
ar
X

iv
:q

ua
nt

-p
h/

03
05

04
5v

1
 8

 M
ay

 2
00

3

Quantum Computation explained to my Mother

Pablo Arrighi1, ∗

1Computer Laboratory, University of Cambridge,

15 JJ Thomson Avenue, Cambridge CB3 0FD, U.K.

There are many falsely intuitive introductions to quantum theory and quantum computation in
a handwave. There are also numerous documents which teach those subjects in a mathematically
sound manner. To my knowledge this paper is the shortest of the latter category. The aim is
to deliver a short yet rigorous and self-contained introduction to Quantum Computation, whilst
assuming the reader has no prior knowledge of anything but the fundamental operations on real
numbers. Successively I introduce complex matrices; the postulates of quantum theory and the
simplest quantum algorithm. The document originates from a fifty minutes talk addressed to a
non-specialist audience, in which I sought to take the shortest mathematical path that proves a
quantum algorithm right.

PACS numbers: 03.65

Keywords: introduction

I. SOME MATHEMATICS

I will begin this introduction with less than three pages
of mathematics, mainly definitions. These notions con-
stitute the vocabulary, the very language of quantum the-
ory, and every single one of them will find its use in the
second part, when I introduce the postulates of quantum
theory.

A. Complex Numbers

A real number is a number just like you are used to.
E.g. 1, 0, −4.3 are all real numbers. A complex num-
ber, on the other hand, is just a pair of real numbers. I.e.
suppose z is a complex number (z is just a name we give
to the number, we could call it zorro), then z must be of
the form (a, b) where a and b are real numbers.
Now I must teach you how to add or multiply com-
plex numbers. Suppose we have two complex numbers
z1 = (a1, b1) and z2 = (a2, b2). Addition first: z1 + z2 is
defined to be the pair of real numbers (a1 + a2, b1 + b2).
And now multiplication (when I put two number next to
one another, with no sign in between that means they are
multiplied): z1z2 is defined to be the pair of real numbers
given by (a1a2 − b1b2, a1b2 + a2b1).
Sometimes we want to change the sign of the second
(real) component of the complex number z. This op-
eration is called conjugation, and is denoted by a upper
index ‘∗’, i.e. z∗ is defined to be the pair of real numbers
(a,−b).
Another useful operation we do on a complex number is
to take its norm. The norm of z = (a, b) is defined to

be the real number
√

a2 + b2. This operation is denoted

∗Electronic address: pja35@cam.ac.uk

by two vertical bars surrounding the complex number, in
other words |z| is simply a notation for

√
a2 + b2.

B. Matrices

A matrix of things is a table containing those things,

for instance:

(

♥ ♠
♦ ♣

)

is a matrix of card suits.

We shall call this matrix M for use in later examples.
A matrix does not have to be square. We say that a ma-
trix is m × n if it has m horizontal lines and n vertical
lines.

For instance a column is a 1× n matrix e.g:

(

♥
♦

)

.

Similarly a row is a m× 1 matrix, e.g.
(

♥ ♠
)

is a row.
The ij-component of a matrix designates the ‘thing’
which is sitting at vertical position i and horizontal po-
sition j in the table, starting from the upper left corner.
For instance the 2 1-component of M is ♦. If A is a
matrix then the ij-component of A is denoted Aij , e.g.
here you have that M11 = ♥, M21 = ♦ etc.
Given a matrix we often need to make vertical lines into
horizontal lines and vice-versa. This operation is called
transposition and is written ‘t’. We thus have At

ij = Aji,
in other words if A the m× n matrix with ij-component
Aij , then At is defined to be the n×m matrix which has
ij-component Aji. Here are two examples:

M t =

(

♥ ♦
♠ ♣

)

;

(

♥
♦

)t

=
(

♥ ♦
)

