeated random solutions and local 

optimization. 

Chapter 7 concludes with some observations and future work. 
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Chapter  2  
 

Graph Partitioning and Solution Heuristics 

This chapter surveys the graph partitioning problems as well as the major meta-heuristics 

for combinatorial optimization. 

2.1 Graph Partitioning 

Graph partitioning is one of the richest fields of computing algorithms, with wide 

applications in parallel processing, distributed computing, VLSI design and layout, 

network partitioning, distributed database design, and sparse matrix factorization 

[4][12][1][5][22]. The most popular heuristics for graph partitioning include the 

Kernighan-Lin algorithm (KL) [13] for graph bisection and its enhancement variation [4]. 

Johnson et al. [12] performed an extensive study of the simulated annealing algorithm for 

the graph bisection problem and observed that simulated annealing on the average 

performed better than KL. Bui et al. [1] developed a genetic algorithm for multi-way 

graph partitioning, and conducted extensive experimental evaluations of the related 

algorithms to show its superior performance. Tao et al. [21], as well as many other 

researchers, used graph partitioning to address the problem of optimized allocation of 

processes/jobs to the processors in a distributed environment. Tao et al. [22] proposed 

stochastic probe, a new effective and generic meta-heuristic, and demonstrated its 

superior performance in multi-way graph partitioning.  
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The existing studies of graph partitioning usually simplify the problem constraints 

described in this research by dropping the weights of the vertices or edges. 

2.2 Solution Heuristics 

For NP-hard problems, we can only obtain optimal solutions for small problem instances. 

For practical problem instance sizes, heuristics must be used to find optimized solutions 

within reasonable time frame. Unlike algorithms, heuristics do not guarantee optimal. A 

heuristic is an algorithm that tries to find good solutions to a problem but it cannot 

guarantee its success. Most heuristics are not established on rigid mathematical analysis, 

but on human intuitions, understanding of the properties of the problem at hand, and 

experiments. The value of a heuristic must be based on performance comparisons among 

competing heuristics. The most important performance metrics are solution quality and 

running time. 

The term meta-heuristics, first introduced in Glover [6], derives from the composition of 

two Greek words. The suffix meta means “beyond, in an upper level” and heuristic 

means “to find, discover”. A meta-heuristic is a strategy that guides the search process, or 

an abstraction of a class of similar heuristics. Meta-heuristics are approximate and 

usually non-deterministic, not problem-specific. It may incorporate mechanisms to avoid 

getting trapped in confined areas of the search space. The basic concepts of meta-

heuristic permit an abstract level description. And it may make use of domain-specific 

knowledge in the form of heuristics that are controlled by the upper level strategy. More 

advanced meta-heuristics are used to guide the solution searches today [1]. To effectively 
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resolve a problem based on a meta-heuristic, we need to have more understanding of the 

characteristics of the problem, and creatively design and implement the major 

components of the meta-heuristics. As a consequence, using a meta-heuristic to propose 

an effective heuristic to solve an NP-hard problem is an action of research. 

In the following we outline the most important meta-heuristics from a conceptual point of 

view. 

2.2.1 Local Optimization 

A general heuristic search technique, local optimization is also called greedy algorithm or 

hill-climbing. It attempts to improve on the solution by a series of incremental, local 

changes. Each move is only performed if the resulting solution is better than the current 

solution. The algorithm stops as soon as it finds a local minimum. The high level 

algorithm is sketched in Algorithm 1.  

Algorithm 1.  Local optimization 

1. Get an initial solution S . 
2. While there is an untested neighbor of S do the following. 

2.1 Let S ′  be an untested neighbor of S . 
2.2 If ( ) ( )StSt coscos <′ , set SS ′= . 

3. Return S . 

 

Local optimization starts from a random initial solution, and it keeps migrating to better 

neighbors in the solution space. If all neighbors of the current partition are worse, then 

the algorithm stops. This scheme can only find local optimal solutions that are better than 

all of their neighbors but they may not be the global optimal solutions, as illustrated in 

Figure 1.  
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Figure 1 Local vs. global solutions 

2.2.1 Genetic Algorithm 

Generic algorithm is an iterative procedure maintaining population of structures that are 

candidate solutions to specific domain challenges. During each generation the structures 

in the current population are rated for their effectiveness as solutions, and on the basis of 

these evaluations, a new population of candidate structures is formed using specific 

“genetic operators” such as reproduction, crossover, and mutation. It is based on the 

analogy of combinatorial optimization to the mechanics of natural selection and natural 

genetics. Its application in combinatorial optimization area can be traced back in early 

1960s [8]. 

A genetic algorithm starts with a set of initial solutions (chromosomes), called a 

population. This population then evolves into different populations for hundreds of 

iterations. At the end, the algorithm returns the best member of the population as the 

solution to the problem. For each iteration or generation, the evolution process proceeds 

as follows. Two members of the population are chosen based on some probability 
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distribution. These two members are then combined through a crossover operator to 

produce an offspring. With a low probability, this offspring is then modified by a 

mutation operator to introduce unexplored search space to the population, enhancing the 

diversity of the population (the degree of difference among chromosomes in the 

population). The offspring is tested to see if it is suitable for the population. If it is, a 

replacement scheme is used to select a member of the population and replace it with the 

new offspring. Now we have a new population and the evolution process is repeated until 

certain condition is met, for example, after a fixed number of generations. This genetic 

algorithm generates only one offspring per generation. Such a genetic algorithm is called 

steady-state genetic algorithm [24][19], as opposed to a generational genetic algorithm 

that replaces the whole population or a large subset of the population per generation. A 

typical structure of a steady-state genetic algorithm is given in Algorithm 2 [2].  

Algorithm 2. Genetic algorithm 

1. Create initial population of fixed size. 
2. Do the following 

2.1 Choose parent1 and parent2 from population. 
2.2 Offspring = crossover (parent1, parent2). 
2.3 Mutation (offspring). 
2.4 If suited (offspring), then  
      Replace (population, offspring); 

      Until (stopping condition). 
3. Return the best answer. 

 

2.2.2 Simulated Annealing 

Simulated annealing is commonly said to be the oldest among the meta-heuristics and 

surely one of the first algorithms that has an explicit strategy to escape from local 

minima. The origins of the algorithm are in statistical mechanics (Metropolis algorithm) 
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and it was first presented as a search algorithm for combinatorial optimization problems 

in Kirkpatrick [14]. In 1983, Kirkpatrick and his coworkers proposed a method of using a 

Metropolis Monte Carlo simulation to find the lowest energy (most stable) orientation of 

a system. Their method is based upon the procedure used to make the strongest possible 

glass. This procedure heats the glass to a high temperature so that the glass is a liquid and 

the atoms can move relatively freely. The temperature of the glass is slowly lowered so 

that at each temperature the atoms can move enough to begin adopting the most stable 

orientation. If the glass is cooled slowly enough, the atoms are able to “relax” into the 

most stable orientation. If the temperature is lowered rapidly, some atoms may get stuck 

in foreign positions. The slow cooling process is known as annealing, and so their 

method is known as Simulated Annealing.  

The simulated annealing heuristic starts by generating an initial solution (either randomly 

or heuristically constructed) and initializing the temperature parameter T. Then, at each 

iteration, a neighbor solution is randomly sampled and it is accepted as new current 

solution depending on the current cost, neighbor cost and temperature. If the neighbor 

improves the current cost, then the neighbor becomes the new current solution for the 

next iteration. If the neighbor worsens the current cost, it will be accepted as the new 

current solution with a probability. When the temperature is high, the probability is not 

sensitive to how worse the neighbor is. But when the temperature is low, the probability 

to accept a worsening neighbor will shrink with the extent of the worsening. When no 

improvement in solution cost happens for a period of time, the temperature will be 

decreased by a very small amount, and the above looping repeats. The process will stop 

when some termination criteria is met [23]. 
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Simulated annealing is unique among all the other meta-heuristics for combinatorial 

optimization in that it has been mathematically proven to converge to the global optimum 

is the temperature is reduced sufficiently slowly. But this theoretical result is not too 

interesting to practitioners since very few real world problems will be able to afford such 

excessive execution time [23]. A simulated annealing heuristic is based on the following 

pseudo-code in Algorithm 3. 

Algorithm 3. Simulated annealing 

1. Get an initial solution S . 
2. Get an initial temperature 0>T . 
3. While not yet frozen do the following. 
       3.1 Perform the following loop L  times. 
             3.1.1 Pick a random neighbor S ′of S . 
             3.1.2 Let ( ) ( )StSt coscos −′=∆ . 
             3.1.3 If 0≤∆  (downhill move), 
                          Set SS ′= . 
             3.1.4 If 0>∆  (uphill move), 

                                Set SS ′=  with probability Te ∆− . 
       3.2 Set rTT =  (reduce temperature). 
4. Return S . 

 

Simulated annealing approach involves a pair of nested loops and two additional 

parameters, a cooling ratio r, which is between zero and one, and an integer temperature 

length L. In step 3 of the above algorithm, the term frozen refers to a state in which no 

further improvement in ( )Stcos  seems likely. The most important of this process is the 

loop at Step 3.1. Note that Te ∆−  will be a number in the interval ( )1,0  when ∆  and T  

are positive, and rightfully can be interpreted as a probability that depends on ∆  and T . 

The probability that an uphill move of size ∆  will be accepted diminishes as the 



 

 

  17

temperature declines, and, for a fixed temperature T , small uphill moves have higher 

probabilities of acceptance than large ones [12].  

While comparing local optimization and simulated annealing, we find they mainly differ 

in the extent to accept worsening neighbors. For simulated annealing, it starts with 

random walk in the solution space. When a random neighbor is better, it always takes it. 

But if the neighbor is worsening, its possibility of accepting it is reduced slowly. 

Simulated annealing becomes local optimization when the temperature is very low. 

Johnson made a critical evaluation for the performance of the simulated annealing 

approach to the graph partition problem and compared its performance with that of the 

Kernighan-Lin approach. In general, simulated annealing is time-consuming, but it has 

been very successfully applied to numerous combinatorial optimization problems. 

2.2.3 Tabu Search 

Tabu search is among the most cited and used meta-heuristics for combinatorial 

optimization problems. The basic ideas were first introduced in Glover [6][7] since 1986. 

It explicitly uses the history of the search, both to escape from local optima and to 

implement an explorative strategy. Tabu search applies a best improvement local search 

as basic ingredient and uses a short-term memory to escape from local optima and to 

avoid cycles. The short-term memory is implemented as a tabu list that keeps track of the 

most recently visited solutions and forbids moves toward them. The neighborhood of the 

current solution is thus restricted to the solutions that do not belong to the tabu list. Tabu 

means prohibition here. 
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The advocates of tabu search disagree with the analogy of optimization process to metal 

annealing process. They argued that when a hunter entered in an unfamiliar environment, 

he will not search randomly first but zero in to the area that appears most promising in 

finding games. This is similar to the greedy local optimization algorithm. Only when 

neighboring areas are all worse than the current area will the hunter be willing to search 

through worsening neighboring areas in hope of finding a better local optimum.  

Tabu search differs from simulated annealing at two key aspects. It is more aggressive 

and deterministic. A tabu search heuristic starts by generating a random partition as the 

current solution. It then executes a loop until some stopping criteria are reached. During 

each iteration, the current solution is replaced with its best neighbor that is not tabued on 

the tabu list. The high level algorithm is sketched in Algorithm 4.  

Algorithm 4. Tabu search 

1. Get a random initial solution S . 
2. While stop criterion not met do: 

2.1 Let S ′  be a neighbor of S  maximizing 
      ( ) ( )StSt coscos −′=∆  and not visited 
      in the last t  iterations. 
2.2 Set SS ′= . 

3. Return the best S  visited. 
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Chapter  3  
 

Problem Formulation and Transformation 

In this chapter, we formulate the optimized software component allocation problem as a 

multi-way graph partitioning problem, prove it to be NP-hard, and simplify it with a 

problem transformation algorithm. The results in this chapter, as well as those in Chapter 

4, are foundations of this research and can support any solution methodologies. 

3.1 Problem Statement 

3.1.1 Problem Assumptions 

A scalable application server is implemented by a cluster of server machines connected 

by a high-speed fiber local area network (LAN). The LAN operates in a bus mode, like 

Ethernet, so all inter-machine communications share the same LAN bandwidth. The 

inter-machine communications are much slower than server machine CPU speed and thus 

should be avoided if possible. All the server machines have the same computation power, 

and no residual computation (all server machine resources are ready for use).  

Server applications are implemented with distributed component technologies. A server 

application comprises dozens of software components that may need to communicate 

with each other at running time. The execution of an application will not be over until all 

the participating components finish their computation. Each software component can run 

transparently on any of the server machines and communicate with each other. Inter-
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component communications are much slower if the senders and receivers are allocated on 

different server machines. Based on a profiler utility, it is known for each typical use case 

the average computation load of each participating software component and the average 

communication load between each pair of software components. 

3.1.2 Problem Statement 

Given the above assumptions, how to allocate the software components to the application 

server machines so that the communication overhead is minimized under the constraint 

that the computation workload is distributed evenly across the server machines. 

3.2 Problem Formulation as Multi-way Graph Partitioning 

A component-based server application can be modeled as a graph: each vertex 

representing a software component, each edge representing a communication requirement 

between a pair of incident software components at running time. We can use vertex 

weights to represent a component’s computation load, and edge weights represent the 

potential communication load between the two incident components. The application 

server machines can be represented as partitions of the software components. To 

minimize the computation work load, we need to allocate the vertices to the partitions so 

that the vertex weights are evenly distributed across the partitions. To minimize the inter-

machine communication overhead, we need to allocate the vertices so that the summation 

of the edge weights for those edges crossing the partitions (the two incident vertices of an 

edge belonging to two partitions) will be minimized. Here the summation operator is used 

to model our assumption that all inter-machine communications share the same LAN 

bandwidth, as is the case for most of today’s enterprise-quality e-commerce portals. 
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Given an undirected graph ( )EVG ,= , an integer m  ( ||1 Vm ≤≤ ), and two weight 

functions IVw →:1  and IEw →:2  (I is the set of positive integers), an m-way 

partitioning π  of G is a function { }mV ...,,2,1: →π  such that 

( ) ( ) ( )mPPPV πππ ∪∪∪= ...21 , where ( ) ( ){ }ivVviP =∈= ππ  for mi ≤≤1 . For any 

subset VC ⊆ , let ( ) ( )∑ ∈
=

Cv
vwCw 11 . Our objective is to derive m-way partitioning π  

that can minimize 

( ) ( )
{ }
( ) ( )

∑
≠
∈=

=

vu
Evue

ewW
ππ

π
,

22  

under the constraint that 

( ) ( )( ) ( )( )∑
≤≤≤

−=
mji

jPwiPwW
1

111 πππ  

is minimal. We call ( )vw1  the vertex weight of vertex v, ( )ew2  the edge weight of edge e. 

