

RUN-TIME INTERFACE MAPPING
FOR ON-THE-FLY SOFTWARE COMPONENT

INTEGRATION

by

Thanh Van Lam

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies in Computing

at

School of Computer Science and Information Systems

Pace University

September 2002

Thanh Van Lam, 2002

We hereby certify that this dissertation, submitted by Thanh Van Lam, satisfies the
dissertation requirements for the degree of Doctor of Professional Studies in Computing
and has been approved

 -
Lixin Tao Date
Chairperson of Dissertation Committee

 -
Sung-Hyuk Cha Date
Dissertation Committee Member

 -
Mary Courtney Date
Dissertation Committee Member

School of Computer Science and Information System
Pace University 2002

Abstract

Run-Time Interface Mapping

for On-the-fly Software Component Integration

by
Thanh Van Lam

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Professional Studies in Computing

September 2002

A logical process in making software components is to divide a huge source code into
smaller units that can be designed and implemented independently. Problems rise when
those small components are put back together into an entirely functional and reliable
application. Existing approaches aim at providing global environments to facilitate
component integration in their domains including common services such as
communications, interoperating abilities, security, and reliabilities. However, those
frameworks come with the price of complex infrastructures and extraneous or
unnecessary resources, without which some applications can certainly run. On the other
hand, programmers who write programs without frameworks have to reinvent their own
common services. Although they might have found their solutions, other programmers
might not be aware of that. The run-time interface mapping approach proposed in this
thesis enables component reuse with no heavy framework requirements. Software
components that adhere to this approach can be loaded on-the-fly at run time. To support
our approach, we implement a local environment facility that provides services for
searching and loading components at run time. Hence, applications can assemble
components dynamically while they are running. Applications can also share local
components by using the local environment registry. Each local environment may contain
varieties of components based on the same interface but are different in implementations
or user preferences. We use a packaging tool to incorporate the run-time interface
mapping methodology with local components that take advantage of the local
environment facility. Automated packaging procedures ensure delivering of components
and applications to a local system. Component makers can implement as many
components as they want for an interface based on local environment characteristics.
Application integrators publish and solicit for their requirements, then build applications
based on component interfaces. Both component makers and application integrators
benefit from component specifications. Components can be delivered and run in
environments that they are designed and implemented for. This is a beginning step in
building adaptive and efficient components and applications.

Acknowledgments

Writing this thesis and keeping up with the DPS program for three years is as tough as
life. It is especially life with intensive, serious, and accelerated demands coming from
three directions: work, family, and school. A colleague congratulated me with expression
of amazement to my juggling acts, “It’s nice to see the ‘good guys’ succeed.” To the
good guys and gals of Pace DPS 2002, and years after that, I’ve been there, in the eye of
the tiger.

I would like to dedicate this to my parents for their unconditional love. They would
never understand how my code has tangled up with endless number of conditions.
Thanks to my wife, Song, for sacrifices and understanding. She has been taking care of
all the chores around the house and raising our child. Thanks to my daughter, Vanessa,
from whom I learn how to learn like a baby, in the early years of the cycle of life. As a
family, we felt the deepest pains of losing Song’s parents. It hurt more for both times we
could not pay the last visit. This is a tribute to them. We would have wished life were
different.

This thesis would not be complete without the guidance from my advisor, Dr. Lixin Tao,
who has helped in many aspects of my thinking, writing and publishing of the thesis.
Thanks to the Committee Members, Dr. Sung-Hyuk Cha and Dr. Mary Courtney, for
comments and suggestions. Thanks to the entire faculty members of the DPS program at
Pace University, especially Dr. Fred Grossman, for tireless encouragement and support.
Thanks to my classmates for sharing and helping each other. I’ve had the privilege to be
part of a group of exceptional professionals. These three years have been the highlights
in my life.

I’d like to thank my manager and my colleague at IBM, Ed Oliva, for the opportunity and
the challenges. Thanks to IBM for those Learning Assistance Programs that make all this
possible.

v

Table of Contents

Abstract... iii

Acknowledgments .. iv

List of Figures... ix

List of Tables ... x

Chapter 1 Introduction... 1

1.1 The Problem of Component Integration ... 3

1.2 Software Components Local Environment Approach..................................... 5
1.2.1 Objectives ... 5
1.2.2 Approach... 7
1.2.3 Contributions... 11

1.3 Thesis Organization .. 15

Chapter 2 Software Component Technologies Status ... 18

2.1 A Brief History of Software Component ... 18

2.2 Component Characteristics .. 19
2.2.1 Multiple Integration Stages... 19
2.2.2 Multiple layers .. 23
2.2.3 Diverse packaging requirements... 25

2.3 Component Frameworks ... 26
2.3.1 DLL, COM+, and .NET.. 28
2.3.2 CORBA 3.. 29
2.3.3 Enterprise JavaBeans .. 30

2.4 Environment as Container .. 32
2.4.1 Java Virtual Machine .. 32
2.4.2 J2EE containers... 35

2.5 Component Packaging .. 36
2.5.1 Installation Application... 36

vi

2.5.2 EJB Deployment Descriptor ... 37
2.5.3 Package Manager (RPM).. 39

2.6 Summary ... 41

Chapter 3 Overview of Dynamic Application Integration 43

3.1 Overall Architecture and Organizations .. 45
3.1.1 Run-time Interface Mapping (RIM).. 45
3.1.2 Local Environment Registry (LER).. 46
3.1.3 Packaging components with application... 49

3.2 Application Integration Model.. 50
3.2.1 Programming skills and roles.. 50
3.2.2 Supportive roles of LER ... 51
3.2.3 Writing a simple application: ZipAF .. 52

3.3 Differences and advantages .. 53
3.3.1 Dynamic run-time loading versus common objects.......................... 55
3.3.2 Component packaging versus distributed modeling 57
3.3.3 Local environment versus remote servers and containers 59

3.4 Summary ... 61

Chapter 4 Local Environment Registry.. 62

4.1 LER Requirements and Organizations.. 63
4.1.1 Persistent storage .. 64
4.1.2 Component references .. 65
4.1.3 Searchable local environment ... 66
4.1.4 LER application interface ... 67

4.2 LER Internals .. 68
4.2.1 Registry engine ... 69
4.2.2 Interface-component reference ... 71
4.2.3 Local component matcher... 75

4.3 LER Application Programming Interface... 78
4.3.1 LER installation and maintenance methods...................................... 78
4.3.2 Interface registering and loading methods.. 80
4.3.3 Component managing methods... 83
4.3.4 Local environment management methods .. 85

4.4 LER as a User Component.. 88

vii

Chapter 5 Run-time Interface Mapping ... 91

5.1 RIM Methodology and Requirements ... 92
5.1.1 Symbolic referencing .. 93
5.1.2 Dynamic binding... 95
5.1.3 Dynamic code loading with no semantics .. 96
5.1.4 Trusted components .. 97
5.1.5 Component specifications and documentations................................ 98
5.1.6 Binary code compatible .. 98

5.2 RIM and Component Methods .. 99
5.2.1 Interface Definition... 100
5.2.2 One interface, multiple components ... 102
5.2.3 Regular arguments .. 104

5.3 RIM and Component Namespace.. 105
5.3.1 Local components and their namespace ... 105
5.3.2 LER as component dealer ... 108

5.4 Other Programming Languages Consideration ... 113

Chapter 6 Component Packaging with RIM and LER 115

6.1 Packaging Requirements and Guideline... 117
6.1.1 The LER API .. 117
6.1.2 System native interfaces ... 120
6.1.3 Component delivering... 122
6.1.4 Components for sharing.. 122

6.2 Putting together a package ... 123

Chapter 7 Examples of Application Integration .. 126

7.1 Virtual Pet Application ... 128

7.2 Virtual Pet Requirements and Analysis .. 130
7.2.1 Write once, integrated on many systems .. 130
7.2.2 Adapting to individual system .. 131
7.2.3 Programming interface considerations ... 131
7.2.4 High priority for owner preferences ... 134

7.3 Virtual Pet Interfaces .. 135
7.3.1 LER interface .. 136
7.3.2 Existence interface .. 137

viii

7.3.3 Activity interface .. 139
7.3.4 Control interface ... 141

7.4 Virtual Pet Design and Integration... 143

7.5 Virtual Pet Delivery .. 144

7.6 Conclusion .. 145

Chapter 8 Future Work.. 147

References.. 153

ix

List of Figures

Figure 1 Source file decomposition .. 3
Figure 2 FlashLine Java Component Marketplace ... 24
Figure 3 FlashLine .Net/ActiveX/COM Marketplace .. 25
Figure 4 Three-Tier-View: Application, Components, Component Frameworks............ 27
Figure 5 Run-time Interface-Mapping Components... 46
Figure 6 LER Organization... 68
Figure 7 LER Interface-Components Reference... 72
Figure 8 Interface with multiple attributes.. 73
Figure 9 Local component matching .. 76
Figure 10 Attribute enumeration and priority... 78
Figure 11 Interface Requirement Documentation... 100
Figure 12 One interface, multiple sub-components.. 103
Figure 13 Nested components at run time .. 104
Figure 14 Alternative LER internal namespace.. 108
Figure 15 Packaging tools... 124

x

List of Tables

Table 1 LER User Confiruration Table .. 47
Table 2 LER Interface Reference Table ... 48
Table 3 Summary of LER API.. 49
Table 4 LER User Configuration Table for ZipAF .. 51
Table 5 LER Interface Reference Table for ZipAF.. 51

1

Chapter 1
Introduction

People in software development have been known for their strategy of dividing and

conquering. When a problem becomes complex and hard to handle, it is broken down to

smaller and more manageable size. The method of decomposition can be applied in all

stages of software development cycle, from problem analyses, data structure designs, to

program implementation. Especially in big software projects, in which many people are

working at the same time, breaking down the pieces has helped in dividing the amount of

work among groups or team members.

Thus, for ease of developing and maintaining with the changing pace of technology,

software makers continue to divide the computing world into disparate entities, from

huge platforms to little components. There is no one standard that defines what a specific

component should be. The creator of a component should define what his component is

composed with and what purposes the component is supposed to serve. Since we are

looking into common usages of software components, we derive two characteristics of a

component:

1. It has well defined external interfaces and context dependencies.

2. It supports independent deployments.

A component’s external interfaces are what it offers as services for other components in

order to use it. Context dependencies, on the other hand, are conditions a component

requires or depends upon being provided for it in order to run.

2

The two characteristics require and complement each other. Application integrators

demand for “plug and play” components, which can be reused without the needs of

knowing their internals or their development processes. Integrators do not want to

depend on component makers in getting the components to work or in debugging

component problems. Component makers, on the other hand, want their components to

be reused in as many applications as possible.

A third characteristic of components is that they should be in binary format, for the

purposes of independent deployment. Source code is not always available with pre-built

components. Besides, source code analysis and modification add complexity and

difficulties in reusing of components because of the diversity in original designs and

needs in reuse. Programmers’ skill levels are also diverse factors. Software component

provides the ability of using or replacing similar components without bogging down in

debugging errors. Documentations and specifications are keys. Both the integrator and

the component maker benefit from clearly defined component interfaces and contexts.

Our approach gives a more specific and detailed definition of component in Chapter 3.

Software components have been around for many years with the premise of dividing

and conquering complex problems in software development. Programmers have had

different ways of decomposing a big software structure such as an application design or a

logical unit of code into smaller units that are treated in different techniques or

terminology called: subroutine, module, function, procedure, library, etc. But all have

one common purpose: reusing of available code. Therefore, we have seen the enthusiasm

and hope for broader use of components coming back again and again.

3

big
source

file

com-
plexity

module A

module B

module C

module E

module D

communications

Figure 1 Source file decomposition

When a big source file is broken down into smaller files or modules in some logical

structures, the programmer needs to understand only the small modules. From a

component maker’s perspectives, the module writer does not need to know global

application structures or the internal logic of other modules. The complexity in working

with big source files is reduced. From an application integrator’s perspectives, these

modules can be treated as reliable black boxes. Application builder only needs to focus

on application level structures. See illustration in Figure 1.

1.1 The Problem of Component Integration

Small components, however, need to be put back together for a complete solution or

application. Usually, the process of integrating components into an application occurs in

development environment. Programming tools such as assembler or compiler link the

object files into executables. All the required components have to be present. Otherwise,

errors will occur. With language specific and referencing mechanisms, however, not all

modules have to be included within the application executable. Some of the modules

4

may be provided separately in code library format. Nevertheless, they are linked into the

application at one time or another.

Because statically linking of code in development time limits application to fixed

code, different methodologies have been introduced to enable dynamic loading of code.

A program can reference the name of code that will be available at run time. When the

application comes to access that part of code at run time, it has more options than just

calling the modules. For example, if the calling of the local code or library code failed, it

can be set up to search for the exact piece of code in other locations. It can also try to call

different names for the code. All those logic and decisions are made at program

development time. As a result, complex code is written for checking of possible

conditions.

Other solutions include providing some virtual environments at run time to provide

the applications with all types of resources and services. These are known as middleware

or component frameworks. They usually cover global environments that include all the

things that an application programmer ever wished for. Their required learning curve and

complex interfaces often deter attempts in using them. Applications that run inside these

global environments depend completely on them to integrate components. However,

what these environments provide may be good for certain types of applications but too

much for others.

Although development environments may provide plenty of tools and procedures for

purposes of building application from components, real problems such as improper

interfaces or implementations often occur in run-time environments. Development

5

environment can help to prepare for the worst of those problems but many diverse run-

time environments make solving run-time problems difficult.

1.2 Software Components Local Environment Approach

This thesis proposes solutions for application integration based on discrete local

environments using run-time interface mapping methodology. We started with following

objectives.

1.2.1 Objectives

1. This methodology requires minimal programming involved in the development of

components being used. Assuming that components are already available in

varieties, the task of building an application is mainly integrating the components.

The application programmer takes on the roles of an integrator who starts from a

programming level that he can maximize the reuse of components. His tasks then

are to decide which components to use and which environments are appropriate to

run in. Integrating applications from pre-built components is difficult to start

with, because of the disarray characteristics of development and run-time

environments. Application integrators and Component makers are often

involved in collaborating processes of designing and implementing the

components. Much time and effort are invested and accumulated from early

development cycles. Our goal is to give application integrator the flexibility in

testing and choosing different pre-built components. This approach also benefits

component makers who may want to change their implementations for quick

responses to changing demands of component markets.

6

2. Component integration at run time enables application adaptation. The goal of

building an application in this thesis is to find out what environments are

available and which components can be used for the purposes of adapting to those

environment conditions. We follow the rules of starting simple and progressing

to achieve our goals. The simplest environment is an initial one that has no

application running. When an application package is installed, it adds its

components and accompanying requirements to the local environment. On the

other hand, an application can use components that are already available in the

environment. If an application’s requirements are already satisfied within the

environment, then the application does not have to include logic to check for

those requirements. Applications that react this way in development environment

will react similarly in run-time environments.

3. Packaging of components plays important role in getting the right components to

the right local environment. Our approach enables applications to dynamically

adapt to local environment at run time without depending on heavy boilerplate

containers to provide virtual global environments and fixing the component

binding statically at deployment times. We use packaging in combination with a

local environment facility that applications can access at run time. Component

interfaces can be shared among applications. In order for this to work, each

component in use by the application and available in the local environment has to

follow a strict interface specification. However, the internal implementation of

the component is still depending on the component maker. Actually, this is one of

the advantages of using components from different makers. Component maker

7

identifications, component implementations and local resident locations, and local

attributes are all parts of the component namespaces. Application integrator has

the options of requesting for unique interface names meeting their specific

requirements.

1.2.2 Approach

Our literature surveys show that existing middleware infrastructures and frameworks are

complex to start with. They also require investments in time and resource for

installations and operations due to the requirements for their common services such as

communications, security, and interoperability. The framework has to be in operations

before any work on an application can begin. The application is thought of as a part of

those larger and predefined computing scenarios, such as:

� Distributed computing: the division of data and application segments have to be

well lay out in the designs and implementations of the application.

� Client/Server model: different parts of the application are assigned different roles

based on resources and their usage.

� Enterprise computing: these are transaction-processing types of applications,

which are usually controlled by component transaction monitors.

Hence, middleware and frameworks are usually introduced to fulfill those predefined

requirements. By setting a new application in those environments, it does not have to

implement those environments or infrastructures again. However, knowledge and

experiences in those environments have to be acquired in time. It is a top-down

approach. The programmer has to go through and meet all those requirements before she

can start her program.

8

1.2.2.1 A bottom-up approach

In contrary, we want to start with a simple application integration environment that does

not need all of those complex services, especially when the environment is restricted to a

local machine. We start from a bottom-up perspective when the integrator putting

together an application. There is a small set of local facility that is needed. First, we

build the simple local facility as a component for use in an application. Then, we make

that a common component for other application integrators to reuse.

Instead of searching for some global environments that can be virtual environments

for application integration at run time, this thesis turns to study the local environment that

facilitates the run-time integration process. Usually, local environments make up the

diversity of application run-time environments. Components can have varieties in

different local environments. We take advantage of dynamic loading of local

components to resolve application features, functionalities, or customizability.

When integrating components into application, an application integrator uses

interface ID to refer to a component that is only loaded dynamically at run time. The

integrator has no need to know which component will be loaded. However, she needs to

ensure that the component provides the data fields and methods as specified by the

interface. Thus, we emphasize the importance of interface and component requirements

and specification documents.

Our approach is to establish a simple but fundamental methodology in component

reuse. Application integrators play active roles in promoting component reuse, designing

the interfaces and requirement documentations. However, the two processes of making

and choosing components are as independent as they can be. Based on agreeable

9

interface requirements, component makers implement as many components as they can in

their familiar environments. These components are made available in local environments

by means of packaging and delivering. By limiting to local components, we increase the

chances of component similarity and compatibility. Thus, components can be shared

among applications in the local environment. Applications look within its local

environment first for trusted components.

1.2.2.2 Starting from simple program and interfaces

To start writing a program from existing components, a programmer first decides which

interfaces the program needs. These interfaces become requirements for successful

completion of the program. He searches his own systems or other systems he knows for

components that support those interfaces. Obtaining those components and installing

them onto the development system is the first step in integrating the application. The

programmer’s work of integrating these components into his application is one of the

many stages of deploying software components.

If some of the required interfaces do not have supporting components, the

programmer writes his components for the interfaces. The concept of interface is similar

to the Java language Interface or general object oriented methodology in software

development. Choosing to implement an interface in different ways is common practices

in writing program. However, choosing an intended implementation for an interface at

run time requires much programming logic. Although the concept is simple, it is most

important that the appropriate component is loaded at run time.

Hence, the application integrator should have ways of specifying his unique interface

at run-time. These alternatives are ranging from letting the local environment facility

10

search and load the component that matches the interface to specifying the particular

component to load. By default, the unique interface name is composed by different parts

of its namespace. It is most flexible to let the local environment facility come up with the

interface identification internally at run time. However, application integrators

sometimes need to be able to use the specific components.

The local conditions of the system play important roles in running the application or

using the components differently. The application or components need a supporting local

facility that keeps track of the components under its control or changing of the

environments. This facility takes on the decision process, which includes the searching

and loading of a component. Mapping of an interface to a local component is done via

unique interface identifications by the local facility. All the programming logic happens

in the local facility. The application just makes requests for these identifications. Both

the application integrator and the component maker receive the benefits of flexibility in

making and reusing components.

The complexity of programming logic to check for different local environments is

moved out from application integration logic. Some of the logic is built into the

packaging strategy and local environment facility. However, these common components

are local environment aware. They are tested in the environments they are supposed to

run in. These components, in turns, protect the application from dealing with different

local environments. Thus, there are no untested code paths in the application.

1.2.2.3 Deployment cycles

To put together the interface solutions that include both the appropriate components and

the local environment facility, we need a packaging method that is also local environment

11

oriented. Although there are many available packaging methods, our package delivery

method depends on and takes advantage of the local facility. Customized package

delivers just the required components to each local environment. Application efficiency

is ensured on the local system.

The application integrator puts together the package that includes its local facility and

components. When this package is installed on a new system, it checks to see if that

system has already had the local registry facility, which is the same common component

with different contents due to local environments. If the local registry facility exists, the

package registers all its interfaces and their corresponding components. If an interface

already exists and known by the local facility, it is not registered. The intention is to

reuse existing local interfaces and components. Similarly, duplicate components are not

added. New installed application reuses and shares with existing applications running on

this system.

If a local registry facility does not exist, then this is the first package being installed

on the system. The local registry facility is installed and all of the interfaces and

components are registered and added respectively. The same procedures of packaging

and delivering components or applications recur on any system like cycles of

deployment. Each time a new package is installed, interfaces and components are

checked against duplications. Each system is kept to minimum components. There are

no unused components, from application or system viewpoints.

1.2.3 Contributions

The ability of mapping an interface to a selected component at run time is a major

contribution of this thesis. Beyond the general concepts of interface, this approach eases

12

programmers at starting to write a program. She does not have to make all the decisions

upfront, at development time, on choosing component frameworks, components, or run-

time environments.

Well-defined requirements and specifications of interfaces are to put contractual rules

on how components are built and reused. Although much of the interface can be verified

at compiling or linking time, our approach pushes for loading time or run-time

verification. Thus, components can be selected for adapting to different run-time

environments.

However, this approach does not require the application to be built with all logic and

conditional checking in decision-making procedures. Our implementation of the local

facility does the work in providing components for the requested interface. This facility

registers interfaces and does searching and loading for appropriate components at run

time. Because we separate these functions from an application, components and

applications become more efficient.

The local facility functionalities can be implemented in different ways. Hence, it is

possible to have different interface mapping methodology. That opens up the capabilities

of interface referencing to diverse groups of components that may be used in very

different purposes such as simulated components or test components.

1.2.3.1 Reuse of components

A prerequisite for the approach of calling interfaces is that, the calling code has to specify

the name of the called method and its parameters in order to make the call to the external

module. Usually the called interfaces are designed or defined first. Then, the calling

code is written following the interfaces. Unless the called module has been in existence

13

for a long time and has been used for many times, interactivity and re-factoring are often

required between the two programmers. Our approach emphasizes the use of available

components. It eases the procedures of selecting components at run time when the

application does not have to be aware of that. Our implementation of the local

environment registry provides services enabling component searching and loading for

applications at run time.

In component making and application integration, usually the integrator has no

controls over how or what components are made available. If he cannot find what he

needs in existing components, he ends up writing his own components. For that reason,

our approach lets the integrator make the calls on what component interfaces he needs.

He can solicit existing interfaces and choose the ones that fit the requirements of his

application. Once the decision is made, component makers have to follow the interfaces

strictly. The integrator can also go as far as defining new interfaces. Component makers,

however, still have the freedom in implementing their components differently, as long as

they adhere to the interface requirements.

1.2.3.2 Dynamic component integration

Dynamically loading components through the local environment registry is different from

using libraries. In general, libraries have some drawbacks. If it is statically linked to a

program, it might include lots of subroutines that the program never calls. Dynamic

linking is an improvement over calling subroutines.

At compile time, a program can just contain reference to the subroutines but not be

linked to the actually code in the library, which can be loaded into memory independently

from the program. Then at run time, the library subroutines are available whenever a

14

program makes calls to those subroutines. Added advantage of dynamic linking library is

that many programs can share one copy of the library in memory. Because components

and libraries are in binary code format, they need to be linked into or referenced from the

main application at some stage. Linking of the components is static in development time.

Referencing to library modules is resolved at run time.

We design a reference layer based on the concept of interface. The difference is that

the calling program uses these interfaces as references or placeholders. On the other side

of the interface reference is the local environment facility that supplies the actual

component that implements the interface. Thus, calling of interfaces is independent of

linked or referenced code but depending on local conditions and environments.

