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1. What isLife?

In order to understand Artificial Life we need to discuss the concept of Life:

“life adj.— n.1. the general condition that distinguishes organisms from inorganic objects and dead
organisms, being manifested by growth through metabolism, ameans of reproduction, andinternal regulation
in response to the environment. 2. the animate existence or period of animate existence of an individual. 3.
acorresponding state, existence, or principleof existence conceived of asbelongingtothesoul. 4. thegeneral
or universal condition of human existence. 5. any specified period of animate existence. 6. the period of
existence, activity, or effectiveness of something inanimate, as a machine, lease, or play. 7. animation;
liveliness; spirit: The party wasfull of life. 8. theforce that makes or keeps something alive; the vivifying or
quickening principle.” [Random House Webster’ s Dictionary]

Thedefinitions abovefall into three main categories: (1) life as an organization distinct from inorganic matter
(with an associated list of properties), (2) lifeasa certain kind of animated behavior, and (3) lifeas a special,
incommensurable, quality — vitalism. Throughout this course we will see that all principles, and indeed all
controversies, associated with the study of lifefall into one of these categories or the differences between them.
It is important to realize that for the most part of the history of humanity, this question was never an issue.
Before the study of physics became important, everything was alive: the stars, the skies, the rivers and
mountains, etc. Therewas no non-life, so the concept was of no importance. It is only when the deterministic
mechanics of moving bodies become dominant that the question arises. If al matter follows simple physical
laws, then what is indeed the difference between life and non-life, between biology and physics?

Thethird category above has been discarded as a viable scientific explanation, because for science nothing is
in principle incommensurable. Thetraditional scientific approach has lead the study of living systemsinto a
reductionist search for answersin thenitty-gritty of thebiochemistry of living organisms. This alternative sees
lifeas nothing morethan complicated physics. However, the question remains unanswered sincetherearemany
ways to obtain some complicated dynamics, but of all of these, which ones can be classified as alive? What
kind of complexity arewelooking for? No onedisputesthat lifeis some sort of complex material arrangement,
but when do we reach a necessary threshold of complexity after which matter is said to be living? Isit a
discrete step, or islifeafuzzy concept? To study it must we synthesize organizations with the same threshold
of complexity (first category above), or isit enough to simulateits animated behavior (second category above)?

Traditionally life has been identified with material organizations which observe certain lists of properties, e.g.
metabolism, adaptability, self-maintenance (autonomy), self-repair, growth, replicability, evolution, etc. M ost
living organismsfollow theselists, however, thereareother material systemswhich obey only asubset of these
rules, e.g. viruses, candle flames, the Earth, certain robots, etc. This often leadsto the view that lifeis at best
a fuzzy concept and at worst something we are, subjectively, trained to recognize — lifeis what we can eat
— and is thus not an objective distinction. Objectively or subjectively, we do recognize some material
organizationsasbeing alive. It isperhapsin this ability to recognize and categorize eventsin our environments
that an important difference between living and non-living systems lies.

Liferequires the ability to both categorize and control events in its environment in order to survive. Thisisa
common characteristic of all recognized life, together with the ability to store and transmit records of
categorizations and controls. It is also the locus of the gap between physics and biology. The laws of physics
are, by definition, independent of particular organisms, they are universal, inexorable— thereforeimmuneto
any control by an organism— and exist beyond observation. In contrast, biological systems achieve a degree
of material control which allowsthemto categorizeand control rel evant aspects of their material surroundings.
Itisthis“reevant” which giveslife an extra attribute to mere physical action-reaction interactions. When an



organization is ableto recognize and act on aspects of its environment which areimportant to its own survival,
we say that the mechanisms by which the organization recognizes and acts are functional in referenceto the
organization itsdf (self-reference). Physicsisnot concerned with function. A physical description of DNA is
certainly possible, but will tell us nothing as to the function of some DNA molecule as a gene relevant to a
particular organization. Only inreferenceto this larger organization does a piece of DNA function as a gene
for some previously categorized control (e.g. an enzyme with some effect in an environment).