C. Matrices of Numbers

Let us now consider matrices of numbers. The good
thing about numbers (real or complex, it does not matter
at this point) is that you know how to add and multiply
them. This particularity will now enable us to define

http://arXiv.org/abs/quant-ph/0305045v1
mailto:pja35@cam.ac.uk

2

addition and multiplication of matrices of these numbers.
In order to add two matrices A and B they must both
be m × n matrices (they have the same size). Suppose
A has ij-components. Then A + B is defined to be the
m× n matrix with ij-components Aij + Bij .
If we now want to multiply the matrix A by the matrix
B it has to be the case that the number of vertical lines
of A equals that of the number of horizontal lines of B.
Now suppose A is an m × n matrix with ij-components
Aij , whilst B is n× r and has pq-components Bpq. Then
AB is defined to be the m×r matrix with iq-components
Ai1B1q + Ai2B2q + .. + AinBnq.
To make things clear let us work this out explicitly for
general 2× 2 matrices of numbers:

Let A =

(

A11 A12

A21 A22

)

and B =

(

B11 B12

B21 B22

)

Then A + B =

(

A11 + B11 A12 + B12

A21 + B21 A22 + B22

)

and AB =

(

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

D. Matrices of Complex Numbers

Matrix addition and multiplication work on numbers,
whether they are real or complex. But from now we look
at matrices of complex numbers only, upon which we de-
fine one last operation called dagger.
To do a dagger operation upon a matrix is to transpose
the matrix and then to conjugate all the complex num-
bers it contains. This operation is denoted ‘†’. We thus

have A†
ij = A∗

ji, in other words if A is the m × n ma-

trix with ij-component Aij , then A† is defined to be the
n×m matrix which has ij-component A∗

ji.
Quite a remarkable n× n matrix of complex numbers is
the one we call ‘the identity matrix’. It is defined such
that its ij-component is the complex number (0, 0) when
i 6= j, and the complex number (1, 0) when i = j. The
n× n identity matrix is denoted In, as in:

I1 =
(

(1, 0)
)

and I2 =

(

(1, 0) (0, 0)
(0, 0) (1, 0)

)

Having defined the identity matrices we are now able to
explain what it means to be a unit matrix of complex
numbers. Consider M an m×n matrix of complex num-
bers. M is said to be a unit matrix if (and only if) it is
true that M †M = In.

E. Some properties

You may skip the following three properties if you wish,
but they will be needed in order to fully understand the
comments which follow postulates 2 and 3. Moreover by

going through the proofs you will exercise your under-
standing of the many definitions you have just swallowed.

Property 1 Let A be an n×m matrix of complex num-
bers and Im the m × m identity matrix. We then have
that AIm = A. In other words multiplying a matrix by
the identity matrix leaves the matrix unchanged.

Proof. First note that a complex number (a, b) multiplied
by the complex number (1, 0) is, by definition of complex
number multiplication, given by (1a−0b, 0a+1b), which
is just (a, b) again. Likewise note that a complex number
(a, b) multiplied by the complex number (0, 0) is given by
(0a−0b, 0a+0b), which is just (0, 0). Now by definition of
matrix multiplication the iq-component of AIm is given
by: (where we denote Im by just I)

(AI)iq = Ai1I1q + Ai2I2q + .. + AinInq

= Ai1(0, 0) + Ai2(0, 0) + .. + Aiq(1, 0) + .. + Ain(0, 0)

The second line was obtained by replacing the Ipq with
their value, which we know from the definition of the
identity matrix. Now using the two remarks at the be-
ginning of the proof we can further simplify this equation:

(AI)iq = (0, 0) + (0, 0) + .. + Aiq + .. + (0, 0)

= Aiq by complex number addition.

Thus the components of AI are precisely those of A. �

Property 2 Let A be an m×n matrix of complex num-
bers and B be an n×r matrix of complex numbers. Then
the following equality is true:

(AB)† = B†A†

Proof. First note that

((a1, b1) + (a2, b2))
∗ = (a1, b1)

∗ + (a2, b2)
∗ (1)

This is obvious since

((a1, b1) + (a2, b2))
∗ = (a1 + a2, b1 + b2)

∗

= (a1 + a2,−b1 − b2) and

(a1, b1)
∗ + (a2, b2)

∗ = (a1,−b1) + (a2,−b2)

= (a1 + a2,−b1 − b2) as well.