1.2.3.3 Application adapting to local environment

Although each application can be made for one type of solutions, the value of an

application is for solving similar problems in many different conditions. Those

conditions exist in local environments that the application runs in. Combine all of those

conditions and we have globalized environments. But, such a virtual environment that

attempts to include or fit all different local environments will be enormous and complex.

A local environment facility is necessary for many practical purposes.

With this approach, applications can dynamically adapt to local environments at run

time. We define a local environment facility to enable component reuse by actively

providing well-defined interfaces as references to those components. The

implementation of this local facility is small compared to other virtual global

environments. Components that are built with these local environments in mind can

eliminate extraneous conditional logic and unnecessary code paths. A program depends

15

on the local environment facility to make decisions as per what is suitable with this

environment.

1.2.3.4 User benefits

To the application integrator, new components and applications that follow this

methodology are in better control and maintenance. Each component is accompanied

with specifications so that it can be bought or reused following the guidelines.

Component external interfaces and context dependencies are well defined for purposes of

integration by third party.

Last in the chain of application integration is the user who is the keeper or owner of

her own environment. She also benefits tremendously from this methodology because

the efficient usage of components makes an application compact. No extraneous code

that wastes user resources. Applications are highly customizable and easy for upgrading.

We set up the first step for future work in component loading at run time for dynamic

programming semantics. Components can also be dynamically searched and located for

utilization purposes. The local environment facility can be used as central accessing

point for purposes of component reuse.

1.3 Thesis Organization

Chapter 1, “Introduction”, gives overviews of software components and their usage,

which leads to the discussions of problems in application integration especially when

putting many disarray of existing components back into a fully functional application.

Run-time interface mapping is the foundation of this thesis, which contributes the

16

software component integration methodology for dynamic application assembly in local

environment at run time.

Chapter 2, “Software Component Technologies Status”, surveys the current

component technologies, widely known frameworks such as COM+, .NET, CORBA, and

Enterprise JavaBeans, and delves into details of component integration in order to

understand the problem at hand. Component linking and compiling have been used in

developing applications. However, this thesis focuses in dynamic component loading at

run time.

Chapter 3, “Overview of Dynamic Application Integration”, introduces the overall

architecture and methodology for this thesis. A fictitious application called ZipAF is used

as a sample demonstration for introducing the methodology and its concepts. With this

simple example, Run-time Interface Mapping and Local Environment Registry are easier

to understand.

Chapter 4, “Local Environment Registry”, details the API provided by the LER

component, which is intended for programs following this methodology. LER is at the

center of the application and component interactivities. It resides in the user environment

and does local component loading for applications. It also supports application decision

making related to local environment conditions.

Chapter 5, “Run-Time Interface Mapping”, shows the thesis work in deriving the

abstraction of the interface to be used by components for integrating into an application

that follows this approach. It is described using the Java programming language. More

general approach is derived at the end.

17

Chapter 6, “Component Packaging With LER and RIM”, describes the common

ideas and strategies in packaging and delivering software components. Independent of

package format, package delivery can be used in conjunction with maintaining the

uniqueness of local environments. The same procedures are carried out through

deployment cycles aiming at reusing and sharing components in local system.

Chapter 7, “Examples of Application Integration”, describes an application put

together with this methodology for demonstration purposes. The unique but diverse

virtual pets illustrate the working model of mapping interfaces to different components in

different local environment at run time.

Chapter 8, “Future Work”, continues the trends of dynamic component integration at

run time: dynamic interfaces. Component search engines can be an extension to LER for

more dynamic application semantics. Tentative goals for applications running in local

environment include adaptive and efficient software components.

18

Chapter 2
Software Component Technologies Status

2.1 A Brief History of Software Component

The ideas of reusing software are as old as any programming languages. FORTRAN has

subroutines. Modula has modules. Pascal has functions. Programming language

designers have long realized that breaking source code into smaller chunks eases code

maintenance and program writing efforts. By structuring the program in modular

fashion, subroutines can be written in the same source file but in separate units that can

be invoked independently from their location. Hence, separation of the calling interfaces

and their modules is achieved.

Once successfully tested and used, the subroutines can be physically separated into

different source files that are compiled into binary object files. Then, the same binary

object files can be linked into different applications. Linkable object code is one form of

software component that has been widely adopted in languages such as FORTRAN or C.

The separated source files can also be compiled into library file and statically linked to a

main program at compile time. This is the starting point of linking a program with

external components. To increase reusability, modules are packaged into libraries for

general or specific programming needs. Software makers can write and sell software

libraries for the purposes of reuse.

With the introduction of object oriented programming languages, objects become the

hopeful reusable entities. Some language such as Smalltalk establishes its own

environment for objects to execute and interact with each other. Visual Basic, although

19

was not originally an object oriented programming language, provides Object Linking

and Embedding (OLE) techniques for applications to exchange object code at run time.

The underline architecture is Component Object Model (COM), which enables object

interactions independent of where the objects located within the Windows operating

environment. Distributed Component Object Model (DCOM) expanded COM standards

to multiple systems in network environments.

2.2 Component Characteristics

2.2.1 Multiple Integration Stages

Both traditional and component software models make use of the modular code

composition methods. Small units of code called modules can be combined at different

stages of the development cycles to produce a functional application. In general,

software components include very broad ranges of code modules or units that can be

integrated into application at different time and by different programmers with different

levels of programming skill.

2.2.1.1 Compiling and linking time

At compiling time, one or more program source files are translated into binary object

files in the form of machine language suitable for a particular operating system or

hardware platform. If necessary, multiple object files are combined or linked into one

executable or image file. Most things are fixed in this stage. An example of such image

file is the Common Object File Format (COFF) [49]. In a COFF file image, all

information and data about the executable is organized in static layouts so that different

parts of the executable can be loaded into memory at run time by the system process [30].

20

Although, compilers can apply methods in addressing modes or reference pointers,

the end resulted executable file is a fixed entity. To ensure the correctness of application

execution, compilers do lots of syntax and type checking. Interfaces used are strictly

verified at compilation time. All these are for easing development work. But, to make

any changes to compilers, linkers, or binary file formats would be a big effort involving

many companies and organizations. Object Oriented Programming and Design Patterns

are supposed to help greatly. The Java Virtual Machine and Java Byte Code have come

close. Enterprise JavaBeans is a further step in taking advantages of the Java foundation

or platform.

The compiler verifies the correct calling of a function from the calling module to the

actual function in the called module. There is no magic ways of the calling module

knowing the name of the called function or the number and types of its parameters. The

programmer has to gather that information before writing the calling module. For

example, to call a function named openfile() in a module zipfile.o, the programmer has to

make sure that zipfile has this function defined, such as:

 int openfile(char* filename) {
 …
 }

In the calling module, at the top of the source file, the function openfile is declared as

external, such as:

 extern int openfile(char *filename);

Then, somewhere in the calling module, openfile() can be called as following:

 returncode = openfile(“myfile”);

Existing components can be linked to newly written program in this stage. So that

programmers can have options in choosing the components for their advantages when

21

building the application. But programmers do not really know what the user actually

needs from the application at run time. The concept of selecting components goes hand

in hand with run-time environment.

2.2.1.2 Loading time

An executable or object file in storage is loaded into memory as the result of the

application invocation. Loading time is the stage in which a static program becomes an

executable image in memory. With the ability of choosing the particular modules at this

time, the application can change its logic or program flows. Shared libraries are great

contributions at this time because they make modules available to any applications

running in this local environment. But those libraries have to be loaded at certain time

before the applications making requests for the functions or subroutines in those modules.

Some libraries can be loaded and unloaded live at the time that other applications are

running and using those modules. Examples are the libraries in UNIX and Dynamic

Linking Library (DLL) in Windows.

In Java, there are two types of Java binary objects, class or interface. Interestingly,

the term “type” is used to present either a class or an interface. The JVM makes types

available to the running program through a process of loading, linking, and initialization.

Following definitions are from the Java Virtual Machine Specification:

Loading is the process of finding the binary file representing a class or interface type

with a particular name. An object of that class or interface is then instantiated in

memory. Linking is the process of taking a class or interface and combining it into the

runtime state of the Java virtual machine so that it can be executed. Initialization of a

22

class or interface consists of executing the class or interface initialization method

<clinit> [45].

Because of the dynamic natures of loading code, it is a risky stage to attempt to make

changes to application code. Conflicts and unexpected results can occur. However, this

stage can be re-enforced and maintained by a run time environment facility that resolves

conflicts provides specific environment information. The risks will be minimized .

2.2.1.3 Running Time

At run time, the executing code is residing in the memory, in its own memory or process

space. This is the most dynamic stage of the application. It is also most flexible for

changing program logic. However, it is the hardest to transfer from designing and

writing the program to figuring out the states and conditions in the application at run

time.

Instead of every program doing all the explorations in its run time to acquire the

information and conditions, the ideas are to create layers below or around the application

to do the work. Those layers such as operating system, device driver, resource

management, communication infrastructure, middleware and framework play important

roles in this stage of the application. As we can see, the boundaries are endless. The

application executing space is not limited to the local memory anymore but it is expanded

to include memory elsewhere and the networks too. Many examples of these are: The

Linda Programming Environment by David Gelernter, Tspace from IBM Corp., Jini and

EJB from Sun Microsystems, and CORBA from The Object Management Group.

Many of those mentioned above are on their ways to become global standards in their

domains. Their premise is that these global environments exist where there are needs for

23

them. But, to explore those needs, we have to go back to the local environment and see

what can be done. There are much un-realized potentials in the local environments.

2.2.2 Multiple layers

Software components are commercially available today. Some are called components

off-the-shelf. But the processes of building and packaging those components belong to

the component makers. There are no particular requirements as per the formats of

components. Component makers are free to make up their own components using those

application-building methods described earlier in this chapter. Suffice to say that,

documents and specifications are of utmost important for them to make the sales.

We use The FlashLine.com [25] Website as an example for off-the-shelf components.

The website has a section for component marketplace where it lists many categories of

software for sales. The categories are grouped into two major groups of construction

formats and availability:

� Java Component Marketplace and

� Net / ActiveX / COM Marketplace.

2.2.2.1 Components with no framework

Listed on the website are many small components sorted in different categories of user

interfaces or utilities. See Figure 2. What we learn from these components is that each

of them is developed in different ways and their usages are widely different. An

integrator has to look into each component to hopefully figure out how it can be

integrated into an application. Notice that the items listed under heading Technologies

are actually frameworks.

24

Technologies
Applets
EJB™
JSP™
JavaBeans™
Servlets

Internet/WWW
Infrastructure
eCommerce

Communications
Email
Network
Printing
Wireless

Information Management
Calculators
Content Management
Data Manipulation
Database
Encryption
Internationalization
License/Copy Protection
Reporting

User Interface
Barcodes
Buttons/Tabs
Calendars/Clocks
Charts/Graphs
Command Line
Data Input/Masking
Editors
Forms/Menus
Graphics
Grids/Tables
Instrumentation
Tree Controls

IDE Extensions
Forte Modules

App Server Add-ons
JBoss

Utilities
Compression
File Processing
Image Processing
Libraries
Wrappers

Training
CORBA
Component-Based Development
Java™
Object-Oriented Programming
Test Preparation

Development Tools
Application Servers
Code Generators
Code Testing
Component Managers
Configuration Management
EJB Builders
Editors
Frameworks
Graphics Builders
IDEs
Introspection Tools
Modeling Tools
Obfuscators
Optimizers/Debuggers
Plug-ins
Version Control

Figure 2 FlashLine Java Component Marketplace

2.2.2.2 Components with framework

As pointed out in previous section, framework components include some of those listed

under Technologies in Figure 2, such as EJB or Servlet. In Figure 3, more components

are listed under .Net, ActiveX, COM, etc. Notice that the names of the components are

very familiar with the non-framework components. Thus, integrator has options of

choosing either of the components.

User Interface Information Management
Barcodes Calculators

25

Buttons/Tabs Content Management
Calendars/Clocks Data Manipulation
Charts/Graphs Database
Data Input/Masking Encryption
Editors Internationalization
Forms/Menus License/Copy Protection
Graphics Reporting
Grids/Tables
Instrumentation Internet/WWW
Tree Controls Infrastructure
 eCommerce
Figure 3 FlashLine .Net/ActiveX/COM Marketplace

2.2.3 Diverse packaging requirements

We’ve seen above that components can be made with framework or non-framework.

They can be integrated into application in different times of development or run time.

From the examples on the FlashLine Website, each listed item is presented in a folder

with these tabs:

� Overview
� Reviews
� Docs
� Components
� BUY
� Support

Of those characteristics of a product, an integrator would be interested in “Docs” and

“Components”. Sampling of the “Components” folder tab of many listed items revealed

this message:

 “There are currently no components listed for this product.”

That is a very strong statement indicating that these items are for sales as products, which

are probably better off reused as a whole product rather than components. It could be

true that many of those products are in fact components. There are no requirements that

those components have to be packaged in any certain ways.

26

2.3 Component Frameworks

Facing with diverse components coming from many different component makers,

integrators need to go lower than the component presentations and digging into the

infrastructure and middleware layers to have better understanding of the components.

We study some of the current frameworks in this section. As in the case of FlashLine

above, each component does belong to at least one framework. Some of them can be

built for different frameworks. These components, as most of the current components,

are heavily depending on a specific framework.

Integrators need to work with more than a couple of components for their

deployments. Limiting to one framework should not be a problem because there should

be plenty of components to work with within that framework. Further more, frameworks

are usually built with the goals of unifying different computing elements under it.

Therefore, integrators can rely on frameworks for the underline component

infrastructures. An analogy of the application using components on top of component

frameworks is like the application using those operating system services on top of

hardware platforms. Applications are no more required to execute those hardware

specific operations. Operating systems provide an abstract layer and general

implementation of the hardware devices.

However, in software component, integrators should be able to make use of a

particular component. Besides adhering to certain framework implementations,

additional higher level of documents and specifications are required from component

makers. Therefore, from the application integration point of view, components are at the

middle layer between the application and the component framework. At the lower layer

27

of component frameworks, organizations and specifications are highly well defined. But,

that is low-level integration tasks. Application integrators need to put together the middle

layer component integration.

Application

A B C D E Components

Component frameworks

Figure 4 Three-Tier-View: Application, Components, Component Frameworks

The three layers in our views:

� Application layer: contains application logic or workflows that drive the

operations of an application. This is also the integration layer where other smaller

components are utilized.

� Component layer: contains code units that can be reused. Many components to

choose from at this layer. There seems to be two choices, small and disarray of

components or components that depend on the Component framework layer.

� Component framework layer: contains virtual environments that aim at

globalizing components and applications within certain domains.

Component frameworks make building and reusing components possible in many

different ways. However, to be able to understand them and use them correctly present

28

hurdles to be overcome, not to mention the difficulty in choosing one over another [69].

Nevertheless, following technologies help shape up the perspectives and present the

advantages and disadvantages for this thesis model.

2.3.1 DLL, COM+, and .NET

Dynamic Linking Library and Component Object Model Plus are the essential software

component model and integration mechanism in Windows Operating System. Using

development tools such as Visual Studio, programmers can write applications that can

link to object library modules at run time. Hence, components can be reused between

these applications [20].

The coming framework, .NET, also promises that these software components can be

reused independent of programming languages [51]. A bridge is provided as COM

Interoperability, which enables the communications between .NET and COM by

providing:

� Common Language Runtime core services

� A set of Application Programming Interfaces

� Software Development Kit

Combined with the Windows Registry, DLL, COM+, and .NET provide most necessary

environments for component development and deployment in Windows. They leave all

the application design and implementation work to the programmer. There may be more

than one ways to integrate these components together.

29

2.3.2 CORBA 3

Common Object Request Broker Architecture Revision 2.6.1 [53] is the basic model for

object oriented and client server programming standards that can be used with any

programming languages, operating systems, or networks. The standards provide the

following:

� Object Request Broker

� Object Management Architecture: CORBAfacilities and CORBAservices

� Interface Definition Language

CORBA provides the most comprehensive object oriented environments in which objects

can be interoperable [60]. With IDL, any programming languages can be mapped into

the CORBA object model [56]. In addition to the program itself, the programmer follows

strictly the syntax of IDL to specify his interfaces. Following is a short sample of an IDL

file for a Java module:

 module Counter
 { interface Count
 { attribute long sum;
 long increment();
 };
 };

Because the mapping of the syntax from a programming language to IDL is very strict,

development tools can automatically do the task.

Object Oriented modeling is one way of creating components that can be

independently deployed. Furthermore, the ORB is a layer that protects the objects from

different elements of operating systems or networks. Notice that, CORBA is based on

client server model. The IDL compiler compiles an application into two parts: a stub

resides on the client and a skeleton resides on the server. Application code can be

30

distributed on servers from which client can access at any locations in a network through

the ORB.

The CORBA Component Model (CCM) Specifications [55] are extensions of

CORBA object model to provide a higher level of abstraction for CORBA services. One

example of the extension is the Component Interface Definition Language (CIDL) as to

IDL. Other noticeable changes are in the Interface Repository (IR), which provides

dynamic access to the ORB. Requests to the IR may include: type checking of request

signatures, checking of interface inheritance graphs, etc. Those requests come from any

location in any networks.

2.3.3 Enterprise JavaBeans

Enterprise JavaBeans ™ (EJB) [18] is a framework or middleware that bases on the Java

programming language. The Java compiler generates class files in Java Byte Code

format. Java class files can be loaded and interpreted by the Java Virtual Machine

(JVM). Thus, any system or platform that is equipped with JVM can run Java

applications. Java is implemented in most of the operating systems and it has the

supports of many enterprise technologies such as: JDBC, JNDI, Servlets, JavaServer

Pages, Java RMI, CORBA, XML, etc.

However, the basic components that EJB provides are as following:

� Enterprise Bean Interfaces: Home Interface, Remote Interface, Bean Class, and

Deployment Descriptor

� Container tools and services

In addition, EJB suggests different roles in providing and deploying components:

� Bean developer

31

� Application assembler

� Deploying programmer or user

� System administrator

� EJB server provider

� EJB container provider

Those are EJB specific roles. When applying to other component models, the roles may

vary to suit the model. Notice that the last three roles devote to managing the server and

the container.

Since EJB is a server side component model, the bean container is an important

concept [45][47]. The container provides a uniform interface between the bean and the

server. A bean is implemented using one of the two interfaces: EntityBean or

SessionBean. At run time, a bean executes in a container, which creates a kind of virtual

environment to provide supports and services to the bean.

At development time, the bean has to be written based on two interfaces, remote or

home, because it is a client server distributed model. A program that writes into the

container interfaces always has the same services and supports. Because the container is

established in multiple network spaces, a Java Naming and Directory Interface (JNDI) is

requires for locating the objects and other resources.

Enterprise JavaBeans container provides mandatory facilities for its components.

When a programmer writes his program, he depends on these facilities as running

environments. They are examples of what applications require at run time. There are

many other types or forms of environments that applications depend upon. Any

application, however, starts with a core of requirements without which the application

32

will fail. How large or how small this core of environments should an application

includes is a hard decision for the programmer to make at the time of development. It is

a complex relationship between programming complexity and application reliability.

Nevertheless, when the programming work is done and the application is transferred

into the user’s hand, those environments are reality factors at run time and the user is

greatly impacted as the result of application success or failure. There is a gap between

how the program is intentionally set up from its development environments to the reality

of run-time environments. This model aims at closing that gap.

With a local environment facility in place, the program will do less of conditional

checking about environment specifics, similar to the ideas of the bean getting all the

services and supports from the container. Further more, by limiting the boundary of

application execution to local environments, many complicate aspects of distributing

environments can be set aside, to name two important ones: naming and directory or

communication infrastructures.

2.4 Environment as Container

2.4.1 Java Virtual Machine

To run an application written in Java, the top level, containing the “main” module, class

file is passed to the Java Virtual Machine (JVM). For example, the following command

runs the application ZipAF:

 java ZipAF

At the request of the command, an instance of the JVM is created to run ZipAF in

memory until ZipAF exits. If ZipAF has multiple components, by definition of software

component, JVM does not have to load all the components at once initially. Further

33

more, JVM provides mechanisms for manipulating code at run time. It also provides

utilities such as the System class for applications to access lower layer services such as

the ones provided by the operating system. Java applications cannot run without JVM or

the operating system.

The application runs inside JVM like a container. Typical Java application is written

with Java language and run in JVM. Many components are written with Java but not all

of them reside in the particular JVM until they are loaded. Components are scattering in

local machines. It is a big job and a great advantage for the application integrator to be

able to make use of those components. The Java language or its JVM provides the tools

but does not address the component problems. Take the capability of loading a class file

or a module dynamically for example, Java or JVM do not define where the modules

should reside. Application integrator can add much value for the work in these areas.

2.4.1.1 Binary file verification

The JVM is notorious on verifying the byte code before loading it. The Class File

Verifier goes through a four-pass process to ensure that loaded class files have a proper

structure and that they are consistent [83], granted that there are more security concerns

in that process. From the application integrator’s points of views, what are the risks

involved are as following:

� The called method might not be found for many reasons: slight name changes,

typos, linking to incorrect module, etc.

� The called method might have different numbers of parameters

� The number of parameters might be correct but some parameter might have the

wrong data type

34

The list of those run-time errors can go on, while they could have been corrected if the

code has been compiled and linked together. The integrator is put into an after-the-fact

situation. . If we study Java’s loading procedures well, we may be able to do dynamic

component loading at run time as we’ve planned.

2.4.1.2 Java class loaders

The Java class loader sub-system is responsible for locating and importing the binary data

for classes. It must also verify the correctness of imported classes, allocate and initialize

memory for class variables, and resolve symbolic references [45].

JVM makers implement the bootstrap class loader and the system class loader. The

bootstrap class loader is part of the JVM and loads trusted classes that include the Java

API. The system class loader is a user-defined loader, which is part of the Java

application and starts when JVM starts.

Java programmers have the options of writing their own user-defined class loaders.

Examples of this class loader are the applet loader in a web browser or the JDBC class

loader. Each of the class loaders has different ways of loading and running applets in its

own namespace. Each loader loads Java byte code into a separate namespace at run time.

Because we are interested in dynamic loading of components, this namespace is

important. It is part of the IEC design and implementation. See Section 5.3.1.

Writing a user-defined class loader would be a potential solution for our tentative

model of loading locally available components. This class loader can have

� different ways of searching for the components being loaded

� certain rules to verify components at run time

35

Once the new class loader class is available, it can be started from a Java program using

the Java API ClassLoader class’ loadClass methods. For example:

 protected Class loadClass(String name)
 throws ClassNotFoundException;
 protected Class loadClass(String name, Boolean resolve)
 throws ClassNotFoundException;

The method loadClass returns a reference of the class it just loads. With the class

reference, the calling program can initialize the class object and call its methods for

instance. It is a way of dynamically extending the program at run time.

Nevertheless, when we consider other programming languages, adding a new class loader

is like changing the program loader or linker, which are a couple of layers lower than the

component layer. Our objective is to have the solutions at the component layer.

2.4.2 J2EE containers

Following similar analogy as for JVM with operating system, J2EE containers are created

to run with J2EE server. J2EE runs in JVM. J2EE supports many different types of

containers: Enterprise JavaBeans (EJB) container, Web container, Application client

container, Applet container [12]. Container has become a means for standardizing run-

time environments. All of those containers exist in networked environments. In the

views of multi-tier J2EE application development, each of those containers becomes a

tier of application implementation such as the Client Tier, the Web Tier, the Enterprise

JavaBeans Tier, etc [71].