This issue could be rephrased in terms of the notion of emergence. Whatever organization exists after the
complexity threshold for lifeis passed, wemay say that it isemergent to the physical level becauseitsattributes
cannot becompletely explained by thepreviouslevd. Inparticular, function, control, and categorization cannot
be explained by physics alone. Notice, however, that emergence does not imply vitalism or dualism. When we
say that certain characteristics cannot be explained by physics alone, we mean that they must be explained by
different (Pattee s complementary) modes for each level, as well as amodd for the connection between both
levels. In other words, though function, control, and categorization cannot be explained by physics alone, they
must nonethdess follow physical laws. In particular, the origin of life, is a problem of emergence of
categorization and control from a physical milieu.

The definition of emergence as an epistemological, explanatory requirement, is related to the notion of
emergence-rel ative-to-a-model [Rosen, 1985; Cariani, 1989] or intensional emergence [Salthe 1991]. It
refersto theimpossibility of epistemological reduction of the properties of a systemto its components[Clark,
1996]. It acknowledges that different properties of systems may require different, qualitatively unrelated,
epistemological categories and models [Pattee, 1978; Rocha, 1997]. As an example, we can think of phase
transitions such as that of water in its transition from liquid to gas. Water and its properties cannot be
rephrased it terms of the properties of hydrogen and oxygen, it needs a qualitatively different modd.

Artificial life concerns both the simulation and realization of life in some artificial environment, usually the
computer. At least regarding the second of its goals, artificial life cannot escape the main issues raised above
for biological life. In this course we will discuss what kind of artificial environments are required for
simulations and realizations of life. The conceptsinitalics abovewill bediscussed in moredetail in the context
of computational environments.

Further Readings and References:

Cariani, Peter [1989].0n the Design of Devices with Emergent Semantic Functions. PhD.Dissertation. SUNY
Binghamton.

Clark, Andy [1996]. “ Happy couplings: emergence and explanatory interlock.” In: The Philosophy of Artificial Life.
M. Boden (ed.). Oxford University Press, pp. 262-281.

Pattee, Howard H. [1978]."The complementarity principlein biological and social structures.” In: Journal of Social
and Biological StructuresVal. 1, pp. 191-200.

Rocha, Luis M. [1997]. Evidence Sets and Contextual Genetic Algorithms: Exploring Uncertainty, Context, and
Embodiment in Cognitive and Biological Systems. PhD. Dissertation. SUNY Binghamton.

Rosen, Robert [1985], Anticipatory Systems. Pergamon Press.

Salthe, Stanley N. [1991], “Varieties of Emergence’. World Futures Vol. 32, pp.69-83

Schradinger, Erwin [1944]. What is Life?. Cambridge University Press.

For next lectureread:

Langton, C. [1989], “Avrtificial Life’” In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47.

Pattee, H. [1989], “Simulations, Realizations, and Theories of Life’. In Artificial Life. C. Langton (Ed.). Addison-
Wesley. pp. 63-77.



2. Thelogical Mechanismsof Life
2.1. Life-As|t-Could-Be: but, what is non-life-as-it-could-be?

“Artificial Life[AL] isthe study of man-made systems that exhibit behaviors characteristic of natural living
systems. It complements the traditional biological sciences concerned with the analysis of living organisms
by attempting to synthesize life-like behaviors within computers and other artificial media. By extending the
empirical foundation upon which biology is based beyond the carbon-chain life that has evolved on Earth,
Artificial Life can contribute to theoretical biology by locating life-as-we-know-it within the larger picture
of life-as-it-could-be.” [Langton, 1989, page 1]

“[AL] views life as a property of the organization of matter, rather than a property of the matter whichis so
organized. Whereas biology has largely concerned itself with the material basis of life, Artificial Lifeis
concerned with theformal basis of life. [... It] starts at the bottom, viewing an organism as alarge population
of simple machines, and works upwards synthetically from there— constructing large aggregates of simple,
rule-governed objectswhichinteract with oneanother nonlinearly inthesupport of life-like, global dynamics.
The ‘key’ concept in AL is emergent behavior.” [Langton, 1989, page 2]

