
Biomolecular Computing and Programming

Max H. Garzon and Russell J. Deaton

and The Molecular Computing Group

http://www.msci.memphis.edu/�garzonm/mcg.html

The University of Memphis, Memphis TN, 38152

Abstract

Molecular computing is a discipline that aims at harnessing individual molecules at nanoscales

for computational purposes. The best studied molecules for this purpose to date have been DNA

and bacteriorhodopsin. Molecular computing allows one to realistically entertain, for the �rst

time in history, the possibility of exploiting the massive parallelism at nanoscales inherent in

natural phenomena to solve computational problems. The implementation of evolutionary al-

gorithms in biomolecules would bring about full circle the biological analogy and present an

atractive alternative to meet large demands on computational power. This paper presents a

review of the most important advances in molecular computing in the last few years. Major

achievements to date are outlined, both experimental and theoretical, and major potential ad-

vances and challenges for practicioners in the foreseeable future are identi�ed. A list of sources

and major events in the �eld has been compiled in an appendix, although no exhaustive survey

of the expanding literature is intended.

1



1 Introduction

The notion of harnessing individual molecules at nanoscales for computational purposes is an idea

that can be traced back at least to the time when electronic computers were being constructed in the

1940s. Electrons are, in fact, orders of magnitude smaller than molecules, but over 1015 are required

just to communicate a carriage return to a conventional processor. The idea of improving the

e�ciency of hardware utilization using biomolecules is attractive for several reasons. First, hardware

is inherently parallel, and parallelism is a good way to handle computational bottlenecks. Second,

biomolecules occur abundantly in nature, for example, inside all known living cells with (eukaryote)

and without (prokaryote) nuclei, and constitute the basic substratum of life. Consequently, they

have developed a structure that enables them to solve a number of di�culties for parallel computing,

such as communication and load balancing problems, by mechanisms that we may not even be aware

of. Furthermore, short biomolecules can now be synthesized at low costs. Third, their physical

implementation is therefore relatively simple compared to the demanding and costly fabrication

processes used in VLSI. Let us consider the following �gures in terms of sheer space, not to mention

performance. A human brain consists of about 1012 neurons and a human body comprises over 1015

cells; each cell contains a copy of the entire genetic code consisting of over 3 billion nucleotide pairs

to perform living functions, all that nicely packed in a few double helices about 3:4 nanometers

wide and microns long. Therefore, computing based on molecular media would really tip the scales

in terms of miniaturization. On the other hand, these advantages are obtained at the expense of

complications that are nonissues for conventional computers, as will be seen presently. The basic

problem for computation remains: how to trick a piece of matter (biomolecules in this case), evolved

to have a \mind of its own" following predetermined physical and/or chemical laws, to perform an

anthropomorphic task typical of what we understand today as computation?

The purpose of this article is to present an review of the most important advances in molecular

computing in the last few years, and to identify some of the great challenges for the �eld in the

foreseeable future. In the process, we identify some of the potential advances that the �eld may

make. Section 2 contains technical details of Adleman's landmark experiment as well as a brief

review of some of the origins of DNA computing. Section 3 outlines some of the major achievements

to date. Section 4 identi�es what we believe are the major challenges if the �eld is to eventually

become an established paradigm with real-life applications. They originate in projects that have

been suggested or are in progress, and so may generate major breakthroughs in the next few years.

Finally, in Section 5 we make a summary assessment of achievement and outlook for the future.

A list of sources and major events in the �eld have been compiled in an Appendix, but we

have certainly not attempted to make an exhaustive survey of the literature. The selection and

emphasis of the topics are representative of the main directions in the �eld, but also undoubtedly

re
ect some of the authors' biases.

2 The Origins of Molecular Computing

Lately, advances in computer science have been characterized by the computational implementa-

tion of well-established biological paradigms. Notable advances are arti�cial neural nets inspired

by the brain and its obvious connection to natural intelligence, and evolutionary computation,

inspired by the Darwinian paradigm of natural selection. Early ideas of molecular computing at-

tempted to emulate conventional electronic implementations in other media, e.g., implementing

Boolean gates in a variety of ways. A fundamental breakthrough characteristic of a new era was

made by Adleman's 1994 paper [1], where he reports an experiment performed with molecules of

2



fundamental importance for life, DNA (deoxyribonucleic acid) molecules, to solve a computational

problem known to be di�cult for ordinary computers, namely the hamiltonian path problem

(hpp). This problem is typical of an elite set of problems in the well-known complexity class NP

that exemplify the computational di�culty of search procedures that plague a number of very

important applications in combinatorial optimization, operations research, and numerical compu-

tation. Adleman's experiment ushered in a new computational paradigm in molecular computing

for several reasons. First, it showed that it is indeed possible to orchestrate individual molecules

to perform computational tasks. Second, it showed the enormous potential of DNA molecules for

solving problems beyond the reach of conventional computers that have been or may be developed

in the future based on solid-state electronics. Shortly after, the �rst conference on DNA-based

computing was organized at Princeton University in 1995, and several events have been held since

annually. (See the Appendix for a listing.)

2.1 Adleman's Landmark Experiment

In this section we present the essential technical details of Adleman's experiment. The hpp is

de�ned precisely as follows:

Hamiltonian path problem (hpp)

Instance: a directed graph � and two vertices, source and destination.

Question: yes/no, there is a path following arcs in the graph connecting the source to the

destination vertices and passing through each other vertex exactly once.
As mentioned before, this problem is NP-complete, i.e., it is representative of many of the

di�culties that a�ict conventional computers for solving very important problems in combinatorial

optimization and operations research. Each complete problem in NP contains all problems in the

classNP as special cases, after some rewording, and is characterized by the fact that their solutions

are easily veri�able, but extremely di�cult to �nd in a reasonable amount of search time. (More

technical details about this class can be found in [2].) The best-known general techniques to apply

to these problems amount essentially to an exhaustive search through all possible solutions, looking

for satisfaction of the constraints required by the problem. It is therefore an ideal candidate for a

brand new computational approach using molecules.

Adleman's brilliant insight was to carefully arrange a set of DNA molecules so that the chem-

istry that they naturally follow would perform the brunt of the computational process. The key

operations in this chemistry are sticking operations that allow the basic nucleotides of nucleic

acids to form larger structures through the processes of ligation and hybridization (more below in

Section 3.1). The �rst DNA-based molecular computation is summarized in Fig. 1. Speci�cally,

Adleman assigned well chosen unique single-stranded molecules to represent the vertices, used

Watson-Crick complements of the corresponding halves to represent edges joining two vertices, and

synthesized a picomol of each of the 21 resulting molecules for the graph in Fig. 1(a). Taking

advantage of the fact that molecular biologists have developed an impressive array of technology

to manipulate DNA, he designed a molecular protocol (one would say algorithm in computer sci-

ence) that enabled the molecules to stick together in essentially all possible ways. In the situation

illustrated in Fig. 1(b), the edge molecules were to splinter nearby vertex molecules to construct

longer and longer molecules representing paths in the original graph. If there exists a Hamiltonian

path called for in the problem speci�cation, one representative molecule would thus be created

by the chemistry on its way to equilibrium. Using more of the same biotechnology he could then

determine, as illustrated in Fig. 1(c), the presence or absence of the molecule in the �nal test tube

and respond accordingly to the original problem. (Some details of these operations can be found

below in Section 3.1). The full technical details of the reactions and experimental setup can be

3



0 6

13

4

2 5

GGGGTGGGACCATTTTCACA

TGATAGTTGGATCTCCGAGA CGGATATTGAGGGTCTACGG

AAACGTGAGCCTTGCTTCTT

TTGTTTAGATTATGTTATAG AGCGCATTGACAGGTAATGT

TCGTACGTTACTCHHACTCT

(a)

(vertex 0)
GAACGAAGAAGCCTATAACT - 5'

(edge)

AAACGTGAGCCTTGCTTCTT CGCATATTGAGGGTCTACGG (vertex 1)

...

AGCGCATTGACAGGTAATGT

TCGTACGTTACTCGCACTCT(vertex 6)

(vertex 5)

o
20 C

(b)

Gels

PCRs

160

140

120

80bp

+ heat

+ primers

+ polymerase

(c)

Figure 1: Steps in Adleman's Molecular Computation: (a) encoding of problem instance; (b)

computing reactions; (c) extraction.

4



found in [1].

This paper provided a very appealing argument for molecular computing. In addition to the

points mentioned at the end of the previous section, the most important point is perhaps that

biotechnology is mature enough to stop dreaming about gedanken experiments for solving hard

computational problems, and that it is time to begin thinking about speci�c experimental setups

to solve them.

2.2 DNA Computation in Ciliates

Four years later, Landweber and Kari [3] presented a di�erent version on the origin of DNA com-

puting. They provide a convincing argument that several million years earlier and unknown to

Adleman, the ciliated protozoa oxytricha nova and oxytricha trifallax of the genus oxytricha solved

a problem similar to hppwhile unscrambling genes as part of their reproductive cycle. Ciliate cells

possess, in general, two nuclei, an active macronucleus and a functionally inert micronucleus. The

macronucleus forms from the micronucleus after sexual reproduction. The process requires more

than simple copying, however, because intervening nonprotein coding sequences that shatter it into

nearly a hundred pieces must be removed, and moreover, the relevant protein-coding sequences

sometimes appear scrambled and must be restored to their natural order. This process is essen-

tially identical to the problem one faces in hpp , namely to arrange the cities in the right order

for a Hamiltonian path. The analogy goes further since the protozoa seem to rely on short repeat

sequences that act as sort of matching tags in recombination events. If the mechanisms underlying

this type of information processing can be fully attributed to the same kinds of processes present

in Adleman's experiment, then molecular computation is certainly millions of years old. Therefore,

the origins of molecular computing are still buried in the evolution of genetic complexity in the

biological kingdom.