Taking advantages of those containers, application integrators can specialize in each

of the tier or application domain. Containers provide their methods of component

management. Hence, it becomes a type of virtual or global environment trying to cover

as many different varieties of environments as they can. Such environment is big and

36

complex to start with [67][68]. Besides being restricted to the server side, some of the

restrictions in development and deployment make these components rigid. For example,

� To write a web component, the component maker has to follow the Servlet

protocol [15][35]

� To write a component accessing the enterprise servers, the component maker has

to write a bean as in JavaBeans requirements [4][51]

2.5 Component Packaging

We’ve seen many types of components. The non-framework components are made and

delivered in many different ways that may or may not resemble each other. General

installation tools are available for setting up application installation. In Windows

platform, there are InstallShield and InstallAnyWhere. In Linux platform, there is Red

Hat Package Manger (RPM) that serve similar purposes. Component frameworks usually

have their own deployment methods. We study the EJB deployment descriptor as an

example of how components are packaged in development for deployment at run time.

2.5.1 Installation Application

From the development points of view, the installation program is a very important vehicle

making sure that the application is set up and run smoothly after. Two good examples in

the Windows operating platform are InstallShield and InstallAnyWhere. They install

applications, not components. However, Windows applications most often come with

DLL components, which are discussed in Section 2.3.1.

Two ways a developer can use InstallShield to setup and install her application:

Standard project or Basic MSI (Windows Installer format) project. The Standard project

37

works with Windows setup.exe, which uses initialization file setup.ini. The Basic MSI

does not use setup.exe and setup.ini. It uses a file with the .msi extension.

Following is an exert from [6] to show the contents of the setup.ini file:

 [Info]
 Name=INTL
 Version=1.00.000
 DiskSpace=8000

 [Startup]
 CmdLine=
 SuppressWrongOS=Y
 …
 [SupportOS]
 Win95=1
 Win98=1
 WinME=1
 WinNT4=1
 Win2K=1
 …

We can see that the file setup.ini is divided into sections such as Info, Startup,

SupportOS, etc. It essentially provides all the information required by setup.exe.

In Basic MSI project, the Windows Installer is used. Hence, its MSI file format is

required. This file, with the extension .msi, has four primary components [36]:

� Summary Information

� Database of installation instructions

� Application files or references to them

� Transforms

An .msi file is a package file in COM structured storage file format.

2.5.2 EJB Deployment Descriptor

Before we learn about deployment descriptor, we should understand Java archive (jar)

file and its manifest file. The jar file is a way of compressing many different files into

38

one file. A jar can also be a bundle of application that can be run directly from the jar file

without going through the extracting process. A manifest file basically has two parts:

� The headers

� The list of files included in the jar fie

Following is a sample manifest file that is automatically generated.

Manifest-Version: 1.0

Name: java/math/BigDecimal.class
SHA1-Digest: TD1GZt8G11dXY2p4olSZPc5Rj64=
MD5-Digest: z6z8xPj2AW/Q9AkRSPF0cg==

Name: java/math/BigInteger.class
SHA1-Digest: oBmrvIkBnSxdNZzPh5iLyF0S+bE=
MD5-Digest: wFymhDKjNreNZ4AzDWWg1Q==

As seen in above manifest file, the header contains the “Manifest-Version”. The header

may also contains package information, such as:

Name: java/util/
Specification-Title: "Java Utility Classes"
Specification-Version: "1.2"
Specification-Vendor: "Sun Microsystems, Inc.".
Implementation-Title: "java.util"
Implementation-Version: "build57"
Implementation-Vendor: "Sun Microsystems, Inc."

After the header is the list of Java classes. More information is in [77].

Enterprise JavaBeans class objects and other application files are packaged in a jar

file. Accompanying with the bean classes, remote interfaces, home interfaces, and

primary keys, etc. is a deployment descriptor. The container reads a deployment

descriptor to learn about the beans and how they should be managed at run time.

Following is an example of an EJB deployment descriptor file in XML format [51].

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>CabinEJB</ejb-name>
 <home>com.titan.cabin.CabinHome</home>
 <remote>com.titan.cabin.Cabin</remote>
 <ejb-class>com.titan.cabin.CabinBean</ejb-class>

39

 <prim-key-class>com.titan.cabin.CabinPK</prim-key-
class>
 <persistence-type>Container</persistence-type>
 <reentrant>False</reentrant>
 </entity>
 </enterprise-beans>
</ejb-jar>

The entity and its attributes in the above example are just a small examples of many other

entities and attributes. Since the deployment descriptor is in XML document format, it

can be generated by IDE tools and read by container tools in automatic manners so that

programmer and deploying users do not have to involve. Also, the tools can provide

graphical user interface for developers to generate the descriptor and users to manage

those application properties to some extent at run time.

Deployment descriptor is also how web applications being deployed as web services.

SOAP is an example of web services. Web applications are Java applications running on

the server side. The Java applications owner needs to specify the service information in

the deployment descriptor then deploy the application so that the clients know how to

access the services [17]. Although deploying application services does not sound like

packaging, the idea is to expose information from one application to other applications.

The interested information includes the name of the Java service classes and the methods

they support, etc. If we are to let applications share components, we’ll have to do

something similar.

2.5.3 Package Manager (RPM)

Another package management software used in the Linux operating system is the Red

Hat Package Manager (RPM). This application is known for building software for

various platforms of Linux from a single set of source-code files. It is also used to install,

upgrade, verify, and build software archives known as .rpm files. Compared to the above

40

installation applications and deployment descriptor, RPM does many more tasks for

maintaining software packages such as making and compiling the application binary files

from source files.

To build a RPM package, a spec file is required as input. Following is a sample spec

file extracted from a How to paper on the Red Hat Website [9].

Summary: A program that ejects removable media using software control.
Name: eject
Version: 2.0.2
Release: 3
Copyright: GPL
Group: System Environment/Base
Source: http://metalab.unc.edu/pub/Linux/utils/disk-management/eject-
2.0.2.tar.gz
Patch: eject-2.0.2-buildroot.patch
BuildRoot: /var/tmp/%{name}-buildroot

%description
The eject program allows the user to eject removable media
(typically CD-ROMs, floppy disks or Iomega Jaz or Zip disks)
using software control. Eject can also control some multi-
disk CD changers and even some devices' auto-eject features.

Install eject if you'd like to eject removable media using
software control.

%prep
%setup -q
%patch -p1 -b .buildroot

%build
make RPM_OPT_FLAGS="$RPM_OPT_FLAGS"

%install
rm -rf $RPM_BUILD_ROOT
mkdir -p $RPM_BUILD_ROOT/usr/bin
mkdir -p $RPM_BUILD_ROOT/usr/man/man1

install -s -m 755 eject $RPM_BUILD_ROOT/usr/bin/eject
install -m 644 eject.1 $RPM_BUILD_ROOT/usr/man/man1/eject.1

%clean
rm -rf $RPM_BUILD_ROOT

%files
%defattr(-,root,root)
%doc README TODO COPYING ChangeLog

/usr/bin/eject
/usr/man/man1/eject.1

%changelog
* Sun Mar 21 1999 Cristian Gafton <gafton@redhat.com>
- auto rebuild in the new build environment (release 3)

* Wed Feb 24 1999 Preston Brown <pbrown@redhat.com>

41

- Injected new description and group.

[Some changelog entries trimmed for brevity. -Editor.]

The RPM documents contain more information about the spec file. It essentially includes

two parts:

� Application specifications such name, release, version, source location, etc.

� Sequence of commands to be executed to build the package

We can see all the crucial information on building the RPM package is included in this

file, which can be edited by a programmer. Or, it can be generated by another application

or script. RPM generates a package file that is an archive of all the necessary files for the

package.

The advantages of RPM include:

� Ability of making and distributing package to system on different platforms

� User can extract or query information about installed application files or packages

� Giving the package owner total controls of installing and uninstalling packages

2.6 Summary

From the integrator points of view, a component has to be considered individually to see

if it fits deployment purposes, based on documentations and specifications. From the

technical aspects, many component technologies are available. We study some of them,

such as DLL, COM+, CORBA, and EJB. It is important to notice that, all these

evaluations and investments of times and resources continue to be done by human, until

those business-to-business and business-to-consumer services are widely inter-operable.

The application integrator plays an important role. She assembles application at the

highest level of software development. To improve the assembling processes,

42

components are available for deployments. However, components rely on component

frameworks for providing the underline infrastructures. Thus, components belong to the

middle tier that is below the application and above the component framework. The

middle tier usage principles require that components should hide the internals of their

component framework and present the component characteristics to the application layer.

The current state of components is not at that point yet because it is difficult to reuse

components without the requirement documentations and specifications at the component

layer. At the lower layer, component frameworks compose of global environments and

standards that are overly complex to begin with.

43

Chapter 3
Overview of Dynamic Application Integration

When a particular application is designed or even just formed in the developer’s mind, it

is usually not associated with any particular environments. In general, an application is a

tool that mimics or reflexes a tool in real life. A clock application is obviously a counter

part of the real clock that we use in every day life. We use clocks to tell time. The

inventor who invented the original clock did not have any ideas that the world is divided

into different time zones. The fact that a clock in New York tells a different time than

one in London is not part of the clock’s functionality. And, the inventor was right! One

could guess if the clock works correctly in one time zone then it will work similarly in

another time zone. But one needs to bring the clock to the particular time zone to prove

it. The clock is a classic case of an application that separates its functionality from the

environments it is in. It is obvious that such small invention has lasted and is going to

last beyond time and space.

In this chapter, an example application that does file compression and decompression

is used for simple understanding of the model. We also want to demonstrate the

simplicity in programming using this model to solve such application problems as:

� Choosing the file format that the user prefers

� Including just enough code that the user needs in the application

� Adding a new file format.

An application can be integrated from software components. Components require

mechanism to exchange their interfaces and other requirements in order to “utilize” each

44

other. This approach bases on the premise that programming flows and operating

conditions can be resolved at run time by choosing the appropriate components with

satisfied interfaces. Selecting components to integrate into the application at run time is

the central idea of this approach.

A program usually can select different components by going through complicated

logical conditions. Each program has its own way and unique methods of checking and

testing for its requirements. The more different components and environments the

program requires the more code and complex logic have to be added. Other side effects

include hard coding or overlooking important conditions that can result in application

malfunctions or unexpected operations. There is still no guarantee that the whole

programming logic of an application works correctly in any predictable condition.

Therefore, software vendors have spent much effort and resources in beta testing before

product releases. Further more, there are still unpredictable conditions that cost vendors

huge expenses in product supports and services.

This approach provides a method for mapping logical components into specific

components. The similar components or family of components are required to be written

following an agreeable interface. Then, the application or other components will base on

these interfaces to tie them together, with the help of a local environment facility.

For demonstration purposes and simplicity in illustrating essential concepts, a

fictitious application called ZipAF (Zip Any Format) is used. It is claimed that ZipAF

can compress or decompress any compressed file format assuming that the inventor or

owner of the file format would provide a component that reads and writes the file format

and also does the algorithms of compressing and decompressing a file. ZipAF is

45

apparently a state-of-the-art component software application. We will see ZipAF’s

approach in achieving its claims and the details of its design and integration.

3.1 Overall Architecture and Organizations

This approach bases on the run-time interface mapping methodology and packaging of

application and components for delivery in local environment. A local environment

registry component provides enough common facility for component reuse and sharing.

3.1.1 Run-time Interface Mapping (RIM)

Components used in this model has three characteristics:

� They are in binary format

� They have well defined external interface

� Internally, they use unique interfaces to refer to other components

The first characteristic means that no code modification is allowed on these components.

The second characteristic imposes a restriction on what type of components can be used

with this model. Only components that have known interface will be used. The third

characteristic implies that the use of interfaces is recursively possible and restricted.

A run-time interface-mapping component has these characteristics:

� Each interface has a unique name to ensure that there are no name conflicts when

many components are obtained from different component makers. Hence, a

request for using the interface can be made by name.

� Each component has to implement at least all the methods in the interface that is

written precisely in component specifications. Method names and signatures are

well defined in the interface.

46

� An interface is an abstraction that represents a group of code units that have

similar functionality but possibly different implementation. An interface does not

necessarily exist in the form of code. It could be a form of text format or a

structure of directory tree.

LER takes care of the procedures of recognizing an interface input. Because LER API is

well defined, different implements of LER are feasible.

InterfaceA.method1

InterfaceB.method3

InterfaceC.method1

InterfaceC.method2

Interfaces

compA1

compC1

compC2

compC3

compB1

compA2

Application LER

RIM

Figure 5 Run-time Interface-Mapping Components

3.1.2 Local Environment Registry (LER)

LER is persistent storage that resides in the local system once the user installs or runs an

application. A LER should provide these functionalities:

� Gathering enough information about the current local environments. Information

is maintained and tailored to user needs and references. Applications retrieve the

required information to help resolve environment specific conditions. The

information can also be passed to the component referencing process.

47

� Maintaining references of interfaces and their family of components that are

locally available. An application depends on the LER to return the name or

identifier of the appropriate components. This part of the LER acts like a local

component search engine that chooses components based on user preference or

specific local environment.

� Providing access and search methods for applications and tools to use the

facilities in the LER. Components that are built after this model can take

advantages of the LER facilities that make them more reusable by applications.

Tools can use the LER facilities to update and expand LER, making up a dynamic

environment to support applications at run time.

LER is a common access point that can be used with different applications or

environments. A simple LER has following organizations:

User configuration table: contains user specific information such as:

Attribute Value
LER Identification Name
Package Locations Search paths
Component Locations Search paths
User Preference 1
User Preference 2
…
Table 1 LER User Configuration Table

Interface reference table: contains a list of available interfaces and the mapping of each

of these interfaces to specific component. The mapping is based on local environment

conditions or user preferences.

48

Environments Interface

attribute 1 attribute 2 attribute 3
1st Interface Comp 1 Comp 2
2nd Interface Comp 3 Comp 4
…
Table 2 LER Interface Reference Table

LER application programming interface: Users of this API are

� Component makers who build their components following this model

� Package integrators who write their programs with this model

� Component tools makers who access and maintain components with this model

Following is a summary table of the API. Details are described in a separate section.

Method Return Brief Description
home() Home dir Locate the home dir. where LER

files locate
home(String Directory) Succeeded

or Failed
Set LER Home to the input
directory

root() Root dir Locate the root dir. where the
paths of component dir. start

root(String Directory) Succeeded
or Failed

Set LER Root to the input
directory

registerInterface(Interface) Succeeded
or Failed

Store a new interface info into
LER and create an empty
component list

registerInterface(Interface, Comp,
Attribute, Value)

Succeeded
or Failed

Store a new interface with one
component associated with the
attribute and value

addComponent(Interface, Comp,
Attribute, Value)

Succeeded
or Failed

Add the component into the
interface with associated attribute
and value

removeComponent(Interface, Comp,
Attribute, Value)

Succeeded
or Failed

Remove the component from the
interface with associated attribute
and value

loadComponent(Interface) Component
reference

Load a component for the interface
with default attribute

loadComponent(Interface, UniqueID) Component
reference

Load a component for the interface
with unique identification

49

Method Return Brief Description
loadComponent(Interface, Attribute) Component

reference
Load a component for the interface
with required attribute and default
value

loadComponent(Interface, Attribute,
Value)

Component
reference

Load a component for the interface
with required attribute and value

SetDefaultAttribute(Attribute,
Interface)

Succeeded
or Failed

Set a default attribute to associate
with an interface

setLocalAttribute(Attribute, Value) Succeeded
or Failed

Store the “attribute, value” pair in
a table

getLocalAttribute(Attribute) Value Find the value for the attribute
Table 3 Summary of LER API

3.1.3 Packaging components with application

A package is a means of distributing application and its components to a local machine.

The integrator picks and choose the components to be included in her package. Since

there are many ways of representing an interface, here we use a directory tree structure to

represent interfaces. As introduced in Chapter 3, we use the example of a file zip and

unzip application call ZipAF.

The application zipAF can zip and unzip three types of compressed file formats: zip,

tar, and gz. Following is a sample package for the ZipAF application:

 c:\CZip Package
 c:\CZip Package\LER
 c:\CZip Package\LER Installation Tools
 c:\CZip Package\ZipAF
 c:\CZip Package\ZipAF\ZipFile.zip
 c:\CZip Package\ZipAF\ZipFile.tar
 c:\Czip Package\ZipAF\ZipFile.gz

The package root directory is called Czip Package that contains LER and its installation

tools. This package has one interface called ZipFile, which includes three code

components: ZipFile.zip, ZipFile.tar, and ZipFile.gz.

50

The integrator bought these three code components from three different component

makers. Each of them, however, implements a strict interface called ZipFile as

following:

interface ZipAF {
 file_handle open_file(file_name)
 void decompress(file_handle)
 void compress(file_handle)
 void close_file(file_handle)
 }

The above is just an example of a text file that presents the interface ZipAF. Each of the

code component: ZipFile.zip, ZipFile.tar, and ZipFile.gz implements all four of

those methods: open_file, decompress, compress, and close_file in their own

way.

3.2 Application Integration Model

3.2.1 Programming skills and roles

This model clearly divides the roles of programmers who are involved with the entire

process of making components and building an application into three groups of different

skill levels.

Component Maker (CM): writes components according to their interface or

specifications. He is trained in programming languages and practical aspects of the

component. His goal is to make as many components as possible.

Package Integrator (PI): writes the LER and the program flows that integrate

components into an application. She depends on available components and their

interfaces or specifications.

51

Application User (AU): receives an application package from the PI and starts

running it on specific system. He wants to use the application as what it is intended for.

He also has good understanding of the system or local environments.

3.2.2 Supportive roles of LER

When the user receives the package he first runs the LER Installation Tools, which will

search to see if a LER has already existed in this machine. If LER does not exist, then a

copy from the package will be installed. The user may have to input the location of LER

or let it be default. For the ZipAF application, the two User Configuration Table

becomes:

Attribute Value
LER Identification BetaLER
Package Locations c:\Czip Package
Component Locations c:\Czip Package
Compress File Format zip
Table 4 LER User Configuration Table for ZipAF

The LER Identification can be arbitrary string. Package Locations and Component

Locations were copied from the package. User Preference 1 is set to “zip” as default.

The same tools should allow user to change these values anytime later. Assuming there

is no other components on this machine, the Interface Reference Table is filled in as

following.

Environments Interface

zip tar gz
ZipFile ZipFile.zip ZipFile.tar ZipFile.gz
Table 5 LER Interface Reference Table for ZipAF

52

3.2.3 Writing a simple application: ZipAF

In this section, a program or module of code is written as any normal program. Checking

for local environments or user preferences can be done, however, most of the time, it

should let the environment or user preference dictate the flows or execution of the

application.

Although the programmer may not include checking for specific local environment, at

run time, the application depends on LER to provide or refer to the required option. In

the above Interface Reference Table, the default compress file format is “zip”.

When a component from the package is needed, the application calls the interface,

which in this case is ZipFile. The simple Czip program has two simple methods: one

for compressing and one for decompressing. They look like following, in pseudo code:

Object zcomp = LER.loadComponent(“ZipAF”)
file_handle fh = zcomp.open(infile)
file_handle out = zcomp.open(outfile)

 If (ACTION == compress)
 zcomp.compress(fh, out)
 else
 zcomp.decompress(fh, out)

 zcomp.close(fh)
 zcomp.close(out)

Before either one of the compress or decompress methods are called, the zcomp object is

instantiated from the LER. Because the LER takes the responsibility of initiating the

object, the application does not know which component the object is coming from. The

integrator only knows how to use the object from the interface or specification.

If the application does not intend to use the default compressing format, then it will

have to make the call to LER to set the local attribute, for example:

 Integer rcode = LER.SetLocalAttribute(“ZipFormat”, “tar”)

53

LER checks to see if “ZipFormat” is an existing attribute in its Interface Reference Table.

If ZipFormat is an attribute, LER also checks to see if “tar” associates with an interface.

If any of those checks failed, the application receives a “failed” value in rcode.

Otherwise, rcode contains the “succeeded” value and the application can go on to the

next step as described earlier.

The attribute name “ZipFormat” is a string, which can be passed in by a reference

variable. Similar case applied to the attribute value, “tar”. The SetLocalAttribute

method call can become:

 Integer rcode = LER.SetLocalAttribute(attr_var_name, attr_value)

The application now can input any new attribute name and value at run time.

The application is started from the main module as usual. However, the LER plays

an important role in choosing the components at run time. Changes in interfaces or

components in LER will lead to changes in the execution of the application. As seen in

previous section, LER makes all the attribute validations at run time. That leaves only

two choices to the application: continue to run if the local environment conditions are

appropriate or fail over otherwise. LER can provide extra facility for the application to

proceed further if the validations fail. However, this example stops here for simplicity.

3.3 Differences and advantages

In a general file compressing application, usually the programmer has to know what file

formats the application can work with, as early as in the design and analysis phase. The

simplest solution is to write one application for the purpose of compressing and

decompressing one and only one file format. But, that is not a good solution for a user

who needs to work with many file formats.

54

To solve the multiple file formats problem, the programmer will attempt to program

the compress and decompress tasks for his application on as many file formats as he can.

Then, he provides a menu or command line options for the user to choose the appropriate

file format at run time. Nevertheless, the application still provides a fixed number of file

formats that may not be what the user wants in the first place.

If a new file format or a new compressing algorithm is discovered after the

application is made available to the user, new code has to be added into the application.

Even if the new file format is available in the form of library or other component, it may

provide new interfaces that are not resemble to the existing interfaces.

Following is a list of programming questions raised at the beginning of this chapter

that our model aims at solving for this file compression and decompression application.

More concrete examples are described in later chapter.

� LER takes over the tasks of choosing the right file format for the application so

that the application does not have to do those tasks. File format is presented as a

local attribute that can default to one value according to local environment or user

preferences. LER keeps track of local environment attributes and user

preferences and validates them for application use.

� LER also provides the appropriate sub-component for application at run time.

That is made possible via IEC. Each IEC is composed of optional sub-

components, which is chosen by LER at run time. Therefore, the application does

not have to include all the code for all the formats it knows.

� Adding a new compress file format that is not known at design and

implementation time can be achieved without modification of the code. The new

55

file format is introduced as a new sub-component that has the same interface as

existing sub-components. It is added into the existing interface in LER. The

application will just input and set the attribute to a new value.

Existing technologies that were studied in Chapter 2 can be used for designs and

implementations of such application. Each technology has its advantages when used in

its domains. However, each technology also has its requirements and restrictions that do

not fit the needs of all applications. In the following sections we discuss the strong

characteristics and the weak points of these technologies for the sake of building this

sample ZipAF application.

3.3.1 Dynamic run-time loading versus common objects

If we decided to write the application with COM+, all components of the applications can

be built into the Dynamic Linking Library (DLL) format. The foremost advantage is that

the ZipAF application can be run on any systems that have the Windows operating

system installed. And the components can communicate easily and dynamically with

other components at run time utilizing DLL.

All the components of the application can be written using the standard interfaces

provided by the Windows operating system. Windows provides most of the lower level

services for Input/Output devices, File System Management, or Graphical User Interface.

The application integrator can purchase different file compressing or decompressing

components from different component makers because they are written in the same

standard interfaces.

For the ZipAF application, different component implementations may attribute to

differences in file formats, compressing algorithms, performance characteristics, or

56

specific Input/Output devices. The different characteristics of lower level or hardware

platforms are taken care of by Windows.

The foremost drawback of writing components in the Windows COM+ environment

is that the components can only run in the Windows operating system because of the

binary file format compatibility. If these standard interfaces on Windows are different

than any other interfaces on other operating systems, the application integrator is tied to

one single operating system. However, consider that Windows has a popular base of

users, running in Windows includes large enough domains that the component makers

can certainly live with. Also, when we think about a local environment, we take into

account the fact that existence of different operating systems is inevitable.