“Artificial Life is concerned with tuning the behaviors of such low-level machines that the behavior that
emerges at theglobal leve is essentially the same as some behavior exhibited by a natural living system. [...]
Artificial Lifeis concerned with generating lifelike behavior.” [Langton, 1989, pp 4 and 5]

The previous quotes indicate the goals of Artificial Life according to Chris Langton: the search for complex,
artificial, systems which observe somekind of life-like, animated, emergent behavior. There seemsto be both
adesireto obtain an artificial living organization, as well as obtaining some lifeike behavior. Thefirst goal
is more ambitious and related to the first definition of lifeintroduced in lecture one, while the second goal is
related to the second definition.

Themethodology to reach either of thesegoalsisalso inlinewith the notion of emergence mentioned in lecture
one: from the non-linear interaction of simple, mechanistic, components, we wish to observe the emergence of
complicated, life-like, unpredictable, behavior. Natural living organisms are likewise composed of non-living
components. As pointed out in lecture one, the problem of biology is precisely the emergence of lifefrom non-
living components. Thematerial componentsfollow, and are completely described, by physical laws, however,
aphysical explanation of the overall living systemisincomplete. Similarly, in Artificial Life, we haveformal
components obeying aparticular set of axioms, and fromtheir interaction, someglobal behavior emergeswhich
is not completely explained by the local formal rules. Clearly, the formal rules play therole of an artificial
physics and the global behavior, if recognized aslife-like, playstheroleof an artificial biology in this bottom-
up approach to complex behavior.

“ Of course, the principle assumption madein Artificial Lifeisthat the*logical form’ of an organism can be
separated from its material basis of construction, and that *aliveness’ will be found to be a property of the
former, not of the latter.” [Langton, 1989, page 11]

Theideaisthat if weareabletofind thebasic principles of living organization, then the material substract used
toredlizelifeisirreevant. By investigating thesebasic principleswestart studying not only biological, carbon-
based, life— life-as-we-know-it— but really theuniversal rulesof life, or life-as-it-could-be. Several problems
have been raised regarding this search for a universality without matter [Cariani, 1992; Moreno et al, 1994],
which will not be discussed here. What needs to be made more explicit is the relationship between the two
distinct goals of AL.



Looking at emergent behavior in formal complex systems in search of interesting behavior indicates a certain
circularity. If AL isconcerned withfinding life-likebehavior inartificial, universal, systems, weareultimately
binding life-as-could-be to the behavior of life-as-we-know-it by virtue of some subjective resemblance. This
can hardly be accepted as the search for universal principles.

“They say, ‘Look, isn’t this reminiscent of abiological or a physical phenomenon!” They jump inright away
asif it’sadecent model for the phenomenon, and usually of courseit’sjust got some accidental features that
make it look like something.” [Jack Cowan as quoted in Scientific American, June 1995 issue, “From
Complexity to Perplexity”, by J. Horgan, page 104]

“Artificial Life— and the entirefield of complexity—seems to be based on a seductive syllogism: Thereare
simple sets of mathematical rules that when followed by a computer give rise to extremely complicated
patterns. The world also contains many extremely complicated patterns. Conclusion: Simple rules underlie
many extremely complicated phenomena in the world. With the help of powerful computers, scientists can
root those rules out.” [J. Horgan, Scientific American, June 1995 issue, “From Complexity to Perplexity”,

page 107]

“Artificial Lifeisbasically afact-free science’. [John Maynard Smith as quoted in Scientific American, June
1995 issue, “From Complexity to Perplexity”, by J. Horgan, page 107]

The problem is that Artificial Life must be compared to something, otherwise it becomes a factless
manipulation of neat computer games with subjective resemblances to vagueideas of the behavior of real life.
Again, wearefaced with many possible emergent types of complex behaviors, thistimeformal, but what kinds
of these behaviors can be classified as“ life-as-coul d-be’ ?, what istheformal threshold of complexity needed?
In the natural world we are, more or less, able to distinguish life from non-life, biology from physics, in the
logical realm, we likewise need a formal criteriato distinguish logical life from logical non-life, artificial life
fromartificial physics. Only by establishing an artificial physics, fromwhich an artificial biology can emerge,
and a theory, or set of rules, distinguishing the two, can we aim at a proper science based on fact.