2.3 Other substrata for Molecular Computing

Although the question has been raised several times as to whether DNA is necessarily the molecule

best suited for molecular computing, only a couple of papers have addressed alternatives such as

RNA (rybonucleic acid) in depth. In two recent papers [4, 5], The Princeton group has provided

detailed experimental evidence that RNA may be more suitable to solve some computational prob-

lems because of its versatility. They argue that RNA is easier to use in substractive protocols

that solve the problem by eliminating molecules representing problem constraint violations, rather

than Adleman's additive method of building up the solution from basic building strands. Speci�c

advantages will be sprinkled throughout the rest of this paper.

An older alternative to DNA molecules that support optical computing is the protein bacteri-

orhodopsin, which contains the light sensitive rhodopsin present in vertebrate retinas. In essence,

this molecule consists of seven alpha-helical segments that span the purple membrane of a micro-

organism commonly known as halobacterium halobium. This organism grows in salt marshes at

higher salt concentrations than sea water, where exposure to high thermal 
uctuations and pho-

tochemical damage has made it capable, for the sake of metabolic energy, of switching chemically

among a few atomic states a thousand timefold more e�ciently than similar synthetic materials.

Switching can takes place by absorption of green and blue light as many as 10 million times be-

fore wearing out. The switching property has been used in combination with lasers to create a

storage medium for optical computer memories that is almost in the commercial stage now. The

possibility exists that it might become a core memory for a molecular computer [6, 7]. Although

certainly involving amino acids at the protein-binding sites, this type of computation is more pas-

5



sive than the type described above. We thus use the expression `molecular computing' in order

to avoid excluding any future developments with other media, but with the understanding that,

currently, it essentially means DNA- and RNA-based computing. (It has been argued, in fact, that

other molecules such as proteins and arti�cially engineered rybozymes may serve biological and

computational functions much better. See Ellington et al. [8, 9] and Kool [10] for more details.)

3 Some Success Stories

In this section we give a brief description of some of the problems for which molecular protocols have

been or are being implemented successfully. Each story below either illustrates a basic technique

in molecular computing, or has successfully marked de�nite progress in the lab. Before proceeding

further, however, we need to give a more precise description of the molecular biological background

as well as a characterization of the basic methodology employed in molecular computing.

3.1 Basics from Molecular Biology

We present here the bare bones necessary to pin down the biochemical foundations of molecular

computing. A more sophisticated reader is referred to [11, 12] for further background in molecular

biology.

The relevant molecule chemistry is that of DNA and RNA. These complex molecules are com-

posed of basic blocks called nucleotides, nucleic acid bases A, T, G, C, that bind to form chains

called oligonucleotides, or n�mers, according to the Watson-Crick (herein abbreviated as WC)

complement condition, A = T and C � G, and vice versa. Each molecule has a polarity (sense of

orientation) from a so-called 50-end to a 30-end or vice versa. (The ordinary convention is to write

them from the 50 to the 30 end, unless we are describing double strands, in which case the lower

oligonucleotide is directed in the opposite sense.)

The basic reactions that take place between nucleotides rely on two key properties of DNA/RNA

molecules. Oligonucleotides bind in an antiparallel way with respect to the chemically distinct ends,

50 and 30, of the DNA molecule through strong co-valent bonds. Ligation is a chemical process

whereby two double strands are joined into one double strand by the same type of binding; the

process is catalyzed by an enzyme called ligase. Hybridization is a chemical process that joins

two complementary single strands into a double strand through hydrogen bonds (two for A-T and

three for C-G). A restriction enzyme (such as SmaI or EcoRI) is a protein characterized by the

double strand DNA sequence which it recognizes (called a site, such as
CCC'GGG

GGG'CCC
for SmaI, and

CTTAA'G

G'AATTC
for EcoRI) and cuts into two segments (ending in

CCC

GGG
and

GGG

CCC
for SmaI, and

CTTAA

G
and

G

AATTC
for EcoRI). The use of restriction sites as a computation methodology was

introduced more than a decade ago by Head [13] in the form of splicing systems.

The basic methodology in molecular computing to solve computational problems consists of

three basic steps: an encoding that maps the problem onto DNA strands, hybridization/ligation

that performs the basic core processing and extraction that makes the results visible to the naked

eye, as illustrated in Fig. 1(c). In Adleman's solution of hpp, the vertices of the graph are encoded

in oligonucleotides of DNA. The encoding of an edge consists of a splicing complement of the

two halves of the end vertex representations. The DNA representation of the Hamiltonian path

is formed as the vertex oligonucleotides are bound by hybridizing with the edge oligonucleotides.

Ideally, the Hamiltonian path, if present, is produced if the proper hybridizations occur.

6



Combination of ligation, hybridization, and cleaving yields other cut-and-paste operations that

permit manipulation of these strands at the nanoscale levels where they occur. It is the nature

of biomolecules to permit only procedures that are uncertain and statistical in nature so that

results can be guaranteed only globally, not at the level of speci�c molecules. The most important

procedures for molecular computing can be characterized as follows (we again refer the reader to

[11] for the intimate biochemical details).

Gel Electrophoresis

This procedure acts as a powerful microscope that permits us to see molecules (or rather populations

thereof) with the naked eye. This operation e�ects a sorting procedure on a population of molecules

of various lengths. It exploits the fact that biomolecules have a negative electric charge, so that

when placed in an electric �eld, they will tend to move to the anode. If they are forced to move

through a resistive medium (such as a gel or thin capillaries), it will exert a drag that is inversely

proportional to their length. Biomolecules also absorb ultraviolet radiation in a characteristic way,

so that, after an appropriate time, a UV snapshot will show bands where a subpopulation of strands

of the same length have clustered together whenever they are numerous enough to show a detectable

e�ect.

Enzymes

Restriction enzymes play the role of scissors in cut-and-paste operations. They come in several


avors. Restriction enzymes (such as E-coli or AluI) e�ect cutting vertically to a double strand

as described above. Exonucleases and endonucleases pluck o� nucleotides from a double strand

horizontally parallel to the strand. Polymerase grabs freely 
oating nucleotides in the neighborhood

onto a single stranded that has been properly primed with complementary markers at two ends

(in computer science one would say initialized) and creates a double-stranded segment between the

primers, as illustrated in Fig. 1(b). Currently, about 200 naturally occurring enzymes have been

identi�ed. The most useful for molecular computing include the ones already mentioned and Taq.

The arti�cial evolution of enzymes, more akin to ribozymes but with analogous properties, has

been proposed as an alternative subject of research for molecular computing { see, for example,

[14, 8].

PCR-Polymerase Chain Reaction

Introduced only in 1984, this procedure works as a copier machine for molecular computing. It

allows duplicating double-stranded molecules determined by single-stranded end-markers called

primers, as illustrated in Fig. 1(c). It consists of heating the population to be duplicated to de-

nature (melt) the double strands into single strands; primers are added that hybridize to their

WC-complements on the single strands and mark o� the duplication region. The enzyme poly-

merase is added to the reaction that successively attaches complementary nucleotides on the two

single-stranded segments until they become two double-stranded copies of the original molecule.

Exponential amounts of single molecules can then be obtained after a few iterations of thermal

cycles and enzyme addition. The process can be performed automatically for double strands of

length up to 200 bp (base pairs).

There are undoutbedly other tools in the biotechnology kit, but these will su�ce for the sake of

this paper. These basic operations can be further assembled into basic instruction sets to arrange

protocols that perform meaningful computational procedures.

3.2 Parallel Overlap Assembly

Perhaps the foremost advantage of computing with molecules is the ready parallelism in which

molecular operations take place. The best way to exploit this parallelism is to perform the same

operation simultaneously on many molecules. Adleman's basic technique can be characterized

7



as a generate-and-�lter technique, i.e., generate all possible paths and �lter out those that are

not Hamiltonian. In this approach, one must be sure to generate all the possible solutions to

the problem, akin to making sure that the data structure for a chromosome captures all possible

solutions in an evolutionary algorithm. Many protocols in molecular computing exploit this method,

for example Boolean formula evaluation (see the next section for some references).

It is therefore important to be able to generate all potential solutions to a problem. A procedure

called parallel overlap assembly has been used in molecular biology for gene reconstruction and

DNA shu�ing. It has been successfully used by Ouyang et al. [15] in a lab experiment to solve

an instance of another NP-complete graph problem, max-clique. The procedure consists of

iterations of thermal cycles that anneal given shorter DNA segments in random ways to produce

larger potential solutions. Related procedures have been used to improve solutions to hpp by Arita

et al. [16].