The application integrator runs into some problems though when building the ZipAF

application. First of all, the library functions provided by DLL have to be called by static

names. These names have to match exactly as the names in the DLL module. That leads

to the requirement that the application needs to know what type of file format or

compressing algorithms it can work with, assuming those are provided by different

components. Then the application integrator usually builds into the application a set of

menus to let the user pick the file formats at run time.

The user menu approach provides flexible user interfaces. However, the menu has to

present all the possible choices to the user, because it is desired that the ZipAF

application can compress as many file formats as possible. Additional programming

logic is added for this purpose. But the user often chooses a subset of the file formats,

leaving other formats unused. Nevertheless, all the file formats have to be included.

57

When a new file format is introduced at a later time, it has to be added to the menu.

And more logic is added for checking user’s choice inputs. As a result, code changes

have to be maintained and the application has to be rebuilt every time there are changes

in the file formats in order to keep this application common to any compress file formats.

Dynamically loading the components at run time eliminates the needs for specifying

fixed component names and the logic of selecting them.

3.3.2 Component packaging versus distributed modeling

CORBA is designed to solve the problems of running an application on multiple

platforms, which include operating systems, communication networks, programming

languages, etc. It uses distributed computing model to accomplish the daunting tasks.

An application can get or call different subroutines or modules from other systems on the

networks at run time. The application is a client, which depends on many other code

servers and request brokers.

For this ZipAP example, the application can be running on a system that has no code

that it requires to run. However, the application can make calls that are translated into

requests to some remote server having the module. The module is executed on the

remote server and then the results are sent back to where the requests originated. This

scenario of requesting and executing code happens within the CORBA frameworks. The

advantage is that what happen are transparent to the client application. This is just an

overly simplified view of how a CORBA application works.

In order to rip the benefits of CORBA, the application has to be designed according to

the CORBA frameworks. Basically, the application has to be designed with the client

server model in mind. CORBA requires that the programming language used being

58

mapped into the Object Management Group’s Interface Definition Language (IDL). The

use of IDL makes CORBA programming language independent so that an application can

call modules in many different languages.

However, the IDL perquisite is that the particular programming language has to

support the mapping to IDL. Ultimately, the compiler or the integrated development

environment may do the IDL mapping automatically. At the current state, the

programmer has to be fluent in IDL to work with a CORBA application. That is

additional requirements besides the application programming language being used in

writing the application. After the application is built, different pieces of the program

have to be distributed to the servers and clients before the application can be run.

At run time, the application depends on the servers and the broker databases to be up

and running. The tasks of setting up these servers, databases, and networks, etc. may

require different set of skills. Those initial requirements are high demands that do not

encourage the development of applications starting small and simple. Unless it is

assumed that the frameworks have already be in place.

Another drawback from CORBA and any other models that rely on remote server

code execution is the delays in sending requests and receiving responses. Also, the

network connections have to be constantly up through out the time that the application is

running. Applications should avoid these situations as possible if they can just run on a

stand-alone system. With the increasing hardware power and decreasing product price,

the views of client systems have changed from a bunch of dumb terminals to disarray of

systems or devices that have their own processing power.

59

The mobile and dynamic natures of these systems or devices require a light weight

and quick packaging and delivering strategy. Different components or new component

can be delivered to the local system at anytime. Then the dynamic loading of the

components will pick up these components.

Although an user on a system may need to work with different compress file format,

he only does that one at a time while running the ZipAF.

3.3.3 Local environment versus remote servers and containers

The EJB framework has similar goals to CORBA – running applications on many

different platforms based on the write once run anywhere principals. It is different than

CORBA because it is based only on a programming language, Java. In other words,

applications that are written in Java within the EJB framework can run anywhere a Java

Virtual Machine is available. Java is a popular language and there is no other IDL to

learn.

Although some server setups are still required, the requirements are less complicate

than CORBA’s. Because the server is also part of the Java Enterprise Edition

Development Kit, most Java programmers can get the EJB framework up and running

with reasonable efforts. In return, the programmer gets the entire solutions for enterprise

application development needs such as:

� Enterprise JavaBeans component framework (EJB)

� Java DataBase Connectivity (JDBC)

� Java Naming and Directory Interface (JNDI)

� Java Remote Message Interface (RMI)

� Java Servlets and JavaServer Pages

60

Java and those frameworks also create many more of other new software technologies.

The plentiful of available technologies give programmers better choices to choose from.

However, they may cause technology anxiety. Programmers are overwhelmed and weary

of the new technologies that are not mature and changing too quickly.

To write a program or a component in EJB, the programmer has to master the object-

oriented programming methodology, which is the base for Java programming. Object-

oriented technology presents logical approach to component development because the

capability of abstraction. From the popular JVM, EJB extends into the concepts of

containers, which create common environments for JavaBeans to run in. The EJB server

does not have to be running on the local system. The first thing an application does is to

request for connection to the server thus the container is opened up for facilitating the

JavaBeans and providing other services.

Because of the similar goals of EJB compared to CORBA, there have been work in

trying to bridge between these two frameworks or architectures. CORBA has the designs

for cross platform infrastructures, while EJB has the new and improved interfaces and

architectures.

Having a remote server to provide the container for application to execute could be

advantageous for some and not suitable for other applications. Hence, application design

plays important roles in deciding if the frameworks will benefit the application operations

at run time. For those applications that require and able to utilize the majority of

common services provided by EJB, it is worthwhile to design and implement them in

EJB. These applications can also take advantages of many components available for EJB

integration.

61

For those applications that are intended to deploy local systems where the user is

running the application, there are drawbacks if the EJB server has to be installed locally.

The applications in this category also do not require constant communications with other

remote servers or resources. They can run autonomously at best on the local system. The

ZipAF application is an example.

3.4 Summary

When it comes to software components, there are more than one choices available for

component makers and application integrators. Big standardized frameworks have been

taking shape after long time and huge resource investments. But the requirements for

many different types of software components keep changing. We see the needs for

emphasizing the dynamic aspects of application integration at run time. Application

integrators should be able to put together an application from pre-built components as

quickly and simply as possible without depending on learning or setting up those big

frameworks or infrastructures. The methodology also provides flexibility in selecting

components at run time via the supports of the local environment facility.

62

Chapter 4
Local Environment Registry

From an application integration point of view, application abstraction is at the top layer

of all environments. Figure 4 illustrates components as a layer under application and

component framework is a layer under components. There are more layers under

component framework such as virtual machine and operating system. The lowest layer is

at the hardware platform. See [61] for “Structure and Flow in a Layered Operating

System”. In Chapter 2, Section 2.3, we also discuss our view of components as the

middle layer between applications and component frameworks. Local Environment

Registry (LER) is in the component layer.

Although an application is designed and implemented at the highest level of software

development, it runs at the lowest level, the local machine. In certain situations, the

application has to check for all the right conditions to arrive at the piece of code that does

something to or make use of the available resources. Because run-time environments are

dynamic, an application cannot check all the possible conditions at the time of deign or

implementation. LER is designed to resolve those conditions for the application.

By starting at a local environment, we lower the number of conditions just limiting to

this local environment. By doing the checking in the LER, we reduce similar amount of

code from any applications that run in this local environment. With the LER Application

Programming Interface, we separate specific environment checking from the application.

Applications or components that use the LER API will be more portable from one to

63

another local environment. LER is stationary. It stays in the same environment and does

not change unless the user makes the changes.

LER also plays a key role in choosing the appropriate local components for

applications to load at run time. Chapter 5 goes through the design of the Interface

Enabled Component and its working model, which depends on LER to search for a sub-

component matching the interface requested. Notice from here on that we call our

Interface Enabled Component as interface. Where necessary, we use the acronym IEC

for clarity.

We’ve studied how applications are divided into small components and integrated

back together with component frameworks, in Chapter 2. The main idea of using lower

layers to support upper layers applied in both development and run-time environments.

Components and frameworks have had significant impacts on how applications are

deployed. In these environments or containers, we study some of the mechanisms or

services that they provide. But it is depending on the programmer on knowing how to

deploy those services.

One way to reduce complexity is to go back to the small local environment for

developing and deploying the application from there. Then, using one of those

environments as a starting point for an application development.

4.1 LER Requirements and Organizations

LER is not a replacement of those existing run-time environments. It is a software

component that application can use for purposes of adapting to the running environment

and obtaining other localized components. Our tentative proposal is to have a LER reside

in a user space and a virtual environment such as the Java Virtual Machine. However,

64

the JVM is not a requirement in the major organizations of LER as described in the

following sections.

The fundamental requirement is that the model is designed and implemented in a

local environment first. By paying attention to adapting to local environment, it is

required that the model does not depend on specific local conditions. However, using

default or existing environment attributes is the key. LER is the core component but it

requires the application integrator to apply the approach in delivering their applications.

To take advantages of the model, the application integrator has to use the LER

component and related services in writing their application workflows. Thus, LER

should have a set of well-defined application programming interface that should not be

language dependent. However, there is a crucial requirement that LER should be able to

load a code unit by name. Chapter 5 has detailed discussions of the Interface Enabled

Component, which works in conjunction with LER.

4.1.1 Persistent storage

LER resides on the hard disk of the local machine. Certain storage space is required. In

most operating systems, LER exists as one or more files in the file system. The key

requirement is that these files can be loaded into memory for faster accessing to the

elements in LER. Depending on implementation aspects of this storage, LER can be:

� Text file: containing the LER contents or records in text strings that represent the

structures in LER. A process that understands those structures writes the memory

contents to the text file or reads the text file then loads the data into memory

following appropriate structures. This method may not be most efficient but it is

65

easy to implement and human users can look or analyze the LER contents if

necessary.

� Binary file: similar to text file. However, the contents are packed into binary or

byte format. It is more efficient because the memory structures can be dumped

directly into the binary file. Then, the binary file can be read directly into

memory. That sounds straight forwards with common data structures. However,

with object oriented programming, objects in memory may not be written directly

out to disk or vice-versa. Serialization is required.

� Relational database: containing the LER contents in forms of data tables and

records. The benefits of using databases are that all accessing methods are

provided by traditional database management (DBM) program, which may also

be a drawback because it is an extra requirement. However, if the database is

compatible across different DBM programs and environments, LER is as closer as

a common component that can be accessed from applications.

Notice that, LER itself does not contain the sub-components, which are discussed in the

next section. LER contains only the references to the sub-components.

4.1.2 Component references

LER has the missions of a local search engine for locating local components that are

called sub-components because of the way we map an interface into different code units.

See Chapter 5 to learn about Interface Enabled Component. Well-defined mapping

schemes are built into LER to decide if a requested interface can be associated with some

known sub-components reside locally. It is required that:

66

� The name of the IEC has to be unique. Each interface has to be registered to LER

in order for LER to set up the mapping schemes. The naming conflicts have to be

resolved at the time of registration. Otherwise, the interface fails to be registered.

LER maker sets the rules for naming the interface and its sub-components.

However, the internal mapping scheme should not impact the external methods of

accessing and requesting for sub-components.

� LER has a record of where each sub-component located. Each sub-component

has to be added into LER for association with an interface. Similar to interface

registration, naming conflicts should be resolved at the time a sub-component is

added. Sub-components are unique within an interface. One sub-component can

be added and referenced from more than one interfaces as long as there are no

naming conflicts.

� LER can load the component into memory for applications to use as requested.

This requirement may vary from different programming languages or different

running environments. However, the basic requirement is that LER does the

loading in place of the application or running environment. An application makes

the request to LER for an interface. LER services the request by loading a sub-

component into the format that the application needs. The process of choosing a

local component is upon the LER, not the application.

4.1.3 Searchable local environment

Besides the ability of searching for sub-components, LER also has the ability of

containing local environment attributes and searching for them when queried. The major

67

usage of local attributes is for associating sub-components to their interface. In other

words, each interface has as many local attributes as number of sub-components.

� Local attributes can exist in a LER independent of any interfaces. User tools or

applications can set or get attribute value using the LER programming interfaces.

Notice the requirement for LER is to be own by a user. Thus, local attributes

represent user preferences.

� Local attribute values are used as lookup keys associating interface and sub-

components. See Chapter 5 for the requirements of IEC design. The keys are

predefined by the interface when it is registered. However, it is possible to add a

new key if a new component is added into an interface and it requires a new key.

� Because it is possible that the value of an attribute can be simultaneously set by

multiple instances of running processes, access-locking scheme needs to be put in

place by the LER to assure integrity and avoid deadlock on specific attribute.

This may also relate to user authorization or security priority.

� Removing an attribute also involves some corporations. An attribute can only

removed when there is no interface referring to it.

4.1.4 LER application interface

LER should have well defined application-programming interfaces so that applications

and components can access to the LER services such as:

� Registering an interface

� Adding a sub-component to existing interface

� Selecting a sub-component from an interface

� Getting and setting local attributes and values

68

Section 4.3 describes the design and implementation of those interfaces in details.

4.2 LER Internals

As discussed in the organizations of LER, the internals of LER include these

components:

� The registry engine

� The interface-component reference

� The local attribute matcher

Detailed designs and concepts of those components are described in this section. Where

programming concepts are necessary, the Java language is used. Ideas of extensions to

other programming languages are discussed later.

From external, LER is known by a set of programming interfaces providing its

services.

Registry
Engine

Interface
Component
Reference

Local
Attribute
Matcher

interfaces,
components

accesses

Figure 6 LER Organization

69

4.2.1 Registry engine

The registry engine is the only built-in component for LER. We want LER to be used in

a program without the need for instantiating an object. At the core of LER, the registry

has the important tasks of:

� Setting up the initial state for LER such as file location and root path

� Accepting or rejecting the enrollment of an interface from name validating and

exchanging local attribute with local attribute matcher

The declaration of LER and its registry engine, RegEngine, maybe as following:

 public class LER extends Object {
 static RegEngine registry = new RegEngine();
 …
 public static class RegEngine {
 …
 }
 }

RegEngine is a member class of LER, which also has a data field for a registry. By

declaring the registry static, it can be accessed without LER being instantiated.

The first method provided by the registry is for installing its LER. The installation

process defines where files and components located in the local machine. This install

method can also be called to set up the LER interface-component reference (ICR) and

LER local attribute matcher (LAM). Thus, it is possible for LER to use different ICR and

LAM other than the ones come with it. Each install method should be called only once in

a local machine.

The second method that the registry needs is for registering an interface. To do that, a

default local attribute has to be defined in LER. We will discuss about local attributes in

Section 4.2.3. For now, we declare this data field in LER:

 static LocAttribute attribute = LocAttribute.default();

70

Because the registry is defined as persistent storage, its running state in memory needs to

be saved to disk from time to time. Depending on the supporting storage media and the

complexity of the registry, this group of tasks can be provided by a separate component.

But, for simplicity, we implement a method of the registry to do the job. This method

can be extended later.

Following is summary of methods defined by the RegEngine class

4.2.1.1 Registry installation methods

public Boolean install(String lerHome; String lerRoot);
public I-CRef installIEC(String i-cRef);
public LAMatcher installLAM(String laMatcher);

The first install method sets the LER Home directory to lerHome. LER Home is where

all the LER files stored. It also sets the LER Root directory to lerRoot. LER Root is the

starting directory in the search paths for locating the interfaces and components.

The second install method initializes the interface-components reference. It searches

LER Home first for the component name contained in the string i-cRef. If it cannot find

the component there, it follows the search paths starting from the LER Root.

The third install method initializes the local attribute matcher. It uses the same search

paths as described above. The two classes

 I-CRef
 LAMatcher

returned from the second and third install methods are defined in Sections 4.2.2 and

4.2.3.

4.2.1.2 Interface enrollment methods

public Integer register(String interface);
public Integer register(String interface, String attributeName);

71

The register method requires at least an interface input. If an attribute name is not

presented, the default attribute is used to associate with this new interface. The name of

this interface is validated and verified with existing names to ensure correctness and

uniqueness.

The registry maintains two hash-tables for referencing the interfaces:

� Interface-to-attributes: matching of an interface to multiple attributes

� Attribute-to-component: matching of an attribute to multiple values each of which

is associated with a sub-component

We describe the usage of the hash-tables in Section 4.2.2, Interface-component reference.

4.2.1.3 Registry storage methods

public Integer save();

This method is for the complete of the design but it is not part of the requirements for this

model to work.

4.2.2 Interface-component reference

The interface-component reference is the main component that lets LER provide services

to applications that request loading of local components. The reference is a one-to-many

relationship between an interface and multiple local attributes. These are the tasks of an

interface-component reference:

� Returning the handle of a loaded component based on interface or local attributes

� Adding or removing sub-components for a specific interface

The reference can be implemented with any table-lookup data structures, ranging from

array, associated array to relational databases. For demonstration purposes, a HashTable

72

is used to implement the interface-component reference. We actually need two

HashTables as illustrated in following figure.

interface-to-attribute

A1 A2 A3 A4

a

comp a comp c comp b

interface

attribute-to-component

Figure 7 LER Interface-Components Reference

An interface maybe associated with one or more local attributes. Therefore, it is required

to start from a given interface name as a key. If the requested attribute is found

associated with the interface, a value of the attribute leads to a component.

Interface names and attributes have to be unique. As in the interface-to-attribute

hashtable, see Figure 7, there maybe more than just one interface. By definition of a

hashtable, the keys, name of interfaces, have to be unique. Because an interface

represents a group of components, interface name has to be meaningful. However,

attributes and their values do not have to be meaningful, as long as each of them is

uniquely represent an attribute, a value of the attribute, a component name, etc.

The process of traversing the hashtables gives rise to the scheme of naming a sub-

component of an interface. From Figure 7 for example, the component in box “comp a”

may have the name like this:

73

interface-A3-a

where:
� interface is the name of the interface
� A3 is the name of an attribute
� a is a specific value of A3

Complex interfaces may require more than one attribute to represent a component. Each

attribute also can have multiple values. A hashtable can be implemented so that a key

can associate with multiple values. Hashing of a key points to the first value or default

value. Subsequent values can be traversed to by a link an array index. See Figure 8.

interface-to-attribute

A2

A32

A4

a1

comp a

comp c

comp b

interface

attribute-to-component

A3

A31

a2

a3

Figure 8 Interface with multiple attributes

The internal hashtables and searching algorithms should be transparent to the external

requesting program. There are some public methods with various types of parameters for

accessing the interface-components reference.

� Loading a local component based on interface and local attribute

� Setting up location where components can be found

� Adding a component into its associated interface

� Removing a component from its associated interface

74

4.2.2.1 Loading component methods

 public Object loadComponent(String interface);
 public Object loadComponent(String interface, String attrib);
 public Object loadComponent(String interface, String attrib,

String value);

The first method searches for a sub-component in the interface reference that matches the

default attribute. The second method searches for sub-component that matches the

specified attribute and its default value. The third method searches for a sub-component

in the interface reference that matches the attribute and its value as specified.

4.2.2.2 Adding component methods

public Boolean addComponent(String interface, String component);
public Boolean addComponent(String interface, String component,

String Source);
public Boolean addComponent(String interface, String component,

String Destination)
public Boolean addComponent(String interface, String component,

String Source, String Destination)

The first method assumes that the new component can be found at some default location

and it destination location is also default. The second method requires the location of the

new component but it is then put in a default location. The third method assumes that the

new component is at a default location but it requires input of the destination location.

The fourth method does not assume either the new component location or its destination.

4.2.2.3 Removing a component methods

public Boolean removeComponent(String component);
public Boolean removeComponent(String component, String

Location);

The first method assumes the component is at a default location, while the second method

requires the location specified.

75

4.2.3 Local component matcher

The local attribute matcher (LAM) is the component that provides all the LER services

for utilizing or accessing local attributes. As the thesis is about local run-time

environments, local attributes play important roles application initialization and

adaptation. The most important tasks are:

� Categorizing local attributes into groups

� Setting and getting attribute with its associated values

We called it the matcher to differentiate it with environmental variable approaches such

as the UNIX korn shell, which passes environment variables into the shell script and let

the programmer decide what to do with the variables. The local attribute matcher is

designed so that the program or the programmer presents a value that is required for an

attribute. It is up to the matcher, not the program, to check to see if the value is satisfied.

To achieve this goal, the local attribute matcher has to be designed from bottom up. In

this thesis, we apply the idea to matching of local attribute values with sub-components

of an interface.

program

interface

components

loc-attrib
matcher

int-comp. ref

comp i

attributes load

76

Figure 9 Local component matching

As illustrated in Figure 9 Local component matching, although a program requests for an

interface, interface-components reference hashes out the candidate attribute and

component. But, local attribute matcher decides which component to be loaded because

local attribute matcher is closer to local environment and stationary to local. Notice that,

attribute and value are implemented as String for simplicity. In reality, attribute can be a

class of objects that implement the Attribute interface. Each different attribute has to

implement its own hashcode. It is probably not a bad idea to implement attributes and

values as Strings.

First, local attribute matcher has to provide methods for setting and getting the default

attribute and default value. A premise of our model is that a local environment has often

already had a default setting. Applications do not need to check for attribute values but

just use the default.

Second, application can actively set values to local attributes and let the matcher

validate that setting. Local attribute matcher provides these methods for application to

use so that to separate the logic of checking local attributes from the application.

Methods of ordering and prioritizing the local attributes are also provided. Local

attributes are grouped into priority groups. If there is doubt as which attribute should be

considered first in the process of choosing an attribute, the one with higher priority is

picked by default.

Note that similar attribute-matching scheme can also be applied to an application in

place of the interface. While an interface is always reduced to one sub-component in the

local machine, an application may be required to run with conditions of AND or OR of

77

all local attributes associated with it. Well-designed packaging tools can resolve this

problem.

4.2.3.1 Setting and getting default attribute methods

public Integer setAttributeDefault(String attribute);
public Integer setAttributeDefault(String attribute, String

value);
public String getAttributeDefault(String attribute);

The first method sets an attribute to default attribute to this environment. The second

method also sets a default value to the default attribute. The third method returns the

default attribute.

4.2.3.2 Setting and getting attribute value methods

public Integer setAttributeValue(String attribute, String value);
 public String getAttributeValue(String attribute);

The setAttributeValue method binds the value to the attribute. If that attribute does

not exist, it is added. The getAttributeValue method returns the default or highest

priority value of the attribute.

4.2.3.3 Attribute categorizing methods

public Integer upAttribute(String attribute);
public Integer lowerAttribute(String attribute);
public String nextAttribute();
public Boolean hasMoreAttribute();

Assuming that the attributes are arranged in the hashtable in certain enumeration order,

which also decides the priority of choosing an attribute, the upAttribute method move

the attribute pass its upper attribute. The lowerAttribute method does the opposite.

The third and fourth methods are common in collections of data for the purpose of

stepping through the attributes, one at a time.

78

default
attribute

attribute table

1

2

6

7

9

10

upAttribute

lower
Attribute

attribute values

default

Figure 10 Attribute enumeration and priority

4.3 LER Application Programming Interface

We have shown the internals of LER organization. Although the internal components

provide various interfaces, not all of those methods are required to be exposed to external

calling code. Because LER is intended as a component to be used in other programs, its

public API should be well defined. Listing of those methods is detailed in following

sections. All of the methods are declared static because we want them to be class

methods, which can be called without instantiating LER every time.

4.3.1 LER installation and maintenance methods

home

public static String home()

Locates LER HOME directory from its registry. The HOME directory is set
when LER is installed. It is where all the LER files reside.

Returns:

79

A string containing the HOME directory of LER or NULL string if
HOME is not set

See Also:

home(Directory), root(), root(Directory)

__

home

public static int home(String Directory)

Sets LER HOME directory to the directory contained in the input string.

Parameters:

Directory – a string containing directory path for LER HOME

Returns:

0 if succeeded or negative number if failed

See Also:

home(), root(), root(Directory)
__

root

public static String root()

Locates LER ROOT directory from its registry. The ROOT directory is set when
LER is installed. It is the starting point for search paths for interfaces and sub-
components.