“Artificial Life must be compared with a real or an artificial nonliving world. Life in an artificial world
requires exploring what we mean by an alternative physical or mathematical reality.” [Pattee, 1995]

The two goals of AL are usually described as hard and soft AL respectively. The first concerns the
synthesization of artificial life from computational or material (situated robotics) components. The second is
interested in obtaining life-like behavior and is essentially metaphorical. To be accepted as a scientific fidd,
AL, morethan imitating subjective behavior, should be concerned with theinvestigation of therulesthat allow
us to distinguish life from non-life and which can be experimentally replicated within a scientific discourse.
Whether we areinterested in hard or soft AL, our artifacts and models should always make explicit the set of
rules which allow us to defend that some artificial organization is alive or observes some specific life-like
behavior. Naturally, the requirements for hard AL are much stricter, as we are not merely interested in
behavioral thresholds that can be compared to real biological systems with looser or stricter rules, but the
actual realization of an artificial organization that must beagreedto belivinginall of itsaspects. Soft AL, may
restrict itsdf to particular behavioral traits which need only to be simulated to a satisfactory degree. We will
belooking into several alternatives for organizational requirements of life during the remaining of this course.



2.2. Simulations, Realizations, Systemhood, Thinghood, and Theoriesof Life

“ Boids arenot birds; they arenot even remotely likebirds; they have no cohesive physical structure, but rather
exist as information structures — processes — within a computer. But — and thisis the critical ‘but’'— at
the level of behaviors, flocking Boids and flocking birds are two instances of the same phenomenon:
flocking.” [Langton, 1989, page 32]

“The'artificial’ in Artificial Liferefersto the component parts, not the emergent processes. If the component
partsareimplemented correctly, the processes they support are genuine— every bit as genuine asthenatural
processes they imitate. [...] Artificial Lifewill therefore be genuine life—it will simply be made of different
stuff than the life that has evolved on Earth.” [Langton, 1989, page 33]

“Simulationsandrealizationsbelongto different categories of modeling. Simulationsaremetaphorical models
that symbolically ‘stand for’ something else. Realizations are literal, material models that implement
functions. Therefore, accuracy in a simulation need have no relation to quality of function in a realization.
Secondly, the criteria for good simulations and realizations of a system depend on our theory of the system.
The criteria for good theories depend on more than mimicry, e.g., Turing Tests.” [Pattee, 1989, page 63]

The bottom lineis that a simulation, no matter how good it is, will never become a realization. Nonetheless,
it may still be possibleto abtain artificially living organisms (redlizations) if, from a simulated environment,
weareableto create genuineemergent evolution. Howard Pattee[1989] hasproposed that if emergent artificial
organisms are able to perform measurements, or in other words, categorize and control aspects of their
(artificial) environment then they may be considered realizations. Some claimthat computational environments
do not allow for this creative form of emergence [see Cariani, 1992; Moreno, et all, 1994]. In any case,
whatever artificial environment we may use, computational or material, we need a theory allowing us to
distinguish life from non-life.