Likewise note that

((a1, b1)(a2, b2))
∗ = (a1, b1)

∗(a2, b2)
∗ (2)

and also

(a1, b1)(a2, b2) = (a2, b2)(a1, b1) (3)

again this is easily verified by computing the left-hand-
side and the right-hand-side of those equalities. You may
want to check this as an exercise.
Now by definition of matrix multiplication we have that

(AB)iq = Ai1B1q + Ai2B2q + .. + AinBnq

3

Thus the components of (AB)† are given by

(AB)†iq = (AB)∗qi

= A∗
q1B

∗
1i + A∗

q2B
∗
2i + .. + A∗

qnB∗
ni

= B∗
1iA

∗
q1 + B∗

2iA
∗
q2 + .. + B∗

niA
∗
qn

where we used equations (1) and (2) to obtain the second
line, and equation (3) to obtain the third line. Now con-
sider the components of B†A†. By definition of matrix
multiplication we have that

(B†A†)iq = B†
i1A

†
1q + B†

i2A
†
2q + .. + B†

inA†
nq

= B∗
1iA

∗
q1 + B∗

2iA
∗
q2 + .. + B∗

niA
∗
qn

where the last line was obtained using the fact that A†
ij =

A∗
ji. Thus the components of (AB)† are precisely those

of B†A†. �

Property 3 Let V be a n × 1 unit matrix of complex
numbers (a column). Then it is the case that:

|V11|2 + |V21|2 + .. + |Vn1|2 = 1

Proof. First let z = (a, b) be a complex number, and note
that

z∗z = (a2 + b2, 0)

= (|z|2, 0)

Now since V is unit we have that

(V †V)11 = V †
11V11 + V †

12V21 + .. + V †
1nVn1

= V ∗
11V11 + V ∗

21V21 + .. + V ∗
n1Vn1

where we used successively: the definition of matrix mul-

tiplication, and A†
ij = A∗

ji. The last line can be further
simplified using our first remark, namely:

V ∗
i1Vi1 = (|Vi1|2, 0)

Thus

(V †V)11 = (|V11|2, 0) + (|V21|2, 0) + .. + (|Vn1|2, 0)

= (|V11|2 + |V21|2 + .. + |Vn1|2, 0)

Because V is unit the last line must be equal to (1, 0),
and so we have proved the property. �

II. QUANTUM THEORY

Quantum theory is one of the pillars of modern physics.
The theory is 100 years old and thoroughly checked by
experiments; it enables physicists to understand and pre-
dict the behaviors of any closed (perfectly isolated from
the rest of the world) physical system. Usually these
are small systems such as atoms, electrons, photons etc.
(only because they are generally less subject to outside
interactions).

A. States

Postulate 1 The state of a closed physical system is
wholly described by a unit n× 1 matrix of complex num-
bers.

Comments. In other words a state is given by a column
of n complex numbers

V =







V11

...
Vn1






such that V †V = I1.

What we mean by closed physical system is just about
anything which is totally isolated from the rest of the
world. The number of components n varies depending
on how complicated the system is; it is called the degrees
of freedom or the dimension of the system. The postu-
late itself is extremely short and simple. It is nonetheless
puzzling as soon as you attempt to apprehend it with
your classical intuition.
Example. Consider a coin, which insofar as we have al-
ways observed, can either by ‘head ⊚’ or ‘tail ⊛’. Thus
we will suppose it has n = 2 degrees of freedom, and we
will further assume that the state:

‘head ⊚ ’ corresponds to quantum state

(

(1, 0)
(0, 0)

)

whilst ‘tail ⊛ ’ corresponds to quantum state

(

(0, 0)
(1, 0)

)

Now if the coin was to be shut in a totally closed box,
it would start behaving like a quantum coin. Thus the
state:

‘ ⊚ + ⊛ ’ =

(

(1√
2
, 0)

(1√
2
, 0)

)

would become perfectly allowable. A quantum coin can
be in a superposition of head and tail, i.e. it can be
both head and tail at the same time, in some proportion.
Quantum theory is more general than our classical intu-
ition: it allows for more possible states. It as if ‘head’ and
‘tail’ were two axes, and the quantum coin was allowed
to live in the plane described by those axes.

B. Evolution

Postulate 2 A closed physical system in state V will
evolve into a new state W , after a certain period of time,
according to

W = UV

where U is a n× n unit matrix of complex numbers.