Returns:

A string containing the ROOT directory of LER or NULL string if ROOT
is not set

See Also:

home(), home(Directory), root(Directory)
__

root

public static int root(String Directory)

Sets LER ROOT directory to the directory contained in the input string.

Parameters:

Directory – a string containing directory path for LER ROOT

80

Returns:

0 if succeeded or negative number if failed

See Also:

home(), home(Directory), root()
__

save

public static int save(String Directory)

Saves LER current contents into the directory.

Parameters:

Directory – a string containing directory path. If this string is null, LER
is saved into the LER HOME directory.

Returns:

0 if succeeded or negative number if failed

See Also:

home(), home(Directory), root()

4.3.2 Interface registering and loading methods

registerInterface

public static int registerInterface(String Interface, String Component)

Adds the new interface into LER registry after validating the name. The
component is added with the default attribute and default value.

Parameters:

Interface – a string containing the name of the new interface
Component – name of the component associated with the interface

Returns:
0 if succeeded or negative error code if failed
Error codes:
-1 Interface already exists
-2 Invalid interface name
-3 No default attribute
-4 Default attribute has no default value

See Also:
registerInterface(Interface, Component, Attribute, Value)

81

__

registerInterface

public static int registerInterface(String Interface, String Component,
String Attribute, String Value)

Adds the new interface into LER registry after validating the name. Then a
component is added with association to the attribute value. The name of the
component is also validated.

If the attribute does not exist, it is added to the local attribute table. If the value of
the attribute does not exist, it is added. This attribute and its value is now
associated with the component for the interface.

Parameters:

Interface – name of the new interface
Component – name of the new component
Attribute – name of the attribute
Value – value of the attribute

Returns:
0 if succeeded or negative error code if failed
Error codes:
-1 Interface already exists
-2 Invalid interface name
-3 Component already exists
-4 Invalid component name

See Also:
registerInterface(Interface)

__

loadComponent

public static ComponentRef loadComponent(String Interface)

Searches for the local sub-component that associates with this interface, using
default attribute. If found, the component is loaded into memory.

Parameters:

Interface – the interface having desired sub-component associated to

Returns:

Reference of the component loaded if succeeded or NULL if failed

See Also:

82

loadComponent(Interface, UniqueID),
loadComponent(Interface, Attribute),
loadComponent(Interface, Attribute, Value)

__

loadComponent

public static ComponentRef loadComponent(String Interface, String
UniqueID)

Searches for the local sub-component that associates with this interface, using
specified unique ID value. If found, the component is loaded into memory.

Parameters:
Interface – the interface having the desired sub-component associated to
UniqueID – the unique identification associating the interface with its sub-
component

Returns:

Reference of the component loaded if succeeded or NULL if failed

See Also:

loadComponent(Interface), loadComponent(Interface,
Attribute), loadComponent(Interface, Attribute, Value)

__

loadComponent

public static ComponentRef loadComponent(String Interface, String
Attribute)

Searches for the local sub-component that associates with this interface, using
specified attribute and its default value. If found, the component is loaded into
memory.

Parameters:
Interface – the interface having the desired sub-component associated to
Attribute – the attribute associating the interface with its sub-component

Returns:

Reference of the component loaded if succeeded or NULL if failed

See Also:

loadComponent(Interface), loadComponent(Interface,
UniqueID), loadComponent(Interface, Attribute, Value)

__

83

loadComponent

public static ComponentRef loadComponent(String Interface, String
Attribute, String Value)

Searches for the local sub-component that associates with this interface, using
specified attribute and its specified value. If found, the component is loaded into
memory.

Parameters:

Interface – the interface having the desired sub-component associated to
Attribute – the attribute associating the interface with its sub-component
Value – the value of the attribute

Returns:

Reference of the component loaded if succeeded or NULL if failed

See Also:

loadComponent(Interface), loadComponent(Interface,
UniqueID), loadComponent(Interface, Attribute)

4.3.3 Component managing methods

setSource

public static int setSource(String Paths)

Sets the paths for LER to find new components. From here on, LER looks into
these locations to copy new components into their interface space.

Parameters:

Paths – where components can be found

Returns:

0 if succeeded or negative error code if failed
Error codes:
-1 Paths do not exist

See Also:

addComponent(Interface, Component, Attribute, Value)
__

addComponent

public static int addComponent(String Interface, String Component,
String Attribute, String Value)

84

Adds the new component into the list of sub-components that reference the
interface with association of the attribute and its value.

If the attribute does not exist, it is added to the local attribute table. If the value of
the attribute does not exist, it is added. This attribute and its value is now
associated with the component for the interface.
Parameters:

Interface – name of the interface to be reference of the new component
Component – name of the new component
Attribute – name of the attribute
Value – value of the attribute

Returns:

0 if succeeded or negative error code if failed
Error codes:
-1 Interface does not exist
-3 Component already exists
-4 Invalid component name

See Also:

removeComponent(Interface, Component, Attribute, Value)
__

removeComponent

public static int removeComponent(String Interface, String Component,
String Attribute, String Value)

Removes the component from the list of sub-components that reference the
interface with association of the attribute and its value.

Parameters:

Interface – name of the interface to be reference of the new component
Component – name of the new component
Attribute – name of the attribute
Value – value of the attribute

Returns:

0 if succeeded or negative error code if failed
Error codes:
-1 Interface does not exist
-2 Component does not exist
-3 Attribute does not exist
-4 Value does not exist

See Also:

addComponent(Interface, Component, Attribute, Value)

85

4.3.4 Local environment management methods

getAttributes

public static int getAttributes(String Interface)

Gets a list of all the attributes associated with the interface.

Parameters:

Interface – name of the interface

Returns:

0 if succeed or negative error code if failed
 1 if the interface did not exist

See Also:

getDefaultAttribute(String Interface),
setDefaultAttribute(String Attribute, String Interface),
getLocalAttribute(String Attribute),
setLocalAttribute(String Attribute, String Value)

__

getDefaultAttribute

public static int getDefaultAttribute(String Interface)

Gets the attributes associated at highest priority with the interface.

Parameters:

Interface – name of the interface

Returns:

0 if succeed or negative error code if failed
 1 if the interface did not exist

See Also:

setDefaultAttribute(String Attribute, String Interface),
getLocalAttribute(String Attribute),
setLocalAttribute(String Attribute, String Value)

__

setDefaultAttribute

public static int setDefaultAttribute(String Attribute, String
Interface)

86

Sets the attribute as a default association with the interface. If the attribute does
not exist, it is added.

Parameters:

Attribute – name of the attribute
Interface – name of the interface

Returns:

0 if succeed or negative error code if failed
 1 if the attribute did not exist and has been added

See Also:

getDefaultAttribute(String Interface),
getLocalAttribute(String Attribute),
setLocalAttribute(String Attribute, String Value)

__

setLocalAttribute

public static int setLocalAttribute(String Attribute, String Value)

Sets the attribute with the value specified. If the attribute does not exist, it is
added and assigned the value.

Parameters:

Attribute – name of the attribute
Value – value to be set to the attribute

Returns:

0 if succeed or negative error code if failed
 1 if the attribute did not exist and has been added with the value

See Also:

getLocalAttribute(Attribute)
__

getLocalAttribute

public static String getLocalAttribute(String Attribute)

Gets the value associated with the attribute. If the attribute does not exist, A
NULL value is returned.

Parameters:

Attribute – name of the attribute

Returns:

Value of the attribute if succeed or NULL if failed

87

See Also:

setLocalAttribute(Attribute, Value)
__

upLocalAttribute

public static int upLocalAttribute(String Attribute)

Raises the priority of the attribute to higher than the one above it.

Parameters:

Attribute – name of the attribute

Returns:

0 if succeed or negative error code if failed
 1 the attribute has already at highest priority
 Error codes:
 -1 Attribute does not exist

See Also:
lowerLocalAttribute(Attribute)

__

lowerLocalAttribute

public static int lowerLocalAttribute(String Attribute)

Lowers the priority of the attribute to lower than the one under it.

Parameters:

Attribute – name of the attribute

Returns:

0 if succeed or negative error code if failed
 1 the attribute has already at lowest priority
 Error codes:
 -1 Attribute does not exist

See Also:
upLocalAttribute(Attribute)

88

4.4 LER as a User Component

Instead of summarizing all the components and API’s for LER, we show how a Java

program can use the interface in the four API groups:

� LER installation and maintenance methods

� Interface registering and loading methods

� Component management methods

� Local environments management methods

This program is going to register two interfaces into LER. But it happens that one of the

interfaces has already existed. We will see how it discovers that. It goes on and adds its

own sub-component to the existing interface and makes changes to the local attributes

that will select the component to load.

As described earlier, the LER ROOT directory is where all the interfaces are stored.

However, the directory can be changed so that different ROOT can be used. Therefore, a

program may want to know where the ROOT directory currently is. It calls the root

method from LER:

 String ROOTDIR = LER.root();
 if (ROOTDIR != myROOT) {
 System.out(“IMPORTANT**, changing ROOT directory”);
 LER.root(myROOT);
 }

Once the ROOT directory is set, it checks the local attribute “fileformat” which currently

is not set.

 if (!LER.getLocalAttribute(“fileformat”)) {
 LER.setLocalAttribute(“fileformat”, “zip”);
 LER.registerInterface(“ZipAF”, “mr.comp”);
 LER.setDefaultAttribute(“fileformat”, “ZipAF”);
 }

89

If LER.getLocalAttribute returns a value, the program has to see what that is and how it

will proceed. Here, we assume that attribute is not set. After setting the attribute

“fileformat”, the interface “ZipAF” is registered. Component “mr.comp” is also added

in the same time. Then, the attribute is associated with the interface. The three methods

can be replaced with one method call:

 LER.registerInterface(“ZipAF”, “mr.comp”, “fileformat”, “zip”);

The second interface to be registered is “CommAD”. AP stands for any device. The

interface is going to be added with the component named “ms.simpleMPI”. The

associated attribute is “comm.” and value is “ethernet”. However, the CommAD

interface has already existed. In this case, the component is added into the interface.

 if (!LER.registerInterface(“CommAD”, “ms.simpleMPI”, “comm”,
“ethernet”) {

 LER.addComponent(“CommAD”, “ms.simpleMPI”, “comm”,
“ethernet”);

 }

With this component and attribute association added, it is necessary to know what

attributes have already been associated with this interface. When a component is added,

its attribute is the default attribute for referencing to the interface. That is desired most of

the time. However, there are situations that an existing attribute is still a better choice.

For example, the local machine has a wireless communication device. But, when this

ethernet device component is added, it becomes the default and the wireless device

become secondary. It may be an advantage to keep the wireless device as default. The

lower and upper priority methods are for this purpose.

 String attr[] = LER.getAttributes(“CommAD”);
 String defaultAttr = LER.getDefaultAttribute(“CommAD”);
 LER.lowerLocalAttribute(“comm”);

Since the interface has already existed, the program may need to load the component and

call the interface methods to make sure they work.

90

 Object commDev = LER.loadComponent(“CommAD”, “comm.”);
 String response = new String();

commDev.send(“Hello”);
 response = commDev.receive();

Finally, it is a good practice to save the stage of LER at this point.

 LER.save();

This is the end of the example program that demonstrates most of the LER method calls.

91

Chapter 5
Run-time Interface Mapping

In Chapter 4, we discuss the ability of LER providing the different local components at

run time so that the application does not have to develop much of conditional checking

for possible different execution paths. We propose that, for a well-defined interface, a

different sub-component can be loaded from a different local environment. In this

chapter, we show our tentative solution as the Run-time Interface Mapping (RIM)

methodology for component integration.

The techniques of loading a file containing binary code into memory vary from

operating systems to compilers. What we study in this chapter is the ability of loading

the binary code dynamically at run time. We found that the Java language can do that.

We will explain how we take advantage of that in designing RIM. We are not certain if

this is possible or can be done in other programming languages.

Because the Java language has the capability of loading code by name, we use Java

code snippets to show implementation of the sample applications. We are also interested

in the JVM as a means to understand how its Application Programming Interfaces (API)

are implemented. Fundamentals of API implementation are the foundations for our

proposal, Interface Enabled Component.

One advantage of restricting our solutions to a local environment is that the

namespaces become smaller as compared to the efforts in covering the namespaces of

multiple machines and networks such as in Java Naming and Directory Interface (JNDI).

92

The JVM also has a special design for its namespaces. To understand the Java

namespaces, we look into the class loader mechanisms.

For our model, LER can be thought of as a local directory service for RIM of the

components, in conjunction with the Java CLASSPATH. The collaborating between

RIM and LER ensures that the application receives appropriate components from a local

environment. It is application integration with localized components.

5.1 RIM Methodology and Requirements

Since we are mainly interested in loading component code at run time, the ability of

symbolic referencing and dynamic code binding are mandatory. When it is possible, we

discuss the ideas in two programming languages: C and Java. C is a basic programming

language that has been most popular before Java came along. C’s programming interface

is much simpler than Java’s. On the other hand, Java has gotten most of the technologies

that we are looking for in designing and implementing our model and example programs.

While LER provides the API for accesses to the local registry, RIM defines how the

registry can be used to the advantages of component integration. Although programmers

can use LER in any ways that suit their needs, we suggest RIM to show how the

methodology is used, the ways we see it. Notice that LER is the core of the RIM

architecture. The discussions here are tightly related to discussions in LER.

Similar to the LER requirements, the most important IEC requirement is dynamic

code loading. Without that, we would not have the component reference returned from

LER to work with. Actually, LER has the first half of the requirement that the reference

of a loaded component can be passed to a calling module. IEC has the second half of the

93

requirement that it can assume the component is dynamically loaded somewhere else,

such as LER.

We are required to work with trusted components in the first step. Some of the

reasons we have discussed above. When using Java language for implementation, the

class loader does take care of some of the verification processes that might not be

available if other languages are considered.

Previously, we learned from the JVM that each class loader loads code into its own

namespace. In our model, that namespace or namespaces are actually in LER. The

requirement from IEC is that the namespaces here are the same from LER. Again, the

design of IEC takes advantages of LER for translating the request from IEC into the LER

namespaces.

Last but not least, binary code compatibility is the number one requirement for IEC to

work. Working in a local environment gives us this advantage because we know for sure

that the code is going to be binary compatible within an operating system. The Java byte

code and JVM give us more leverage on some different operating systems. But, binary

code compatibility should be considered if this model to be extended to other different

programming languages.

5.1.1 Symbolic referencing

In Chapter 2, we discussed that it is necessary to have a module calling methods in

another module when the program is divided into many small pieces. Application

programming interface makes that possible. Most compilers adhere to the same

principles in many aspects of inspecting their input, a program. In C language for

example, the calling module has to declare the function or method as “external” so that

94

the C compiler does not flag the function call as an error because it does not see the

called code in the calling module.

In the case of dynamic linking library in UNIX operating system, the library also has

to export the signature of the called methods for compiling and linking purposes. A

signature of a function includes

� the name of the function

� a list of parameters, each accompanies a data type

� the function return type

A signature serves as a distinctive identifier for its function. Human programmers

depend on signatures with meaningful function and parameter names in using the

functions. Compilers, though, depend on the correct matching of each item in the

signature. Most compilers go through at least two passes of verifying the source code to

detect syntax or data type errors that maybe overlooked by programmer.

We’ve seen sophisticate compilers that automatically generate intermediate source

code. They have no way of giving meaningful names to functions or parameters. Thus,

functions and parameters are just symbols represented by reference addresses. After all,

that is all functions and parameters are in a particular machine language. For example,

the calling and called function code above would look something like this:

 returncode = F0001X(“myfile”);
 int F0001X(char* p001) {
 …
 }

In the Java language, methods are defined in a class. Before resolving “external” method

referencing, the Java compiler has to resolve the external class or object referencing.

Because the java source files or class files can reside in different locations, it is very

95

likely that the names of the files or classes are conflicted, especially when many different

programmers are working in the same project.

Java designers use the organizations of packages to reduce the possibility of name

conflicts. Although a Java source file can contain relative class or object names, the Java

compiler has to translate all of them to absolute name to avoid ambiguity for the JVM at

run time. We will study Java’s concept of namespaces in the next section.

Methods in Java are more complex to deal with because of the object-oriented

properties such as overloading and inheritance. As similar to C compiler, the Java

compiler makes sure that all the references are correct. As different to the C language,

the Java language is much stricter in data type checking.

5.1.2 Dynamic binding

Dynamic binding is sometimes also called late binding. Java program can decide at run

time which types to link. As seen above, a Java program can dynamically load a type by

name at run time. Another way of doing that without writing a class loader is the

forName method from Java API class Class. The simple form is:

 public static Class forName(String className)
 throws ClassNotFoundException;

With only a type name required, a Java type can be loaded, linked, and executed from a

program. A more advanced form of the method is as follows:

 public static Class forName(String className, Boolean initialize,
 ClassLoader loader) throws ClassNotFoundException;

With this method, a user defined class loader can be used for loading of the Java type.

And, with the Boolean parameter, the program has the option of initializing the type after

linking. This is called Run Time Type Identification (RTTI) [22]. At this time, the class

96

data is copied into the method area or method table. The symbolic references are

populated into the runtime constant pool and type variables are initialized. Hence, it is a

form of late binding. It is what we need for the model.

5.1.3 Dynamic code loading with no semantics

Loading modules that have never gone through the processes of compiling and linking

together before is a significant risk that the integrator has to take. Earlier in this chapter,

we have paid much attention to understanding how code is loaded and executed at run

time.

Because the JVM allocates a separate namespace for each class loader, a small model

works better and more efficiently when LER is in the same loader space as the

application. However, the setting of LER is the source of dynamic code loading.

Programs that use IEC can treat LER as a source of local components. We previously

learned Java RTTI as in the form of forName method call.

There are other techniques in Java language providing run time type information such

as Reflection. Reflection allows the calling program to discover method information

from other object at run time. It is the base for JavaBeans graphical programming user

interface and Remote Method Invocation (RMI). However, the one original limitation

remains – the human programmer has to know which method she wants to call and what

computing tasks the method does. Although the syntax of calling the method can be

obtained, there is still no semantic information about the method.

With that in mind, our model is going to restrict to a fixed interface and fixed method

calling at this time, although loading of the component code is dynamic. We describe

that in Section 5.2.

97

5.1.4 Trusted components

All the troubles and pains taking that the compiler goes through are for keeping programs

error free. The goal is to reduce as much ambiguity as possible. Errors at compiling time

are easy to correct compared to the ones occur at run time. Reusing software components

is to skip these processes of compiling programs, from an application integrator’s points

of views. Changing the compiler verification processes requires changes or extensions to

the compiler.

Since the integrator cannot do much with compiling of the components besides

trusting the component maker, other methodologies maybe more effective at integration

time, such as:

� modifying code at loading time

� modifying code in memory at run time

� loading alternative code

We are not going to consider the first two methods because our goal is to reuse

components without changing them. We are going to derive an alternative way of

loading code. But, we trust the component code to the LER, which can do the code

preparations or verifications if necessary.

The program that uses an RIM just requests for the reference of the component in

need and starts using its methods. It is up to the programmer to decide what to use out of

those methods provided. Hence, component specifications and documentations are very

important.

98

5.1.5 Component specifications and documentations

This requirement emphasizes more on the role of the integrator and component maker in

order to make this model work. We start by asking the question, “which comes first?” –

components from the component maker or the use of those components and their

methods from a program that the application integrator writes. Actually, in software

components’ objectives, the two should be independent.

However, coming from the motivations of software components usages and demands,

we suggest that the application integrator take more active roles. Instead of asking what

components are available out there for me to use, the application integrator should state

his intentions from using components within the contexts of the application to be

integrated. For that reason, the requirement documentation comes from the application

integrator.

The component specification comes from the component maker who follows the

requirement documentation from the application integrator. However, if there is no such

component requirement document at the time, the component maker can write her own

specification based on the component’s design and implementation.

The component requirement documentation and specification should be compatible in

formats for the purposes of comparisons. The application integrator is to make decisions

whether to use the components in her application.

5.1.6 Binary code compatible

This requirement is a given since the model works in a local machine. This simplifies

much of the considerations that distributed models and standards having to deal with.

However, there are different levels of compatibility:

99

� Binary code format: Since the components are sold and purchased for use without

recompilation, their binary format cannot be altered. LER does not check for the

binary format of the component it going to load. An incompatible binary format

may cause unpredictable failures.

� Programming language: The interface abstraction of the model should be

language independent. However, the component reference that is returned by

LER may be language dependent. If the model is to work with components

generated from different languages, the language that the integrator uses to write

the application should be of first priority.

� Frameworks and containers: A drawback of frameworks and containers is that

even when using the same language and the same binary format, the components

cannot be used outside of its particular framework or container.

These are the concerns when implementing, porting, or extending the model:

� The interface should be language independent: The abstraction of the interface is

like a contract between the application integrator and the component maker. It is

important that they agree upon how the components should be used.

� The components should be binary compatible: Besides adhering to their interface,

the components have to be binary compatible in order for LER to load them. LER

should take care of specific component requirements before loading them so that

the application receiving the component reference sees the same interface.

5.2 RIM and Component Methods

In this thesis, interface is an abstraction of data fields and methods from a type of

components. These are defined as sub-components of the interface.

100

5.2.1 Interface Definition

An interface has a name, zero or more data fields, and zero or more method declarations.

The name of an interface is made up of alphabets or numeric. It could be recognized

as meaningful for human programmers. In order for more than one interfaces to be used

within the same program, their name have to be unique. However, these interfaces exist

outside of programs. LER uses this interface name to search for its sub-components. It is

necessary to have extensions to the interface name to make it unique. We discuss that in

Section 5.3.

The data fields are variables and their initializations. These are public variables so that

the program that is getting the interface reference can access them. The field names are

also unique within an interface. Data types and variable evaluations should be as similar

as in regular programming language. Notice that these data fields maybe just static or

constant in order to discourage their direct modification. A better way to have access to

variables in a component is through setting and getting methods.

The method declarations include a list of methods with return type, method name, and

parameters and types. Following is an example of the interface requirement

documentation. Notice, this is only in text format.

Figure 11 Interface Requirement Documentation

This is a interface-requirement documentation
Interface Name: ZipFile
Attributes:
FileFormat = gz | jar | rar | tar | zip

Data Fields:
maker = “mr. component”;
errno = 0;

Method Declarations:
Method
Name: Open
In: String filename

101

Return: filehandle
Method
Name: Close
In: Filehandle filehandle
Method
Name: compress
In: Filehandle inFile
Out: Filehandle outFile
Method
Name: decompress
In: Filehandle inFile
Out: Filehandle outFile

The above requirement document is for human programmers. Application integrators use

it to state their need for a component. Component makers use it to develop a specific

component. It is a basic form or template. A short form can be written as following:

maker = “mr. component”;
errno = 0;

Method Declarations:
Methods

 Filehandle open(String filename)
 int close(Filehandle handle)
 int compress(Filehandle inFile, Filehandle outFile)

 int deCompress(Filehandle inFile, Filehandle outFile)
 End

In object-oriented language such as Java, abstract Class and Interface give similar effects.

The above text content can be translated to a Java Interface as following:

 public interface ZipFile {
 String maker = new String(“mr. component”);
 int errno = 0;

 public DataInputStream open(String filename);
 public int close(DataInputStream handle);
 public int compress(DataInputStream inFile, DataOutputStream

outFile);
 public int deCompress(DataInputStream inFile, DataOutputStream

outFile);
 }

It is clear what the integrator’s requirements are and what should the component maker

commit to provide the satisfactory component. The document does not specify how the

methods should be implemented. Therefore, a component maker is free to implement

102

different components. Actually, that is one of the motivations for the model. Take the

ZipFile interface for example, the four methods open, close, compress, and decompress

can implement any type of file format without violating the interface.