3.3 Boolean-circuit Evaluation

Another important approach in molecular computing is the implementation of Boolean circuits

because that would allow importing to the world of molecules the vast progress that has been

made on information processing in electronic computers. A successful implementation of Boolean

circuits would lead to the construction of ordinary computers in biomolecules, particularly of parallel

computers. Lipton [17] presented an early proposal for Boolean circuit evaluation as a solution to

sat (Boolean formula satis�ability) and thereby problems in the class NP. Ogihara and Ray [18]

have suggested protocols for implementing Boolean circuits that run in an amount of time that is

proportional to the size of the circuit. Amos et al. [19] improved the implementation to have run

time that is proportional to the depth of the circuit. In the protocol suggested by the latter, for

example, input bits are represented by well-chosen l�mers x and y that are present in the tube

if and only if the corresponding Boolean variables have value 1. The gates are represented by

3l�mers �x�yz that contain segments that are complementary to the input molecules and the output

of the gate. (Without loss of generality one can assume all gates are simply NAND-gates since this

operator is logically complete.) A typical evaluation of a NAND is made by placing in a tube the

values of the inputs equal to 1 and allowing the formation of a double strand that represents the

evaluation, as illustrated in Fig. 2(a). The encodings will have been chosen so that this evaluation

will contain a restriction site for an enzyme that will destroy the molecule in case both inputs are

present, so the evaluation will be 0, as expected. Otherwise, the site is used to detach the resulting

value 1, which is then recursively fed into the evaluation of the next layer. This implementation

allows parallel evaluation of all gates in the same layer, and so takes place in a number of steps

proportional to the depth of the circuit.

A di�erent and more versatile implementation by Hagiya and Arita [20] can be used for a similar

purpose, but it has other interesting applications shown next.

3.4 Whiplash PCR

Another technique that appears to be general enough to have a good number of important appli-

cations has been implemented by Hagiya et al. [22] and termed Whiplash PCR by Adleman. The

applications include ready solutions to cnf-sat (conjunctive normal form satis�ability), direct

sum cover, and hpp [23]. An important characterization of the computational power (branching

programs) together with a generalization of the technique (go-to programs) were later found by

Winfree [24]. The protocol works for computational tasks that can be speci�ed by state transitions.

Evaluation of a circuit is an example, where the state of the computation is initially the vector

8



y x

restriction site

gate
5'

5'

(a)

stopper

hairpin

qp

p' q'

. . .. . .

(b)

Figure 2: Two Protocols in Molecular Computation: (a) Boolean circuit implementation; (b)

whiplash PCR.

of input variables, and a transition produces the values of the next layer of gates evaluated on

the previous state. There are several notable features in this protocol. First, its implementation

is reduced to thermal cycles that are easily automated while performing a large number of state

transitions in parallel. Second, the transitions are self-controlled, i.e., once initiated, they stop

themselves without explicit human intervention. Third, and more importantly, the protocol has

been tested in the lab and it appears to operate as desired with high realiability, at least for a few

transitions.

The protocol is implemented on single strands and exploits hairpins, i.e., the tendency of one

end of a single strand to bend upon itself and hybridize to another segment of itself. The states

of the computation are encoded by segments of DNA; a transition p ! q on input a is encoded

by the corresponding concatenation of states pq separated by stoppers whose function will be seen

shortly; the 50-end of the strand encodes the transition table of the computation as well as its initial

con�guration; the current state of the computation is encoded at the 30-end by the complementary

strand; a transition is implemented by procuring the appropriate reaction conditions (temperature

cycles and polymerase) so that the current state �p (denoted p
0 in the illustration in Fig. 2(b))

hybridizes with the appropriate transition on the 50-end and the polymerization doubles-strands

the resulting double segment up to the stopper that separates it from the next transition.

The protocol was originally proposed as a solution to the problem of learning Boolean �-formulas

[22], which are known not to be learnable from examples alone in Turing polynomial time. (A �-

formula is one in which every variable occurs at most once.) Winfree [24] shows how to circumvent

this restriction by introducing the linear programming equivalent of dummy variables and enforcing

certain equality conditions. The hairpin, usually regarded as a source of errors, indeed appears to

be a powerful tool in molecular computing.

9



0 0

0

0

01

11

1 1

1

0

1

0 [0,3] [0,2]

[1,2][1,3]

[2,3]

[0]

Figure 3: A Nondeterministic Finite-State Machine.

3.5 Finite-state and Turing machine implementation

There were other simultaneous attempts to implement state machines, particularly �nite-state

machines (FSM). Garzon et al. [25] suggested implementation of nondeterministic �nite-state ma-

chines that are self-controlled and fault-tolerant. Fig. 3 shows a FSM where various moves are

possible from a particular state 0 on the same input 0. Nondeterministic computation is at the

core of the di�culties that Adleman's original experiment was designed to overcome. On the other

hand, nondeterminism is supposed to be well understood in the context of �nite-state machines,

speci�cally, a so-called subset construction produces a deterministic equivalent of a given nonde-

terministic FSM. It is conceivable that greater insight about the virtues of molecular computing

may be gained by looking for ways to implement nondeterminism e�ciently as a native mode of

computation in a fault-tolerant and e�cient way.

The implementation requires a dynamic molecule to represent the changing states of the FSM

that is capable of detecting its inputs in its environment. It can be a double-stranded molecule

containing a segment encoding for the current state and another segment encoding the last symbol

read that led to the current state. Other molecules representing inputs are added with appropriate

overhangs, which upon hybridization create restriction sites that allow cleaving with appropriate

enzymes to detach the old state and create a new molecule that re
ects the new state. Node-

terministic transitions occur because of the various possibilities in the hybridization process. If

run uncontrolled, the protocol will soon produce too many copies of the �nite control in the same

state and thereby thwart the e�ciency of the computation. The key to the success in the subset

construction to determinize a FSM is that, whenever two nondeterministic copies of the machine

�nd themselves in the same state, one can safely discard one of them since their runs will be iden-

tical thereafter. It is desirable to have a protocol that renders the implementation e�cient in the

tube, i.e., that it will self-regulate to produce approximately equal concentrations of the molecules

representing the various states.

The authors have proposed using the methylation process that occurrs in living cells and is

readily implementable in the lab, described as follows. Any living cell that produces a restriction

enzyme must identify and protect its own DNA from restriction. In order to prevent restriction of a

cell's own DNA when the cell produces a restriction enzyme, the cell also produces a methylase en-

zyme (methyltransferase) which methylates, i.e., adds a -CH3 chemical group to certain bases within

or near the restriction sites. Nearly all restriction enzymes are thus inhibited by certain methy-

10



lations of cytosine or adenine bases within their restriction sites. Common methylations include:

N4�methylcytosine (the nitrogen at position 4 of cytosine is methylated); C5�methylcytosine

(position 5 carbon of cytosine methylated, etc); hydroxymethylcytosine; and N6�methyladenine.

(More can be found in [26].) This reaction can be made self-regulating by methylating a fraction

of the input molecules being put into the reaction (which fraction will depend on the particulars

of the NFSM being implemented). If a state is represented by a palindromic restriction site, state

molecules will hybridize with other like-molecules representing the same state. The presence of the

appropriate restriction enzyme in the reaction will then cut and stop further expansion of this copy

of the FSM. However, if methylated bases are found within a fraction of the restriction sites formed,

the restriction enzyme will be unable to cut those copies of the FSM. Thus, the constant combined

presence of restriction enzymes and methylated input bases will guarantee that the number of

molecules in the tube can be maintained within an appropriate range for each state, so that they

will be fairly represented as the implementation proceeds. Further details of the implementations

can be found in [25]. A similar more general device for a Turing machine has been proposed by

Shapiro [27].

3.6 Cellular Automata Runs

A new direction originated in Winfree's attempts to show that abstract tilings, used earlier to

show computational universality, can actually be implemented in the lab. He has used the xor-

rule in a 2D cellular automaton whose run on the single-input con�guration 1 generates Pascal's

triangle modulo 2 in order to show that it is possible to implement cellular automata in a test

tube. The molecules are arranged so that the thermodynamics of the process drives the run of

the automaton. The implementation has required a careful choice of three-branched and double-

crossing tiles that have three or four sticky ends that hybridize to other like molecules to form a

tiling. These choices will again guarantee self-regulation to ensure that only proper tiles are added

at each time. Experiments have actually been performed and con�rmation has been obtained

that large fragments of the intended structure have been created. Naturally, other devices were

required to detect these tiny structures at the nanoscales in which they exist, namely atomic-force

microscopy. More details can be found in [24].

3.7 Other Applications: Is There a \killer application"?

Molecular computing has generally aimed, so far, at solving the same ordinary algorithmic problems

that are commonly posed for conventional VLSI-based computers, albeit by an entirely di�erent

type of operational process. None of them have exhibited the kind of practical success that would

be considered satisfactory to answer Lipton's impromptu call for a \killer app" at the second DNA-

based workshop in Princeton. Such an application would suit well the nature of biomolecules, beat

current and perhaps even future solid-state electronics, and would establish beyond the shadow

of a doubt the power of the new computational paradigm. Landweber et al. [28] have proposed

that DNA sequencing, DNA �ngerprinting, and/or DNA population screening are good candidates.

They would require a new approach in the way we conceive and do molecular computation now.