Comments. In other words, in order to see how the
quantum state of a closed physical system evolves, you

4

have to multiply it by the matrix which describes its evo-
lution (which we call U). U could be any matrix of com-
plex numbers so long as it is n × n (remember V is an
n× 1 matrix) and verifies the condition U †U = In.
Note that this postulate is coherent with the first one, be-
cause evolution under U takes an allowed quantum state
into an allowed quantum state. Indeed suppose V is a
valid state, i.e. an n× 1 matrix verifying V †V = I1. By
definition of the matrix multiplication an n × 1 matrix
multiplied by an n × n matrix is also an n × 1 matrix,
and thus W has the right sizes. Is it a unit matrix? Yes:

W †W = (UV)†(UV) by definition of W

= V †U †UV by Property 2

= V †InV since U is unit

= V †V by Property 1

= I1 since V is unit

Thus W is a valid quantum state.

C. Measurement

Postulate 3 When a physical system in state

V =







V11

...
Vn1







is measured, it yields outcome i with probability pi =
|Vi1|2. Whenever outcome i occurs, the system is left in
the state:

W =

















(0, 0)
...

(1, 0)
...

(0, 0)

















← ith position

Example. Suppose you have a quantum coin in state:

‘ ⊚ + ⊛ ’ =

(

(1√
2
, 0)

(1√
2
, 0)

)

which you decide to measure. With a probability p1 =
| 1√

2
|2 = 1

2
you will know that outcome ‘1’ has occurred,

in which case your quantum system will be left in state

‘ ⊚ ’ =

(

(1, 0)
(0, 0)

)

But with probability p2 = 1
2

outcome ‘2’ may occur in-
stead,in which case your quantum system will be left in
state ‘⊛’.

Comments. Thus a measurement in quantum theory is
fundamentally a probabilistic process. For this postulate
to work well we need to be sure that the probabilities
all sum up to 1 (so that something happens 100% of the
time). But you can check that this is the case:

p1 + ... + pn = |V11|2 + .. + |Vn1|2 by postulate 3

= 1 by Property 3

The other striking feature of this postulate is that the
state of the system gets changed under the measurement.
In our example everything happens as though the quan-
tum coin in state ‘⊚ + ⊛’ is asked to make up its mind
between ‘⊚’ and ‘⊛’. The quantum coin decides at ran-
dom, but once it does it remains coherent with its deci-
sion: its new state is either ‘⊚’ or ‘⊛’.
This feature provides the basis for one of the latest high-
tech applications of quantum theory: quantum cryptog-
raphy. Suppose Alice and Bob want to communicate se-
cretly over the phone, but Eve, the Eavesdropper, might
be spying upon their conversation. What Alice and Bob
can do is to send quantum coins to each other across the
(upgraded) phone network. As Eve attempts to mea-
sure what the honest parties are saying, she is bound to
change the state of the coin. This will enable[1] Alice
and Bob to detect her malevolent presence.

III. DEUTSCH-JOZSA ALGORITHM

The measurement postulate will (probably) make you
think that quantum theory is just a convoluted machin-
ery whose only purpose is to describe objects which might
be in ‘state 1’ with probability p1, in ‘state 2’ with prob-
ability p2 etc. until n. After all why bother thinking of
the state ‘⊚ + ⊛’ as a coin which is both head ‘⊚’ and
tail ‘⊛’ at the same time - when after it gets observed it
collapses to either head ‘⊚’ or tail ‘⊛’ anyway?
No. You have to consider that the coin is both ‘⊚’ and
‘⊛’ until you measure it, because this is how it behaves
experimentally (until you measure it). In other words
the only way to account for what happens between the
moment you prepare your initial system and the moment
you measure it is to think of the complex components of
the state V as amplitudes, proportions and not as prob-
abilities. This has much to do with what Postulate 2
enables us to do.
In this last part we shall illustrate this point by consider-
ing the simplest of all known quantum algorithms[2]. An
algorithm is just a recipe that is used to systematically
solve a mathematical problem. But the mathematical
problem we will now introduce cannot be solved by clas-
sical means: it can only be solved using quantum theory,
that is with a quantum algorithm. The fact that this al-
gorithm does work in practice ought to demonstrate the
fact that the amplitudes of quantum theory permit us to
do things which mere probabilities would not allow, and
would not explain.