We call ( )π1W  the balance measure that measures the evenness of the computation load 

distribution, and ( )π2W  the weighted cut size that measures the total cost of 

communications across the LAN. Informally, we want to partition the graph vertices into 

mutually exclusive subsets so that the total weight of the edges crossing the subsets is 

minimized under the condition that the vertex weights are distributed evenly among the 

subsets. 

It can be observed that this problem is unusual in the combinatorial optimization 

literature since it contains two objective functions, one of which is embedded in the 

problem constraint; and these two objective functions conflict with each other: for 
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example, while allocating all vertices to the same partition can minimize the weighted cut 

size, it will be the worst case for vertex weight distribution. 

As examples, Figure 2 shows two different schemes of partitioning a set of five vertices 

into two or three partitions. The numbers inside the vertices are vertex weights. The 

numbers beside edges are edge weights. In Figure 2 (a), the five vertices are allocated 

into two partitions: partition 1 has a total vertex weight of 7, partition 2 has a total vertex 

weight of 5, thus ( )π1W  = |57| −  = 2; and the allocation has a weighted cut size ( )π2W  

of 7. In Figure 2 (b), the five vertices are allocated into three partitions: partition 1 has a 

total vertex weight of 4, partition 2 has a total vertex weight of 5, partition 3 has a total 

vertex weight of 3, thus ( )π1W  = |35||34||54| −+−+−  = 1 + 1 + 2 = 4; and the 

allocation has a weighted cut size ( )π2W  of 8. 

 
 

 

(a) (b) 

Figure 2 Multi-way graph partitioning 
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3.3 NP-hardness of the Problem  

Now we prove that the multi-way graph partitioning problem described in this 

dissertation is NP-hard. 

NP-Hardness Theorem: The multi-way graph partitioning problem described in 

this research is NP-hard.      � 

Proof: We first prove that graph bisection is a special case of our multi-way graph 

partitioning.  

Given any graph ),( EVG =  where ||V  is even, the graph bisection problem 

seeks a bisection of V  into the left and right two partitions 1P  and 2P  so that 

|||| 21 PP =  and |},},,{|{| 21 PvPuvueEe ∈∈=∈ , the number of edges crossing 

the two partitions, is minimized.  Given any problem instance for graph bisection, 

we can construct a corresponding problem instance for the multi-way graph 

partitioning problem by letting 2=m , 1)(1 =vw  for all Vv∈ , and 1)(2 =ew  for 

all Ee∈ . Suppose we get π  as one of the optimal solutions for this multi-way 

partitioning problem instance, then 0)(1 =πW  must be true since ||V  is even and 

all vertices have the same unit weight, and )(2 πW  is minimized. Since all edges 

have the same unit weight, )(2 πW  is exactly the same as the number of edges 

crossing the two partitions. Therefore we can conclude that, given any graph 

bisection problem instance, we can solve it as a multi-way graph partitioning 

problem, and the resulting optimal solution to the multi-way partitioning problem 

instance is also an optimal solution to the original graph bisection problem 
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instance. Therefore graph bisection problem is a special case of our multi-way 

graph partitioning problem. 

But it is well known that graph bisection is an NP-complete problem [3]. If our 

multi-way graph partitioning problem were not NP-hard, it would imply that 

graph bisection were not NP-complete, a contradiction. Therefore we conclude 

that our multi-way graph partitioning problem is NP-hard.   � 

Since the multi-way graph partitioning problem is NP-hard, it is impossible to have 

algorithms to solve its practical problem instances within realistic time frames. We have 

to resort to heuristic approaches to search for optimized solutions within time frames 

suitable for the particular application domains. 

3.4 Problem Transformation  

The multi-way graph partitioning problem formulated in this research differs from 

traditional combinatorial optimization problems in its two objective functions, one of 

which is embedded in the problem constraint. In this section we introduce a problem 

transformation algorithm to convert any instance of this problem into another problem 

instance of an equivalent simpler problem with only a single objective function. 

Other reason for our introduction of the problem transformation is for efficient evaluation 

of the objective function. The time complexity of an iterative algorithm is largely 

determined by the efficiency by which the objective functions and the constraint 

conditions are evaluated. Since the move (operation) for each iteration only makes local 

changes to the current solution, it is desirable to have the ability to incremental update the 
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old value of the objective function to obtain its new one after the move. While )(2 πW  

allows simple incremental update after each vertex move or vertex exchange operation, 

( )π1W  needs at least )(mO  update steps after each of such operations. The new objective 

function resulting from our problem transformation is easier for incremental evaluation, 

as shown in Chapter 4. 

Graph Transformation Algorithm: Given an undirected graph ( )EVG ,=  that is 

needs to be divided into m partitions, we transform G  into another complete graph 

( )∗∗ = EVG ,  where },|},{{ VvuvuE ∈=∗ , and define a new edge weight function 

+ℜ→*
3 : Ew  ( +ℜ  is the set of all positive real numbers) such that 

( ) ( ) ( ) ( )
( ) ( )

{ }
{ } EEvue

Evue
Rvwuw

ewRvwuw
ew

−∈=
∈=



 −

= *
11

211
3 ,  if      

        ; ,  if       
 

where R is a positive real number called the augmenting factor. The corresponding 
new m-way graph partitioning problem is to find an m-way partition π  of graph *G  
to maximize its objective function 

( ) ∑
≠
∈=

=

)()(
},{

33
*

)(

vu
Evue

ewW

ππ

π  

 

Problem Transformation Theorem: Given any instance of the multi-way graph 

partitioning problem, if the value of R in the graph transformation is larger than the 

total edge weight of G, or ∑
∈Ee

ew )(3 , a solution π  that maximizes )(3 πW  will also 

minimize )(2 πW  under the constraint that ( )π1W  is minimized.    � 

But before we can prove this theorem, we need some preparations. 
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Definition: Given a positive integer k , a partition of integer k  is a set of positive 

integers { }mkkk ,...,, 21  ( )km ≤  such that ∑ =
=

m

i ikk
1

.   � 

Max-Prod-Min-Diff Theorem: Given positive integers m and k  such that 

km ≤ , any partition of k  into { }mkkkP ,...,, 21=  maximizing ∑ ≤≤≤ mji ji kk
1

 will 

minimize ∑ ≤<≤
−

mji ji kk
1

.   � 

First we prove the following two lemmas. 

Lemma 1: Let x  and y  be positive integers. If 1+> yx , then 

( ) ( )2222 11 ++−>+ yxyx .   � 

Proof: If 1+> yx , then 1212 +>− yx . Therefore, 

1212 2222 ++−>−+− yyyxxx , or ( ) ( ) 2222 11 yyxx −+>−− . So we have 

the lemma.   � 

Lemma 2: Let m  and k ( )km ≤  be positive integers and { }mkkkP ,...,, 21=  a 

partition of k . Assume that there exists a pair x  and y in P such that 1>− yx . 

Let 1' −= xx , 1+=′ yy , and { } { }yxyxPP ′′∪−=′ ,, . We have 

∑∑
′∈

≤<≤
∈
≤<≤

−>−

Pkk
mji

ji

Pkk
mji

ji

jiji

kkkk
,

1
,

1

   (1) 

and 

∑∑
′∈

≤<≤
∈
≤<≤

<

Pkk
mji

ji

Pkk
mji

ji

jiji

kkkk
,

1
,

1

    (2) 
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� 

Proof: We can partition P  into { } { } 321 PyPxPP ∪∪∪∪= , where: 

1P —the set of numbers in P  that are greater than or equal to x , 

2P —the set of numbers in P  that are smaller than x  and great than y , 

3P —the set of numbers in P  that are equal to or smaller than y . 

Let 1N , 2N , 3N  be the cardinalities of 1P , 2P , and 3P  respectively. We 

have mNNN =++++ 321 11 , and 

( ) ( )∑∑
∈
≤<≤

′∈
≤<≤

+−−−+−−−+−=−

Pkk
mji

ji

Pkk
mji

ji

jiji

NNNNNNkkkk
,

1
321321

,
1

11  

                  ( )2

,
1

12 Nkk
Pkk
mji

ji

ji

+−−= ∑
∈
≤<≤

.          

So we have Inequality (1). 

Because 1+> yx , from Lemma 1, we have 2222 yxyx ′+′>+ . Since 

( )
{ }

( )
{ }

∑ ∑ ∑∑
∈
≤<≤

′′∉
≤≤

′∈
≤<≤

∉
≤≤

+′+′+=+++=

Pkk
mji

yxk
ml

Pkk
mji

jilji

yxk
ml

l

ji l jil

kkyxkkkyxkk
,

1
,

1
,

1

222

,
1

2222 22 , 

we have Inequality (2).   � 

Proof of Max-Prod-Min-Diff Theorem: Since partition { }mkkkP ,...,, 21=  

maximizes ∑ ≤<≤ mji jikk
1

, by Lemma 2, there can be no Pyx ∈,  such that 
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1+> yx . On the other hand, if max ( )P -min ( ) 1≤P , then ∑ ≤<≤
−

mji ji kk
1

 must 

reach its smallest possible value ( )rmr − , where r is the remainder of mk / . The 

theorem is thus proved.   � 

Proof of Problem Transformation Theorem: It has been proven by Lee et al. [15] 

that, if ∑
∈

>
Ee

ewR )(2 , any partitioning π  that maximizes   

( ) ∑∑
≤<≤

≠
∈=

−==
mji

vu
Evue

WjPwiPwRewW
1

211

)()(
},{

33 )())(())(()(
*

ππ ππ

ππ

 

will minimize )(2 πW  under the constraint that  

∑
≤<≤ mji

jPwiPw
1

11 ))(())(( ππ  

is maximized. Now we only need to prove that maximizing 

∑
≤<≤ mji

jPwiPw
1

11 ))(())(( ππ  is equivalent to minimizing ( )π1W . But this follows 

directly from our Max-Prod-Min-Diff Theorem above.  � 

The following is an example for the graph transformation. The vertex weights are marked 

inside the vertices. The edge weights are marked along the edges. Figure 3 (a) shows the 

original graph to be bisected, and Figure 3 (b) shows its equivalent complete graph 

obtained from our graph transformation. The two partitions are separated by a dotted line. 

Since the total edge weights is 6, we set 716 =+=R . 

 

( )π1W  = 0, ( )π2W  = 2 ( )π3W  = 173 
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(a) (b) 

Figure 3. Example of problem transformation-optimal 

Figure 3 (a) shows ( ) 0|)32()41(|1 =+−+=πW  and ( ) 2112 =+=πW . Let uv  represent 

the edge weight }),({3 vuw . Figure 3 (b) shows 13172121 =−××=vv , 

2173131 =××=vv ,  26274141 =−××=vv , 40273232 =−××=vv , 

5674242 =××=vv , 83174343 =−××=vv . ( ) 173835621133 =+++=πW . On the 

another hand, if we partition the graph as in Figure 4 (c) and Figure 4 (d), then 

( ) 4|)21()43(|1 =+−+=πW , ( ) 4222 =+=πW , ( ) 143405621263 =+++=πW . This 

example confirms that a solution π  with larger value for ( )π3W  will have smaller values 

for ( )π1W  and ( )π2W . 

( )π1W  = 4, ( )π2W  = 4 ( )π3W  = 143 

  

(c) (d) 

Figure 4. Example of problem transformation-nonoptimal
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Chapter  4  
 

Incremental Objective Function Evaluation  

Most meta-heuristics are based on iterative moves in the solution space. During each 

iteration, the current solution is perturbed by a move to obtain its neighbor. No matter 

which meta-heuristic is adopted, the running time of the resulting heuristics will be 

dominated by the evaluation time for the objective functions.  

In this research we design a scheme to support incremental evaluation of the objective 

function )(3 πW  to reduce its evaluation time. The idea is, since each move only perturbs 

the current solution locally, we could avoid the evaluation of the entire objective function 

by modifying its most recent old value. We introduce a gain function for each move so 

that the new value of the objective function after a move equals to the function value 

immediately before the move plus the gain of the move. We use a gain table to support 

the incremental update of the gain value for all valid moves. This methodology is based 

on runtime/memory tradeoffs, often observed in the design of efficient algorithms like 

dynamic programming. 

But first we need to design the types of moves in the solution space and the 

corresponding solution space neighborhood. 
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4.1 Solution Space Neighborhood Design 

Let X  be the set of all mappings { }mV ,...,2,1→ . X  is the solution space here. The 

transformed multi-way graph partitioning problem can be presented as  

maximize    ( ) XW ∈ππ :3  

where ( )π3W  is the new objective function. 

A wide range of heuristic algorithms for solving problems capable of being written in this 

form can be characterized conveniently by reference to sequences of moves that lead 

from one trial solution (selected X∈π ) to another. Let S be the set of all defined moves. 

We use )(πS  ( X∈π ) to denote the subset of moves in S applicable to π . For any 

)(πSs∈ , )(πs , the new solution obtained by applying move s to π , is called a neighbor 

of π . We call )}(|)({ ππ Sss ∈  the neighborhood of solution π . If )(')( ππ ss ≠ for any 

pair of different moves )(', πSss ∈ , we can use |)(| πS to denote the neighborhood size 

of solution π . 

In order to optimize the algorithm performance, S should be defines with the following 

properties [23][22]: 

• Reachability: Given any two solutions π  and π ′  in X , it should be possible to 

apply a sequence of moves in S  to reach π ′  from π . This property will greatly 

increase the probability for an algorithm to converge to the global optimum. 

• Efficiency: Given any solution X∈π  and Ss∈ , the cost of ( )πs  can be easily 

evaluated by incrementally updating the cost of π . This will allow us to avoid 
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evaluating the cost (objective) function ( )π3W  during each iteration, an operation 

having time complexity ( )2||VO . 

• Injectiveness: Given two different moves s , Ss ∈′ , for any X∈π , ( ) ( )ππ ss ′≠ . 

This will make sure that each neighbor of the current solution will be checked 

only once for the current neighborhood search. 

For graph partitioning, vertex move and vertex exchange are two popular categories of 

moves. Let 1S  be the set of all moves for moving one vertex away from its current 

partition, and 2S  the set of all moves for exchanging two vertices possessed by two 

different partitions. Both 1S  and 2S  enjoy the injectiveness property. The cost of the 

current solution can be incrementally updated for moves from both 1S  and 2S , as will be 

explained in the next section. Many graph partitioning algorithms [12][15] favor 1S  since 

it has smaller neighborhood size ( )1|| −mV , while the average neighborhood size for 2S  

is ( )2||VO . We can make the following two further observations about the reachability of 

1S  and 2S . 