Speci�cally, thus far a practicioner is assumed to know the composition (a digital string) of the

molecules that initially encode information and their subsequent transformations in the tube. This

methodology requires going back-and-forth between the digital and analog DNA world, by sequenc-

ing (when compositions are unknown), which is an expensive step, and the converse step, synthesis

of DNA. This so-called DNA2DNA approach bypasses digitizing by operating directly on unknown

pieces X of DNA, using known molecules, in order to compute a predetermined function f(X) that

11



speci�es the computational task.

The fact that the �rst �ve years of work in the �eld have not, however, produced such a killer

application would make some people think that perhaps fundamental scienti�c and/or technological

di�culties have to be overcome before one e�ectively appears on the scene. These proposals can be

thus regarded as challenges, rather than established results and will be discussed in the following

section.

4 Grand Challenges for Molecular Computing

After the discussion in the previous sections, one question must have emerged in the reader's mind:

How can all this potential of molecular computing be fully realized in real life? In this section we

examine fundamental challenges that will need to be resolved for bringing molecular computing to

an e�ective new paradigm for computational science.

The root of the di�culties for molecular computing lies in our relatively poor ability to control

the physical chemistry involved in the context of information processing, despite impressive progress

in biotechnology that has made it thinkable. Molecular computing is based on operations performed

by individual molecules. Even under the perhaps unreasonable assumption that reactions are

governed by deterministic laws, the number of factors that eventually determine whether these

operations take place for individual molecules is ultimately out of the control of the experimentalist,

at least presently. The computation and extraction phases therefore rely on cooperative phenomena

that can only be observed as ensemble statistical processes involving a great number of individual

molecules. Early approaches simply ignored these facts. But over time, practitioners have come to

realize that the future of the �eld may lie precisely on whether or not these problems can be overcome

to a reasonable degree of e�ectiveness. We discuss �rst the more fundamental problem arising from

the physico-chemical foundations because they determine to a great extent the possibilities for

the more direct computer science issues to be discussed thereafter. The latter issues are worth

discussing only in case good enough solutions can eventually be devised for the former.

4.1 Reliability, E�ciency, and Scalability

Reliability, e�ciency, and scalability are perhaps the three most burning issues for molecular com-

puting. The reliability of a protocol, i.e., a DNA computation, is the degree of con�dence that a

lab experiment provides a true answer to the given problem. The e�ciency of the protocol refers to

the intended and e�ective use of the molecules that intervene in it. The scalability of a lab experi-

ment is the e�ective reproducibility of the experiment with longer molecules that can encode larger

problem instances while still obtaining equally realiable results under comparable e�ciency. These

three are distinct but clearly interrelated problems. Biologists have not really faced these problems

in their work because, in that �eld, the de�nition of success is di�erent than in computer science.

(When a biologist claims that she has cloned an organism, for example, the contention is that one

experiment was successful, regardless of how many were previously not, or whether only one clone

was actually produced.) Research on these problems in molecular computing has just begun. Most

work has concentrated on reliability and we proceed to sketch it, in the guise of a more basic and

important problem, the encoding problem. This is a good example in which molecular computing

will probably have a feedback e�ect on the notions of e�ciency and scalability in biology.

12



4.2 The Encoding Problem

Once the encoding molecules for the input of a problem have been chosen, a molecular computer

scientist is at the mercy of the chemistry, even though she may still have some control over the

protocols that she may perform with them in the laboratory execution. If the encodings are prone

to errors, the experiment can be repeated any number of times and always provide the same

(erroneous) results, as evidenced in [29]. This fact lessens the e�ectiveness of the standard method

of increasing the reliability of a probabilistic computation with a nonzero probability of errors by

iteration, contemplated in [30, 31]. A di�erent analysis of the problem was initiated by Baum

[32], where it is assumed that undesirable errors will occur only if repetitions or complementary

substrands x of a certain minimum sticking length k := jxj appeared in the encoding. The problem

is that the uncertain nature of hybridizations plagues the separators that are used to prevent the

problem, so a more thorough approach appears to be necessary.

A mismatched hybridization is a bound pair of oligonucleotides that contains at least one mis-

matched pair. In addition to frame shift errors in which the n�mers are shifted relative to each

other, mismatches leading to false positives include hairpin mismatches, bulges, and partial hy-

bridizations. The encoding problem for DNA computing thus consists of mapping the instances of

an algorithmic problem in a systematic manner onto speci�c molecules so that (a) the chemical

protocols avoid all these sources of error, and (b) the resulting products contain, with a high de-

gree of reliability, enough molecules encoding the answers to the problem's instances to enable a

successful extraction.

An optimal encoding would maximize the likelihood of desired hybridizations while minimizing

the occurrence of undesirable hybridizations, and furthermore lead to equilibrium reaction condi-

tions that are favorable for retrieving the solution of the problem in the extraction phase. Clearly,

the encoding of a problem for a molecular solution has to be decided beforehand by means presum-

ably di�erent from DNA computation. Thus, in its full generality, we have the following algorithmic

problem.

dna encoding(�)

Instance: A �nite set S of n�mers over the genetic alphabet � := fA; G; C; Tg, and a

positive integer K

Question: Is there a subset C � S such that

8x; y 2 C; �(x; y)� K ?

The function � re
ects a desirable quality criterion for the protocol and can be given by mapping

� : ��
! Z+. Solving the encoding problem requires identifying appropriate criteria that capture

the relevant chemistry, and moreover, give algorithms to produce good encodings that will satisfy

constraints (a) and (b).

The most natural and �tting criteria can be found in the thermodynamics that governs the

hybridization and ligation processes. Ultimately, it comes down to the Gibbs free-energy that

nucleotides release during hybridization in passing to a lower energy state of a bound pair. The

thermodynamics of hybridizations is fairly well known { see Wetmur [33] for a survey of relevant

facts, as well as SantaLucia et al. [34]. The basic quantity is the melting temperature Tm of a given

double strand, which is de�ned as the temperature at which half of a homogenous population of such

double strands will have denatured into single strands. The controlling parameters of a melting

13



temperature are strand composition, strand concentration, and various other solvent properties

such as pH of the solution. Despite some fundamental work [35, 36, 37, 38], this approach based on

melting temperatures has not really produced a systematic and productive way to produce good

encodings. Such encodings can actually be obtained through evolutionary searches, either in vitro

[39, 40] or in silico [29, 41, 42, 43], that utilize �tness functions based on one or some of these

factors, or through the use of heuristics for special purpose encodings [44, 58]. Finding appropriate

general metrics � in oligonucleotide space and practical solutions to the corresponding restriction

of dna encoding is an important problem for DNA based computing. In general, even for a single

good choice of quality criterion � , the encoding problem as stated is very likely to be NP-complete,

i.e., as di�cult as the problem it is supposed to help solve, and so it would not admit general

solutions. Relaxations of the problem need to be considered.

A good degree of con�dence in the computation could be obtained by using a physically-based

measure of error. One such measure, the computational incoherence (CI), has been proposed [45]

based on the thermodynamics of base-stacking, DNA melting, and Gibb's free energies of duplex

formation [46]. Under the assumption of equilibrium statistical mechanics, the CI estimates the

ensemble average probability of an error hybridization per hybridization event in the test tube for

a speci�ed set of planned hybridizations; additionally, it provides an optimal reaction temperature

for the experiment. Details of the derivation can be found in [45]. Laboratory experiments will

help decide how good a criterion of encoding quality is captured by the CI.

4.3 Error-Preventing Codes

It is conceivable that a more principled computational approach can produce solutions of the en-

coding problem that capture physico-chemical conditions that are good enough to be validated by

lab experiments. Perhaps the best example is the combinatorial approach proposed by the authors'

molecular computing group in Memphis. The crux of the approach is to regard an experiment for

a molecular computation as the transmission of a message from the protocol to the experimentalist

through a noisy channel, namely the tube(s) in which the reactions take place. The theory of com-

munication introduced by Shannon has found e�ective ways to handle this problem by introducing

redundancy to protect against noise. The solutions are the so-called error-correcting codes for data

transmission that information theorists have spent the last 50 years designing. The mathematical

framework is the metric space of Boolean hypercubes with the standard binary Hamming metric.

In the case of information encodings in biomolecules, one can easily generalize the Hamming dis-

tance to the four-letter alphabet A, C, G, T using Watson-Crick complementarity. This generalized

Hamming metric gives some quanti�cation of the hybridization likelihood of the molecules in the

reaction. This possibility has been explored in several papers, e.g. [35, 39, 37, 47]. The problem

is that oligos at a large Hamming distance can still hybridize perfectly at the overlap after a shift,

such as in the case of the two strands in
agatcTGC

TACtctag
. The physico-chemical reality of the tube

makes it clear that the Hamming distance is not an adequate measure of hybridization likelihood,

except in very special circumstances.

Nonetheless, frame shifts appear to be accountable for, at the expense of technical complications

in the Hamming metric, by a generalization, the so-called h-metric, introduced by Garzon et al. [48].