5

A. The problem

A boolean value is something which can either be True

or False. For instance the statement ‘the sky is blue’ has
the boolean value True almost anywhere in the world
with the exception of England, where it takes the value
False.
A boolean operator is just a ‘box’ which takes one or sev-
eral boolean values and returns one or several boolean
values. In order to define our problem we need to be-
come familiar with two boolean operators, which we now
describe.
The boolean operator Not takes the boolean value True

into False and the boolean value False into True. We
denote this as follows:

Not(True) = False

Not(False) = True

The boolean operator Xor (exclusive or) takes two
boolean values and returns one boolean value. It returns
True either if the first boolean value it takes is True and
the second one is False or if the second boolean value it
takes is True and the first one is False. Otherwise it
returns False. We denote this as follows:

Xor(True,False) = True

Xor(False,True) = True

Xor(False,False) = False

Xor(True,True) = False

In other words Xor compares its two input boolean val-
ues: it returns True if they are different and False if
they are the same.
We are now ready to state the problem.

Problem 1 Suppose we are given a mysterious boolean
operator F (a black box) which takes one boolean value
and returns another boolean value. We want to calculate
Xor(F(False),F(True)), i.e. the boolean value returned
by Xor when applied to the two possible results of F. But
we are allowed to use the mysterious boolean operator F

only once.

It is clear that this problem cannot be solved classi-
cally. This is because in order to learn anything about
F you will have to use F. But we are allowed to do
this only once. Suppose we use F on input boolean value
False. This gives us F(False), but tells us nothing about
F(True) which may still be either True or False. Thus
we cannot compute Xor(F(False),F(True)) and we fail
to solve the problem. The same reasoning applies if we
begin by using F to obtain F(True).
But what would happen if we had the possibility to use
F upon an input boolean value which is both True and
False, in some proportions (a superposition)?

B. The quantum setup

Now suppose that the mysterious boolean operator F

is given in the form of a ‘quantum black box’ instead. To
make this more precise we need to call

‘False,False’ the quantum state







(1, 0)
(0, 0)
(0, 0)
(0, 0)







‘False,True’ the quantum state







(0, 0)
(1, 0)
(0, 0)
(0, 0)







‘True,False’ the quantum state







(0, 0)
(0, 0)
(1, 0)
(0, 0)







‘True,True’ the quantum state







(0, 0)
(0, 0)
(0, 0)
(1, 0)







We assume we have access, for one use only, to a physical
device which implements F as a quantum evolution. This
quantum evolution U must take

‘True,False’ into ‘True,F(True)’

‘False,False’ into ‘False,F(False)’

Notice that if for instance ‘F(True) = True’then
‘True,F(True)’ simply denotes the quantum state
‘True,True’. Furthermore we assume U takes

‘True,True’ into ‘True,Not(F(True))’

‘False,True’ into ‘False,Not(F(False))’

The quantum evolution U is fully specified in this man-
ner. In matrix form it is given as follows:







(1 − FFalse, 0) (FFalse, 0) (0, 0) (0, 0)
(FFalse, 0) (1− FFalse, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (1 − FTrue, 0) (FTrue, 0)
(0, 0) (0, 0) (FTrue, 0) (1− FTrue, 0)







with:
FFalse equal to 1 if F(False) is True, and 0 otherwise.
FTrue equal to 1 if F(True) is True , and 0 otherwise.

Whatever the values of FFalse and FTrue, the ma-
trix of complex number defined above is unit, i.e.
U †U = I4. Thus according to postulate 2 this mysteri-
ous quantum black box is perfectly allowable physically.
As an exercise you may want to check that the matrix U
does take ‘True,False’ into ‘True,F(True)’ etc., and
that it is indeed unit.

6

For our quantum algorithm we will need another
quantum evolution:

H =







(1/2, 0) (1/2, 0) (1/2, 0) (1/2, 0)
(1/2, 0) (−1/2, 0) (1/2, 0) (−1/2, 0)
(1/2, 0) (1/2, 0) (−1/2, 0) (−1/2, 0)
(1/2, 0) (−1/2, 0) (−1/2, 0) (1/2, 0)







This H is also a unit matrix of complex numbers.