• 1S  also enjoys the reachability property. But if we only allow vertex moves that 

will not worsen the cost of the current partitioning by  

))min()(max()max( 221 wwwR −−⋅  or more (this is the case when the simulated 

annealing is in its low-temperature phases, or when the tabu search always has 

moves with gains of smaller absolute value), then this reachability cannot always 

be realized. For example, for the graph bisection of 1G  in Figure 5(a), no 
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sequence of vertex moves can transform it to the optimal bisection of 1G in Figure 

5 (c) unless we accept moves that will reduce ( )π3W  by 27. Figure 5 (b) shows an 

example vertex move for the bisection in Figure 5 (a). Our claim can be proved by 

generalizing the weights in 1G . 

( ) 243 =πW  ( ) 183 =πW  ( ) 263 =πW  

   

(a) (b) (c) 

Figure 5. Example partitions of 1G , R = 7 

• In general 2S  does not have the reachability property. For instance, given the 

graph bisection of 2G in Figure 6 (a), vertex exchanges will never lead us to the 

optimal bisection of 2G in Figure 6 (b) (while vertex moves do) because they 

cannot change the cardinality of each partition. However, we can easily transform 

the bisection in Figure 6 (a) to that in Figure 6 (c) by exchanging vertices 2v  and 

4v . 

 

( ) 433 =πW  ( ) 1233 =πW  
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(a) (b) 

Figure 6. Example partitions of 2G , R = 5 

For simplicity, this research only uses vertex moves in 1S  in its solution heuristics. 

Vertex exchanges are left for future work. 

4.2 Gain Function for Moves 

The strategy for our incremental objective function evaluation is implemented through 

defining a gain function for evaluating the profit (improvement in objective function 

value) of making a solution space move.  

Given the current partition π  and a move ( )πSs∈ , we call ( )( ) ( )ππ 33 WsW −  the gain of 

move s .  

Given a partition π  of G , for any 1Ss∈ , the gain for moving any vertex ( )iPv π∈  to 

partition ( )jPπ  ( )mji ≤≤ ,1 can be defined to be 

( )
( )( )

∑ ∑
∈ ∈

−=
iPu jPu

vuwvuwjvg
π π

}),({}),({, 331 , 

and for any  2Ss∈ , the gain for exchanging any pair of vertices )(iPu π∈  and )( jPv π∈  
)( ji ≠  can be defined to be 
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) )(( )( }),({2,,, 3112 vuwivgjugvug ++=  

 

because we can  view the vertex exchange as consisting of two consecutive vertex moves. 

Since 2g  can be defined in terms of 1g , in the following we only need to consider the 

incremental update of 1g  after each vertex move. 

Let π  be the current solution with objective function value )(3 πW , 1Ss∈  moves vertex v 

from its current containing partition to partition j, and 'π  be the new solution resulting 

from applying move s to solution π . It follows from the definitions that 

),()()'( 133 jvgWW += ππ . Therefore, the problem of incremental evaluation of objective 

function )(3 πW  is now reduced to the problem of incremental evaluation of the gain 

function ),(1 jvg  for all mj ≤≤1  and all })(|{ juVuv ≠∈∈ π . 

4.3 Incremental Gain Function Updating 

We maintain the values of function ),(1 jvg in a 2-D table. As long as we have updated 

values of function ),(1 jvg for all combinations of mj ≤≤1  and })(|{ juVuv ≠∈∈ π , 

we can find the new objective function value after a move by just adding its gain to the 

old objective function value, in constant time. But based on the definition of gain 

function ()1g , it can be verified that after moving vertex )(iPv π∈ to partition 

)( jPπ ( ji ≠ ), the gain function ()1g  can be incrementally updated as follows in |)(|VO : 

Case 1: ),(),(' 11 jvgivg −=   



 

 

  36

Case 2: ),,(),(),(' 111 jvgkvgkvg −=  },{ jik ∉  

Case 3: }),,({2),(),(' 311 vuwjugjug += )(iPu π∈∀  

Case 4: }),,({),(),(' 311 vuwkugkug +=  },{),( jikiPu ∉∈∀ π  

Case 5: }),,({2),(),(' 311 vuwiugiug −=  )( jPu π∈∀  

Case 6: }),,({),(),(' 311 vuwkugkug −=  },{),( jikjPu ∉∈∀ π  

Case 7: }),,({),(),(' 311 vuwiugiug −=  )()( jPiPu ππ ∪∉∀  

Case 8: }),,({),(),(' 311 vuwjugjug +=  )()( jPiPu ππ ∪∉∀  

where ()'1g  marks the new value of ()1g . The significant speedup of |)(|VO , made 

possible by our methodology for incremental objective function evaluation, can benefit 

any solution heuristic for this particular problem. 

In the following figures we provide one general example for each of the cases for 

incremental update of the gain function. They can be treated as informal proof for the 

correctness of this evaluation algorithm. For each of the cases, vertex v of partition i is 

being moved to another partition j, the left figure shows the partial partitioning just 

before the move, and the right figure shows the partial partitioning just after the move. 
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) { }( ) { }( )( avwbvwivg ,,, 331 −=  ) { }( ) { }( )( ( )ivgbvwavwivg ,,,, 1331 −=−=′

Figure 7 Incremental move gain update case 1 

  

) { }( ) { }( )( avwbvwkvg ,,, 331 −=  

) { }( ) { }( )( avwcvwjvg ,,, 331 −=  

) { }( ) { }( )( cvwbvwkvg ,,, 331 −=′  

) ( ) ( )( jvgkvgkvg ,,, 111 −=′  

Figure 8 Incremental move gain update case 2 

  

) { }( ) { }) { }( )(( auwvuwcuwjug ,,,, 3331 −−= ) { }) { }( ) { }( )(( auwcuwvuwjug ,,,, 3331 −+=′

) )( { })(( vuwjugjug ,2,, 311 +=′  
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Figure 9 Incremental move gain update case 3 

 

  

) { }( ) { }) { }( )(( auwvuwbuwkug ,,,, 3331 −−= ) { }( ) { }( )( auwbuwkug ,,, 331 −=′  

) )( { })(( vuwkugkug ,,, 311 +=′  

Figure 10 Incremental move gain update case 4 

  

)( { }( ) { }( ) { }( )cuwauwvuwiug ,,,, 3331 −+= ) { }( ) { }) { }( )(( cuwvuwauwiug ,,,, 3331 −−=′

)( ( ) { }( )vuwiugiug ,2,, 311 −=′  

Figure 11 Incremental move gain update case 5 
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) { }( ) { }( )( buwcuwkug ,,, 331 −=  ) { }( ) { }) { }( )(( buwvuwcuwkug ,,,, 3331 −−=′

) )( { })(( vuwkugkug ,,, 311 −=′  

Figure 12 Incremental move gain update case 6 

 

 

) { }( ) { }) { }( )(( cuwvuwauwiug ,,,, 3331 −+= ) { }( ) { })(( cuwauwiug ,,, 331 −=′  

) )( { })(( vuwiugiug ,,, 311 −=′  

Figure 13 Incremental move gain update case 7 
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   ) { }( ) { })(( cuwbuwjug ,,, 331 −=  ) { }( ) { })( { }( )( cuwvuwbuwjug ,,,, 3331 −+=′

) )( { })(( vuwjugjug ,,, 311 +=′  

Figure 14 Incremental vove gain update case 8 
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Chapter  5    
 

Simulated Annealing Algorithm 

 

The design of the simulated annealing algorithm will be explored in this chapter. 

Sensitivity analysis will be conducted on the multiple parameters of the algorithm to find 

their best values. 

5.1 Algorithm Design 

Simulated annealing is a meta-heuristic that attempts to avoid entrapment in poor local 

optima by allowing occasional downhill moves. Our algorithm for the multi-way graph 

partitioning problem based on simulated annealing is outlined in Algorithm 5. We just 

call it the simulated annealing algorithm for convenience. This procedure is performed 

under the influence of a random number generator and a control parameter called the 

temperature. As typically implemented, the simulated annealing approach involves a pair 

of nested loops and two additional parameters, a cooling ratio r, which is between zero 

and one, and an integer temperature length L. The most important of this process is the 

loop at Step 3.1. Note that Te /∆  will be a number in the interval (0, 1) when T is positive 

and∆  is negative, and rightfully can be interpreted as a probability that depends on ∆ and 

T. The probability that a downhill move will be accepted diminishes as the temperature 

declines, and, for a fixed temperature T, small downhill moves have higher probabilities 
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of acceptance than large ones [12][23]. This particular method of operation is motivated 

by a physical analogy, best described in terms of the physics of crystal growth [14]. It has 

been proven that the algorithm will converge to a global optimum if the temperature is 

lowered exponentially and the initial temperature is chosen sufficiently high [11]. 

Algorithm 5. Simulated annealing for graph partitioning  

1. Get a random initial solution π . 
2. Get an initial temperature T > 0 . 
3. While stop criterion not met do the following. 
       3.1 Perform the following loop L times. 
             3.1.1 Let π ′  be a random neighbor of π . 
             3.1.2 Let ( ) ( )ππ 33 WW −′=∆ . 
             3.1.3 If 0≥∆  (uphill move), 
                          Set ππ ′= . 
             3.1.4 If  0<∆ (downhill move), 

                                Set ππ ′=  with probability Te /∆ . 
       3.2 Set TrT ⋅=  (reduce temperature). 
4. Return the best π  visited. 

 

5.2 Experiment Design for Parameter Tuning  

There are four parameters, described below, that must find their optimized values for 

achieving the best performance of the simulated annealing algorithm. These parameters 

are inter-related and have major effect on solution quality and algorithm running time.  

1. Initial temperature-- 0t : Simulated annealing algorithms are in general time 

consuming in their execution. The choice t0  has a direct effect on the annealing 

schedule. If 0t  is too high, the algorithm’s initial random walking will be 
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prolonged without benefit. Conversely, if t0  is too slow, the algorithm will be 

lead to entrapment in poor local optima. 

2. Temperature reduction ratio-- r : This is also a major factor to affect the 

execution of the algorithm. Ratio r is a real number in the interval (0, 1).  If r  is 

too large, temperature will be reduced vigorously, and the algorithm will be lead 

to entrapment in poor local optima. If r  is too small, algorithm execution will be 

significantly prolonged. 

3. Number of consecutive non-improvement iterations before the temperature 

is reduced—l: This is to control the number of non-improvement iterations 

before the temperature is reduced. If l  is too large, the execution time will be 

spent on inefficient solution hunting. If l  is too small, the solution neighborhoods 

will not be explored thoroughly.  

4. Number of consecutive non-improvement iterations before algorithm 

termination-- k : This is to control the number of non-improvement iterations 

before the termination of the algorithm. If  k  is too large, the execution time will 

be increased without profits. If k  is too small, the alternative solution 

neighborhoods will not be explored thoroughly due to rushed termination.    

 

In this research, 50 random problem instances are generated for algorithm performance 

evaluation. Their numbers of vertices range from 20 to 200, expected degrees of each 

vertex (number of incident edges) range from 8 to 30, both vertex weights and edge 

weights range from 1 to 5, and the number of partitions range from 2 to 8.   
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For parameter tuning in this chapter, we choose the following five problem instances 

from our 50 problem instances to conduct experiments, one instance for each vertex 

number. We call the five problem instances our training set. 

Table 1 Data files for parameter tuning 

Data Files Vertex 
Number 

Expected 
Degree 

Vertex Weights  
(Min-Max) 

Edge Weights  
(Min-Max) 

g20d8c0 20 8 1-5 1-5 
g40d15c0 40 15 1-5 1-5 
g60d20c0 60 20 1-5 1-5 
g100d30c0 100 30 1-5 1-5 
g200d30c0 200 30 1-5 1-5 

 

All experiments are conducted on a Pentium(R) 4 PC with a 2.53GHz CPU and 512 MB 

of RAM, running Microsoft Windows XP Professional.  

After initial experimental exploration for the training set, we find the following ranges of 

values for the four parameters are more promising and worth further investigation. 

 

Table 2. Simulated annealing parameter values to be explored 

Name  Parameter Values 

Initial Temperature t0  5,10,15,20,25,30,35,40,45,50 

Cooling rate r  0.90, 0.95, 0.99, 0.995, 0.9995 

Number of consecutive 
non-improvement Iterations 
before the temperature is 
rduced 

l  100,200,300,400,500,600,700,800, 

900,1000,1100,1200,1300,1400,1500, 

1600,1700,1800,1900,2000 

Number of consecutive 
non-improvement iterations 
before algorithm 
termination 

k  20,40,60,80,100,120,140,160,180,200, 

220,240,260,280,300,320,340,360,380,400 
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The search for optimal parameter values is the most difficult one since the parameters are 

not independent. Based on the above parameter value ranges, there are 

000,202020510 =×××  different combinations. We use a driver program to 

systematically generate performance data for all these combinations for our training set, 

with partition number ranges 2, 4, 6, and 8. 

5.3  Parameter Tuning Experiments 

We run all the 20,000 parameter value combinations for each of the problem instances in 

the training set with partition numbers ranging 2, 4, 6 and 8. Table 3 shows the best 

parameter values for each pair of the problem instances and the partition numbers that 

maximize ( )π3W .  

 

Table 3 Best parameter values for each problem instance 

Data File m ( )π3W  ( )π1W  ( )π2W  t0  r  l  k  
g20d8c0 2 514346 0 0 15 0.9 700 80 
g20d8c0 4 771487 0 2 20 0.9995 300 160
g20d8c0 6 856902 8 6 10 0.995 1100 200
g20d8c0 8 899611 16 16 5 0.9995 1200 200
g40d15c0 2 6067005 0 0 5 0.99 100 20 
g40d15c0 4 9099624 4 0 20 0.995 300 300
g40d15c0 6 10110476 8 7 45 0.9995 500 320
g40d15c0 8 10615837 12 20 20 0.9995 400 80 
g60d20c0 2 31271405 1 0 20 0.995 800 20 
g60d20c0 4 46907027 3 0 35 0.9995 1300 160
g60d20c0 6 52118889 5 2 40 0.995 1000 40 
g60d20c0 8 54724823 7 16 15 0.95 700 140
g100d30c0 2 225610743 0 0 20 0.9995 600 80 
g100d30c0 4 338416042 0 1 10 0.95 400 400
g100d30c0 6 376011993 8 1 35 0.99 800 200
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g100d30c0 8 394818687 0 9 50 0.95 300 280
g200d30c0 2 1385000130 1 0 35 0.9995 1200 80 
g200d30c0 4 2077500109 3 0 20 0.995 500 180
g200d30c0 6 2308327443 9 2 5 0.995 1600 180
g200d30c0 8 2423749881 7 3 50 0.9 1800 380

 

The following Table 4 through Table 9 present partial experiment result data for 

problem instances g40d15co and g60d20c0, with m being 4, from different presentation 

angles.  