Related to thisissue, and inthe context of systems science, isthe search of those properties of theworld which
can be abstracted from their specific material substrate: systemhood from thinghood. Systems science is
concerned with the study of systemhood properties, but there may be systems from which systemhood cannot
be completdy abstracted from thinghood. Life, and complexity in general, is sometimes proposed as one of
those systems [see Rosen, 1986, 1991; Moreno et al, 1994; Pattee, 1995]. Thedifficulty for systems science,
or complexity theory, lies precisdly in the choice of the appropriateleve of abstraction. If we abstract enough,
most things will look alike, leading to a theory of factless, reminiscent analogies, exposed by Cowan and
Maynard-Smith above. If we, on the other hand, abstract too little, all fields of inquiry tend to fall into more
and more specific niches with little communication amongst them. In the context of life, we do not want to be
tied uniquely to carbon-based life, or life-as-we-know-it, but we also do not want life-as-could-be to be
anything at all. The challengelies precisdy on finding theright amounts of systemhood and thinghood, aswell
as the interactions between the two, necessary for a good theory of life, real or artificial.

In philosophy of biology, this problem is posed between structuralism and functionalism. Structuralism often
leadsinto areductionist explanation of meaningless, toahigher level, physical interactions, whilefunctionalism
may disregard important characteristics of matter. A given function may be implemented in many ways,
however, not all of these structures will have the same evolutionary potential, which may even beindependent
of how well the function isimplemented. Lifeis ultimatdy linked to some physics from which it emerges: this
physics may beartificial, but theliving organisms which may inhabitateit will survive depending on how well
they are ableto harness their environment and not only on the abstract function they may implement. Thusto
study a particular life form, we cannot disregard neither its particular physical environment nor its function.
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To systematically study life should concern not solely matter or form alone, but precisdy the interactions
between the two.

In the next lectureswe will study several formal mechanisms which observe certain characteristics associated
with life. With all of them we must ask the following question: “ granted, lifefollows these characteristics, but
are there other characteristics not captured in this mode ? Are those important? Must a theory of lifeinclude
them, or arewerestricting lifetoo much?’ Somewherebetween* any animationgoes’ and*“ carbon-chauvinism”
wemust find asatisfying criteriafor recognizing lifefrom non-life. Likewith anything else, the chosen theory,
or theories, will be the one capable of satisfying some group’s consensus, after which facts can be built upon.
It should be noted that scientific consensusis not merdy built upon conversational interactions, but also onthe
replicability of experiments available to all observers, which allows the establishment of a larger and larger
consensual understanding of the world. It also binds scientific discourse to the laws of a particular world
(natural or artificial), as opposed to pure linguistic interaction between participants in a given discourse.

Further Readings and References

Cariani, P. [1992], “Emergence and Artificial Life’ In Artificial Lifell. C. Langton (Ed.). Addison-Wesley. pp. 775-
797.

Langton, C. [1989], “Avrtificial Life’” In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47.

Klir, G. [1991], Facets of Systems Science. Plenum Press. (On Constructivism pp. 12-13)

Maturana, H. And F. Vardla[1987], The Tree of Knowledge. Shambhala Publications.

Moreno, A., A. Etxeberria, and J. Umerez [1994], “ Universality Without Matter?’. InArtificial LifelV, R. Brooksand
P. Maes (Eds). MIT Press. pp 406-410

Pattee, H. [1989], “ Simulations, Realizations, and Theories of Life’. In Artificial Life. C. Langton (Ed.). Addison-
Wesley. pp. 63-77.

Pattee, H. [1995], “Artificial Life needs areal Epistemology”. In Advances in Artificial Life. F. Moran, A Moreno,
J.J. Merdo, P. Chacon (Eds.). Springer-Verlag. (In press)

Rosen, R. [1986], “Some Comments on Systems and System Theory”. In Int. Journal of General Systems. Vol. 13,
No.1.

Rosen, Robert [1991]. Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life.
Columbia University Press.

Sober, E. [1992], “Learning from Functionalism — Prospects for Strong Artificial Life’. In Artificial Lifell. C.
Langton (Ed.). Addison-Wesley. pp. 749-765.

Zdeny, M., G. Klir, and K. Hufford [1989], “Precipitation Membranes, Osmotic Growths and Sythetic Biology”. In
Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 125-139.

For next lectureread:

Chapter | of Emmeche’ s [1991], The Garden in the Machine: The Emerging Science of Artificial Life. Princeton
University Press.