C. The solution

Algorithm 1 In order to solve problem 1 one may use
the following algorithm:

1. Start with a closed physical system in quantum
state ‘False,True’.
2. Evolve the system under the quantum evolution H.
3. Evolve the system under the quantum evolution U .
4. Evolve the system under the quantum evolution H.
5. Measure the system.

If Xor(F(False),F(True)) is False the quantum
measurement always yields outcome ‘2’.
On the other hand if Xor(F(False),F(True)) is True

the quantum measurement always yields outcome ‘4’.
Thus the algorithm always manages to determine
Xor(F(False),F(True)), and does so with only one use
of the quantum evolution U .

Proof. In Step 1 we start with a closed physical system

whose quantum state is V =







(0, 0)
(1, 0)
(0, 0)
(0, 0)






.

After Step 2 the quantum state of the system has
become HV . By working out this matrix multiplication

we have HV =







(1/2, 0)
(−1/2, 0)
(1/2, 0)

(−1/2, 0)






.

You may want to check this matrix multiplication and
the ones to follow, as an exercise.
After Step 3 the quantum state of the system has
become UHV . We can still work out the matrix
multiplication but obviously the result now depends
upon our mysterious boolean operator F. Indeed we

have UHV =







(1/2− FFalse, 0)
(−1/2 + FFalse, 0)
(1/2− FTrue, 0)

(−1/2 + FTrue, 0)






.

Notice that UHV depends both upon F(False) and
F(True), in some proportions.
After Step 4 the quantum state of the system has become
HUHV and we have, by working out the multiplication:

HUHV =







(0, 0)
(1− FFalse − FTrue, 0)

(0, 0)
(FTrue − FFalse, 0)






.

Finally in Step 5 we measure the state HUHV . Accord-
ing to Postulate 3 this yields:
- outcome ‘1’ with probability 0 (never).
- outcome ‘2’ with probability p2 = (1−(FFalse+FTrue))

2.
- outcome ‘3’ with probability 0 (never).
- outcome ‘4’ with probability p4 = (FTrue − FFalse)

2.

Now if Xor(F(False),F(True)) is False then FFalse

and FTrue have to be the same. Thus FFalse + FTrue

equals either 0 or 2, whereas FTrue − FFalse is necessarily
worth 0. As a consequence p2 must equal 1 whereas p4

is worth 0.
Similarly, if Xor(F(False),F(True)) is True then
FFalse and FTrue have to be the different values.
Thus FFalse + FTrue is necessarily worth 1, whereas
FTrue − FFalse equals either −1 or 1. As a consequence
p2 is worth 0 whereas p4 must equal 1. �

D. Comments

It is quite a remarkable fact that with only one use of
the ‘quantum black box’ we succeed to determine a quan-
tity which intrinsically depends ‘on both possible values
which the box may return’. Although this algorithm does
not seem extremely useful in every day life, it teaches us
an important lesson: the components of a quantum state
must be viewed as proportions (amplitudes), not as prob-
abilities. The quantum coin can be both head or tail in
some proportions, simultaneously, until you measure it.
Until recently this feature of quantum theory was essen-
tially regarded as an unfortunate oddity which made the
theory difficult to grasp. But we are now learning to turn
this feature to our own advantage, as a means of ‘explor-
ing several possibilities simultaneously’ (so to speak).
This is recent research however, and to this day not
so many quantum algorithms are known. Yet we do
know that Quantum Computers can factorize large in-
teger numbers efficiently, or even find a name within an
unordered list of 100 people in only 5 tries. These are
quite useful things to be able to do. The best place to
learn about them is [3], if you have followed me this far
you can go further.

IV. ACKNOWLEGMENTS

The author would like to thank his mother for sug-
gesting this article, Anuj Dawar for his patient listening,
EPSRC, Marconi, the Cambridge European and Isaac
Newton Trusts for financial support.

7

[1] C.H. Bennett, G. Brassard, Quantum cryptography:

Public-key distribution and coin tossing, Proceedings of
IEEE International Conference on Computers, Systems
and Signal Processing, 175-179, (1984).

[2] D. Deutsch, R. Jozsa Rapid solution of problems by quan-

tum computation. Proceedings of the Royal Society of Lon-

don A, 439, 553-558, (1992).
[3] M.A. Nielsen, I.L. Chuang, Quantum Computation

and Quantum Information, Cambridge University Press
(2000).