This metric may capture enough of the reality of reaction conditions and the complexity of test tube

hybridizations, to frame and solve the encoding problem appropriately. The h-measure is de�ned

as the minimum of all Hamming distances obtained by successively shifting and lining up the WC-

complement of y against x; the h-metric is de�ned for so-called poligos, namely equivalence classes

of n�mers at an h-measure 0 of each other. (The h-measure is not, strictly speaking, a metric.) If

14



some shift of one strand perfectly matches a segment of the other, the measure is reduced to the

value of the Hamming distance between the shifted strands. Thus a small measure indicates that

the two oligos are likely to stick to each other one way or another; a large measure indicates that

under whatever physico-chemical conditions y �nds itself in the proximity of x, they are far from

containing WC complementary segments, and are therefore less likely to hybridize, i.e., they are

more likely to avoid an error (unwanted hybridization). Therefore the h-metric can be regarded as

measuring the degree of inertia against hybridization. A solution of the encoding problem would

thus consist of �nding good error-correcting codes in the higher-dimensional DNA cubes. They

furnish encodings that are, by de�nition, capable of detecting or correcting errors in the protocols

by, better yet, preventing them from occurring, independently of the type of experiment they are

used for. Error-correcting approaches have been suggested [49, 30, 31] but they attempt to correct

errors that have been allowed to occur. Instead, it appears reasonable to avoid as many errors as

possible, and perhaps use error-correcting methods to handle errors that cannot be prevented with

the encodings suggested by, for example, the h-metric. On the other hand, most of the codes in the

analogous theory of error-correcting codes are obtained by cyclic permutations of certain words,

and are therefore of very low quality for the h-distance. The search has to begin anew. Genetic

searches using the h-metric as a �tness function have turned up encodings that have proven to

have good error-preventing properties in the lab. This is encouraging evidence that they are worth

further e�orts to devise algorithms to produce them, at least for n�mers in the range n � 20,

where most experiments are currently performed.

Zhang and Shin [50] have adopted a more algorithmic approach to search for good encodings

by building an evolutionary algorithm that counts the number of mishybridizations as a �tness

function. They further propose that programming molecular computers should be done through

arti�cial evolution, as is the practice in genetic algorithms for example. A mutagenesis approach

to solving the encoding problem has been pursued by the MIT group [36, 42] which shows how

rare good encodings may be and how hard it may be to �nd them. Of about 9 billion possible

encodings for the design of a counter to be implemented in DNA molecules, only a handful of

them survived the �ltering required by various tests on the quality of the encodings derived from

thermodynamical factors and lab experiments. Finally, Garzon et al. [43] have proposed a more

wholistic �tness function that is based on long-term outcomes of a simulation in a virtual test

tube. The simulation takes place in a cellular automaton-like environment that includes: (a)

environmental factors such as temperature, salinity, etc.; (b) soft nucleotides held together by

virtual covalent and hybridization bonds; and, (c) localized (soft) molecular interactions regulated

by current knowledge of the thermodynamics of hybridization and ligation, in addition to spatial

and temporal environmental constraints.

4.4 Building and Programming Molecular Computers

For several reasons, the greatest engineering and technological challenge posed by molecular com-

puting is perhaps the construction of a molecular computer. In a molecular computer one would

expect to �nd the basic features that are evident in a conventional electronic computer in an in-

tegrated system, namely information storage, programmability, and information processing. Such

features are obviously desirable, but whether they are actually realizable is not very clear. Early pa-

pers have suggested abstract architectures (a notable example is the sticker architecture of Roweis

et al. [51]) that did not focus on the issues of reliability discussed earlier. It is now clear that

such issues present the most important di�culties. The best e�ort to date is being conducted by

the Wisconsin's surface computing research group at The University of Wisconsin-Madison The

instruction set consists of three primitive operations mark, unmark, and destroy. Successful im-

15



plementation of these operations would permit, in principle, to build a general-purpose molecular

computer. More details can be found in [53, 21, 54, 56, 57, 58] and references therein.

Given the di�culties with implementing traditional algorithms in DNA and their potential

for evolutionary-style computation, DNA computers apparently follow Michael Conrad's trade-o�

principle [59, 60]: \a computing system cannot at the same time have high programmability, high

computational e�ciency, and high evolutionary adaptability." He describes programmability as the

ability to communicate programs to the computing system exactly with a �nite alphabet in a �nite

number of steps. The e�ciency of a computing system is de�ned as the ratio of the number of

interactions in the system that are used for computing and the total number of interactions possible

in the system, and the evolutionary adaptability is de�ned as the ability of the system to change

in response to uncertainty. It is clear that biomolecules o�er, by the nature of their function, a

good answer to adaptability. If Conrad's principle holds here, there is good evidence that molecular

programming will be a great challenge.

4.5 Implementing Evolutionary Computation

Evolutionary computation is based on analogies of biological processes implemented in electronics

to arrive at computer programs that sometimes outperform software designed by standard method-

ologies. The most common analogy used is natural selection, or survival of the �ttest. The various

methodologies include genetic algorithms, genetic programming, evolution strategies, evolutionary

programming, and immune systems. These algorithms use a generate-and-evaluate strategy: a

population of possible solutions is maintained (usually generated at random); individuals are then

selected from a population based upon their �tness, i.e., how well they satisfy an external constraint;

the population is then updated by replacing less-�t individuals by combinations of hopefully �tter

individuals through some variation operations such as crossover and mutation. The basic evolution

program (EP) algorithm is shown in Fig. 4. Through successive generations, the �tness of indi-

viduals is improved and better solutions are found that may converge to a good enough solution.

The key ingredients in an evolutionary algorithm are selection pressure (provided by the �tness

function) and variation pressure (provided by the genetic operations). Variation guarantees a fairly

thorough opportunity for each solution to access the population of solutions and thereby a chance

to be evaluated; selection guarantees that evaluation does produce better and better solutions.

Begin

While Termination Condition Not True

Begin

Generate New Population

Evaluate New Population

Alter New Population with Crossover and Mutation

End

End

Figure 4: Basic Algorithm for an Evolutionary Program.

A major problem faced by evolutionary algorithms is the strain they place on computational

resources and running times. Beowulf clusters (large clusters of PCs) have di�culty supplying the

16



computational power required. Molecular computing o�ers a great challenge but also great potential

for the implementation of evolutionary algorithms. The massive parallelism of molecular computing

o�ers an alternative that not only alleviates the computational demand for evolutionary algorithms

but also takes advantage of the hybridization errors that were so troublesome in the encoding

problem. The idea was proposed as a solution to the encoding problem in [39]. Beginning with a

random encoding represented as circular double strands, the naturally occuring thermodynamics in

the tube can be used as a �tness function to provide selection pressure, i.e., the better the desired

hybridizations, the better the encodings. The selection pressure can be implemented in the tube

by a hobbled repair mechanism, which is found in cells [11]. For example, the enzyme, uvrABC,

detects mismatches in double-stranded DNA, and removes 12 base pairs (bp) from one of the strands

surrounding the mismatch [11]. Further adding polymerase will rewrite the encoding in the vicinity

of the original mismatch to a new, perfectly matched one. Another way to implement selection

is to eliminate less �t encodings by adding, instead of polymerase, a combination of exonucleases

that destroys looped molecules with mismatches, and so double-stranded molecules without loops

at the end. (This is the reason for selecting circular molecules: The individuals in the population

of encoding need to be protected with loops at both ends in order to prevent them from being

digested by the exonucleases.)

Over several iterations of this step, however, the evaluation and selection should result in a

very homogeneous population of perfectly hybridized double-stranded encodings. Some variation

pressure is required to ensure a wide search of the encoding space. Controlling the concentration

of enzyme and the reaction time at each step may help but is probably not enough. The equivalent

of a mutation e�ect can be achieved by a mutagenesis technique that turns the undesirable hy-

bridization errors into advantages. The equivalent of a crossover e�ect can be achieved by inserting

in the encodings a blunt restriction site (for example, AGCT of aluI) and adding the appropriate

concentration of the enzyme. Chen et al. [40] suggest a preliminary experiment in this direction.

More details of the experiment are reported in [61].

The implementation of evolutionary algorithms in biomolecules presents an atractive alternative

to further evolutionary computation research by pushing the analogy into full-
edged implemen-

tation in natural bioware and bringing the �eld about full circle. Molecular computing is thus

poised to enable feasible solutions of hitherto infeasible search problems by using newly available

molecular biological technology.

A newly emerging class of biologically inspired systems is based on the immune system. An

immune system is capable of combating a large number of di�erent types of invading pathogenic

micro-organisms [11]. To accomplish this, the molecular agents of the immune system, T-cells,

B-cells, and antibodies, recognize foreign antigens by structural and chemical properties of the

binding sites between them. In order to do so, the immune system must be able to distinguish

cells and molecules that belong to its host from foreign material, or self from nonself. Also, the

immune system has a memory since it will respond to a speci�c antigen for the remainder of the

host individual's life [11]. Over 1016 antigens can be recognized by a mammalian immune system.

An arti�cial immune system based on molecules has been suggested in [62] to duplicate the

ability of a natural immune system to recognize self from nonself in order to protect a computer

system from computer viruses and other unwanted agents. For discrimination of self from nonself

in a computer, the entities of interest are not molecules or microorganisms, but are strings com-

posed from a �nite alphabet. These strings can be bit strings, data strings, or strings of machine

instructions. For computer security, self is de�ned as strings to be protected, and nonself as all

other strings. The steps are:

1. Detector Set Generation: Strings are generated at random. They are compared to the set

17



of self strings. If a matching condition between the strings is met, then, reject the string.