Table 4 Parameter values for g40d15c0 sorted by ( )π3W  

Data File m ( )π3W  ( )π1W  ( )π2W Time(ms) t0  r  l  k  
g40d15c0 4 9099624 4 0 750 20 0.995 300 300
g40d15c0 4 9099624 4 5 1812 35 0.995 1100 200
g40d15c0 4 9099623 4 5 3782 45 0.9 1500 320
g40d15c0 4 9099623 4 5 3594 40 0.95 1600 280
g40d15c0 4 9099622 4 0 3953 35 0.9995 1800 280
g40d15c0 4 9099622 4 9 1906 10 0.9 900 260
g40d15c0 4 9099621 4 0 406 40 0.995 800 60 
g40d15c0 4 9099621 4 0 875 10 0.9 1700 60 
g40d15c0 4 9099621 4 10 3328 20 0.99 1800 220
g40d15c0 4 9099621 4 10 4719 5 0.9995 1900 300
g40d15c0 4 9099619 4 6 500 25 0.99 500 120
g40d15c0 4 9099619 4 10 1000 5 0.9 600 200
g40d15c0 4 9099618 4 0 344 20 0.95 100 400
g40d15c0 4 9099618 4 5 2625 35 0.995 1600 200
g40d15c0 4 9099618 4 9 250 5 0.99 100 260
g40d15c0 4 9099618 4 9 1875 30 0.99 1400 160
g40d15c0 4 9099618 4 10 2594 15 0.9 2000 160
g40d15c0 4 9099617 4 5 62 15 0.995 200 40 
g40d15c0 4 9099617 4 5 3234 50 0.99 1100 360
g40d15c0 4 9099617 4 9 62 25 0.99 200 40 

 

Table 5 Parameter values for g40d15c0 sorted by ( )π1W  and ( )π2W  

Data File m ( )π3W  ( )π1W ( )π2W Time(ms) t0 r  l  k  
g40d15c0 4 9099624 4 0 750 20 0.995 300 300
g40d15c0 4 9099622 4 0 3953 35 0.9995 1800 280
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g40d15c0 4 9099621 4 0 406 40 0.995 800 60 
g40d15c0 4 9099621 4 0 875 10 0.9 1700 60 
g40d15c0 4 9099618 4 0 344 20 0.95 100 400
g40d15c0 4 9099615 4 0 1969 5 0.9 1200 200
g40d15c0 4 9099615 4 0 2765 50 0.995 900 380
g40d15c0 4 9099613 4 0 3812 30 0.9995 1800 260
g40d15c0 4 9099612 4 0 1297 20 0.99 2000 80 
g40d15c0 4 9099612 4 0 2531 5 0.99 800 400
g40d15c0 4 9099610 4 0 4453 45 0.995 1500 380
g40d15c0 4 9099609 4 0 703 35 0.9 1000 80 
g40d15c0 4 9099609 4 0 984 10 0.9995 500 240
g40d15c0 4 9099609 4 0 3063 30 0.9995 1000 380
g40d15c0 4 9099608 4 0 94 20 0.995 500 20 
g40d15c0 4 9099608 4 0 3765 40 0.9 1700 280
g40d15c0 4 9099606 4 0 3312 10 0.9 1400 280
g40d15c0 4 9099605 4 0 1078 15 0.99 1100 120
g40d15c0 4 9099605 4 0 3578 10 0.9995 1800 240
g40d15c0 4 9099604 4 0 250 5 0.9995 100 300

 

Table 6 Parameter values for g40d15c0 sorted by running time, ( )π1W  and ( )π2W  

Data File m ( )π3W  ( )π1W ( )π2W Time(ms) t0 r  l  k  
g40d15c0 4 9099568 4 0 15 30 0.9995 100 20 
g40d15c0 4 9099559 4 0 16 40 0.995 100 20 
g40d15c0 4 9099559 4 0 16 15 0.95 100 20 
g40d15c0 4 9099531 4 0 16 30 0.99 100 20 
g40d15c0 4 9099594 4 0 31 45 0.95 100 20 
g40d15c0 4 9099580 4 0 31 45 0.9995 200 20 
g40d15c0 4 9099564 4 0 31 10 0.9995 100 20 
g40d15c0 4 9099559 4 0 47 15 0.995 200 20 
g40d15c0 4 9099558 4 0 47 25 0.99 200 20 
g40d15c0 4 9099545 4 0 47 35 0.95 200 20 
g40d15c0 4 9099540 4 0 47 30 0.9 100 60 
g40d15c0 4 9099528 4 0 47 30 0.95 200 20 
g40d15c0 4 9099500 4 0 47 25 0.9995 100 40 
g40d15c0 4 9099587 4 0 63 5 0.99 100 60 
g40d15c0 4 9099558 4 0 63 35 0.95 100 40 
g40d15c0 4 9099590 4 0 78 40 0.95 100 60 
g40d15c0 4 9099580 4 0 78 5 0.995 500 20 
g40d15c0 4 9099567 4 0 78 5 0.99 500 20 
g40d15c0 4 9099567 4 0 78 10 0.9 100 80 
g40d15c0 4 9099562 4 0 78 35 0.9 200 40 
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Table 7 Parameter values for g60d20c0 sorted by ( )π3W  

Data File m ( )π3W  ( )π1W ( )π2W Time (ms) t0 r  l  k  
g60d20c0 4 46907027 3 0 4907 35 0.9995 1300 160
g60d20c0 4 46907027 3 2 3578 30 0.95 500 360
g60d20c0 4 46907027 3 2 6422 50 0.9995 1300 200
g60d20c0 4 46907027 3 2 8266 40 0.95 1500 280
g60d20c0 4 46907027 3 7 1703 10 0.995 1600 60 
g60d20c0 4 46907027 3 7 6610 50 0.99 1100 220
g60d20c0 4 46907026 3 1 10203 35 0.9995 1300 240
g60d20c0 4 46907026 3 2 1547 20 0.995 800 60 
g60d20c0 4 46907026 3 2 2547 45 0.9995 1100 80 
g60d20c0 4 46907026 3 7 1562 20 0.9995 700 40 
g60d20c0 4 46907026 3 7 10938 10 0.99 2000 280
g60d20c0 4 46907026 3 7 21219 20 0.9995 2000 400
g60d20c0 4 46907025 3 1 985 30 0.995 200 120
g60d20c0 4 46907025 3 1 9735 45 0.9995 1300 340
g60d20c0 4 46907025 3 2 3438 50 0.95 500 300
g60d20c0 4 46907025 3 2 13234 35 0.995 1400 320
g60d20c0 4 46907025 3 7 812 25 0.99 100 280
g60d20c0 4 46907025 3 7 1297 25 0.9995 400 80 
g60d20c0 4 46907025 3 7 4734 30 0.95 700 360
g60d20c0 4 46907024 3 0 891 5 0.95 300 160

 

Table 8 Parameter values for g60d20c0 sorted by ( )π1W  and ( )π2W  

Data File m ( )π3W  ( )π1W ( )π2W Time (ms) t0 r  l  k  
g60d20c0 4 46907027 3 0 4907 35 0.9995 1300 160
g60d20c0 4 46907024 3 0 891 5 0.95 300 160
g60d20c0 4 46907022 3 0 3860 5 0.995 1600 140
g60d20c0 4 46907020 3 0 1610 35 0.95 700 80 
g60d20c0 4 46907018 3 0 656 45 0.99 500 60 
g60d20c0 4 46907017 3 0 1000 35 0.99 500 60 
g60d20c0 4 46907015 3 0 813 5 0.995 1100 20 
g60d20c0 4 46907005 3 0 3844 5 0.99 700 260
g60d20c0 4 46907003 3 0 2188 35 0.9 400 300
g60d20c0 4 46907001 3 0 14141 45 0.9995 1500 200
g60d20c0 4 46907001 3 0 1094 10 0.99 200 280
g60d20c0 4 46906999 3 0 7125 40 0.9995 500 360
g60d20c0 4 46906999 3 0 1203 35 0.995 100 180
g60d20c0 4 46906998 3 0 4297 40 0.99 600 240
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g60d20c0 4 46906998 3 0 6422 10 0.9995 1400 180
g60d20c0 4 46906997 3 0 2156 5 0.95 400 320
g60d20c0 4 46906997 3 0 2515 5 0.995 900 140
g60d20c0 4 46906996 3 0 7438 10 0.95 1500 280
g60d20c0 4 46906996 3 0 735 5 0.99 500 80 
g60d20c0 4 46906994 3 0 1344 35 0.99 400 100

 
 

Table 9 Parameter values for g60d20c0 sorted by Running time, ( )π1W  and ( )π2W  

Data File m ( )π3W  ( )π1W ( )π2W Time(ms) t0 r  l  k  
g60d20c0 4 46906943 3 0 109 45 0.95 300 20 
g60d20c0 4 46906950 3 0 125 50 0.9 100 40 
g60d20c0 4 46906913 3 0 125 40 0.995 100 60 
g60d20c0 4 46906923 3 0 188 20 0.9995 100 100
g60d20c0 4 46906918 3 0 203 45 0.99 100 60 
g60d20c0 4 46906944 3 0 219 50 0.9995 400 20 
g60d20c0 4 46906930 3 0 219 50 0.9995 500 20 
g60d20c0 4 46906921 3 0 250 35 0.99 200 60 
g60d20c0 4 46906926 3 0 281 15 0.9995 100 80 
g60d20c0 4 46906920 3 0 281 5 0.95 100 140
g60d20c0 4 46906903 3 0 328 50 0.995 600 20 
g60d20c0 4 46906946 3 0 343 45 0.99 300 60 
g60d20c0 4 46906993 3 0 359 20 0.95 100 180
g60d20c0 4 46906916 3 0 375 50 0.9995 100 180
g60d20c0 4 46906944 3 0 391 35 0.99 100 100
g60d20c0 4 46906971 3 0 406 15 0.9 200 100
g60d20c0 4 46906931 3 0 422 25 0.9995 900 20 
g60d20c0 4 46906910 3 0 422 45 0.9995 900 20 
g60d20c0 4 46906906 3 0 422 25 0.95 100 180
g60d20c0 4 46906986 3 0 500 30 0.9 100 260

 

Compromising solution quality and algorithm running time, we decided to use the 

following parameter values for our simulated annealing algorithm for all the 50 problem 

instances for performance evaluation. These fixed set of parameter values will be used in 

the next chapter to compare our simulated annealing algorithm with repeated random 

solutions and local optimization.  
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Table 10 Adopted parameter values for simulated annealing algorithm  

t0  r  l  k  
20 0.9995 400 80 
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Chapter  6  
 

Comparative Study 

For combinatorial optimization problems like graph partitioning, comparative study of 

algorithms solving the same problem is fundamental to evaluating the algorithm quality. 

In this chapter, we design experiments to compare the solution quality and running time 

for simulated annealing, local optimization and repeat random algorithms. 

6.1 Experiment Design 

In this research, 50 random problem instances are generated for algorithm performance 

evaluation. Their numbers of vertices range from 20 to 200, expected degrees of each 

vertex (number of incident edges) range from 8 to 30, both vertex weights and edge 

weights range from 1 to 5, and the number of partitions range from 2 to 8.   

All experiments are conducted on a Pentium(R) 4 PC with a 2.53GHz CPU and 512 MB 

of RAM, running Microsoft Windows XP Professional.  

We run simulated annealing with selective parameter values. The running time will be 

generated from 50 problem instances individually. With the same time basis, the 

reference algorithms could adopt it for comparability.  

The repeat random algorithm and the local optimization algorithm will be used as 

reference algorithms to solving the multi-way graph partitioning problem.  For the 
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repeated random algorithm, random solutions will be generated for as long as its 

competitor for each problem instance, and report the best solution found.   

The parameter values for simulated annealing are selected in Chapter 5: t0 =20, 

r =0.9995, l =400 and k  = 80. 

6.2 Solution Quality of Simulated Annealing 

This section reports solution quality and running time of our simulated annealing 
algorithm for each of the 50 benchmark problem instances, with the partition number 
ranging 2, 4, 6, and 8. 
 

Table 11 Simulated annealing performance for m=2 

Data File m ( )π3W  ( )π1W ( )π2W  Time (ms) 
g20d8c0 2 514325 0 0 94 
g20d8c1 2 413319 1 0 78 
g20d8c2 2 437130 0 0 78 
g20d8c3 2 417943 1 0 78 
g20d8c4 2 524557 0 0 78 
g20d8c5 2 397501 1 0 109 
g20d8c6 2 446573 1 0 78 
g20d8c7 2 400651 0 0 78 
g20d8c8 2 443486 1 0 78 
g20d8c9 2 458351 1 0 94 
g40d15c0 2 6066948 0 0 250 
g40d15c1 2 8854484 0 0 265 
g40d15c2 2 5338715 0 0 250 
g40d15c3 2 5741993 1 0 297 
g40d15c4 2 6515626 1 0 297 
g40d15c5 2 6245558 0 0 281 
g40d15c6 2 6132098 0 0 265 
g40d15c7 2 6864784 0 0 282 
g40d15c8 2 7047044 0 0 250 
g40d15c9 2 7500066 1 0 265 
g60d20c0 2 31271320 1 0 687 
g60d20c1 2 33031198 1 0 750 
g60d20c2 2 28902854 0 0 547 
g60d20c3 2 28974294 0 0 671 
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g60d20c4 2 33351726 0 0 563 
g60d20c5 2 31094151 0 5 546 
g60d20c6 2 29845372 1 0 766 
g60d20c7 2 29834714 0 0 562 
g60d20c8 2 28687775 1 0 719 
g60d20c9 2 27935910 1 0 812 
g100d30c0 2 225610506 0 0 1563 
g100d30c1 2 206073682 1 0 1859 
g100d30c2 2 163223962 1 0 2687 
g100d30c3 2 203382372 0 0 2781 
g100d30c4 2 205191680 1 0 3140 
g100d30c5 2 231988111 0 0 1563 
g100d30c6 2 176986562 1 0 1531 
g100d30c7 2 174884899 1 0 2234 
g100d30c8 2 219606111 0 0 1516 
g100d30c9 2 206095952 0 0 1562 
g200d30c0 2 1384999918 1 0 7515 
g200d30c1 2 1705949627 0 0 6344 
g200d30c2 2 1751191478 0 0 6453 
g200d30c3 2 1647418644 1 0 11531 
g200d30c4 2 1522644568 1 0 8235 
g200d30c5 2 1628774697 0 0 6312 
g200d30c6 2 1735164179 0 0 6546 
g200d30c7 2 1705365555 0 0 6547 
g200d30c8 2 1542222944 1 0 15391 
g200d30c9 2 1619136838 0 0 6468 

 
 