5.2.2 One interface, multiple components

In object-oriented programming language, an Interface represents the base class that other

classes can be implemented. This thesis focuses on interfaces that may vary in wide

ranges of implementations or functionalities. However, at run time there may be only

one of the implementing components required to exist in a local environment.

We argue that it is not efficient coding practices to include the different varieties of

the component when only one is used at run time. The difficulty is in letting the

application choose the appropriate implementation at run time. In Chapter 4, we use LER

to solve the problem by presenting to the program the same interface that mapped to a

particular component at run time. The program has no knowledge of which component

implementation is in use.

It may not sound conventional that a program does not need to know which

component implementation it needs at run time, because the program usually has to go

through many conditions and verifications to arrive at the correct component. We argue

that most of the checking is for figuring out some existing local environment or

attributes. We use attributes simply to present component characteristics based on which

the local environment choose the component for the application.

In our methodology, interface is used like a classification for components based on

implementations. The ZipFile interface, for example, includes the class of components

that implement a specific file compressing and decompressing algorithm and format. A

103

component starts from bottom up. Our current view is a one-level of classification at a

local environment, as illustrated in Figure 12.

LER

interface interface interface interface

comp comp comp

Figure 12 One interface, multiple sub-components

Although a sub-component can contain interfaces as well, it is a HAS-A relationship.

There is no inheritance in interfaces. Therefore, the above picture remains the same

regarding of the relationships of one component containing other interfaces. The HAS-A

relationship can be presented with references or linking pointers. However, an interface

can be nested in another component at run time. See Figure 13.

104

LER

I1 I2 I3 I4

C5 C4 C2 C1 C3

Has a

LER

I1

I2 I3 I4

C5 C4

C2

C1 C3

Has a

Figure 13 Nested components at run time

At run time, the interface and component boxes, which are paired, are merged together.

And, the nested levels of components extend and shrink dynamically. We discuss RIM

and LER namespace in Section 5.3.

5.2.3 Regular arguments

As discussed in IEC requirement documentation, the arguments for use in the IEC

interface methods are the same as from the sub-component. Following is the same

program previously used in Chapter 3. Once the program obtains the interface-

component reference, it calls the methods as usual.

Object zcomp = LER.GetComponent(“ZipFile”)
file_handle fh = zcomp.open_file(filename)

 zcomp.compress(fh)
 zcomp.close_file(fh)

Usually, the compiler will detect errors in parameters’ names and types, etc. However, at

loading and linking time, the failures may be unpredictable. There are many unanswered

105

questions on how the program can dynamically recognize the errors or discrepancy in

method signature. We will talk about this in Chapter 8, Future Work.

5.3 RIM and Component Namespace

As described in LER internals, when an interface is input to LER, the interface is mapped

to a sub-component residing in the local machine. From previous sections, it is “one to

many” mapping.

5.3.1 Local components and their namespace

In this section, we explain how a particular component can be recognized as

representative of an interface in certain conditions. Because the naming rules are

depending on the implementation of LER, what we are discussing here may be

suggestions only.

In the local machine, LER has the root directory from where interfaces and sub-

components are installed. Figure 12 shows a flat structure that each interface has its

components under it. Therefore, the name could start with the interface name. However,

we have to set aside actual file spaces for storing those components of an interface. We

choose to have the name of the interface as a directory under the LER ROOT.

For instance, a LER has its component ROOT at directory /LAIM. A registration of a

new interface, ZipFile, causes a directory named, ZipFile, created under /LAIM. Then,

all the components that are added to interface ZipFile will be store at:

 /LAIM/ZipFile/

The directory represents the interface. It is also a way of organizing components to their

interface. The rest of the discussion regarding how a component can be named.

106

Since we group components based on an interface, components from different makers

are going to reside in the same directory. The first thing component makers may want to

contain in the component name is to set aside the component from others. It could be a

brand name from the component maker. Or, it could be a representation of the

implementation. In the requirement documentation, this maybe represented as “maker”.

Following are some examples:

 ms.comp | compguy | dr.lego

Different component makers may develop components for the same interface. These

components are different in implementation. One way to represent different

implementations is by using attributes. For example, the above ZipFile interface has one

of its attributes called for different file format. The requirement documentation has a line

of attribute specifying:

 ace | gz | jar | rar | tar | zip

Some attributes may not be listed in the requirement documentation. For example, each

component may be made at a different version. Or, it may be written using different

language, etc. Although it is good practice to have one attribute represents a component,

multiple attributes on a component are inevitable sometimes. We offer two ways to

combine the attributes. Each way uses a different delimiting character, we called OR and

AND.

• One of attributes: for all those attributes, the component requires only one present

in order to work. These attributes are separated by the OR delimiters.

• All of attributes: the component requires all attribute present in order to work.

These attributes are separated by the AND delimiters.

107

Following are two examples of a full name of a component of the ZipFile interface. We

use “+” for the OR delimiter and “*” for the AND delimiter.

 tar*2**dr.lego
 gz+zip++ms.comp

The first component is made by dr.lego and it only works with the tar file format. The

number 2 represents version 2. The second component is made by ms.comp and works

with either gz or zip file format. Note in both cases, the pair of delimiters signals the end

of the attributes. We derive the syntax for naming a component as following:

 Attribute[dAttribute]*[ddIdentifier]

These are the rules extracted from that syntax:

• Only the first attribute is required for the name of the component

• Optional attributes can follow by a delimiter

• d is the delimiter, which has to be the same within a component name

• The maker string is optional at the end. It has to be preceded by two delimiters

• There is a limit on how many attribute values can be part of the component name

Notice that the component maker does not have to make up these names manually at the

time the component is installed. For instance, the default attribute can be extracted from

LER. The maker identification may come from the package information. In the next

section, we discuss how this naming convention is implemented in LER.

There is one draw back in naming the component with values of the attributes when

the number of attributes increases. In that case, we suggest eliminating the attribute part

in the component name and just use:

 ddIdentifier

108

When LER sees the component name start with two delimiters, it looks into a text file

name with the same Identifier and the extension “.attributes” to find out the attributes

related to the component. LER writes the attributes into the file

Identifier.attributes the same ways as it does to name the component.

Another design alternative is to store every component associated attributes in LER.

For the attributes to be referencing to a component outside of LER, a unique identifier is

generated and attached to the component name. See Figure 14.

interf ace attr

interface table
attr+attr+attr++ 1234

LER

attribute table unique id
1234comp

Figure 14 Alternative LER internal namespace

5.3.2 LER as component dealer

As described in Section 4.2, LER Internals, LER takes care of the registration of an

interface and adding of components into existing interfaces. LER also loads the

appropriate local component, from its registry, upon request made by an application.

Armed with the knowledge of LER internals and the component namespace, we are going

to discuss the two processes of registering an interface and searching for a component.

5.3.2.1 Registering an interface to LER

A program can use one of the two methods from LER to register an interface:

public static int registerInterface(String interface, String
Component)

109

public static int registerInterface(String interface, String
Component, String Attribute, String Value)

Register with default attribute

If only the interface is registered with the first method, the component is associated with

the default local attribute and its default value.

At start of registerInterface, the input interface is checked against the interface

table. If such interface already exists, the method returns immediately with error code

indicating that the interface cannot be registered because it already exists. Next, the

attribute table is checked for a default attribute. If there is no default attribute set, the

first attribute is chosen. The first attribute could be the one that has highest priority.

Similarly, a default value or a high priority value has to be found for this attribute in

order for the naming of this new component.

For the example of the ZipFile interface, a component called TestCompress has to

be installed. As the name of the component indicates, this component does a test on the

file compression component. As a test component, it should be able to do the test on any

file format. Therefore, the component should pick up the default file format. The

register program calls registerInterface as following:

 rc = LER.registerInterface(“ZipFile”, “TestCompress”)

Because this is the first time ZipFile is registered with LER, the directory ZipFile is

created under the LER component root directory, /LAIM. And, the name of the

component is:

 Default++TestCompress

In place of the attribute, Default is used to indicate that this component can be used with

any attributes associated with the interface ZipFile. Different string or symbolic

characters can be used in place of “Default” as long as LER recognizes that as the

110

meaning of working with any attributes. Another option for this naming convention is to

leave out Default such as:

 ++TestCompress

We discuss how LER uses this knowledge to find a local component in Section 5.3.2.2.

Register with specific attribute

Instead of registering for the TestCompress component, this time we want to register the

ZipFile interface with a component that can do compress and decompress for the tar file

format only. The register program has to use the second method:

 Rc = LER.registerInterface(“ZipFile”, “mr.comp”, “FileFormat”,
“tar”)

First, we are going to assume again that the ZipFile interface is not registered in LER.

As the result of this method call, the directory ZipFile is created under /LAIM and the

component is named:

 tar++mr.comp

Attribute FileFormat becomes the default attribute that associates mr.comp to ZipFile

interface. The attribute value tar becomes the default value for the attribute FileFormat.

In the case of the interface having already been registered, the register program has to

call the addComponent method to load this component into the interface namespace. We

recall the signature of addComponent:

Public static int addComponent(String Interface, String
Component, String Attribute, String Value)

To add the above component for the tar file format, the call is:

 Rc = LER.addComponent(“ZipFile”, “mr.comp”, “FileFormat”, “tar”)

111

For the addComponent method, LER looks for the interface first to make sure it exists. If

the interface does not exist, the call fails. It forms the name of the component as

following:

 tar++mr.comp

That component name is compared with existing components in the ZipFile namespace.

If one component with exact name is there, a backup version is made and the old

component is over written with the new component. Future extension may consider

automatic versioning the component.

5.3.2.2 Searching for a local component

We start by assuming that LER has the interface ZipFile, which has two components

locally: TestComp and mr.comp. In this section, we show how a call of the method

loadComponent searches for the appropriate component. We recall that there are three

forms of loadComponent:

 public static CompRef loadComponent(String interface)
 public static CompRef loadComponent(String interface, String

attribute)
public static CompRef loadComponent(String interface, String

attribute, String value)

As can be seen from the first parameter of all three methods, the interface is the first thing

to be searched. If the interface does not exist, the call fails. If the interface exists, further

searches will be done for a local component that matches the attribute criteria.

Searching for default component

A default component is the component that is associated with the default attribute of this

interface. A program uses this method call when it does not know the specific attributes

of the interface and it just needs to load the default component for this interface. The

method provided by LER for searching this component is:

112

 public static CompRef loadComponent(String interface)

The interface name is the only input to the method. LER passes the interface as a key

into its interface table to get the default attribute for this interface:

 attribute = interfaceTable.get(interface)

This is the default attribute, which is again hashed into the attribute table for the default

value.

 attrValue = attributeTable.get(attribute)

Once this value is found, the component can be located. As we’ve seen above, there are

three alternatives:

� The attribute value can be part of the component name

� The attribute value can be in the attribute file of the component

� The attribute may points to a unique identifier that is part of the name of the

component

Loading of the component is discussed in 4.2.

Searching for a component with attribute and default value

In addition to the one interface input, LER provides a second method for searching of an

interface associated with a specific attribute:

 public static CompRef loadComponent(String interface, String
attribute)

Only a call to the attribute table is necessary to find the default value of the specified

attribute:

 attrValue = attributeTable.get(attribute)

Once the value is found, the component can located as the alternatives described in

previous section.

Searching for a component with attribute and value

113

The third method for searching of an interface requires specific value of the attribute with

a third parameter:

public static CompRef loadComponent(String interface, String
attribute, String value)

This method is used in case of an attribute having multiple values and the component is

associated with a value that is not the default one.

Searching for a component for an interface with multiple attributes

A complex interface may require more than one attribute to represent a local component,

as described in Figure 8. The second loadComponent method can be used with the

second parameter as a combination of the attributes, such as following example:

 loadComponent(“ZipFile”, “rar+tar+zip”)

5.4 Other Programming Languages Consideration

The goal of this model is dynamic loading of code at run time. That immediately rules

out programming languages that cannot do late binding. In other words, using early

binding, all code needs to be loaded at the beginning anyway. There are no advantages in

using IEC.

C for example, does early binding. C modules are usually built into libraries that lead

to our previous discussion about DLL. Although DLL can be loaded and unloaded

dynamically, the modules are all in memory unless they are swapped out by system

operating services such as paging.

Script languages such as Perl or Python may be candidates for writing the integration

application because they provide many mechanisms to glue together modules from other

different formats or languages. Python, for example, provides Inter-Language

Unification (ILU) for building multilingual, object-oriented class libraries with well-

114

specified, language-independent interfaces. ILU uses a declarative language called

Interface Specification Language (ISL) for purposes of defining object and non-object

types [43]. Following is a sample of ISL:

 INTERFACE ZipFile;
 EXCEPTION SomeError;
 TYPE ZipFileTAR = OBJECT
 METHODS
 open (fname : CHAR),
 close (fh : INT),
 compress (ifh : INT, ofh : INT),
 decompress (ifh : INT, ofh : INT)
 END

Notice that the above specification may not have exact syntax. However, it illustrates the

similarity in requirement documentations. And, translating a text file in human

understandable format to computer format is a common task.

Although XML is not a programming language, it has strength in data presentations

and documentations or specifications. If we are going to extend the interface requirement

documentation to be an interface that is understood between components and application,

we should consider using XML.

115

Chapter 6
Component Packaging with RIM and LER

When a user buys an application, it usually comes as a package. Except for some small

or onetime deal applications, software vendors usually build the package from their

development environments and then ship it out to customers. Most of the customers do

not know all the details about components that are in the package. They run the

installation program that takes care of all the application prerequisites. Therefore,

installation applications carry the missions from the application maker to deliver the

application package to the user system.

In Section 2.5.1 of Chapter 2, we learn that the developer has to input or specify

much information about the application for the installation application, deployment tool,

or package management application. Then, the information is included in a specification

or initialization file. This file also lays out the requirements for the application and the

steps or instructions for its installation.

Letting the developer enter all the information manually may not be such a good idea

because it is easy to make mistake and the procedures are tedious. Many development

tools or virtual environment deployment tools make it easier by presenting the

information in graphical user interface for the developer to fill in the requirements. Then,

those tools generate the necessary specification file.

On the other hand, the developer who produces the package needs to find out about

the system that his application is going to be installed. Operating system commands and

install scripts serve the purposes. A package management application also helps user find

116

information about a package and components if it is already installed in the system. LER

has these functionalities.

Nevertheless, LER is more than a package management application. It is responsible

for loading local components for applications to use at run time. It also lets applications

shared components if they are packaged with RIM method. Component packaging tools

should take advantages of the LER API, which does most of the component organization

on the local machine. Using a set of published API hides the local environment

implementation.

Components that are packaged and installed into a local system this way can find

each other. Actually, LER does all the searching for components and loads them at

requests. The components just have to register their interface, as we describe in Chapter

4. Both the component maker and application integrator need to utilize the packaging

tool.

In Chapter 2, we learn about component deployment methodologies in virtual

environments such as EJB containers. We also learn about installation and package

management applications to assist users in setting up applications in specific operating

systems. Although end users might not want to know where their application installed or

store data, component makers and application integrator have to work with the locations

of the components and methods of maintaining them.

Component makers can store their components anywhere in the local machine.

However, there must be ways for the application integrator to find the components and

use them. Notice that LER does not include the components. It has the name paths

leading to the components. Therefore, a registered component can still be used outside of

117

LER by any other ways. For example, if an application knows where the components for

the interfaces are, it can access them directly without going through LER.

However, accessing local components directly will defeat the idea of this thesis to

start with. We do not want an application to bog down in checking logic conditions and

specific implementations. We depend on LER and the packaging process take care of the

local different characteristics for the application.

6.1 Packaging Requirements and Guideline

6.1.1 The LER API

First thing a packaging tool needs is the LER component to exist in the local machine.

We will discuss later in Section 6.2 on how a packaging tool can install its own LER if

there is none in the local environment. In this section, we assume that LER exists in the

system where the package is going to be delivered. If LER does not exist, any first call in

this section will fail and the application will know that LER does not exist.

A packaging tool needs to use the LER API for these purposes:

� Registering a new interface to this LER

� Adding one or more components to existing interface in this LER

� Removing or upgrading components or interfaces in this LER

For simplicity, we are going to assume all the package managing processes are carried

out by one user or administrator user who has all the access authorization on this system.

Broader packaging scenarios can be applied to multiple users or multiple LER’s in one

system. However, other issues have to be considered such as:

� User authentication for security and trusted component assurance

118

� Access permission controls such as file blocking and LER data information

integrity

� Naming conventions

6.1.1.1 Registering a new interface

The name of the new interface should be well defined. They are preferably coming from

the requirement documentations for those interfaces. The method to call is:

 registerInterface(String interface)

where interface is the name of the new interface. This method returns a Boolean value

indicating the register has been successful or failing. If the value is true, the register

process has completed successfully. Otherwise, the register failed. Because we are

considering the simplest case, failure of register means that the interface already exists.

However, if the call fails even before returning, it is possible that LER does not exist in

this system. It may be helpful that LER also provide a method to list existing interfaces.

If an interface is registered in this simple format, it has to be followed by adding of

the components into this interface. An interface without mapping to any components

cannot be loaded.

6.1.1.2 Adding components

As described in the LER API, a component can be added in the mean time with

registering of a new interface. The method to call is:

 registerInterface(String interface, String comp, String
attribute, String value)

Notice that all arguments are in String format for simplicity. It is for convenience

because in Java, the String class provides the equal and hashcode methods for using as

119

a key in a hashtable. We can get the methods to work with String arguments. Then, the

strings can be converted or replaced with any other data types later.

Similar to the simple format of registerInterface, this method fails if the interface

has already existed. If the attribute does not exist, it is added into the attribute table with

the value. Then, the interface is associated with the component by the attribute’s value.

It is important to associate an interface with a specific value of a local attribute. If the

packaging program intends to associate this interface and component with the default

attribute in this environment, it passes the null string to the arguments attribute and value.

The packaging program can also query the default attribute. Or, it can call a method

from LER to associate an attribute value with this interface and the component:

setDefaultAttribute(String attribute, String value, String
interface, String component)

This method can be called anytime after the interface is registered.

To add a component to an interface, LER needs to move the physical file of the

component to correct location. Then, it forms the namespace or search path for the

component. See Section 5.3. A method from LER can be called to set the paths for the

locations from where components are copied.

 setSource(String paths)

After the paths are communicated to LER, subsequent addComponent calls will look into

these locations for components. The method for adding components has following

format:

 addComponent(String interface, String comp, String attribute,
String value)

Notice that the above parameters are identical to the method registerInterface. The

difference is, here the interface has to exist for this method to succeed. Similarly to the

120

other method, this addComponent method matches an attribute value to the component

for referencing the interface.

6.1.1.3 Upgrading components

To keep the LER API simple, we just add one removeComponent method for managing

components. If a component has to be replaced with a new component, the old

component is removed then the new component is added. The LER method for removing

a component is:

 removeComponent(String interface, String comp, String attribute,
String value)

Notice that, LER has to search the interface for the component that associates with a

specific value of an attribute. That is how LER form a unique name for a component. If

the component is found, it is removed and a Boolean value of True is returned.

Otherwise, the method returns False.

A packaging tool should also consider backing up the component it has just removed

for recovery purposes. While the current component may be working fine, replacing a

new component implies certain risks. Therefore, saving or archiving the old components

gives the user a chance to go back to those components if the new components fail.

Other alternatives in upgrading components include versioning the components. The

version numbers may be part of the naming scheme that LER uses.

6.1.2 System native interfaces

LER is very simple and small implementation of a registry providing common services

for components. It does not provide all the system services file system operations or user

account information.

121

A packaging tool sometimes needs to know user information for verifying the

purchase of the package. The C language provides system calls such as the getenv

function for query value of environment variables. C also provides many functions for

getting user information, such as getuid, etc.

The Java language provides couples of ways for accessing the environment from Java

applications [76]. A Java program can use the Java Native Interfaces to call C or C++

functions [44]. A C/C++ program or any executable can also be invoked inside a Java

program using the Runtime class’ exec method, for example:

 Runtime rt = Runtime.getRuntime();
 Process p = rt.exec(“genv”, env);

genv is the name of an executable or application. Also in Java language, the System class

provides accesses to system services such as standard input, output, and error. It also

provides method for setting and getting environment variables in the form of Properties

that is also a Java class. For example, a list of local system environment variables can be

obtained and printed out on standard output as following:

 Properties p = System.getProperties();
 p.list(System.out);

In Section 2.5.2, we study the jar file and its manifest file, which contains a list of

properties-value pairs. A packaging program can create similar properties file to store

and retrieve properties. Following are two examples of storing and retrieving properties

respectively from a file.

 // Storing properties into the file “package.prop”
 FileOutputStream fos = new FileOutputStream(“package.prop”);
 BufferedOutputStream bos = new BufferedOutputStream(fos);
 Properties p = new Properties();
 p.setProperty(“key1”, “value1”);
 p.setProperty(“key2”, “value2”);
 p.store(bos, “Packaging”);
 bos.close();

122

 // Retrieving properties from the file “package.prop”
 FileInputStream fis = new FileInputStream(“package.prop”);
 BufferedInputStream bis = new BufferedInputStream(fis);
 Properties p = new Properties();
 p.load(bis);
 bis.close();
 System.out.println(“key1=” + p.getProperty(“key1”));
 System.out.println(“key2=” + p.getProperty(“key2”));

6.1.3 Component delivering

To deliver components is to copy the component files from some storage media into the

local system. We see the media as the sources containing components. These sources

can be portable such as CD-ROM or a mounted file system such as NFS. Most likely the

components are in compress file format such as jar or tar, etc. in order to reduce the

requirement for storage spaces. Therefore, packaging tool may require the use of those

file-decompressing applications.

If the local system does not have the one decompressing utility that is required, the

packaging tool has to prepare for some other resolutions. Having a ZipAF component

available would be an answer to this component packaging and delivering problem.

ZipAF is a simple component that we discuss in Chapter 3.

A packaging tool may also be required to search for the sources containing

components so that component names and paths are not hard coded in the program. Both

C and Java provide many functions and methods for file system operations.

6.1.4 Components for sharing

Because a component is implemented following the interface requirements, any program

can use the component based on the defined interface. This is independent of how the

components are implemented or built.

123

Once a component is loaded by an application, other applications that request loading

of the same component use the one that is already loaded in memory. When LER loads a

component, it keeps a static reference to the object. When it receives a second request for

the same component of the same interface, it returns that object reference without loading

a new one. Following is an example of how it is implemented in LER.

 public static Object loadComponent(String interface, String
component, …) {

 static Object inMemObj = null;
 static int callCount = 0;
 …
 if (callCount > 0) {
 return(inMemObj);
 } else {
 doLoadL(…);
 …
 callCount++;
 }
 }

When the packaging tool registers an interface and finds out that the interface is already

in LER, it assumes that the existing interface is the same as its own.

6.2 Putting together a package

The list of components for a typical package may include the following. Notice, not all

of the components will be installed to the local system depending on contents of the

system at the time.

� A LER for quick start

� Interface specifications

� Components and other files in compressed format

� Compressing and decompressing applications or components

� Manifest or deployment files

124

All these components have been described in details earlier. Putting together a package

is a good way of reviewing or summarizing what we have to offer with this thesis.

Packaging
tools

LER

ROOT
comp1
comp2

...

media

Zip
tools

Figure 15 Packaging tools

First, we think of a user who starts this application integration methodology for the first

time on a system. There could be other components that are already used by other

applications. However, there is no LER on this system. A LER is a core component for

a package. It consists of the Java classes or executables for the LER. The package tool

has to decide two things:

� The HOME directory for LER

� The ROOT directory for interfaces and components

This LER can contain an empty interface table and an attribute table to start with. Or, the

package integrator can load the interfaces and components in this package into LER first.