Otherwise, accept the string for the detector repertoire. This step is called censoring.

2. Monitor Protected Data: The protected strings are periodically compared to the detector

repertoire. When detector strings are activated, a change is known to have occurred.

A biomolecular implementation of such a system has been proposed in [62] based on hybridiza-

tion. For the censoring, a random set of n�mers is generated. A self set is then constructed from

the Watson-Crick complements of the encoded n�mers. Many copies (a picomole � 1012) of the

random set and self set of oligos are mixed together at high temperature. The temperature is

lowered so that hybridization takes place. At this point, the self n�mers will have hybridized with

their Watson-Crick complements in the random set. Since the self set was composed of the Watson-

Crick complements of the self strings, the random n�mers that have hybridized correspond to the

self strings. Now an enzyme, exonuclease III, is added to the tube. This enzyme chops up the

double-stranded hybridization products into mononucleotides, e�ectively removing the self strands

from the mix. Due to the usual errors, not all copies of the self strands will have been removed.

The process of adding the self set, hybridizing, and adding exonuclease would have to be repeated

to e�ectively remove all the self strands. At the end of the process, the remaining oligonucleotides

represent the detector set. These oligos are then sequenced by gel electrophoresis or by using a

DNA chip and sequencing by hybridization. More discussion on this procedure can be found in

[62].

It is clear from the role that biomolecules play in natural systems and the results in this

section that molecular and evolutionary computing have a good deal to gain from each other. The

interaction has been fostered by two workshops [14, 63] that explored subjects such a nucleic acid

selection and in-vitro evolution, topics of clear relevance to both evolutionary computation and

biology.

4.6 Autonomy and Self-Assembly

It is folk knowledge now that human intervention is a bottleneck in molecular computing, i.e., it

will be necessary to automate molecular protocols as much as possible. These are usually referred

to as \single-pot" protocols, after Winfree [24]. These concerns have been addressed in one way or

another in several works, particularly Winfree's self-assembling reactions for tilings [64, 24, 65, 66],

fault tolerance in error-preventing codes and self-control of nondeterminism and molecule formation

and reaction e�ciency. Jonoska and Karl [67] show how many computations can be simpli�ed by

constructing appropriate graphs in DNA molecules. Hagiya [68] has further iterated the importance

of self-controlled and autonomous protocols that would eliminate human intervention and so reveal

more about the true power of molecular computing. Garzon et al. [69] provide a self-assembly

protocol for a family of graphs, the Cayley graphs of so-called automatic groups, that exploits

the symmetry of the graphs and good encodings to make self-assembly possible by the type of

thermocyclying e�ective in whiplash PCR computations.

Given the increasing importance of reliability for molecular programming, self-assembly and

self-regulation are important tools to achieve a solution to the autonomy problem of molecular

computers.

4.7 Molecular Computability and Complexity

Every computational paradigm eventually generates its own notion of complexity because, as

pointed out early on by Charles Babbage, there is always the problem of minimizing the time

18



and resources necesary to carry out its computational procedures. The two fundamental questions

are: What problems can be solved in principle by molecular computing? What problems can be

solved e�ectively?

The �rst question was addressed very early in molecular computing. Naturally, in comparing

with the established standards, simulations of Turing machines were suggested that could be im-

plemented in DNA molecules if one could only make use of arbitrarily long molecules and execute

error-free operations. Bennet [70] used imaginary enzymes to show how to simulate the transitions

of arbitrary Turing machines. Wilhem and Rothemund [71] show the same with commercially avail-

able enzymes. Smith [72] starts with a similar result, but further provides a somewhat negative

assessment of the feasibility of DNA based computing. On the other hand, DNA capabilities have

also been explored for problems on the fringe of what is theoretically solvable on VLSI computers by

Lipton [17] (all NP problems) and others [74] (all PSPACE problems, those solvable in polynomial

space by Turing machines).

Likewise, complexity measures have largely followed the standards of Boolean and formal com-

plexity theory, i.e., using the input size used for conventional algorithm analysis and selecting a

resource that the protocols spend as they are executed (see Garey-Johnson [2] for detailed de�ni-

tions). The resource has usually been the steps to be executed in carrying out the protocols in a

biochemical laboratory. A particularly interesting early result is Winfree's characterization of the

power of three-way branched DNA to generate the derivation trees proper of context-free languages

[73], in contrast with Head [13]'s early prediction that enzymes and double-stranded DNA could

only generate regular languages. The complexities are usually linear or quadratic regardless of the

algorithmic complexity of the original problems, so the usefulness of this analysis is not very clear.

An initial attempt to characterize complexity of DNA-based algorithms in terms of the traditional

concepts of \time" and \space" is introduced in [75]. These approaches essentially amount to mea-

suring the amount of human e�ort involved, as opposed to measuring the resources consumed by

the procedures themselves.

It is increasingly clear, however, that understanding the actual power of biomolecules to solve

computational problems in practice requires developing a notion of complexity that captures the

physico-chemical reality in which they take place (entirely di�erent from VLSI-based programs),

so that its results can be used to gauge the true computational power of molecular computing.

Molecules are complex structures possessing physico-chemical properties that cannot be entirely

described by a syntactic string giving their composition, in isolation from environmental conditions,

such as concentrations (as noted by Kurtz et al. [76]). A new approach of this sort has been

proposed by Garzon et al. [77]. They argue that molecules are assembled in a tube 	, which can

be abstractly described as a multiset of molecules having a number of physical attributes. There

are, in particular, four important properties of a tube 	: volume V (	), temperature T (	), number

of nucleotides n(	) and amount N(	) (picomoles) of each kind of molecule contained in 	. (In

this notation, mention of 	 will be generally omitted.)

Therefore algorithm analysis in DNA computing should be tackled with tools that bear direct

relevance to the number of molecules 
oating in a solution of a given volume and density in a

small tube, sensitive to temperature variations, and subject to operations of various degrees of

complexity and implementation di�culty (and therefore more or less expensive depending on the

operation). A tool of this sort for algorithm analysis will allow comparing procedures that solve

the same problem in order to determine their relative e�ciency more objectively than pro�ling on

isolated runs of the experiment, or even comparing algorithms for di�erent problems on a common

yardstick, and eventually �nding lower bounds on their molecular di�culty.

Garzon et al. [77] obtain numerical complexity values that allows comparing the quality and/or

di�culty of protocols for the same problem and even for di�erent problems. They conclude that

19



molecular computing has been making steady progress, doubling its e�ciency and speed roughly

every two years.

5 Conclusions

Important events have taken place in the �eld of biomolecular computing in the last �ve years.

Adleman's paper landmarked a new area that has come of age thanks to the great advances in

molecular biology and biotechnology of the last two decades. The initial burst of enthusiasm

produced a good number of protocols and potential applications that made us realistically entertain,

for the �rst time in history, the possibility of exploiting the massive parallelism and nanoscales

inherent in natural phenomena for computational purposes.

In the process, practicioners have also come to realize that the unbridled use of molecules can

quickly o�set the potential gain o�ered by these advantages by introducing errors that render

the protocols infeasible or unreliable. There indeed remain enormous scienti�c, engineering, and

technological challenges to bring this paradigm to full fruition, i.e. make biomolecular computing

a competitive player in the landscape of practical computing. Whether molecular computers will

really happen in the near future will depend not only on whether these challenges can be met, but,

perhaps more importantly, on whether molecular computing successfully carves a niche of \killer"

applications that would continue to energize research e�orts in the �eld.

Acknowledgements

Useful suggestions by three anonymous referees are gratefully acknowledged. Our appreciation

extends as well to the editors, Moshe Sipper and David Fogel, for careful reading and comments

that improved the presentation of this survey.

APPENDIX: A Resource List

There are several frequently updated web pages that contain more references and useful links to

molecular computing. They include:

http://www.msci.memphis.edu/�garzonm/mcg.html,

http://dope.caltech.edu/DNAevents.html,

http://seemanlab4.chem.nyu.edu/, and

http:"http://www.wi.LeidenUniv.nl/ jdassen/dna.html.

In addition, here is a summary of events in the �eld since 1995. They can be accessed from the

�rst web page above.

DNA Conferences and Meetings

DNA6 (LCNC-Netherlands, 2000)

DNA5 (MIT, 1999)

On-going Workshop in Leiden (Summer 1998)

DNA3, DNA4 (UPenn, 1997-1998)

DNA1, DNA2 (Princeton, 1995-1996)

Special program at Genetic Programming conferences:

GECCO-99 (Orlando, 1999)

20



GP-3 (UW-Madison, 1998)

GP-2 (Stanford, 1997)

DIMACS Workshop on Evolution as Computation [63]:

http://dimacs.rutgers.edu/Workshops/Evolution/;

DIMACS Workshop on Nucleic Acids Selection [14]:

http://www.princeton.edu/�lfl/poster.html/;

Special Session on DNA Based Computing at the IEEE-ICEC'97 conference;

Sk�ovde meeting (1997);

Paun's meeting in Rumania (1997).