Table 12 Simulated annealing performance for m=4 

Data File m ( )π3W  ( )π1W ( )π2W  Time (ms) 
g20d8c0 4 771450 0 4 110 
g20d8c1 4 619996 3 2 125 
g20d8c2 4 655714 0 0 109 
g20d8c3 4 626903 3 4 109 
g20d8c4 4 786843 0 11 94 
g20d8c5 4 596222 3 2 93 
g20d8c6 4 669863 3 0 110 
g20d8c7 4 600757 4 3 94 
g20d8c8 4 665259 3 3 94 
g20d8c9 4 687549 3 5 125 
g40d15c0 4 9099584 4 5 250 
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g40d15c1 4 13281707 0 4 329 
g40d15c2 4 8007178 4 5 297 
g40d15c3 4 8612991 3 0 406 
g40d15c4 4 9773502 3 0 344 
g40d15c5 4 9368366 0 5 266 
g40d15c6 4 9198164 0 3 266 
g40d15c7 4 10296274 4 0 390 
g40d15c8 4 10570565 0 0 328 
g40d15c9 4 11250049 3 5 391 
g60d20c0 4 46906932 3 1 1094 
g60d20c1 4 49546762 3 0 1437 
g60d20c2 4 43352454 4 1 813 
g60d20c3 4 43459798 4 1 625 
g60d20c4 4 50027679 0 0 844 
g60d20c5 4 46639526 4 7 578 
g60d20c6 4 44767946 3 3 1032 
g60d20c7 4 44752097 0 0 563 
g60d20c8 4 43031562 3 7 2125 
g60d20c9 4 41903789 3 0 1594 
g100d30c0 4 338415957 0 1 1484 
g100d30c1 4 309110542 3 0 2266 
g100d30c2 4 244835849 3 8 2484 
g100d30c3 4 305073479 0 0 1469 
g100d30c4 4 307787433 3 0 3063 
g100d30c5 4 347982191 0 6 1469 
g100d30c6 4 265479793 3 2 3640 
g100d30c7 4 262327273 3 0 3250 
g100d30c8 4 329409214 0 0 1500 
g100d30c9 4 309139572 4 0 2578 
g200d30c0 4 2077499709 3 1 9703 
g200d30c1 4 2558924617 0 0 5875 
g200d30c2 4 2626778410 4 0 13188 
g200d30c3 4 2471128183 3 3 10672 
g200d30c4 4 2283966643 3 0 30984 
g200d30c5 4 2443152900 4 0 8812 
g200d30c6 4 2602746182 0 0 5797 
g200d30c7 4 2558048394 0 3 7390 
g200d30c8 4 2313334399 3 0 9922 
g200d30c9 4 2428696598 4 0 10203 
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Table 13 Simulated annealing performance for m=6 

Data File m ( )π3W  ( )π1W ( )π2W  Time (ms) 
g20d8c0 6 856891 8 5 109 
g20d8c1 6 688874 5 10 94 
g20d8c2 6 728285 8 8 110 
g20d8c3 6 696537 5 18 78 
g20d8c4 6 874254 0 15 109 
g20d8c5 6 662473 5 15 94 
g20d8c6 6 744313 5 2 93 
g20d8c7 6 667450 8 11 94 
g20d8c8 6 739159 5 7 78 
g20d8c9 6 763921 5 13 79 
g40d15c0 6 10110433 8 10 547 
g40d15c1 6 14756220 8 8 422 
g40d15c2 6 8896624 8 18 250 
g40d15c3 6 9569962 5 22 391 
g40d15c4 6 10859451 5 10 281 
g40d15c5 6 10409292 0 6 250 
g40d15c6 6 10219025 8 3 407 
g40d15c7 6 11440119 8 4 344 
g40d15c8 6 11743724 8 9 562 
g40d15c9 6 12499477 9 18 359 
g60d20c0 6 52118856 5 6 1032 
g60d20c1 6 55050712 9 6 1594 
g60d20c2 6 48168986 8 11 610 
g60d20c3 6 48288281 8 5 1094 
g60d20c4 6 55586359 0 5 625 
g60d20c5 6 51821233 8 23 1015 
g60d20c6 6 49740977 9 6 829 
g60d20c7 6 49722211 8 16 812 
g60d20c8 6 47811720 9 21 781 
g60d20c9 6 46559751 5 6 1250 
g100d30c0 6 376011828 8 5 2953 
g100d30c1 6 343452935 9 13 3016 
g100d30c2 6 272039791 5 24 2594 
g100d30c3 6 338964736 8 10 1375 
g100d30c4 6 341982896 9 8 1578 
g100d30c5 6 386640729 8 2 3907 
g100d30c6 6 294974452 9 4 2968 
g100d30c7 6 291471702 9 10 1657 
g100d30c8 6 366004348 8 9 1609 
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g100d30c9 6 343487342 8 2 1516 
g200d30c0 6 2308326999 9 6 5844 
g200d30c1 6 2843249599 0 3 6531 
g200d30c2 6 2918640546 8 0 12813 
g200d30c3 6 2745697834 5 2 11391 
g200d30c4 6 2537740634 5 8 9610 
g200d30c5 6 2714624312 0 10 5343 
g200d30c6 6 2891940251 0 3 5375 
g200d30c7 6 2842264270 8 8 7719 
g200d30c8 6 2570371315 5 5 9157 
g200d30c9 6 2698549725 8 7 8922 

 
 

Table 14 Simulated annealing performance for m=8 

 

Data File m ( )π3W  ( )π1W ( )π2W  Time (ms) 
g20d8c0 8 899601 16 16 94 
g20d8c1 8 723029 15 38 78 
g20d8c2 8 764992 0 25 78 
g20d8c3 8 731382 7 30 78 
g20d8c4 8 917384 16 53 78 
g20d8c5 8 695368 15 20 78 
g20d8c6 8 781104 19 21 109 
g20d8c7 8 700801 12 30 78 
g20d8c8 8 775862 15 20 94 
g20d8c9 8 801866 15 29 93 
g40d15c0 8 10615837 12 20 250 
g40d15c1 8 15493444 14 23 235 
g40d15c2 8 9341391 12 39 406 
g40d15c3 8 10048468 7 31 266 
g40d15c4 8 11401395 15 19 234 
g40d15c5 8 10929718 0 24 234 
g40d15c6 8 10729409 16 14 360 
g40d15c7 8 12012031 12 24 422 
g40d15c8 8 12330287 16 35 359 
g40d15c9 8 13125054 7 41 250 
g60d20c0 8 54724782 7 19 921 
g60d20c1 8 57802669 15 19 2703 
g60d20c2 8 50577252 12 15 484 
g60d20c3 8 50702496 12 9 1125 
g60d20c4 8 58365606 0 4 484 
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g60d20c5 8 54412076 12 23 687 
g60d20c6 8 52229256 7 12 1172 
g60d20c7 8 52210763 0 21 485 
g60d20c8 8 50203498 7 35 1297 
g60d20c9 8 48887739 7 18 1078 
g100d30c0 8 394818502 0 15 1250 
g100d30c1 8 360628853 7 30 2235 
g100d30c2 8 285637264 15 33 2890 
g100d30c3 8 355919084 0 25 1328 
g100d30c4 8 359085238 7 13 2093 
g100d30c5 8 405970040 16 4 3078 
g100d30c6 8 309726273 7 22 2562 
g100d30c7 8 306048457 7 23 3078 
g100d30c8 8 384301950 16 13 3250 
g100d30c9 8 360661223 12 17 1344 
g200d30c0 8 2423749569 7 6 9094 
g200d30c1 8 2985393923 16 14 15594 
g200d30c2 8 3064571656 12 2 8188 
g200d30c3 8 2882982787 7 2 8000 
g200d30c4 8 2664618549 15 18 9453 
g200d30c5 8 2850341735 12 9 11312 
g200d30c6 8 3036518744 16 11 7954 
g200d30c7 8 2984389893 0 12 4921 
g200d30c8 8 2698880766 15 5 6406 
g200d30c9 8 2833476281 12 14 7922 

 

6.3 Comparisons with Repeat Random Solutions 

For each combination of problem instances and partition numbers, we run Repeated 

Random for the same amount of time as our simulated annealing algorithm and compare 

the resulting solution quality for Repeated Random with that for simulated annealing. 

The resulting data are reported in Table 15. In this table, RR denotes Random Repeat, 

SA denotes Simulated Annealing, and Diff% is the difference between the summation of  

( )π1W  and ( )π2W  for Repeated Random and the summation of ( )π1W  and ( )π2W  for 

simulated annealing, divided by the latter summation. In the last Result column, SA=RR 
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means that SA and RR have the same solution quality, and SA>RR means that SA 

outperforms RR. 

Table 15 Performance comparison between RR and SA (m=2, 4, 6, 8) 

Data 
Files m ( )π3W  

( )π1W
RR 

( )π2W
RR 

( )π1W
SA 

( )π2W
SA 

( )π1W
Diff. 