This way, the LER has already had all the necessary registry information. The package

can just copy the LER and the components to the local machine and it is done. However,

the drawback is, if the local machine has already had a LER then the packaged LER has

125

no use. The packaging tool has to register the interfaces and add the components all over

again to the existing LER.

If it is found out that an interface to be registered by this package has already existed,

it is important that the packaged interface can be compared with the existed interface. If

the packaging tool cannot do that automatically, the user has to be notified in some way.

This is to avoid many problems when running the applications using the interface later.

We did not have rules as per what type of file compressing format should be used in

our package. That is left optional for the package integrator to decide. Thus the manifest

or deployment files may vary.

Since it is uncertain at the time of packaging if the local system will have the required

compressing utility, it is best to include the right one in the package. It is even better if

these compressing and decompressing tools are written as components using our RIM

method. We’ve described the ZipAF component in Chapter 3. In the next chapter, we

will use that component in more elaborate examples.

126

Chapter 7
Examples of Application Integration

The example application shown in this chapter leverages the methodology in this thesis

over other approaches. The application characteristics usually play decisive factors in its

design and implementation. This thesis’ approach and methodology benefit certain

applications in particular domains. Following is a list of our considerations for choosing

this application.

� Number of machines or systems the application has to be installed and running on

� Heterogeneous characteristics of the systems

� Availability of existing software frameworks or middleware infrastructures

� Availability of existing software components

� Requirements in installing all the software

Virtual Pet is an application that grows on a computer. It is started at a simplest form

based on what it is defined to do. In the growing process, it gathers the materials

required for its activities. It requires human user to care for it in certain scenarios. By

caring for the pet, the human user directly or indirectly taking care of her system or

system resources.

A virtual pet can be thought of as the traditional monitoring application. Intelligent

agent is another form of monitoring application. The difference is, intelligent agents are

simulation of the human users watching their system. Usually an agent is prepared for

the knowledge in watching particular resources or activities and then taking actions

accordingly. On the other hand, virtual pets simulate what they monitor. They start in

127

simplest form and then bind to the resources or activities of interests. From there on, the

pet’s activities or capabilities closely reflect the activities. The human user just watches

her pet grow or play and gets the pictures of activities going on with the resources.

The virtual pet application is chosen because of its diversity in many aspects of

designs and executions . Although virtual pets have been popular, there are no clear

descriptions on what virtual pets should be. Most of the characteristics of virtual pets

depend on their makers and buyers. There are no limits on what types of virtual pets a

programmer or a pet owner can think about. In general, there are two types of virtual pet

makers and owners.

� Conservative minded people, who like their virtual pets to resemble the real pets

that are familiar and loved. They know for sure that these somehow common

virtual pets require certain familiar environments. As long as the environment

requirements are met, these virtual pets can live a normal and predictable life.

� Adventurous minded people, who like to create or adopt unique and exotic virtual

pets. They can put any characteristics on these creatures because the virtual

nature of the pets. The majority of these people are computer game players who

always seek new excitements. They will watch with curiosity how their virtual

pets turn out different than others.

Nevertheless, this example starts with traditional Information Technology (IT) in mind.

IT concerns and considerations are put in light of this thesis approach and methodology.

We begin the example at a setting of some far away village, where many server farms

are forming. Each farm has ten to 100 servers. These servers are not all kept together in

one place. They are scattered in farmers’ houses. Tens to hundreds of farmers come

128

together as joined adventure farms. However, each farmer owns his own servers. There

are no regulations or requiring what types of server farmers should have. In addition,

farmers are free to install any kinds of software on their servers. They will also buy new

leading edge technology servers at anytime when needed.

When the farmers hear of new species of virtual pets, they want to start raising these

pets on their servers. In the next section, we describe these virtual pets in details.

7.1 Virtual Pet Application

The first thing that comes to people’s mind when talking about virtual pets are creatures

that “live in” their computer. The creature may not look anything like the animal pets we

know. Examples are the Virtual Pet Creature from RJB Production [63] or Creature Labs

[19]. However, the ideas of virtual pets are usually to simulate the pets that we know and

love such as dogs, cats, fish, etc. These pets keep the computer user company, as pets are

people’s best friends. The latest form of this human-pet relationship is Bonzi BUDDY

[13]. This pet, in the form of a monkey, does a whole lot of automated tasks for his

human friend. He is more like an agent or a personal assistant who has the support of

networks of portals on the Web.

The list of Virtual Pet Patents [62] shows that virtual pets researches are usually for

the purposes of computer games or companions. Very few patents show how virtual pets

can be built. The researches mostly show how the pets can be simulated or presented

visually. Also common are the interactivities between the pet and the human user.

In this example, we create our own types of virtual pets using our application

integration methodology. The characteristics of these virtual pets are as following:

129

1. The virtual pet’s components or body parts are assembled at run time, although it

may not be accurate to call those body parts. A pet may not have a body.

2. There are many variable ways to show the pet visually because there are no ways

of telling which components are going to be assembled into the pet.

3. Each instance of a running virtual pet may have different components. Hence,

there are no two virtual pets are identical, on the same machine or different

machines.

4. A virtual pet is a write-once run-anywhere creature, which is created with the

same methodology. However, virtual pets are not homogeneous species.

5. Because virtual pets can be differentiated by natures, they can be used to represent

different characteristics of a machine.

Following are some examples of tasks that these virtual pets can do.

� Watching the usage of CPU’s in a machine, including the balance of loads on

those CPU’s

� Maintaining multiple resources on a machine, such as communication ports,

storages, file systems, etc.

� Keeping track of software components and their usage in a machine

Those tasks can be general in any machines. However, the detailed procedures on

achieving results are diverse enough to have a virtual pet doing completely different

procedures on a machine.

In terms of interface and implementations, the general task is like an interface.

Although the virtual pets have to adhere to particular interfaces, they can take advantages

of different implementations.

130

7.2 Virtual Pet Requirements and Analysis

7.2.1 Write once, integrated on many systems

Every farmer wants to raise these new species of virtual pets on their server but they have

to consider the investments in user skills and server resources. It would be best if the

servers already have the required software components. But those are more than just the

basic software components.

Since different farmers own servers, it cannot be assumed that all servers should have

the software framework such as CORBA or EJB installed. More importantly, existing

servers have to run their everyday productions, which may be interrupted and effected by

the installation of new software framework. Both CORBA and EJB require the machines

to be set up as servers or clients.

A better time for trying this new virtual pet species is when the farmer acquires a new

server. The new framework can be installed and the new virtual pets can be tried out.

But, the question remains – if the pets are to be propagated onto existing servers, are the

farmers ready for that? Because the server environments can be very different, running a

pet on one machine does not guarantee it will run on another machine.

This thesis’ methodology uses the existing system software plus the components that

are required. There are no servers or clients requirements. A package is installed on

whatever machine for the virtual pet to run in. This package does the integration for a

run-able virtual pet in this particular machine.

The same package can be installed on a different server and a virtual pet is created

particularly for this machine. Although it is the same package, the created virtual pet

may be different depending on run time environment of each machine.

131

7.2.2 Adapting to individual system

In the framework or middleware environments, a virtual pet has no problems adapting

because the environments are required to be created the same. All the machines would

have had the framework installed and configured, in order for the virtual pet to be

implemented with this framework. In these server farms, there is some framework

known by the name Composition Framework (CF). But it is not known how widely it

exists on the machines.

Because the farmers own the system, they cannot be forced to all upgrade to CF. A

survey has to be done to see how many systems have already had CF. The survey should

include an inventory of the system resources to see if it is appropriate for installing and

setting up CF. In order to get these machines up to CF, their owner need supports in

system resources and skills for using the framework efficiently. The preparation

processes are involved with high number of systems before the design and development

of the application, virtual pet, even start. The scope of these preparation processes

depends on the number of systems.

Virtual pet is an example that the application can be designed and developed simply

on one system and propagated to other systems afterward.

7.2.3 Programming interface considerations

Regardless of the use a framework or not, the virtual pet ideas require thorough

considerations on the component interfaces. Because a virtual pet can take on different

composition materials and activities at loading time, object oriented methodology such as

polymorphism is essential to this design. It is more crucial that a different

132

implementation of a pet or its component can be loaded at run time. The Java Interface

can be used to demonstrate the idea.

Assuming that the virtual pet has an interface for controlling its activities. The Java

interface is called ControlUnit. There are three implementations available for use with

this interface:

� PetBrain: A neural net simulation of the pet’s brain

� PetLogic: An AI simulation of the pet’s brain

� LER: A component mapping interface

The Java code segment that uses Interface and Polymorphism is as following:

 ControlUnit petBrain = new PetBrain();
 Existence myPet = new Existence();
 myPet.init(petBrain);

The class Existence can be initialized to a ControlUnit interface, which can be

determined at load time to one of the above implementations: PetBrain, PetLogic, or

LER. As seen in the above code segment, the init method of the myPet object can receive

an object, petBrain, which implements the ControlUnit interface. The petBrain

object can be easily changed to initiate the PetLogic or LER component as:

 ControlUnit petBrain = new PetLogic();

or

 ControlUnit petBrain = LER.loadComponent();

The Java Virtual Machine uses the advantage of late binding to match the component

PetBrain with the ControlUnit interface as long as PetBrain implements all the

methods in ControlUnit. The Java Interface is explained in the language references and

many other Java books.

133

Notice that the implemented component has to be explicitly specified and the object,

petBrain, has to be instantiated somewhere in the program before the it is passed to

myPet.init(). Therefore, if a new pet control component is added later with a different

name such as PetControl, this program has to be modified to use that component:

 ControlUnit petBrain = new PetControl();

This is one of the short falls of Java Interface. There are other disadvantages of Java

Interface such as [41]:

� Significant increase in package sizes

� No version migration path

� Name scooping

� No default implementation

Another less popular technique from Java is the ability of loading class files at run time

by specifying file name. Without the use of Interface, the above code segment can be

rewritten as following:

 Class controlUnit = Class.forName(args[0]);
 Object petBrain = controlUnit.newInstance();

Existence myPet = new Existence();
 myPet.init(petBrain);

However, because it can be assumed that the class is discovered at run time, the

programmer has to go through complex querying procedures to obtain information about

the new class. Basic information can be names of the methods and their signatures.

The LER interface makes use of this capability and the interface concepts. As seen

below, the call to instantiate the component is replaced by a call to the LER. This call will

never have to change for a new component. In fact, LER supports the Run-time Interface

Mapping Methodology. Depending on the local attribute setting of the LER interface, the

reference of a locally loaded component is mapped to petBrain.

134

ControlUnit petBrain = LER.loadComponent();
 Existence myPet = new Existence();
 myPet.init(petBrain);

It is also possible to change the implementation of the LER interface for new or unique

virtual pets.

7.2.4 High priority for owner preferences

Adopting a virtual pet and raising it on a machine is a very personal decision. For real

pets at home, owner usually adopt them at very early age. The owner has better chances

of training and bonding when the pet is still small. For virtual pets, the user or the pet

owner has to have priority over characteristics and activities for their pets.

Besides working on the premises of locally available components, RIM and LER also

give highest priority to user preferences. The user can change the attribute setting in LER

to control the mapping of interfaces to components. There are alternatives for user

preferences.

7.2.4.1 Configuration file

Using configuration file is the most common methodology in setting up user preferences.

It is simple and may be most similar to programmer because it has already been done

with many applications. The configuration variables in the file have to be defined before

the program is implemented. The program has to do all the checking and validation on

these variables.

LER can do all that for the program based on local environments. Therefore, logic

and code can be reduced from the program.

135

7.2.4.2 Local database

A local database can also be implemented in different ways:

� One that is only proprietary to the program so that it can implemented efficiently

just for the program

� Use of standard database available commercially for storing and retrieving

attributes information

LER is similar to the first type of database but it hides the organizations and queries from

the program. It does the jobs by well-defined programming interface for the specific

purposes of mapping and loading components.

7.2.4.3 Remote server database

This would be appropriate if the virtual pet application is written as client server

programming model in which user gets access to her virtual pets via a client application.

The real virtual pets reside on the servers or Web servers. The user uses a client user

interface or the Web browser to interact with her pets.

The client server version of this program would have a very different design and

implementation. The client requires a network or communication connection to get to the

virtual pet. If the user has any preferences, the data may have to be stored in the server.

7.3 Virtual Pet Interfaces

From the descriptions of virtual pets in Section 7.1, both the component makers and

application integrators have to agree on the minimal requirements for interfaces.

Defining the interfaces is the first step. The application integrator has to search for

components that provide these interfaces. An application integrator accumulates

136

components every time new interfaces are required. For this virtual pet application, four

interfaces are needed. If some of these components are not available, the application

integrator has to write them.

First, a virtual pet requires an interface that loads its components dynamically at run

time. A virtual pet also depends on this interface to provide the appropriate components

existed in this run-time environment.

Second, a virtual pet requires an interface that presents the pet’s existence, such as:

� The materials or components making up its body

� Places that it thrives on

Third, a virtual pet requires and interface that shows its activities, such as: growing,

moving, etc.

Finally, a virtual pet requires an interface for controlling its existence and activities.

7.3.1 LER interface

The LER interface and its design and usage are discussed in details in Chapter 4. There

is also interface reference in Section 4.3. See Section 4.4 for how to use the LER

interface in a program.

In the virtual pet application, LER provides the control interface. Virtual pet program

can use LER to store and retrieve user preferences. Also, for an example of a virtual pet

that keeps track of software components in a local machine, LER has all information

about components it knows.

137

7.3.2 Existence interface

A virtual pet has different ways of presenting itself into existence. For demonstration

purposes, the Existence interface has several methods: init, isAlive,

registerEvent, unRegisterEven, waitEvent, final.

7.3.2.1 Init

Although loading of the component marks the existence of the virtual pet, the init method

provides a way of initializing a beginning form of the pet. It is suggested that a control

unit type of object is passed into init. Then, this control unit is used for interacting with

the virtual pet.

The Control Interface is described in Section 7.3.4. Because the Control Interface

may have many different implementations, there are as many ways of implementing this

init method as well.

7.3.2.2 IsAlive

This method could be a simple returning of True or False. Then, other methods are

provided for more detailed status of the virtual pet. Or, different ways of keeping tracks

of the virtual pet can be provided.

IsAlive can return a reference to a data structure that contains more information

about the virtual pet. Even a simple true or false can be implemented in different ways.

The options are Boolean value or integer value that represent true or false. An integer

value can also be used for a returned code, which may be different from implementations.

138

7.3.2.3 RegisterEvent

During the time of virtual pet existence, events can be registered so that actions can be

carried out when that event occurs. After the event happens, it is registered again for the

next occurrence. This method may cause trouble if the event happens rapidly.

7.3.2.4 UnRegisterEvent

A registration or wait for an event is removed. Notice that the handle of an event is

required. Therefore, a virtual pet can only un-register the events that it originally

registers.

7.3.2.5 WaitEvent

This method is similar to registerEvent. However, it only waits for the event to

happen once. Because a virtual pet is like a background or daemon process, this method

does not block what process execution.

7.3.2.6 Final

This method is one way to end a virtual pet. A virtual pet is like a background process.

It is either active or dormant. The final method can be implemented as an event interrupt

to cause the virtual pet to wake up or stop what it is doing.

The final method also provides a chance for the pet to wrap up or save its data or

states before exiting.

7.3.2.7 Requirements

Following is the text file that contains the requirements for the Existence interface.

This is a interface-requirement documentation
Interface Name: Existence

139

Data Fields:
constant Event EXIT
constant Event MEALS
errno = 0;

Method Declarations:
Methods

 int init(Object controlUnit)
 boolean isAlive()
 int registerEvent(Event e)
 int unRegisterEvent(int eventHandle)
 int waitEvent(Event e)

 int final()
 End

7.3.3 Activity interface

Living in a computer, virtual pets can do unlimited number of tasks, which range from

monitoring computing resources to assisting human users. It may not be predictable what

a virtual pet can do. Therefore, the interface design has to be very flexible. The basic

methods are: basedOn, grow, actionMap, locationMap.

7.3.3.1 BasedOn

This method takes in the material that makes up a virtual pet. The material does not have

to be visible. However, it should be measurable so that the virtual pet can grow or shrink.

The material can be any thing new and unpredictable. For simplicity, this method takes

only one material.

If there are demands for multiple materials in a virtual pet, the method locationMap

can be used.

7.3.3.2 Grow

This method bases on the relative mass of the material that makes up a virtual pet. It is

the most basic activity of a virtual pet. Some data structures can be designed to present

status of the material mass so that it can be monitored.

140

Other activities of virtual pets may be presented using the actionMap method.

7.3.3.3 ActionMap

This method provides ways of referencing an action in an object or component. New

activities for virtual pets can be implemented this way without knowing what the

activities are when the Activity interface is written. Therefore, the Activity interface is

not modified every time a new activity is discovered in some virtual pet.

Since the object that does the activity mapping is a parameter to this method, different

object that contains different sets of activities can be referred to. ActionMap can be a

separate interface known by this Activity interface.

7.3.3.4 LocationMap

In general, a virtual pet should be at a location or position at a given time so that it can be

kept tracks of or monitored. However, the locations in a computer either logical or

physical are very diverse. Two basic concerns are the position and the unit of

measurement.

Similarly as the actionMap, locationMap can be a separate interface known by this

Activity interface.

7.3.3.5 Requirements

Following is the text file that contains the requirements for the Activity interface.

This is a interface-requirement documentation
Interface Name: Activity

Data Fields:
errno = 0;

Method Declarations:

141

Methods

 int basedOn(Object handle)
 int grow()
 Object actionMap(String action, Object handle)

 Object locationMap(Object locations)
 End

7.3.4 Control interface

As described in Section 7.3.1, LER can be used as a control unit for the virtual pet. For

more flexibility, however, the Control interface should allow multiple control units.

Some virtual pet design may also require replacing, adding, or removing control units at

run time. The methods are: inCharge, add, remove, listControlUnits,

searchMethod.

7.3.4.1 InCharge

This method sets the primary control unit for this virtual pet as it receives the object from

the parameter. Thereafter, the control unit’s methods are made available for controlling

the virtual pet.

7.3.4.2 Add

This method adds a new control unit into the list. For simplicity, the priority of control

units is in the order when they are added. Priority is necessary for searching for a

particular controlling method when multiple control units are present. See the method

named searchMethod.

7.3.4.3 Remove

The specified control unit will be removed from the list of control units. This method can

also be used for replacing a control unit or changing its priority.

142

To replace a control unit, the new control unit is added first. Then, the current control

unit is removed.

In case of multiple control units present, the priority of a control unit can be changed

with a two-step procedure: removing it then adding it back at the end of the list.

7.3.4.4 ListControlUnits

This method simply lists the control units for this virtual pet.

7.3.4.5 SearchMethod

As discuss earlier, a virtual pet can have multiple control units. Each control unit may be

a component that implements a different control interface. However, there are no

restrictions on using components that implement the same or similar interface.

Therefore, this method searches the control units in the order of the list for a controlling

method. The first method found will be returned.

7.3.4.6 Requirements

Following is the text file that contains the requirements for the Control interface.

This is a interface-requirement documentation
Interface Name: Control

Data Fields:
controlUnits = aRef;
errno = 0;

Method Declarations:
Methods
 Object inCharge(Object handle)

 int add(Object handle)
 int remove(Object handle)
 int listControlUnits()
 Method searchMethod(String method)
 End

143

7.4 Virtual Pet Design and Integration

Once the interfaces are all decided and the components are available, designing the

virtual pet is a matter of integrating the required interfaces and using the appropriate

components.

In discussions of the Pet Interfaces, it occurs again and again that new components or

methods may be added later after the virtual pet application is completed. Even with Java

Interface and polymorphism, the code that instantiates a component of an interface is

required to be modified:

 Control petBrain = new ControlAble();

That statement is going to be replaced by a call to the LER, which loads a component

implementing the Control interface:

 Control petBrain = LER.loadComponent(“Control”);

Although different versions of loadComponent() exist for specifying various

components, it can be assumed that the local machine has the only one particular

component for this Control interface. Following is the simple example program for

integrating the above interfaces into a virtual pet application.

 Control petControl = LER.loadComponent(“Control”);
 Existence myPet = LER.loadComponent(“Existence”);
 myPet.init(petControl);
 Activity petLive = LER.loadComponent(“Activity”);
 petLive.basedOn(LER.root);
 petLive.grow();
 waitEvent(myPet.EXIT);

With the use of LER, the Control interface can be mapped to a local component, which

can come with the same package as the virtual pet application. Or, it can be an existing

component that has been installed by other application. Later, if a new control unit

144

component is available, it can replace the current component. The LER interface also

provides ways for choosing a component at run time.

The control object is passed into the initialization method for marking the existence

of this virtual pet. This particular pet is supposed to grow based on the file system at the

root of LER. The grow() method builds some data structures to keep track of the

interfaces under LER ROOT. Notice that the grow() method runs in an infinite loop in

the background. It does not block other threads of executions.

Similarly, the waitEvent does not block to wait for the EXIT event. Notice that after

myPet is instantiated, LER keeps a reference of this object. A separately written program

can access this object if the two applications are running on the same machine in the

same time period. For example, the second application may want to add a second control

unit to myPet to remotely interact with this virtual pet. It may want to register, un-

register, or wait for events that happen to this virtual pet. Following is a sample code

segment.

 RemoteControl remote = LER.loadComponent(“RemoteControl”);
Control petControl = LER.loadComponent(“Control”);

 Existence myPet = LER.loadComponent(“Existence”);
 petControl.add(remote);
 myPet.register(MEALS);

7.5 Virtual Pet Delivery

After the application is complete, all the required components are packaged into certain

package format for delivery of the virtual pet. Package delivery is a crucial step to ensure

component reuse and efficiency.

145

Unless all of the required interfaces are newly designed and implemented, some of

the components are already existed in existing systems. The package planning and

delivery work involves with the LER facility.

For example, when the application integrator puts together a virtual pet package, it

may include these components:

 LER ; default LER component
 VirtualPet ; the integrated application
 SimControl ; control unit component
 RemoteControl ; remote control unit component
 LiveForever ; existence component
 FunActivity ; activity component

The packaging tool considers the facts that not all of those components will have to be

installed on the destination system. A LER may have already existed. Some of the

components may also be used in use on the system. It is likely that the package will not

install its own components but let the virtual pet share or reuse the existing components.

However, other considerations arise for deciding the compatibility of the components.

Our approach is to take those considerations out of the application and let the packaging

tools and the implementation of LER provide the solutions, from a local environment

point of views. It is the use of local components that decide the characteristics of the

virtual pet.

7.6 Conclusion

In this virtual pet example application, we show the important aspects of mapping an

interface to a different component at run time. Even though the basic interfaces of a

virtual pet are clearly defined at design and implement time, each virtual pet is not tied up

to a particular implementation of the components. In theory, each machine has different

146

attributes and existing components so that imposing unify and global environments for

these virtual pets would not be practical.

The LER plays the role of a practical petting facility, which produces unique virtual

pets based on the local system conditions. Uniqueness and diversity are some of the

important characteristics of these virtual pets. We also show in the example that different

applications can share access to the same object at run time. Our strategy of component

reuse is based on local availability. Component makers and application integrators can

make many varieties of components and applications that run on varieties of systems.

Package delivery is the key strategy. An integrated virtual pet application looks

simple and has no particular checking for local conditions at the application integration

level. That is due to the LER interface hiding the technical details of dynamically

loading components at run time. LER interface abstraction gives us the advantages of

mapping interfaces to particular components.

It is the packaging and delivering of the virtual pet to a particular system that creates

a particular pet at the time it is run. If there are no two machines that are alike in these

server farms, there are no two virtual pets that are alike.