Conference Proceedings

Proceedings of the DIMACSWorkshops on DNA-based Computing 1999 (MIT), 2000 (Leiden

Center for Natural Computing);

1997-1998 (Upenn) [21, 54],

1995-1996 (Princeton) [52, 53],

GECCO-99 (GP-99, Orlando, 1998)

GP-98 (UW-Madison, 1998)

GP-97 (Stanford, 1997)

Surveys

DNA and Molecular Computing and Programming: this survey.

Computing with Biomolecules: theory and Experiment [74]

Fundamenta Informaticae [38]

David H. Wood's notes [80]

Conference Reports

Ferreti-Paun's' on Leiden's Workshop-98:

http://www.dsi.unimi.it/ �ferretti/rep.htm;

Amos-Kari's on Leiden's Workshop-98:

http://www.csc.liv.uk/�martyn/pubs.html;

Amenyo's on DNA1-2-3:

http://ftp.ans.net/pub/jta/DNAComp3rept.txt/;

Baker's on DNA1:

http://www.baker.com/if/dna-computer.html.

Software

MIT's bind, scan, and cybercycler [78, 36, 79].

Memphis's virtual test tube edna [43].

References

[1] L. Adleman, \Molecular computation of solutions of combinatorial problems," Science 266,

pp. 1021-1024, 1994.

[2] M.R. Garey, D.S. Johnson, Computers and Intractability. New York: Freeman, 1979.

21



[3] L. Landweber, L. Kari, \The Evolution of Cellular Computing: Nature's Solution to a Com-

putational Problem," in [54], pp. 3-13.

[4] A. Cukras, D. Faulhammer, R. Lipton, L. Landweber, \Chess games: A model for RNA-based

computation," in [54], pp. 15-26.

[5] D. Faulhammer, A. Cukras, R. Lipton, L. Landweber, \When the Knight Falls: On Construct-

ing an RNA Computer," in [55], pp. 1-7.

[6] R. Birge, \Protein-based Three-Dimensional Memory," The American Scientist 82, pp. 348-

355, 1994.

[7] R. Birge, \Protein-based Computers," Scienti�c American, 1995.

[8] A.D. Ellington, M.P. Robertson, K.D. James, J.C. Fox, \Strategies for DNA Computing," in

[21], pp. 173-184.

[9] M.P. Robertson, J. Hesselberth, J.C. Fox, A.D. Ellington, \Designing and Selecting Compo-

nents for Nucleic Acid Computers," in [55], pp. 183-188.

[10] E.T. Kool, \New Molecular Strategies for Joining, Pairing, and Amplifying," in

[11] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner, 4th ed.,Molecular

Biology of the Gene. Menlo Park, CA: The Benjamin/Cummings Publishing Co., Inc, 1987.

[12] F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl,

P. Wang-Iverson and S.G. Bonitz. Current Protocols in Molecular Biology, New York: Greene

Publishing Associates and Wiley-Interscience, 1993.

[13] T. Head, \Formal language theory and DNA: An analysis of the generative capacity of speci�c

recombination behaviors," Bull. Math. Biology, pp. 49-73, 1985.

[14] L. Landweber, R. Lipton, R. Dorit, A. Ellington (organizers), Dimacs Workshop on Nuclei

Acid Selection and Computing, Princeton University, March 1998.

http://www.princeton.edu/�lfl/poster.html/;

dimacs.rutgers.edu/Workshops/NucleicAcid/index.html.

[15] Q. Ouyang, P.D. Kaplan, S. Liu, A. Libchaber, \DNA Solution of the Maximal Clique Prob-

lem," Science 278, pp. 446-449, 1997.

[16] M. Arita, A. Suyama, M. Hagiya, \A Heuristic Approach for Hamiltonian Path Problems with

Molecules," in [81], pp. 457-462, 1997.

[17] R. Lipton, \Using DNA to solve NP-complete problems," Science 265, pp. 542-545, 1995. See

also, \Speeding up computations via molecular biology," [52], pp. 67-74.

[18] M. Ogihara, A. Ray, \DNA-Based Self-Propagating Algorithm for Solving Bounded Fan-in

Boolean Circuits," in [56], pp. 725-730.

[19] M. Amos, P.E. Dunne, A. Gibbons, \DNA Simulation of Boolean Circuits," in [56], pp. 679-

683.

[20] N. Morimoto, M. Arita, A. Suyama, \Solid phase DNA solution to the Hamiltonian Path

Problem," in [53].

22



[21] H. Rubin. D. Wood (eds.), Proc. of the Third DIMACS Workshop on DNA-Based Computers,

The University of Pennsylvania, 1997. DIMACS Series in Discrete Mathematics and Theoret-

ical Computer Science, Providence, RI: American Mathematical Society, vol. 48, 1999.

[22] M. Hagiya, M. Arita, D. Kiga, K. Sakamoto, S. Yokohama, \Towards parallel evaluation and

learning of Boolean �-formulas with molecules," in [81], pp. 105-115.

[23] K. Sakamoto, D. Kiga, K. Komiya, H. Gouzu, S. Yokohama, S. Ikeda, H. Sugiyama, M. Hagiya,

\State Transitions by Molecules," in [56], pp. 87-99, 1998.

[24] E. Winfree, \Whiplash PCR for O(1) Computing," in [54], pp. 175-188.

[25] M. Garzon, Y. Gao, J.A. Rose, R.C. Murphy, D. Deaton, D.R. Franceschetti, S.E. Stevens Jr.

. \In-Vitro Implementation of Finite-State Machines," Proc. 2nd Workshop on Implementing

Automata WIA-97. Lecture Notes in Computer Science 1436, Berlin: Springer-Verlag, pp.

56-74, 1998.

[26] M. Nelson, E. Raschke, M. McClelland, \E�ect of site-speci�c methylation on restriction en-

donucleases and DNA modi�cation methyltranferases," Nucleic Acids Research, 21:13, pp.

3139, 1993.

[27] E. Shapiro, \A Mechanical Turing Machine: Blueprint for a Biomolecular Computer," in [55],

pp. 229-230.

[28] L. Landweber, R. Lipton, M.O. Rabin. \DNA2DNA Computation: A potential "Killer-App?,"

in [21], pp. 162-172.

[29] R. Deaton, R.C. Murphy, M. Garzon, D.R. Franceschetti, S.E. Stevens, Jr., \Good Encodings

for DNA-based Solutions to Combinatorial Problems," in [53], pp. 159-171, 1995.

[30] D. Boneh, C. Dunworth, R.J. Lipton, J. Sgall, \Making DNA Computers Error-resistant," in

[53], pp. 163-171.

[31] R. Karp, C. Kenyon, O. Waarts, \Error-resilient DNA Computation," Proc. 7th Annual Sym-

posium on Discrete Algorithms SODA, pp. 458-467, 1996.

[32] E. Baum, \DNA sequences useful for computation," in [53], pp. 122-127.

[33] J.G. Wetmur, \Physical Chemistry of Nucleic Acid Hybridization," in [21], pp. 1-23.

[34] J. SantaLucia, Jr., H. T. Allawi, and P. A. Seneviratne, \Improved nearest-neighbor parameters

for predicting DNA duplex stability," Biochemistry, vol. 35, pp. 3555{3562, 1996.

[35] R. Deaton, M. Garzon, R.C. Murphy, J.A. Rose, D.R. Franceschetti, S.E. Stevens, Jr., \On

the Reliability and E�ciency of a DNA-Based Computation," Physical Review Letters 80:2,

pp. 417-420, 1998.

[36] A. J. Hartemink, D. K. Gi�ord, \Thermodynamic Simulation of Deoxyoligonucleotide Hy-

bridization of DNA Computation," in [21], pp. 25-37.

[37] R. Deaton, D.R. Franceschetti, M. Garzon, J.A. Rose, R.C. Murphy, S.E. Stevens, Jr.. \In-

formation Transfer through Hybridization Reactions in DNA based Computing," in [81], pp.

463-471.

23



[38] R. Deaton, M. Garzon, J.A. Rose, D.R. Franceschetti, S.E. Stevens, Jr.. \DNA Computing: a

Review," Fundamenta Informaticae 35, pp. 231-245, 1998.

[39] R. Deaton, R. Murphy, J. Rose, M. Garzon, D. Franceschetti, S.E. Stevens Jr. \A DNA based

Implementation of an Evolutionary Search for Good Encodings for DNA Computation," Proc.

IEEE Conference on Evolutionary Computation, Indiana, 267-271, 1997.

[40] J. Chen, E. Antipov, B. Lemieux, W. Cede~no, D.H. Wood, \A DNA Implementation of the

Max 1s Problem," in [82], in press.

[41] R. Deaton, M. Garzon, R.C. Murphy, J.A. Rose, D.R. Franceschetti, S.E. Stevens, Jr. \Genetic

Search of Reliable Encodings for DNA-based Computation," Late Breaking papers a the First

Annual Genetic Programming Conference, Stanford University, pp. 9-15, 1996.

[42] J. Khodor, D.K. Gi�ord, A. Hartemink, \Design and Implementation of Computational Sys-

tems Based on Programmed mutagenesis," in [54], 101-107; pp. 287-297, 1998.

[43] M. Garzon, R. Deaton, J.A. Rose, D.R. Franceschetti, \Soft Molecular Computing," in [55],

pp. 89-98.