( )π2W  
Diff. Diff. % Result

g20d8c0 2 514328 0 0 0 0 0 0 0.00% SA=RR
g20d8c1 2 413352 1 0 1 0 0 0 0.00% SA=RR
g20d8c2 2 437165 0 0 0 0 0 0 0.00% SA=RR
g20d8c3 2 417969 1 0 1 0 0 0 0.00% SA=RR
g20d8c4 2 524580 0 0 0 0 0 0 0.00% SA=RR
g20d8c5 2 397510 1 0 1 0 0 0 0.00% SA=RR
g20d8c6 2 446607 1 0 1 0 0 0 0.00% SA=RR
g20d8c7 2 400663 0 0 0 0 0 0 0.00% SA=RR
g20d8c8 2 443523 1 0 1 0 0 0 0.00% SA=RR
g20d8c9 2 458382 1 1 1 0 0 1 50.00% SA>RR
g40d15c0 2 6067000 0 0 0 0 0 0 0.00% SA=RR
g40d15c1 2 8854525 0 0 0 0 0 0 0.00% SA=RR
g40d15c2 2 5338709 0 5 0 0 0 5 100.00% SA=RR
g40d15c3 2 5742002 1 0 1 0 0 0 0.00% SA=RR
g40d15c4 2 6515679 1 0 1 0 0 0 0.00% SA=RR
g40d15c5 2 6245604 0 0 0 0 0 0 0.00% SA=RR
g40d15c6 2 6132178 0 0 0 0 0 0 0.00% SA=RR
g40d15c7 2 6864822 0 0 0 0 0 0 0.00% SA=RR
g40d15c8 2 7047096 0 0 0 0 0 0 0.00% SA=RR
g40d15c9 2 7500090 1 0 1 0 0 0 0.00% SA=RR
g60d20c0 2 31271366 1 1 1 0 0 1 50.00% SA>RR
g60d20c1 2 33031255 1 0 1 0 0 0 0.00% SA=RR
g60d20c2 2 28902854 0 0 0 0 0 0 0.00% SA=RR
g60d20c3 2 28974425 0 0 0 0 0 0 0.00% SA=RR
g60d20c4 2 33351852 0 0 0 0 0 0 0.00% SA=RR
g60d20c5 2 31094276 0 5 0 5 0 0 0.00% SA=RR
g60d20c6 2 29845363 1 3 1 0 0 3 75.00% SA>RR
g60d20c7 2 29834768 0 0 0 0 0 0 0.00% SA=RR
g60d20c8 2 28687760 1 0 1 0 0 0 0.00% SA=RR
g60d20c9 2 27935895 1 0 1 0 0 0 0.00% SA=RR
g100d30c0 2 225610683 0 0 0 0 0 0 0.00% SA=RR
g100d30c1 2 206073734 1 0 1 0 0 0 0.00% SA=RR
g100d30c2 2 163223939 1 3 1 0 0 3 75.00% SA>RR
g100d30c3 2 203382396 0 0 0 0 0 0 0.00% SA=RR
g100d30c4 2 205191662 1 0 1 0 0 0 0.00% SA=RR
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g100d30c5 2 231988261 0 0 0 0 0 0 0.00% SA=RR
g100d30c6 2 176986509 1 0 1 0 0 0 0.00% SA=RR
g100d30c7 2 174884885 1 0 1 0 0 0 0.00% SA=RR
g100d30c8 2 219606207 0 0 0 0 0 0 0.00% SA=RR
g100d30c9 2 206096042 0 0 0 0 0 0 0.00% SA=RR
g200d30c0 2 1384999812 1 1 1 0 0 1 50.00% SA>RR
g200d30c1 2 1705949878 0 0 0 0 0 0 0.00% SA=RR
g200d30c2 2 1751191510 0 0 0 0 0 0 0.00% SA=RR
g200d30c3 2 1647418744 1 0 1 0 0 0 0.00% SA=RR
g200d30c4 2 1522644433 1 0 1 0 0 0 0.00% SA=RR
g200d30c5 2 1628774676 0 0 0 0 0 0 0.00% SA=RR
g200d30c6 2 1735164215 0 0 0 0 0 0 0.00% SA=RR
g200d30c7 2 1705365752 0 0 0 0 0 0 0.00% SA=RR
g200d30c8 2 1542222935 1 0 1 0 0 0 0.00% SA=RR
g200d30c9 2 1619137070 0 0 0 0 0 0 0.00% SA=RR
g20d8c0 4 771015 6 6 0 4 6 2 66.67% SA>RR
g20d8c1 4 619982 3 3 3 2 0 1 16.67% SA>RR
g20d8c2 4 655271 6 4 0 0 6 4 100.00% SA=RR
g20d8c3 4 626884 3 9 3 4 0 5 41.67% SA>RR
g20d8c4 4 786250 6 9 0 11 6 -2 26.67% SA>RR
g20d8c5 4 596205 3 10 3 2 0 8 61.54% SA>RR
g20d8c6 4 669461 7 2 3 0 4 2 66.67% SA>RR
g20d8c7 4 600727 4 3 4 3 0 0 0.00% SA=RR
g20d8c8 4 665213 3 3 3 3 0 0 0.00% SA=RR
g20d8c9 4 687015 7 5 3 5 4 0 33.33% SA>RR
g40d15c0 4 9096036 10 9 4 5 6 4 52.63% SA>RR
g40d15c1 4 13275947 10 4 0 4 10 0 71.43% SA>RR
g40d15c2 4 8005348 6 5 4 5 2 0 18.18% SA>RR
g40d15c3 4 8611129 7 7 3 0 4 7 78.57% SA>RR
g40d15c4 4 9771437 7 1 3 0 4 1 62.50% SA>RR
g40d15c5 4 9366611 6 5 0 5 6 0 54.55% SA>RR
g40d15c6 4 9196337 6 3 0 3 6 0 66.67% SA>RR
g40d15c7 4 10292562 10 1 4 0 6 1 63.64% SA>RR
g40d15c8 4 10570599 0 5 0 0 0 5 100.00% SA>RR
g40d15c9 4 11246399 9 13 3 5 6 8 63.64% SA>RR
g60d20c0 4 46906901 3 7 3 1 0 6 60.00% SA>RR
g60d20c1 4 49539286 9 0 3 0 6 0 66.67% SA>RR
g60d20c2 4 43352399 4 6 4 1 0 5 50.00% SA>RR
g60d20c3 4 43452777 10 4 4 1 6 3 64.29% SA>RR
g60d20c4 4 50024025 6 1 0 0 6 1 100.00% SA>RR
g60d20c5 4 46631960 10 7 4 7 6 0 35.29% SA>RR
g60d20c6 4 44757216 11 4 3 3 8 1 60.00% SA>RR
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g60d20c7 4 44748545 6 0 0 0 6 0 100.00% SA>RR
g60d20c8 4 43027921 7 8 3 7 4 1 33.33% SA>RR
g60d20c9 4 41892789 9 0 3 0 6 0 66.67% SA>RR
g100d30c0 4 338319002 18 6 0 1 18 5 95.83% SA>RR
g100d30c1 4 309091721 9 4 3 0 6 4 76.92% SA>RR
g100d30c2 4 244826717 7 9 3 8 4 1 31.25% SA>RR
g100d30c3 4 305064573 6 5 0 0 6 5 100.00% SA>RR
g100d30c4 4 307759365 11 3 3 0 8 3 78.57% SA>RR
g100d30c5 4 347954278 10 6 0 6 10 0 62.50% SA>RR
g100d30c6 4 265470529 7 7 3 2 4 5 64.29% SA>RR
g100d30c7 4 262309230 9 5 3 0 6 5 78.57% SA>RR
g100d30c8 4 329382809 10 2 0 0 10 2 100.00% SA>RR
g100d30c9 4 309139393 4 4 4 0 0 4 50.00% SA>RR
g200d30c0 4 2077481903 7 1 3 1 4 0 50.00% SA>RR
g200d30c1 4 2558796967 16 0 0 0 16 0 100.00% SA>RR
g200d30c2 4 2626617110 18 0 4 0 14 0 77.78% SA>RR
g200d30c3 4 2471056278 13 2 3 3 10 -1 60.00% SA>RR
g200d30c4 4 2283930334 9 5 3 0 6 5 78.57% SA>RR
g200d30c5 4 2443004976 16 0 4 0 12 0 75.00% SA>RR
g200d30c6 4 2602653404 14 2 0 0 14 2 100.00% SA>RR
g200d30c7 4 2557994544 10 0 0 3 10 -3 70.00% SA>RR
g200d30c8 4 2313206084 17 2 3 0 14 2 84.21% SA>RR
g200d30c9 4 2428660203 10 3 4 0 6 3 69.23% SA>RR
g20d8c0 6 854652 26 14 8 5 18 9 67.50% SA>RR
g20d8c1 6 685335 23 18 5 10 18 8 63.41% SA>RR
g20d8c2 6 727002 22 12 8 8 14 4 52.94% SA>RR
g20d8c3 6 693793 27 24 5 18 22 6 54.90% SA>RR
g20d8c4 6 872499 18 23 0 15 18 8 63.41% SA>RR
g20d8c5 6 661990 13 14 5 15 8 -1 25.93% SA>RR
g20d8c6 6 742169 27 7 5 2 22 5 79.41% SA>RR
g20d8c7 6 665769 24 19 8 11 16 8 55.81% SA>RR
g20d8c8 6 738663 13 14 5 7 8 7 55.56% SA>RR
g20d8c9 6 760241 31 23 5 13 26 10 66.67% SA>RR
g40d15c0 6 10105170 22 15 8 10 14 5 51.35% SA>RR
g40d15c1 6 14738938 36 8 8 8 28 0 63.64% SA>RR
g40d15c2 6 8884282 30 13 8 18 22 -5 39.53% SA>RR
g40d15c3 6 9553736 29 21 5 22 24 -1 46.00% SA>RR
g40d15c4 6 10853479 21 11 5 10 16 1 53.13% SA>RR
g40d15c5 6 10398861 24 6 0 6 24 0 80.00% SA>RR
g40d15c6 6 10208030 30 8 8 3 22 5 71.05% SA>RR
g40d15c7 6 11434549 22 12 8 4 14 8 64.71% SA>RR
g40d15c8 6 11731111 28 18 8 9 20 9 63.04% SA>RR
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g40d15c9 6 12488601 29 22 9 18 20 4 47.06% SA>RR
g60d20c0 6 52082207 35 15 5 6 30 9 78.00% SA>RR
g60d20c1 6 54998878 43 6 9 6 34 0 69.39% SA>RR
g60d20c2 6 48106890 46 19 8 11 38 8 70.77% SA>RR
g60d20c3 6 48256795 36 9 8 5 28 4 71.11% SA>RR
g60d20c4 6 55553771 34 6 0 5 34 1 87.50% SA>RR
g60d20c5 6 51779847 38 15 8 23 30 -8 41.51% SA>RR
g60d20c6 6 49719563 29 8 9 6 20 2 59.46% SA>RR
g60d20c7 6 49701035 28 8 8 16 20 -8 33.33% SA>RR
g60d20c8 6 47752978 47 20 9 21 38 -1 55.22% SA>RR
g60d20c9 6 46523199 37 8 5 6 32 2 75.56% SA>RR
g100d30c0 6 375923630 36 16 8 5 28 11 75.00% SA>RR
g100d30c1 6 343312727 43 7 9 13 34 -6 56.00% SA>RR
g100d30c2 6 271931353 37 26 5 24 32 2 53.97% SA>RR
g100d30c3 6 338726979 60 14 8 10 52 4 75.68% SA>RR
g100d30c4 6 341889733 37 7 9 8 28 -1 61.36% SA>RR
g100d30c5 6 386482631 46 7 8 2 38 5 81.13% SA>RR
g100d30c6 6 294846942 41 18 9 4 32 14 77.97% SA>RR
g100d30c7 6 291363782 41 14 9 10 32 4 65.45% SA>RR
g100d30c8 6 365793178 56 11 8 9 48 2 74.63% SA>RR
g100d30c9 6 343324512 48 9 8 2 40 7 82.46% SA>RR
g200d30c0 6 2307763475 67 7 9 6 58 1 79.73% SA>RR
g200d30c1 6 2842775723 58 2 0 3 58 -1 95.00% SA>RR
g200d30c2 6 2918247153 52 5 8 0 44 5 85.96% SA>RR
g200d30c3 6 2744892799 79 2 5 2 74 0 91.36% SA>RR
g200d30c4 6 2537415706 47 4 5 8 42 -4 74.51% SA>RR
g200d30c5 6 2714218014 52 10 0 10 52 0 83.87% SA>RR
g200d30c6 6 2891365601 64 3 0 3 64 0 95.52% SA>RR
g200d30c7 6 2841509116 76 6 8 8 68 -2 80.49% SA>RR
g200d30c8 6 2569969149 53 7 5 5 48 2 83.33% SA>RR
g200d30c9 6 2698169272 52 5 8 7 44 -2 73.68% SA>RR
g20d8c0 8 896484 40 25 16 16 24 9 50.77% SA>RR
g20d8c1 8 718304 53 36 15 38 38 -2 40.45% SA>RR
g20d8c2 8 761992 40 27 0 25 40 2 62.69% SA>RR
g20d8c3 8 728607 39 34 7 30 32 4 49.32% SA>RR
g20d8c4 8 912136 56 58 16 53 40 5 39.47% SA>RR
g20d8c5 8 690328 55 29 15 20 40 9 58.33% SA>RR
g20d8c6 8 777701 53 24 19 21 34 3 48.05% SA>RR
g20d8c7 8 698700 38 35 12 30 26 5 42.47% SA>RR
g20d8c8 8 773482 41 23 15 20 26 3 45.31% SA>RR
g20d8c9 8 798156 49 42 15 29 34 13 51.65% SA>RR
g40d15c0 8 10584441 76 25 12 20 64 5 68.32% SA>RR
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g40d15c1 8 15483859 44 19 14 23 30 -4 41.27% SA>RR
g40d15c2 8 9320189 60 38 12 39 48 -1 47.96% SA>RR
g40d15c3 8 10023247 63 35 7 31 56 4 61.22% SA>RR
g40d15c4 8 11385588 53 33 15 19 38 14 60.47% SA>RR
g40d15c5 8 10900243 74 20 0 24 74 -4 74.47% SA>RR
g40d15c6 8 10714795 54 22 16 14 38 8 60.53% SA>RR
g40d15c7 8 11995353 54 27 12 24 42 3 55.56% SA>RR
g40d15c8 8 12286252 82 36 16 35 66 1 56.78% SA>RR
g40d15c9 8 13107008 57 38 7 41 50 -3 49.47% SA>RR
g60d20c0 8 54647925 83 32 7 19 76 13 77.39% SA>RR
g60d20c1 8 57739726 73 25 15 19 58 6 65.31% SA>RR
g60d20c2 8 50478646 92 31 12 15 80 16 78.05% SA>RR
g60d20c3 8 50593990 98 13 12 9 86 4 81.08% SA>RR
g60d20c4 8 58282416 86 7 0 4 86 3 95.70% SA>RR
g60d20c5 8 54325669 86 26 12 23 74 3 68.75% SA>RR
g60d20c6 8 52143650 85 14 7 12 78 2 80.81% SA>RR
g60d20c7 8 52150807 72 18 0 21 72 -3 76.67% SA>RR
g60d20c8 8 50045973 119 27 7 35 112 -8 71.23% SA>RR
g60d20c9 8 48836582 67 23 7 18 60 5 72.22% SA>RR
g100d30c0 8 394668642 72 16 0 15 72 1 82.95% SA>RR
g100d30c1 8 360469882 75 28 7 30 68 -2 64.08% SA>RR
g100d30c2 8 285303243 105 32 15 33 90 -1 64.96% SA>RR
g100d30c3 8 355628475 102 22 0 25 102 -3 79.84% SA>RR
g100d30c4 8 358647852 125 14 7 13 118 1 85.61% SA>RR
g100d30c5 8 405700422 98 9 16 4 82 5 81.31% SA>RR
g100d30c6 8 309280568 125 26 7 22 118 4 80.79% SA>RR
g100d30c7 8 305805603 85 23 7 23 78 0 72.22% SA>RR
g100d30c8 8 384046751 94 12 16 13 78 -1 72.64% SA>RR
g100d30c9 8 360308613 108 18 12 17 96 1 76.98% SA>RR
g200d30c0 8 2422869176 127 11 7 6 120 5 90.58% SA>RR
g200d30c1 8 2983134602 196 12 16 14 180 -2 85.58% SA>RR
g200d30c2 8 3063123661 156 2 12 2 144 0 91.14% SA>RR
g200d30c3 8 2880460853 215 7 7 2 208 5 95.95% SA>RR
g200d30c4 8 2663932791 111 17 15 18 96 -1 74.22% SA>RR
g200d30c5 8 2849492245 114 14 12 9 102 5 83.59% SA>RR
g200d30c6 8 3035017644 164 10 16 11 148 -1 84.48% SA>RR
g200d30c7 8 2982717938 174 15 0 12 174 3 93.65% SA>RR
g200d30c8 8 2698350513 95 7 15 5 80 2 80.39% SA>RR
g200d30c9 8 2832733666 116 16 12 14 104 2 80.30% SA>RR

From Table 15 we can conclude that simulated annealing is better than Repeat Random 

when the partition number is large and the vertex number is larger. For graph bisection 
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(partition number = 2), simulated annealing and Repeat Random generate similar results. 

In terms of the summation of ( )π1W  and ( )π2W , simulated annealing outperforms Repeat 

Random by 16.67% to 100%. 

6.4 Comparisons with Local Optimization 

For each combination of problem instances and partition numbers, we run Local 

Optimization and our simulated annealing algorithm and compare the resulting solution 

quality for Local Optimization with that for simulated annealing. The resulting data are 

reported in Table 16. In this table, LO denotes Local Optimization, SA denotes 

Simulated Annealing, and Diff% is the difference between the summation of  ( )π1W  and 

( )π2W  for Local Optimization and the summation of ( )π1W  and ( )π2W  for simulated 

annealing, divided by the latter summation. In the last Result column, SA=LO means that 

SA and LO have the same solution quality, and SA>LO means that SA outperforms LO. 

Table 16 Performance comparison between LO and SA (m=2, 4, 6, 8) 

Data 
Files m 

( )π3W  
LO 

( )π1W
LO 

( )π2W
LO 

( )π1W
SA 

( )π2W
SA 

( )π1W
Diff.