3. Self-Organization and Emer gent Complex Behavior

“[...] asdf-organizing system is a system that tends to improve its performance in the course of time by
making its elements better organized for achieving the goal. This formulations includes the special casein
which thegoal isto achieveahigh degree of organization (order) of relevant entitiesfrom low degree of their
organization (disorder, chaos).” [Klir, 1991, page 156]

Weshould start the study of self-organization and complex behavior with thethought that “ Complexity exists,
in some murky sense, in the eye of the beholder” [Horgan, page 106]. George Klir [1991], in line with Ashby
[1962] thinks of sdlf-organizing systems as a case of goal-oriented systems “ that are capable, with no explicit
outside help, of improving their performance while pursuing their goals’ [Klir, 1991, page 165] and which
must be evaluated with some performance function. However, this goal (e.g. order, complex behavior) is
established in relation to some observer interested in a particular behavior. This is the reason why the study
of emergent, interesting, complex behavior isatricky affair. Wecan all agreeonthesimplelocal rules causing
the emergent global behavior, but the latter isamore subjective affair sinceit is not explicitly programmed or
describedin physical terms. It isinstead an observed behavior, relevant for some observer with somegoal like
understanding life or building some sort of computational engine [see Forrest, 1991]. Kauffman[1993] calls
for anew statistical mechanicsto understand thebehavior of self-organizing computational structures, in other
words, new higher-level parameters (with physical analogues such as temperature) must be developed to
understand sdf-organizing, emergent, behavior regarding some observer’s interest.

“ Complexologistsoftenemploy ‘interesting’ asasynonymfor ‘ complex’ . But what government agency would
supply funds for research on a ‘ unified theory of interesting things' 7’ [Horgan, 1995, page 106]

What is usually referred to as sdf-organizing behavior is the spontaneous formation of well organized
structures, patterns, or behaviors, from randominitial conditions. The systems used to study this behavior are
referred to as dynamical systems: state-determined systems. They possess a large number of eements or
variables, and thus very large state spaces. However, when started with some initial conditions they tend to
convergeto small areas of this space (attractor basins) which can beinterpreted asaform of self-organization.
The existence of attractors is identified with the dissipation of some form of energy (friction), therefore, like
living systems, dissipative structures can only be maintained by a constant flux of energy through them, and
arethereforenot in equilibrium. These attractors may be chaotic in which casethe emergent behavior becomes
too disorganized to grasp (disorganized complexity), though still self-organizing since chaotic attractors tend
to be restricted to small volumes of their state-space (e.g. chaotic in a small subset of dimensions of the stat-
space). The behavior of interest is often found in the transition between order and chaos — edge of chaos—
and classified asakind of organized complexity [Weaver, 1948]. Another paralld toliving systems hereisthat
such dynamical structures are not devised to exhibit this behavior, they develop spontaneously from random
initial conditions (note: not from special initial conditions). This behavior — many parts working together to
achieve a higher order — is also known as synergetics [Haken, 1977].

Since such formal dynamical systems are usually used to model real dynamical systems such as chemical
networks of reactions, non-equilibriumthermodynamic behavior [Nicolisand Prigogine, 1977], or evenmineral
osmotic growths [Leduc, 1911; Zdeny, Klir, and Hufford, 1989], the conclusion is that in nature, thereisa
tendency for spontaneous sdf-organizationwhichisthereforeuniversal [ Kauffman, 1993]. Further, only matter
out of equilibrium (with dissipation) can achieve sdf-organization, which may be quite complex (strange
attractors, etc.) [Prigogine, 1985]. T hisundeniabletendency for thespontaneousformation of complex physical
patterns, is also frequently used to propose that life (an autonomous dissipative organization maintained
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through metabolism) ismoregeneral than usually accepted and that even mineral structurescan beinthissense
alive [Zdeny, Klir, and Hufford, 1989]. This process of sdf-organization is also often interpreted as the
evolution of order from chaos. However, notice that this evolution is limited in its complexity level to the
attractorsdynamic systems convergeto. A given dynamic system, unlessits parametersarechanged (structural
perturbation), cannot escape its own attractor landscape and it is therefore constrained in its evolutionary
potential. This limitation will become more apparent when we approach the problem of sdlf-replication.