[44] A.G. Frutos, Q. Liu, A.J. Thiel,A.W. Sanner, A.E. Condon, L.M. Smith, R.M. Corn, \Demon-

stration of a word design strategy for DNA computing on surfaces," Nucleic Acids Res. 25:23,

pp. 4748-4757, 1997.

[45] J. A. Rose, R. Deaton, D. R. Franceschetti, M.H. Garzon, S. E. Stevens, Jr., \A Statistical

Mechanical Treatment of Error in the Annealing Biostep of DNA Computation," in [82], in

press.

[46] C. R. Cantor, P. R. Schimmel, Biophysical Chemistry, Part III: The Behavior of Biological

Macromolecules, New York: Freeman, 1980.

[47] A. Marathe, A.E. Condon, R.M. Corn, \On Combinatorial DNA Word Design," in [55], pp.

75-88.

[48] M. Garzon, P. Neathery, R. Deaton, R.C. Murphy, D.R. Franceschetti, S.E. Stevens, Jr., \A

New Metric for DNA Computing," in [81], pp. 472-478.

[49] L.M. Adleman, \On Constructing a Molecular Computer," in [52], pp. 1-21.

[50] B.T. Zhang, S.Y Shin, \Molecular Algorithms for E�cient and Reliable DNA Computing," in

[56], pp. 735-742.

[51] S. Roweis, E. Winfree, R. Burgoyne, N.V. Chelyapov, N.F. Goodman, P.W. Rothemund, L.M.

Adleman, \A Sticker Based Model for DNA Computation," in [53], pp. 1-29.

[52] R. Lipton, E. Baum (eds.), DNA Based Computers. Proc. of the First DIMACS Workshop on

DNA-Based Computers, Princeton University, 1995. DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, Providence, RI: American Mathematical Society, vol. 27,

1996.

[53] L.F. Landweber, E.B. Baum (eds.), DNA Based Computers II, Proc. of the Second DIMACS

Workshop on DNA-Based Computers, Princeton University, 1996. DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, Providence, RI: American Mathematical So-

ciety, vol. 44, 1999.

24



[54] H. Rubin. D. Wood (eds.), 4th DIMACS workshop on DNA Computers, University of Penn-

sylvania, 1998. Proceedings in a special issue of Biosystems, in press.

[55] E. Winfree, D. Gi�ord (eds.), Proc. of the Fifth 5th International Metting on DNA

Based Computers, MIT, Boston, MA. DIMACS Series in Discrete Mathematics and The-

oretical Computer Science, Providence, RI: American Mathematical Society, In press.

http://psrg.lcs.mit.edu/dna5/.

[56] J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, R.L. Riolo (eds.), Proc. 3rd

Annual Genetic Programming Conference, San Mateo, CA: Morgan Kaufmann, 1998.

[57] L.M. Smith, R.M. Corn, A.E. Condon, M.G. Lagally, A.G. Frutos, Q. Liu, A.J. Thiel. \A

Surface-Based Approach to DNA Computation," J. Comput. Biology 5:2, pp. 255-267, 1998.

[58] A.G. Frutos, L.M. Smith, R.M. Corn, \Enzymatic Ligation Reactions of DNA Words on

Surfaces for DNA Computing," J. Am. Chem Soc. 120:40, pp. 10277-10282, 1998.

[59] M. Conrad, \On Design Principles for a Molecular Computer," Comm. of the Ass. Comp.

Mach. CACM, 28:5 1985, pp. 464-480, 1985.

[60] M. Conrad, \Molecular and Evolutionary Computation: the Tug of War between Context-

Freedom and Context-Sensitivity," in [54], pp. 117-129, 1998.

[61] J. Chen, E. Antipov, B. Lemieux, W. Cede~no, D.H. Wood, In vitro Selection for a Max 1s

DNA Genetic Algorithm," in [55], pp. 23-37.

[62] R. Deaton, M. Garzon, J.A. Rose, \A DNA Based Arti�cial Immune System for Self-NonSelf

Discrimination," Proc. of the IEEE Int. Conference on Systems, Man and Cybernetics, Or-

lando. Piscataway, NJ: IEEE Press, pp. 369-374, 1997.

[63] L. Landweber, E. Winfree, R. Lipton, S. Freeland (organizers), Workshop on Evolution as

Computation, Princeton University, January 1999.

http://dimacs.rutgers.edu/Workshops/Evolution/.

[64] E. Winfree, \Universal computational via self-assembly of DNA: some theory and Experi-

ments," in [53], pp. 191-213.

[65] E. Winfree, \Simulations of computing by self-assembly," in [54], pp. 213-240.

[66] E. Winfree. F. Liu, L.A. Wenzler, N.C. Seeman, \Design and Self-Assembly of Two-

Dimensional DNA Crystals," Nature 394 1998, pp. 539-544, 1998.

[67] N. Jonoska, S.A. Karl, \Ligation Experiments in DNA Computations," Proceedings of 1997

IEEE International Conference on Evolutionary Computation (ICEC'97), April 13-16, pp.

261-265, 1997.

[68] M. Hagiya, \Towards Autonomous Molecular Computers," in [56], pp. 691-699, 1998.

[69] M.H. Garzon, R.J. Deaton, Ken Barnes 1999. \On Self-Assembling Graphs in Vitro," in [82],

in press.

[70] C.H. Bennet, \The Thermodynamics of Computation�a Review," Int. Journal of Theoretical

Physics 21, pp. 905-940, 1982.

25



[71] P. Wilhem, K. Rothemund, \A DNA and restriction enzyme implementation of Turing Ma-

chines," in: [53] pp. 75-119, 1996.

[72] W. Smith, \DNA Computers in vitro and vivo," in: [52] pp. 121-185, 1996.

[73] E. Winfree, \On the computational power of DNA annealing and ligation," in [52], pp. 199-215,

1995.

[74] G. Paun (editor), Computing with Biomolecules: theory and Experiments. Singapore: Springer-

Verlag, 1998.

[75] M. Amos, A. Gibbons, P. Dunne. \The Complexity and Viability of DNA Computations,"Proc.

Biocomputing and Computation (BCEC97), Lundh, Olsson and Narayanan (eds.), Singapore:

World Scienti�c, 1997.

[76] S. A. Kurtz, S. R. Mahaney, J. S. Royer, and J. Simon, \Active transport in biological com-

puting," in [53], pp. 111-122.

[77] M, Garzon, N. Jonoska, S. Karl. \The Bounded Complexity of DNA Computing," in [54], in

press.

[78] J. Khodor, D. Gi�ord, \The E�cency of the Sequence-Speci�c Separation of DNA Mixtures

for Biological Computation," in [21], pp. 25-37.

[79] A.J. Hartemink, T. Mikkelsen, D. K. Gi�ord, \Simulating Biological reactions: A Modular

Approach," in [55], pp. 109-119.

[80] D.H. Wood 1998, Basic DNA Computing, manuscript.

[81] J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, R.L. Riolo, (eds.), Proc. 2nd

Annual Genetic Programming Conference, San Mateo, CA: Morgan Kaufmann, 1997.

[82] W. Bahnzhaf, A.E. Eiben, M.H. Garzon, D.E. Goldberg, V. Hanovar, M. Jakiela, J.R. Koza

1999. Proc. of the Gentic and Evolutionary Computation Conference GECCO-99, Orlando

Florida. San Mateo, CA: Morgan Kaufmann, in press.

[83] M. Chee, R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, D. J. Lockhart,

M. S. Morris, and S. P. A. Fodor, \Acessing genetic information with high-density DNA

arrays," Science, vol. 274, pp. 610-614, 1996.

26



0 6

13

4

2 5

GGGGTGGGACCATTTTCACA

TGATAGTTGGATCTCCGAGA CGGATATTGAGGGTCTACGG

AAACGTGAGCCTTGCTTCTT

TTGTTTAGATTATGTTATAG AGCGCATTGACAGGTAATGT

TCGTACGTTACTCHHACTCT

(a)

Figure 1: Steps in Adleman's Molecular Computation: (a) encoding of problem instance.

27



(vertex 0)
GAACGAAGAAGCCTATAACT - 5'

(edge)

AAACGTGAGCCTTGCTTCTT CGCATATTGAGGGTCTACGG (vertex 1)

...

AGCGCATTGACAGGTAATGT

TCGTACGTTACTCGCACTCT(vertex 6)

(vertex 5)

o
20 C

(b)

Figure 1: Steps in Adleman's Molecular Computation: (b) computing reactions.

28



Gels

PCRs

160

140

120

80bp

+ heat

+ primers

+ polymerase

(c)

Figure 1: Steps in Adleman's Molecular Computation: (c) extraction.

29



y x

restriction site

gate

5'
5'

(a)

stopper

hairpin

qp

p' q'

. . .. . .

(b)

Figure 2: Two Protocols in Molecular Computation: (a) Boolean circuit implementation; (b)

whiplash PCR.

30



0 0

0

0

01

11

1 1

1

0

1

0 [0,3] [0,2]

[1,2][1,3]

[2,3]

[0]

Figure 3: A Nondeterministic Finite-State Machine.

31



Begin

While Termination Condition Not True

Begin

Generate New Population

Evaluate New Population

Alter New Population with Crossover and Mutation

End

End

Figure 4: Basic Algorithm for an Evolutionary Program.

32