( )π2W  
Diff. Diff. % Result

g20d8c0 2 514334 0 0 0 0 0 0 0.00% SA=LO
g20d8c1 2 413341 1 0 1 0 0 0 0.00% SA=LO
g20d8c2 2 437151 0 0 0 0 0 0 0.00% SA=LO
g20d8c3 2 417955 1 0 1 0 0 0 0.00% SA=LO
g20d8c4 2 524575 0 0 0 0 0 0 0.00% SA=LO
g20d8c5 2 397498 1 5 1 0 0 5 83.33% SA>LO
g20d8c6 2 446601 1 0 1 0 0 0 0.00% SA=LO
g20d8c7 2 400641 0 0 0 0 0 0 0.00% SA=LO
g20d8c8 2 443508 1 0 1 0 0 0 0.00% SA=LO
g20d8c9 2 458365 1 1 1 0 0 1 50.00% SA>LO
g40d15c0 2 6066969 0 1 0 0 0 1 100.00% SA>LO
g40d15c1 2 8854514 0 0 0 0 0 0 0.00% SA=LO
g40d15c2 2 5338716 0 5 0 0 0 5 100.00% SA>LO
g40d15c3 2 5742026 1 0 1 0 0 0 0.00% SA=LO
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g40d15c4 2 6515694 1 0 1 0 0 0 0.00% SA=LO
g40d15c5 2 6245600 0 2 0 0 0 2 100.00% SA>LO
g40d15c6 2 6132147 0 3 0 0 0 3 100.00% SA>LO
g40d15c7 2 6864803 0 0 0 0 0 0 0.00% SA=LO
g40d15c8 2 7047078 0 0 0 0 0 0 0.00% SA=LO
g40d15c9 2 7500013 1 4 1 0 0 4 80.00% SA>LO
g60d20c0 2 31271250 1 1 1 0 0 1 50.00% SA>LO
g60d20c1 2 33031146 1 0 1 0 0 0 0.00% SA=LO
g60d20c2 2 28902754 0 0 0 0 0 0 0.00% SA=LO
g60d20c3 2 28974316 0 1 0 0 0 1 100.00% SA>LO
g60d20c4 2 33351754 0 0 0 0 0 0 0.00% SA=LO
g60d20c5 2 31094195 0 5 0 5 0 0 0.00% SA=LO
g60d20c6 2 29845272 1 3 1 0 0 3 75.00% SA>LO
g60d20c7 2 29834662 0 0 0 0 0 0 0.00% SA=LO
g60d20c8 2 28687686 1 0 1 0 0 0 0.00% SA=LO
g60d20c9 2 27935824 1 0 1 0 0 0 0.00% SA=LO
g100d30c0 2 225610511 0 0 0 0 0 0 0.00% SA=LO
g100d30c1 2 206073651 1 0 1 0 0 0 0.00% SA=LO
g100d30c2 2 163223911 1 0 1 0 0 0 0.00% SA=LO
g100d30c3 2 203382267 0 0 0 0 0 0 0.00% SA=LO
g100d30c4 2 205191572 1 0 1 0 0 0 0.00% SA=LO
g100d30c5 2 231987925 0 0 0 0 0 0 0.00% SA=LO
g100d30c6 2 176986484 1 0 1 0 0 0 0.00% SA=LO
g100d30c7 2 174884793 1 0 1 0 0 0 0.00% SA=LO
g100d30c8 2 219606035 0 0 0 0 0 0 0.00% SA=LO
g100d30c9 2 206095919 0 0 0 0 0 0 0.00% SA=LO
g200d30c0 2 1384999832 1 1 1 0 0 1 50.00% SA>LO
g200d30c1 2 1705949570 0 0 0 0 0 0 0.00% SA=LO
g200d30c2 2 1751191201 0 0 0 0 0 0 0.00% SA=LO
g200d30c3 2 1647418647 1 0 1 0 0 0 0.00% SA=LO
g200d30c4 2 1522644381 1 0 1 0 0 0 0.00% SA=LO
g200d30c5 2 1628774459 0 0 0 0 0 0 0.00% SA=LO
g200d30c6 2 1735163940 0 0 0 0 0 0 0.00% SA=LO
g200d30c7 2 1705365512 0 0 0 0 0 0 0.00% SA=LO
g200d30c8 2 1542222814 1 0 1 0 0 0 0.00% SA=LO
g200d30c9 2 1619136837 0 1 0 0 0 1 100.00% SA>LO
g20d8c0 4 771472 0 4 0 4 0 0 0.00% SA=LO
g20d8c1 4 620015 3 5 3 2 0 3 37.50% SA>LO
g20d8c2 4 655726 0 4 0 0 0 4 100.00% SA>LO
g20d8c3 4 626891 3 9 3 4 0 5 41.67% SA>LO
g20d8c4 4 786837 0 13 0 11 0 2 15.38% SA>LO
g20d8c5 4 596222 3 8 3 2 0 6 54.55% SA>LO
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g20d8c6 4 669882 3 2 3 0 0 2 40.00% SA>LO
g20d8c7 4 600761 4 7 4 3 0 4 36.36% SA>LO
g20d8c8 4 665242 3 5 3 3 0 2 25.00% SA>LO
g20d8c9 4 687545 3 8 3 5 0 3 27.27% SA>LO
g40d15c0 4 9099585 4 9 4 5 0 4 30.77% SA>LO
g40d15c1 4 13281721 0 8 0 4 0 4 50.00% SA>LO
g40d15c2 4 8007193 4 5 4 5 0 0 0.00% SA=LO
g40d15c3 4 8613004 3 7 3 0 0 7 70.00% SA>LO
g40d15c4 4 9773509 3 5 3 0 0 5 62.50% SA>LO
g40d15c5 4 9368386 0 7 0 5 0 2 28.57% SA>LO
g40d15c6 4 9198193 0 3 0 3 0 0 0.00% SA=LO
g40d15c7 4 10296304 4 1 4 0 0 1 20.00% SA>LO
g40d15c8 4 10570604 0 10 0 0 0 10 100.00% SA>LO
g40d15c9 4 11250081 3 9 3 5 0 4 33.33% SA>LO
g60d20c0 4 46906934 3 6 3 1 0 5 55.56% SA>LO
g60d20c1 4 49546703 3 0 3 0 0 0 0.00% SA=LO
g60d20c2 4 43352376 4 2 4 1 0 1 16.67% SA>LO
g60d20c3 4 43459767 4 5 4 1 0 4 44.44% SA>LO
g60d20c4 4 50027664 0 1 0 0 0 1 100.00% SA>LO
g60d20c5 4 46639442 4 12 4 7 0 5 31.25% SA>LO
g60d20c6 4 44767962 3 4 3 3 0 1 14.29% SA>LO
g60d20c7 4 44752032 0 0 0 0 0 0 0.00% SA=LO
g60d20c8 4 43031562 3 8 3 7 0 1 9.09% SA>LO
g60d20c9 4 41903765 3 4 3 0 0 4 57.14% SA>LO
g100d30c0 4 338415875 0 5 0 1 0 4 80.00% SA>LO
g100d30c1 4 309110374 3 4 3 0 0 4 57.14% SA>LO
g100d30c2 4 244835848 3 9 3 8 0 1 8.33% SA>LO
g100d30c3 4 305073412 0 5 0 0 0 5 100.00% SA>LO
g100d30c4 4 307787271 3 3 3 0 0 3 50.00% SA>LO
g100d30c5 4 347982149 0 7 0 6 0 1 14.29% SA>LO
g100d30c6 4 265479656 3 7 3 2 0 5 50.00% SA>LO
g100d30c7 4 262327210 3 2 3 0 0 2 40.00% SA>LO
g100d30c8 4 329409082 0 5 0 0 0 5 100.00% SA>LO
g100d30c9 4 309139530 4 4 4 0 0 4 50.00% SA>LO
g200d30c0 4 2077499676 3 2 3 1 0 1 20.00% SA>LO
g200d30c1 4 2558924455 0 0 0 0 0 0 0.00% SA=LO
g200d30c2 4 2626778230 4 0 4 0 0 0 0.00% SA=LO
g200d30c3 4 2471128054 3 5 3 3 0 2 25.00% SA>LO
g200d30c4 4 2283966634 3 5 3 0 0 5 62.50% SA>LO
g200d30c5 4 2443152833 4 0 4 0 0 0 0.00% SA=LO
g200d30c6 4 2602746069 0 2 0 0 0 2 100.00% SA>LO
g200d30c7 4 2558048376 0 8 0 3 0 5 62.50% SA>LO
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g200d30c8 4 2313334176 3 2 3 0 0 2 40.00% SA>LO
g200d30c9 4 2428696576 4 3 4 0 0 3 42.86% SA>LO
g20d8c0 6 856898 8 6 8 5 0 1 7.14% SA>LO
g20d8c1 6 688885 5 12 5 10 0 2 11.76% SA>LO
g20d8c2 6 728302 8 12 8 8 0 4 20.00% SA>LO
g20d8c3 6 696576 5 19 5 18 0 1 4.17% SA>LO
g20d8c4 6 874266 0 19 0 15 0 4 21.05% SA>LO
g20d8c5 6 662464 5 20 5 15 0 5 20.00% SA>LO
g20d8c6 6 744309 5 6 5 2 0 4 36.36% SA>LO
g20d8c7 6 667455 8 16 8 11 0 5 20.83% SA>LO
g20d8c8 6 739166 5 8 5 7 0 1 7.69% SA>LO
g20d8c9 6 763940 5 14 5 13 0 1 5.26% SA>LO
g40d15c0 6 10110439 8 14 8 10 0 4 18.18% SA>LO
g40d15c1 6 14756216 8 9 8 8 0 1 5.88% SA>LO
g40d15c2 6 8896675 8 23 8 18 0 5 16.13% SA>LO
g40d15c3 6 9570014 5 27 5 22 0 5 15.63% SA>LO
g40d15c4 6 10859415 5 14 5 10 0 4 21.05% SA>LO
g40d15c5 6 10409298 0 10 0 6 0 4 40.00% SA>LO
g40d15c6 6 10219050 8 7 8 3 0 4 26.67% SA>LO
g40d15c7 6 11440104 8 10 8 4 0 6 33.33% SA>LO
g40d15c8 6 11743750 8 11 8 9 0 2 10.53% SA>LO
g40d15c9 6 12499480 9 22 9 18 0 4 12.90% SA>LO
g60d20c0 6 52118786 5 14 5 6 0 8 42.11% SA>LO
g60d20c1 6 55050682 9 10 9 6 0 4 21.05% SA>LO
g60d20c2 6 48168919 8 14 8 11 0 3 13.64% SA>LO
g60d20c3 6 48288230 8 9 8 5 0 4 23.53% SA>LO
g60d20c4 6 55586325 0 6 0 5 0 1 16.67% SA>LO
g60d20c5 6 51821197 8 25 8 23 0 2 6.06% SA>LO
g60d20c6 6 49740961 9 8 9 6 0 2 11.76% SA>LO
g60d20c7 6 49722188 8 16 8 16 0 0 0.00% SA=LO
g60d20c8 6 47811646 9 25 9 21 0 4 11.76% SA>LO
g60d20c9 6 46559724 5 10 5 6 0 4 26.67% SA>LO
g100d30c0 6 376011795 8 17 8 5 0 12 48.00% SA>LO
g100d30c1 6 343453002 9 18 9 13 0 5 18.52% SA>LO
g100d30c2 6 272039748 5 27 5 24 0 3 9.38% SA>LO
g100d30c3 6 338964698 8 12 8 10 0 2 10.00% SA>LO
g100d30c4 6 341982832 9 10 9 8 0 2 10.53% SA>LO
g100d30c5 6 386640701 8 7 8 2 0 5 33.33% SA>LO
g100d30c6 6 294974441 9 13 9 4 0 9 40.91% SA>LO
g100d30c7 6 291471700 9 14 9 10 0 4 17.39% SA>LO
g100d30c8 6 366004391 8 14 8 9 0 5 22.73% SA>LO
g100d30c9 6 343487333 8 9 8 2 0 7 41.18% SA>LO
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g200d30c0 6 2308327186 9 7 9 6 0 1 6.25% SA>LO
g200d30c1 6 2843249420 0 5 0 3 0 2 40.00% SA>LO
g200d30c2 6 2918640509 8 5 8 0 0 5 38.46% SA>LO
g200d30c3 6 2745697734 5 5 5 2 0 3 30.00% SA>LO
g200d30c4 6 2537740740 5 11 5 8 0 3 18.75% SA>LO
g200d30c5 6 2714624314 0 10 0 10 0 0 0.00% SA=LO
g200d30c6 6 2891940118 0 3 0 3 0 0 0.00% SA=LO
g200d30c7 6 2842264272 8 9 8 8 0 1 5.88% SA>LO
g200d30c8 6 2570371328 5 7 5 5 0 2 16.67% SA>LO
g200d30c9 6 2698549741 8 8 8 7 0 1 6.25% SA>LO
g20d8c0 8 899608 16 21 16 16 0 5 13.51% SA>LO
g20d8c1 8 723028 15 41 15 38 0 3 5.36% SA>LO
g20d8c2 8 764583 14 24 0 25 14 -1 34.21% SA>LO
g20d8c3 8 730837 19 27 7 30 12 -3 19.57% SA>LO
g20d8c4 8 916814 22 54 16 53 6 1 9.21% SA>LO
g20d8c5 8 695356 15 30 15 20 0 10 22.22% SA>LO
g20d8c6 8 781101 19 22 19 21 0 1 2.44% SA>LO
g20d8c7 8 700803 12 32 12 30 0 2 4.55% SA>LO
g20d8c8 8 775871 15 23 15 20 0 3 7.89% SA>LO
g20d8c9 8 801875 15 32 15 29 0 3 6.38% SA>LO
g40d15c0 8 10615883 12 22 12 20 0 2 5.88% SA>LO
g40d15c1 8 15493452 14 24 14 23 0 1 2.63% SA>LO
g40d15c2 8 9341382 12 40 12 39 0 1 1.92% SA>LO
g40d15c3 8 10048476 7 33 7 31 0 2 5.00% SA>LO
g40d15c4 8 11401411 15 30 15 19 0 11 24.44% SA>LO
g40d15c5 8 10929760 0 27 0 24 0 3 11.11% SA>LO
g40d15c6 8 10729407 16 19 16 14 0 5 14.29% SA>LO
g40d15c7 8 12011991 12 26 12 24 0 2 5.26% SA>LO
g40d15c8 8 12330288 16 38 16 35 0 3 5.88% SA>LO
g40d15c9 8 13125073 7 46 7 41 0 5 10.42% SA>LO
g60d20c0 8 54724752 7 28 7 19 0 9 34.62% SA>LO
g60d20c1 8 57802658 15 20 15 19 0 1 2.94% SA>LO
g60d20c2 8 50577216 12 19 12 15 0 4 14.81% SA>LO
g60d20c3 8 50702473 12 13 12 9 0 4 19.05% SA>LO
g60d20c4 8 58365642 0 7 0 4 0 3 75.00% SA>LO
g60d20c5 8 54412051 12 35 12 23 0 12 34.29% SA>LO
g60d20c6 8 52229244 7 14 7 12 0 2 10.53% SA>LO
g60d20c7 8 52210787 0 25 0 21 0 4 19.05% SA>LO
g60d20c8 8 50203484 7 37 7 35 0 2 4.76% SA>LO
g60d20c9 8 48887731 7 25 7 18 0 7 28.00% SA>LO
g100d30c0 8 394818477 0 24 0 15 0 9 60.00% SA>LO
g100d30c1 8 360628818 7 33 7 30 0 3 8.11% SA>LO
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g100d30c2 8 285637226 15 40 15 33 0 7 14.58% SA>LO
g100d30c3 8 355919030 0 27 0 25 0 2 8.00% SA>LO
g100d30c4 8 359085203 7 14 7 13 0 1 5.00% SA>LO
g100d30c5 8 405969937 16 9 16 4 0 5 25.00% SA>LO
g100d30c6 8 309726257 7 26 7 22 0 4 13.79% SA>LO
g100d30c7 8 306048434 7 25 7 23 0 2 6.67% SA>LO
g100d30c8 8 384301935 16 14 16 13 0 1 3.45% SA>LO
g100d30c9 8 360661242 12 18 12 17 0 1 3.45% SA>LO
g200d30c0 8 2423749484 7 13 7 6 0 7 53.85% SA>LO
g200d30c1 8 2985393878 16 16 16 14 0 2 6.67% SA>LO
g200d30c2 8 3064571547 12 5 12 2 0 3 21.43% SA>LO
g200d30c3 8 2882982712 7 7 7 2 0 5 55.56% SA>LO
g200d30c4 8 2664618735 15 22 15 18 0 4 12.12% SA>LO
g200d30c5 8 2850341650 12 15 12 9 0 6 28.57% SA>LO
g200d30c6 8 3036518778 16 14 16 11 0 3 11.11% SA>LO
g200d30c7 8 2984389772 0 13 0 12 0 1 8.33% SA>LO
g200d30c8 8 2698880793 15 9 15 5 0 4 20.00% SA>LO
g200d30c9 8 2833476297 12 19 12 14 0 5 19.23% SA>LO

 

From Table 16 we can conclude that the performance for simulated annealing is 

improved in ( )π1W  and ( )π2W  when either vertex number or partition number increases. 

Graph bisections show the same result for local optimization and simulated annealing. 