147

Chapter 8
Future Work

Run-time interface mapping methodology has the premise for application integrator. No

more ambiguity in choosing components for the applications. Components can be

dynamically selected at run time based on the interface and local environment conditions.

The application does not have to figure out which component to load. The local

environment facility does the loading because it has the information about local

components and environment attributes. Therefore, component programmers or

application integrators are free of embedding much of the decision logic in their

programs.

Component programmers who write components can use the interface requirements

as their contract, which is demanded by application integrators or other component users.

As long as the requirements are followed in the naming of interface, components,

methods, and attributes, they can implement the internals of their components anyway

they want to. This is the first principle in software components – they are developed for

independent uses. Third party developers who want to deploy these components only

need to know the component published interfaces.

The local environment facility is implemented as a simple common component, not a

global framework or a heavy middleware. Either component makers or application

integrators can start to work with components quickly with this approach. They can even

implement their own local facility based on the design concepts. We keep this local

148

facility simple. But, it is flexible and it can be extended as we are going to discuss next

in following paragraphs.

Mapping of interface methods:

in the current interface mapping method, component methods are called based on

requirement specifications. If the interface is mapped to a component that does not have

the corresponding method, the call fails with unpredictable consequence. That is a

calculated risk, which can be minimal by thorough packaging and delivering of

components. Verifications of components at adding time can also help. We discuss

about that later.

However, the risks can be reduced via mapping the interface methods into component

methods. The idea is similar to mapping an interface to multiple components. However,

the reference entered in the program is a method name. This way, it is possible that a

method can be mapped into multiple interfaces. The same method name can exist in

different interfaces. Therefore, if a method call fails in one interface, the local

environment facility can extend the search of similar method in other interfaces.

Interface verifications:

As we discuss above, when a component is added into an existing interface in the local

facility, there is currently no checking to ensure the component has fulfilled all the

required methods in the interface. Because it is not required that the component has to be

recompiled and linked into the application, problems of unknown methods and

parameters type mismatch only appear at run time. These are typical problems in using

pre-built components.

149

Because adding a component into the local environment facility is a separate step that

is carried out before the component is used, different procedures can be added to verify

the component with the interface. This can be done with Java language. A list of all

methods from the component can be obtained and then compared to the methods in the

referenced interface. Or, it could be as simple as trying to load the component and call

each of the methods in the interface. Errors can be discovered at adding time. And the

component can be rejected.

Component and interface versioning:

Software versioning is not new in development environments. And components are no

exception. It is inevitable that component makers will have to make changes or

enhancements to their components over times. We discuss the possibility of this in our

component naming and packaging methods. Actually the version number of a

component plays a part in the component name. Once a component has more than one

version, version would become an attribute for mapping the current version of a

component to the interface.

We should also consider versioning an interface. Although the application integrator

or whoever creates or designs a interface have surely put lots of considerations on all

thinkable requirements, needs for a certain interface do change from time to time.

Creating a new interface just to add a method to an existing interface is not something

component makers want to do often. The number of interfaces should be kept to

minimal. More research is required on how this should be resolved.

Component testing and analysis tools:

150

The scope of this research does not allow elaborate and thorough testing of the

implementations. However, because it is simple to design a new interface and adding

components into it, this approach encourages better testing of the components. We see

testing as a very important requirement in adapting component reuse. Testing in

development environments is not sufficient anymore because of the diversity of run time

environments.

Second to testing tools are run-time analysis tools. The application integrator or

programmer who deploys components does not have the same level of understanding of

the component internals as the component maker. Besides, run-time errors are always the

hardest ones to resolve. With this approach, we have the luxury of replacing a

problematic component with a similar one. We also have the ability of isolating the

problem into small component. More work in this area would be very worthwhile.

Software packaging and local environment management tools:

The method of run-time interface mapping will prove its values when more helpful tools

are built for the purposes of applying the concepts. Software packaging tools can

automate most of the procedures we describe in this thesis. Ultimately, applications can

integrate themselves using available local components and the supports of the local

facility. Local environment management tools can present the local facility to the user in

easy to understand and use graphical interfaces. Component makers and application

integrators are only intermediate users. The ultimate users are the end users who actually

use the applications.

It is Only a Beginning…

151

This thesis not only has practical values in programming and application integration, it

can also be applied to emerging computing technology. Three possible areas are GRID

Computing, Pervasive Computing, and Computing Utilities.

GRID Computing:

We approach GRID Computing from the bottom up strategy. Although GRID

Computing stems from and thrives on distributed computing, we see its core problems in

local environments. On hundreds or thousands of computers that make up the network

grid, it is difficult to blanket out a cross-platform strategy for utilizing each of the

computer. It is plainly impractical. It is even harder to keep track of all local information

at a central controlling point that becomes a bottleneck or a single failure point.

Information about local environment of each machine is crucial in many aspects of GRID

Computing, for example job scheduling and dispatching. Our approach is for delivering

applications and components in such environments.

Pervasive Computing:

Computers will be everywhere in the age of Pervasive Computing. Furthermore,

computers will transform into different shapes and forms. The typical form of a desktop

computer with a square box, a monitor, a keyboard, and a mouse is only one of the many

forms of the future computers. Even at the time of this writing, we are seeing more and

more of non-conventional computers, such as wearable, jewelry, head-mounted

computers, etc. Each of these devices has different characteristics in terms of computing

environments. It will not be practical to say that an application can be written on one of

the devices and then run on all of other devices. Reuse of software has to happen at finer

grains, such as components. Because most of these devices have to take special forms or

152

hide in odd places, they may not have the most powerful processing power or abundant of

storage space. Applications running on these devices have to be very efficient to the

points that no extraneous and unused resources are allowed. Our methodology will adapt

and use just the minimal components to run the tasks.

Computing Utilities:

Will computing resources be ever delivered like utilities such as electricity or water?

And what is the computing “stuff” that will be delivered over the wires? That is just the

pure computing resources such as processing power, storage space, or network

bandwidth. The home users still need different types of electric or electronic devices to

make use of electricity. Similarly to water, home users need to add things into water to

make lemonade, tea, coffee, or bubble bath. All those devices and ingredients add value

to the commodity electricity or water. An end user cannot make those by themselves.

That is where we see the roles of software components. We also do not overlook the

facts that personal computing power is increasing in amazing pace. Each individual

home user can have her own power generator or water well. A local machine can easily

become a source of computing utilities. This matches with the GRID Computing

perspectives.

In our views, a local machine is an autonomous computing entity. It only looks else

where for other resources when it needs them.

153

References

[1] P. Allen; Realizing e-Business with Components; Component Software Series;
Addison-Wesley, 2001.

[2] P. Allen; “The State of the Practice”, Component Development Strategies
Monthly Newsletter; vol. XI, no. 3, March 2001.

[3] P. Allen; “Component Specification and Assessment”, Component Development
Strategies Monthly Newsletter; vol. XI, no. 10, October 2001.

[4] S. Asbury and S. R. Weiner; Developing Java™ Enterprise Applications 2nd
Edition; John Wiley & Sons Inc., 2001.

[5] E. C. Bailey; Maximum RPM, Taking the Red Hat Package Manager to the
Limit; Website, http://www.rpm.org/max-rpm/index.html; Red Hat Inc., 2000.

[6] B. Baker; Getting Started with InstallShield Developer and Windows Installer
Setups; InstallShield Press, 2002.

[7] B. Baker; The Official InstallShield for Windows Installer Developer’s Guide;
Hungry M&T Books, 2000

[8] B. Ball et al.; Red Hat Linux 7.2 Unleashed; Sams, 2002.
[9] D. Barnes; “RMP How to, RPM at Idle”; Website, http://www.rpm.org/RPM-

HOWTO/; Red Hat, Inc, 1999.
[10] R. Ben-Natan and O. Sasson; IBM SanFrancisco Developer’s Guide;

Application Development Series; McGraw-Hill, 2000.
[11] H. Beyer and K. Holtzblatt; Contextual Design: A Customer-Centered

Approach to System Designs; Morgan Kaufmann, 1997.
[12] S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan, and B. Stearns; The

J2EE™ Tutorial, The Java Series; Addison-Wesley, 2002.
[13] Bonzi BUDDY; “Bonzi.com”; Website,

http://www.bonzi.com/bonziportal/index.asp; Bonzi.com Software, Inc., 2002.
[14] J. Bosch; Design and Use of Software Architectures Adopting and Evolving a

Product-Line Approach; Addison-Wesley, 2000.
[15] D. R. Callaway; Inside Servlets 2nd Edition, Server-Side Programming for the

Java™ Platform; Addison-Wesley, 2001.
[16] X. Castellani and S. Y. Liao; “Development Process for the Creation and Reuse

of Object-Oriented Generic Applications and Components”, Journal of Object-
Oriented Programming (JOOP); vol. 11, no. 3, pp. 21-34, June 1998.

[17] E. Cerami; Web Services Essentials; O’Reilly & Associates, Inc., 2002.
[18] J. W. Cooper; Java™ Design Patterns, A Tutorial; Addison-Wesley, 2000.
[19] Creature Labs; “Virtual Creatures”; Website,

http://www.creaturelabs.com/tech_index.htm; Creature Labs, 2002.
[20] L. G. DeMichiel, L. U. Yalcinalp, and S. Krishnan; Enterprise JavaBeans™

Specification, Version 2; Java Website, http://java.sun.com/ejb; Sun
Microsystems, Palo Alto, 2001.

154

[21] J. Durham; “History-Making Components, Tracing the roots of components
from OOP through WebServices”, IBM DeveloperWorks Website, http://www-
106.ibm.com/developerworks/components/library/co-tmline/index.html; 2001.

[22] B. Eckel; Thinking in Java™; Prentice Hall Inc., New Jersey, 1998.
[23] J. Engel; Programming for the Java™ Virtual Machine; Addison Wesley

Longman, Inc., Reading, Massachussetts, 1999.
[24] M. E. Fayad, D. C. Schmidt, and R. E. Johnson; Building Application

Frameworks, Object-Oriented Foundations of Framework Design; John Wiley
& Sons, 1999.

[25] FlashLine Website; “Component Marketplaces”; http://www.flashline.com/;
FlashLine Inc., 1999-2002.

[26] K. A. Gabrick and D. B. Weiss; J2EE and XML Development; Manning, 2002.
[27] M. Galkovsky; “DLLs the Dynamic Way”, MSDN Library Website,

http://msdn.microsoft.com/library/en-us/dndllpro/html/dlldynamic.asp?frame=true;
Pervasive Software, Nov. 1999.

[28] D. Garlan, R. Allen, and J. Ockerbloom; “Architectural Mismatch: Why Reuse
Is So Hard?”, IEEE Software; vol. 12, no. 6, pp. 17-26, Nov. 1995.

[29] K. Geihs; “Middleware Challenges Ahead,” IEEE Computer, vol. 34, no. 6, pp.
24-31, June 2001.

[30] G. R. Gircys; Understanding and Using COFF; O’Reilly, November 1988.
[31] A. Gomez-Perez and A. Lozano; “Impact of Software Components

Characteristics Above Decision-Making Factors”; Website:
www.sei.cmu.edu/cbs/cbse2000/papers/05/05.pdf; Carnegie Mellon University.

[32] J. Gosling, B. Joy, G. Steele, and G. Bracha; The Java Language Specification,
2nd Edition; Sun Microsystems Website, http://java.sun.com/docs/books/jls/;
Sun Microsystems, 2000.

[33] J. Han; “Characterization of Components; Peninsula School of Computing and
Information Technology”, Monash University, McMahons Road, Frankston,
Vic. 3199, Australia; Website,
http://www.sei.cmu.edu/cbs/icse98/papers/p4.html; Carnegie Mellon
University, 2001.

[34] G. T. Heineman and W. T. Councill, Editors; Component-Based Software
Engineering, Putting the Pieces Together; Addison-Wesley, 2001.

[35] J. Hunter; Java™ Servlet Programming 2nd Edition; O’Reilly & Associates Inc.,
1998, 2001.

[36] InstallShield; “An Introduction to Windows Installer and InstallShield
Developer White Paper”; Website,
http://www.installshield.com/downloads/isd/whitepapers/Developer_Overview9-01.doc;
InstallShield, Sept. 2001.

[37] R. Johnson; “Dynamic Object Model”, Object View; no. 5, pp. 30-34, 2000.
[38] G. Kappel, S. Rausch-Schott, W. Retschitzegger, and M. Sakkinen; “Bottom-up

Design of Active Object-Oriented Databases,” Communications of the ACM;
vol. 44, no. 4, April 2001.

[39] R. Keller, and U. Holzle; “Binary Component Adaptation”, University of
California Website, http://www.cs.ucsb.edu/labs/oocsb/papers/TRCS97-
20.html; ECOOP, 1998.

155

[40] M. Koutlis, P. Kourouniotis, K. Kyrimis, and N. Renieri; Inter-component
communication as a vehicle towards end-user modeling; Computer Technology
Institute, Patras, Greece; Website,
http://www.sei.cmu.edu/activities/cbs/icse98/papers/p7.html; Carnegie Mellon
University, 1998.

[41] P. Kriens; “A perspective on interfaces, How to solve problems with Java’s
interfaces”; Website, http://www.javaworld.com/javaworld/jw-02-1998/jw-02-
perspectives_p.htm; Java World, 1998.

[42] R. Lee and S. Seligman; JNDI API Tutorial and Reference Building Directory-
Enabled Java Applications; The Java Series; Sun Microsystems, 2000.

[43] A. Lessa; Python Developer’s Handbook; Sams Publishing, 2001.
[44] S. Liang; The Java™ Native Interface Programmer’s Guide and Specification;

Website, http://java.sun.com/docs/books/jni/html/titlepage.html; Sun
Microsystems, 1999, 2002.

[45] T. Lindholm and F. Yellin; The Java™ Virtual Machine Specification, 2nd
Edition; Addison-Wesley, 1999.

[46] F. Marinescu; “The State of The J2EE Application Server Market, History,
important trends and predictions”, The Server Side Website,
http://www.theserverside.com/resources/middleware/StateOfTheServerSide.htm
l; The Middleware Company, 2001.

[47] V. Matena and B. Stearns; Applying Enterprise JavaBeans, Component-Based
Development for the J2EE Platform; The Java Series Enterprise Edition;
Boston, Addison-Wesley, 2001.

[48] D. Mennie and B. Pagurek; “An Architecture to Support Dynamic Composition
of Service Components”; Systems and Computer Engineering, Carleton
University, 1125 Colonel By Driver, Ottawa, ON, Canada, K1S 5B6; Website,
http://citeseer.nj.nec.com/mennie00architecture.html; NEC Research Institute,
1997-2002.

[49] Microsoft Corporation; “Microsoft Portable Executable and Common Object
File Format Specification”, Revision 6.0; Website,
http://www.microsoft.com/hwdev/hardware/PECOFF.asp; Microsoft
Corporation, February 1999.

[50] T. Miyoshi and M. Azuma; “An empirical study of evaluating software
development environment quality,” IEEE Transactions on Software Engineer,
vol. 19, no. 5, pp. 425-435, May 1993.

[51] R. Monson-Haefel; Enterprise JavaBeans, 2nd Edition; O’Reilly & Associates
Inc., 1999, 2000.

[52] G. C. Murphy, D. Notkin, and K. J. Sullivan; “Software reflexion models:
bridging the gap between design and implementation”, IEEE Transactions on
Software Engineer; vol. 27, no. 4, pp. 364 – 380, April 2001.

[53] A. Nathan; .NET and COM, The Complete Interoperability Guide; Indiana,
Sams Publishing, 2002.

[54] T. Neward; Server-Based Java Programming; Manning Publications, 2000.
[55] Object Management Group; Common Object Request Broker: Architecture and

Specification, Revision 2.6.1; OMG Website,

156

http://cgi.omg.org/docs/formal/02-05-08.pdf; Object Management Group, Inc.,
1991-2001.

[56] Object Management Group; Catalog of OMG CORBA™ / IIOP™
Specifications; OMG Website,
http://www.omg.org/technology/documents/corba_spec_catalog.htm#ccm; Object
Management Group, Inc, 1997-2002.

[57] Object Management Group; Catalog of OMG IDL / Language Mappings
Specifications, OMG Website,
http://www.omg.org/technology/documents/idl2x_spec_catalog.htm; Object
Management Group, Inc, 1997-2002.

[58] Open Component Foundation; “Enhancing Local Software Industry’s
Competitiveness”; Website, http://www.open-components.com/; Centre for
Innovation and Technology, Faculty of Engineering, The Chinese University of
Hong Kong, 2002.

[59] R. Orfali and D. Harkey; Client/Server Programming With Java and CORBA,
2nd Edition; John Wiley & Son, Inc., 1998.

[60] P. J. Perrone and V. S. R. “Krishna” R. Chaganti; Building Java Enterprise
Systems with J2EE, The Authoritative Solution; SAM Publishing, 2000.

[61] J. R. Pinkert and L. L. Wear; Operating Systems Concepts, Policies, and
Mechanisms; Prentice Hall, Inc., New Jersey, 1989.

[62] Polson Enterprises Research Services; Virtual Pet Patents; Web site:
http://www.virtualpet.com/vp/media/mpets/vppat.htm; Polson Enterprises
Research Services, 2002.

[63] RJB Productions, Virtual Pet Creature, Website,
http://www.rjbproductions.co.uk/vpc/about.htm; RJB Productions, 2002.

[64] S. Robinson and A. Krassel; “COMponents”; MSDN Website,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncomg/html/msdn_components.asp; Panther Software,
http://www.panthersoft.com/, 1997.

[65] R. C. Seacord, Hissam, A. Scott, K. C. Wallnau; Agora: “A Search Engine for
Software Components”, Technical Report; Carnegie Mellon University, 1998.

[66] L. Sha; “Using simplicity to control complexity,” IEEE Software, vol. 18, no. 4,
pp. 20-28, July/Aug. 2001.

[67] H. Sheil; “Java Project Dangers! Avoid these 10 J2EE dangers to ensure your
enterprise Java project's success”, JavaWorld Website,
http://www.javaworld.com/javaworld/jw-03-2001/jw-0330-ten_p.html;
JavaWorld.com, March 2001.

[68] H. Sheil; “To EJB, or not to EJB? Addressing the issues and decisions that go
into adopting an EJB-based solution”, JavaWorld Website,
http://www.javaworld.com/javaworld/jw-12-2001/jw-1207-yesnoejb_p.html;
JavaWorld.com, Dec. 2001.

[69] H. Sheil and M. Monteiro; “Rumble in the Jungle: J2EE vs. .NET, Part 1, How
do J2EE and Microsoft's .Net compare in enterprise environments?”, JavaWorld
Website, http://www.javaworld.com/javaworld/jw-06-2002/jw-0628-
j2eevsnet_p.html#resources; JavaWorld.com, June 2002.

157

[70] J. Siegel, PhD and others, CORBA 3 Fundamentals and Programming, 2nd
Edition, New York, Wiley Computer Publishing, 2000.

[71] I. Singh, B. Stearns, M. Johnson, and the Enterprise Team; Enterprise
Applications with the J2EE Platform, 2nd Edition, The Java Series; Addison-
Wesley, 2002.

[72] Software Engineering Institute; “Annotated Bibliography of COTS Software
Evaluation”; Website, http://www.sei.cmu.edu/cbs/papers/eval_bib.html;
Carnegie Mellon University, 1998-1999.

[73] M. Sparling; “Lessons learned: through six years of component-based
development”, Communications of the ACM, vol. 43, no. 10, pp. 47-53, 2000.

[74] M. Sparling; “Is there a Market for Components?” Website, http://www.cbd-
hq.com/articles/2000/000606ms_cmarket.asp; Castek Software Factory, 2000.

[75] F. Steimann; “Role = Interface: A Merger of Concepts”, Journal of Object-
Oriented Programming, JOOP Website, http://www.joopmag.com; pp. 23-32,
Oct/Nov 2001.

[76] Sun Microsystems; Accessing the Environment From Java Applications;
Website,
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1204.html#tip1;
Sun Microsystems, 2001.

[77] Sun Microsystems; Guide to Features – Java Platform; Website:
http://java.sun.com/products/jdk/1.2/docs/; Sun Microsystems, 1995-2002.

[78] Sun Microsystems; Java™ 2 Platform, Enterprise Edition (J2EE™)
Specification, Version 1.3; Sun Microsystems, 2001.

[79] C. Szyperski; Component Software, Beyond Object-Oriented Programming;
Addison-Wesley, 1997.

[80] C. Szyperski; “Component Software and the Way Ahead”, Foundations of
Component-Based Systems; Edited by Leavens, G. T. and Sitaraman, M;
Cambridge, Cambridge University Press, 2000, pp. 1-20.

[81] J. Tian and M. V. Zelkowitz; “Complexity measure evaluation and selection”;
IEEE Transactions on Software Engineer, vol. 21, issue 8, pp. 641-650, Aug.
1995.

[82] B. Venners; “Designing with interfaces, One programmer’s struggle to
understand the interface”; Website, http://www.javaworld.com/javaworld/jw-
12-1998/jw-12-techniques_p.htm; Java World, 1998.

[83] B. Venners; Inside the Java 2 Virtual Machine, 2nd Edition; McGraw-Hill, 1999.
[84] A. Vogel and M. Rangarao; Programming with Enterprise JavaBeans, JTS, and

OTS; Building Distributed Transactions with Java and C++; Wiley & Sons,
1999.

[85] K. C. Wallnau, S. A. Hissam, and R. C. Seacord; Building Systems from
Commercial Components; SEI Series in Software Engineering; Addison-
Wesley, 2002.

[86] G. Wang and H. A. MacLean; “Architectural Components and Object-Oriented
Implementations”; Applied Research and Technology, The Boeing Company,
Seattle, WA 98124; Website,
http://www.sei.cmu.edu/cbs/icse98/papers/p9.html; Carnegie Mellon
University, 2001.

158

[87] G. Wang and H. A. MacLean; “Software Components in Contexts and Service
Negotiations”; Applied Research and Technology, The Boeing Company,
Seattle, WA 98124; Website, http://www.sei.cmu.edu/cbs/icse99/papers/23/23.htm;
Carnegie Mellon University, 2001.

[88] J. A. Whittaker; “Software’s Invisible User,” IEEE Software, vol. 18, pp. 84-88,
2001.

[89] J. D. Williams; “Can component solve integration conundrum?”, Application
Development Trends, vol. 8, pp. 27-34, 2001.

[90] S. Williams and C. Kindel; “The Component Object Model: A Technical
Overview”; Developers Relation Group, Microsoft Corporation, MSND
Website: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncomg/html/msdn_comppr.asp; Microsoft Corporation, 1994.

[91] P. Wisse; Metapattern, Context and Time in Information Models; Addison-
Wesley, 2001.

[92] C. Wohlin and P. Runeson; “Certification of software components”, IEEE
Transaction on Software Engineering, vol. 20, pp. 494-499, 1994.

[93] S. Yacoub, H. Ammar, and A. Mili; “A Model for Classifying Component
Interfaces”; CSEE Department, West Virginia University, Morgantown, WV
26506; Website, http://www.sei.cmu.edu/cbs/icse99/papers/31/31.pdf; Carnegie
Mellon University, 2001.

[94] S. Yacoub, H. Ammar, and A. Mili; “Characterizing a Software Component;
CSEE Department”, West Virginia University, Morgantown, WV 26506;
Website: http://www.sei.cmu.edu/cbs/icse99/papers/34/34.htm; Carnegie
Mellon University, 2001.

[95] J. W. Yoder; “MetaData and Adaptive Object-Model Pages,” presented at
ECOOP, 1998.

[96] S. H. Zweben, B. W. Weide, and J. E. Hollingsworth; “The effects of layering
and encapsulation on software development cost and quality", Software
Engineering, IEEE Transactions on, vol. 21, pp. 200 - 208, 1995.