When the partition number increases to 4, 6 and 8, the performance is obviously better in 

simulated annealing. In terms of the summation of ( )π1W  and ( )π2W , simulated 

annealing outperforms local optimization by 1.92 % to 100%. 

But simulated annealing runs much longer than local optimization. For our benchmark 

problem instances, simulated annealing runs about 6 to 100 times longer than local 

optimization. 
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6.5 Summary of Solution Quality Comparisons 

Table 17 compares values for both ( )π1W  and ( )π2W  among Repeated Random, Local 

Optimization, and Simulated Annealing. 

 

Table 17 Comparisons of ( )π1W  and ( )π2W  for RR, LO and SA 

Data 
Files m 

( )π1W
RR 

( )π2W
RR 

( )π1W
LO 

( )π2W
LO 

( )π1W
LO 

( )π2W
SA 

 
Result 

g20d8c0 2 0 0 0 0 0 0 SA=LO=RR 
g20d8c1 2 1 0 1 0 1 0 SA=LO=RR 
g20d8c2 2 0 0 0 0 0 0 SA=LO=RR 
g20d8c3 2 1 0 1 0 1 0 SA=LO=RR 
g20d8c4 2 0 0 0 0 0 0 SA=LO=RR 
g20d8c5 2 1 0 1 5 1 0 SA=RR>LO 
g20d8c6 2 1 0 1 0 1 0 SA=LO=RR 
g20d8c7 2 0 0 0 0 0 0 SA=LO=RR 
g20d8c8 2 1 0 1 0 1 0 SA=LO=RR 
g20d8c9 2 1 1 1 1 1 0 SA>LO=RR 
g40d15c0 2 0 0 0 1 0 0 SA=RR>LO 
g40d15c1 2 0 0 0 0 0 0 SA=LO=RR 
g40d15c2 2 0 5 0 5 0 0 SA>LO=RR 
g40d15c3 2 1 0 1 0 1 0 SA=LO=RR 
g40d15c4 2 1 0 1 0 1 0 SA=LO=RR 
g40d15c5 2 0 0 0 2 0 0 SA=RR>LO 
g40d15c6 2 0 0 0 3 0 0 SA=RR>LO 
g40d15c7 2 0 0 0 0 0 0 SA=LO=RR 
g40d15c8 2 0 0 0 0 0 0 SA=LO=RR 
g40d15c9 2 1 0 1 4 1 0 SA=RR>LO 
g60d20c0 2 1 1 1 1 1 0 SA>LO=RR 
g60d20c1 2 1 0 1 0 1 0 SA=LO=RR 
g60d20c2 2 0 0 0 0 0 0 SA=LO=RR 
g60d20c3 2 0 0 0 1 0 0 SA=RR>LO 
g60d20c4 2 0 0 0 0 0 0 SA=LO=RR 
g60d20c5 2 0 5 0 5 0 5 SA=LO=RR 
g60d20c6 2 1 3 1 3 1 0 SA>LO=RR 
g60d20c7 2 0 0 0 0 0 0 SA=LO=RR 
g60d20c8 2 1 0 1 0 1 0 SA=LO=RR 
g60d20c9 2 1 0 1 0 1 0 SA=LO=RR 
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g100d30c0 2 0 0 0 0 0 0 SA=LO=RR 
g100d30c1 2 1 0 1 0 1 0 SA=LO=RR 
g100d30c2 2 1 3 1 0 1 0 SA=LO>RR 
g100d30c3 2 0 0 0 0 0 0 SA=LO=RR 
g100d30c4 2 1 0 1 0 1 0 SA=LO=RR 
g100d30c5 2 0 0 0 0 0 0 SA=LO=RR 
g100d30c6 2 1 0 1 0 1 0 SA=LO=RR 
g100d30c7 2 1 0 1 0 1 0 SA=LO=RR 
g100d30c8 2 0 0 0 0 0 0 SA=LO=RR 
g100d30c9 2 0 0 0 0 0 0 SA=LO=RR 
g200d30c0 2 1 1 1 1 1 0 SA>LO=RR 
g200d30c1 2 0 0 0 0 0 0 SA=LO=RR 
g200d30c2 2 0 0 0 0 0 0 SA=LO=RR 
g200d30c3 2 1 0 1 0 1 0 SA=LO=RR 
g200d30c4 2 1 0 1 0 1 0 SA=LO=RR 
g200d30c5 2 0 0 0 0 0 0 SA=LO=RR 
g200d30c6 2 0 0 0 0 0 0 SA=LO=RR 
g200d30c7 2 0 0 0 0 0 0 SA=LO=RR 
g200d30c8 2 1 0 1 0 1 0 SA=LO=RR 
g200d30c9 2 0 0 0 1 0 0 SA=RR>LO 
g20d8c0 4 6 6 0 4 0 4 SA=LO>RR 
g20d8c1 4 3 3 3 5 3 2 SA>RR>LO 
g20d8c2 4 6 4 0 4 0 0 SA>LO>RR 
g20d8c3 4 3 9 3 9 3 4 SA>LO=RR 
g20d8c4 4 6 9 0 13 0 11 SA>LO>RR 
g20d8c5 4 3 10 3 8 3 2 SA>LO>RR 
g20d8c6 4 7 2 3 2 3 0 SA>LO>RR 
g20d8c7 4 4 3 4 7 4 3 SA=RR>LO 
g20d8c8 4 3 3 3 5 3 3 SA=RR>LO 
g20d8c9 4 7 5 3 8 3 5 SA>LO>RR 
g40d15c0 4 10 9 4 9 4 5 SA>LO>RR 
g40d15c1 4 10 4 0 8 0 4 SA>LO>RR 
g40d15c2 4 6 5 4 5 4 5 SA=LO>RR 
g40d15c3 4 7 7 3 7 3 0 SA>LO>RR 
g40d15c4 4 7 1 3 5 3 0 SA>LO>RR 
g40d15c5 4 6 5 0 7 0 5 SA>LO>RR 
g40d15c6 4 6 3 0 3 0 3 SA=LO>RR 
g40d15c7 4 10 1 4 1 4 0 SA>LO>RR 
g40d15c8 4 0 5 0 10 0 0 SA>RR>LO 
g40d15c9 4 9 13 3 9 3 5 SA>LO>RR 
g60d20c0 4 3 7 3 6 3 1 SA>RR>LO 
g60d20c1 4 9 0 3 0 3 0 SA=LO>RR 
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g60d20c2 4 4 6 4 2 4 1 SA>RR>LO 
g60d20c3 4 10 4 4 5 4 1 SA>RR>LO 
g60d20c4 4 6 1 0 1 0 0 SA>RR>LO 
g60d20c5 4 10 7 4 12 4 7 SA>RR>LO 
g60d20c6 4 11 4 3 4 3 3 SA>RR>LO 
g60d20c7 4 6 0 0 0 0 0 SA=LO>RR 
g60d20c8 4 7 8 3 8 3 7 SA>RR>LO 
g60d20c9 4 9 0 3 4 3 0 SA>RR>LO 
g100d30c0 4 18 6 0 5 0 1 SA>RR>LO 
g100d30c1 4 9 4 3 4 3 0 SA>RR>LO 
g100d30c2 4 7 9 3 9 3 8 SA>RR>LO 
g100d30c3 4 6 5 0 5 0 0 SA>RR>LO 
g100d30c4 4 11 3 3 3 3 0 SA>RR>LO 
g100d30c5 4 10 6 0 7 0 6 SA>RR>LO 
g100d30c6 4 7 7 3 7 3 2 SA>RR>LO 
g100d30c7 4 9 5 3 2 3 0 SA>RR>LO 
g100d30c8 4 10 2 0 5 0 0 SA>RR>LO 
g100d30c9 4 4 4 4 4 4 0 SA>LO=RR 
g200d30c0 4 7 1 3 2 3 1 SA>RR>LO 
g200d30c1 4 16 0 0 0 0 0 SA=LO>RR 
g200d30c2 4 18 0 4 0 4 0 SA=LO>RR 
g200d30c3 4 13 2 3 5 3 3 SA>RR>LO 
g200d30c4 4 9 5 3 5 3 0 SA>RR>LO 
g200d30c5 4 16 0 4 0 4 0 SA=LO>RR 
g200d30c6 4 14 2 0 2 0 0 SA>LO>RR 
g200d30c7 4 10 0 0 8 0 3 SA>LO>RR 
g200d30c8 4 17 2 3 2 3 0 SA>LO>RR 
g200d30c9 4 10 3 4 3 4 0 SA>LO>RR 
g20d8c0 6 26 14 8 6 8 5 SA>LO>RR 
g20d8c1 6 23 18 5 12 5 10 SA>LO>RR 
g20d8c2 6 22 12 8 12 8 8 SA>LO>RR 
g20d8c3 6 27 24 5 19 5 18 SA>LO>RR 
g20d8c4 6 18 23 0 19 0 15 SA>LO>RR 
g20d8c5 6 13 14 5 20 5 15 SA>LO>RR 
g20d8c6 6 27 7 5 6 5 2 SA>LO>RR 
g20d8c7 6 24 19 8 16 8 11 SA>LO>RR 
g20d8c8 6 13 14 5 8 5 7 SA>LO>RR 
g20d8c9 6 31 23 5 14 5 13 SA>LO>RR 
g40d15c0 6 22 15 8 14 8 10 SA>LO>RR 
g40d15c1 6 36 8 8 9 8 8 SA>LO>RR 
g40d15c2 6 30 13 8 23 8 18 SA>LO>RR 
g40d15c3 6 29 21 5 27 5 22 SA>LO>RR 
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g40d15c4 6 21 11 5 14 5 10 SA>LO>RR 
g40d15c5 6 24 6 0 10 0 6 SA>LO>RR 
g40d15c6 6 30 8 8 7 8 3 SA>LO>RR 
g40d15c7 6 22 12 8 10 8 4 SA>LO>RR 
g40d15c8 6 28 18 8 11 8 9 SA>LO>RR 
g40d15c9 6 29 22 9 22 9 18 SA>LO>RR 
g60d20c0 6 35 15 5 14 5 6 SA>LO>RR 
g60d20c1 6 43 6 9 10 9 6 SA>LO>RR 
g60d20c2 6 46 19 8 14 8 11 SA>LO>RR 
g60d20c3 6 36 9 8 9 8 5 SA>LO>RR 
g60d20c4 6 34 6 0 6 0 5 SA>LO>RR 
g60d20c5 6 38 15 8 25 8 23 SA>LO>RR 
g60d20c6 6 29 8 9 8 9 6 SA>LO>RR 
g60d20c7 6 28 8 8 16 8 16 SA>LO>RR 
g60d20c8 6 47 20 9 25 9 21 SA>LO>RR 
g60d20c9 6 37 8 5 10 5 6 SA>LO>RR 
g100d30c0 6 36 16 8 17 8 5 SA>LO>RR 
g100d30c1 6 43 7 9 18 9 13 SA>LO>RR 
g100d30c2 6 37 26 5 27 5 24 SA>LO>RR 
g100d30c3 6 60 14 8 12 8 10 SA>LO>RR 
g100d30c4 6 37 7 9 10 9 8 SA>LO>RR 
g100d30c5 6 46 7 8 7 8 2 SA>LO>RR 
g100d30c6 6 41 18 9 13 9 4 SA>LO>RR 
g100d30c7 6 41 14 9 14 9 10 SA>LO>RR 
g100d30c8 6 56 11 8 14 8 9 SA>LO>RR 
g100d30c9 6 48 9 8 9 8 2 SA>LO>RR 
g200d30c0 6 67 7 9 7 9 6 SA>LO>RR 
g200d30c1 6 58 2 0 5 0 3 SA>LO>RR 
g200d30c2 6 52 5 8 5 8 0 SA>LO>RR 
g200d30c3 6 79 2 5 5 5 2 SA>LO>RR 
g200d30c4 6 47 4 5 11 5 8 SA>LO>RR 
g200d30c5 6 52 10 0 10 0 10 SA=LO>RR 
g200d30c6 6 64 3 0 3 0 3 SA=LO>RR 
g200d30c7 6 76 6 8 9 8 8 SA>LO>RR 
g200d30c8 6 53 7 5 7 5 5 SA>LO>RR 
g200d30c9 6 52 5 8 8 8 7 SA>LO>RR 
g20d8c0 8 40 25 16 21 16 16 SA>LO>RR 
g20d8c1 8 53 36 15 41 15 38 SA>LO>RR 
g20d8c2 8 40 27 14 24 0 25 SA>LO>RR 
g20d8c3 8 39 34 19 27 7 30 SA>LO>RR 
g20d8c4 8 56 58 22 54 16 53 SA>LO>RR 
g20d8c5 8 55 29 15 30 15 20 SA>LO>RR 
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g20d8c6 8 53 24 19 22 19 21 SA>LO>RR 
g20d8c7 8 38 35 12 32 12 30 SA>LO>RR 
g20d8c8 8 41 23 15 23 15 20 SA>LO>RR 
g20d8c9 8 49 42 15 32 15 29 SA>LO>RR 
g40d15c0 8 76 25 12 22 12 20 SA>LO>RR 
g40d15c1 8 44 19 14 24 14 23 SA>LO>RR 
g40d15c2 8 60 38 12 40 12 39 SA>LO>RR 
g40d15c3 8 63 35 7 33 7 31 SA>LO>RR 
g40d15c4 8 53 33 15 30 15 19 SA>LO>RR 

 

Based on the above table we can observe that the performance for SA is equal to those 

for LO and RR when the vertex number is small or the partition number is small, and the 

performance for SA is better than LO, which is in turn better than RR, when the vertex 

number is large and the partition number is large.  
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Chapter  7   
 

Conclusion 

This dissertation used multi-way graph partitioning to model the distributed component 

allocation problem on clustered application servers, and used simulated annealing as the 

meta-heuristic for deriving efficient solution heuristics for optimized distributed 

component allocations that will maximize computation work load balance and minimize 

inter-machine communication overhead. The efficient solution to this problem has 

important implications in improving the scalability and availability of today’s e-

commerce portals. 

The major contributions of this research include: 

• Adopting multi-way graph partition as the mathematical model for addressing a 

practical problem critical to the performance of e-commerce portals. 

• Proving that this problem is NP-hard, so no efficient algorithms could ever be 

designed to produce optimal solutions to it in practical time. 

• Designing a problem transformation algorithm to convert the problem with 

multiple objective functions into an equivalent typical combinatorial optimization 

problem. 

• Studying and designing efficient solution neighborhood structures 
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• Deriving incremental objective function evaluation that can improve the 

performance of any iterative solution heuristics. 

• Deriving efficient heuristic solutions based on simulated annealing, and studying 

the sensitivity of its performance to its parameter values. 

Potential future works include 

• Adopting more recent research results in simulated annealing; 

• Adopting alternative meta-heuristics like tabu search; 

• Extending the mathematical model to reflect more complex properties of hosted 

computing based on distributed components. 
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