3.1. Edge of Chaos

Another interesting aspect of the behavior of dynamical systems concerns the concept of bifurcation. When
the parameters of a dynamic system are changed gradually its trajectories and attractors typically change
gradually, however, for certain parameter values sudden changes in the dynamic behavior can occur (e.g.
Benard Cdls). It is at this critical point that complicated spatio-temporal organization may occur (e.g.
oscillation with constant period). Closeto bifurcations the system al so becomes increasingly more sensitiveto
parameter and initial condition changes. It is often proposed that bifurcations offer a selection mechanism
[Prigogine, 1985] dueto this sensitivity, as organizations may respond very differently to very small changes
intheir parameters, e.g. aflower’s decision to bloom.

However, if the parameter spaceis divided by many bifurcations, the system becomes increasingly sensitive
to initial conditions and small parameter changes; in this sense its behavior becomes chactic. It is usually
argued that the most useful behavior lies instead in between full order and chaos. Langton [1990, 1992] has
shown (for two-dimensional cellular automata) that it isin this range of behavior that dynamical systems can
carry the most complicated computations. Computation here is used an a loose sense, and means that
information exchange between e ements of these systemsismaximized inthisrange, or in other words, Langton
showed that the highest degrees of corrdation between the states of his cdlular automata occur at this stage.
Thesameideahasbeen proposed by others, including Prigoginewho * speaking anthropomorphically [ proposed
that], matter at equilibrium is ‘blind,” it only ‘sees’ at very short distances, while matter out of equilibrium
develops a sensitivity to the outsideworld that is a sensitivity to distant events.” [Prigogine, 1985, page 434].

Kauffman [1993, page 232] further hypothesizes that “living systems exist in the [ordered] regime near the
edge of chaos, and natural seection achieves and sustains such a poised stat€’. This hypothesis is based on
Packard’ s [1988] work showing that when natural selection algorithms are applied to dynamic systems, with
the goal of achieving higher discriminative power, the parameters are changed generally to lead these systems
into thistransitional area between order and chaos. Thisideaisvery intuitive, sincechaotic dynamical systems
aretoo sensitiveto parameter changes (structural perturbation), that is, a singlemutation leads the systeminto
another completdy different behavior (sensitive to damage). By contrast, ordered systems are more resilient
to damage, and a small parameter change will usually result in a small behavior change which is ideal for
smooth adaptation (hill-climbing) in correlated fitness landscapes. However, eventhough very ordered systems
can adapt by accumulation of useful successful variations (because damage does not propagate widdy), they
may not be able ‘step out’ of certain areas of their fithess landscapes. It is here that systems at the edge of
chaos enter the scene; they are not as sensitive to damage as chaotic systems, but still they are more sensitive
than fully ordered systems, and thus, some mutations will accumulate (by causing minor structural changes)
and some others will cause mgjor changes in the dynamics allowing more distant searches in fitness spaces.
Thesecharacteristicsof simultaneous mutation buffering (to small changes) and dramatic alteration of behavior
(in response to larger changes) isideal for evolvability [Conrad, 1983, 1990].

Perhaps these concepts can be better grasped in the context of classifier networks. As stressed in the first
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lecture, the ability to discriminate (categorize) relevant eventsin an environment is an important characteristic
of life. Dynamic systems such as boolean networks have the ability to discriminate inputs. Generally, the
attractorsof their dynamicsareusedto represent eventsintheir environments: depending oninputs, thenetwork
will convergeto different attractors. However, for any classification to have survival value, it must relateits
own constructed states (attractors) tordevant eventsinits environment, thus, similar eventsintheworld should
correspond to thesameattractor basin. Chaotic systemsclearly do not havethis property duetotheir sensitivity
toinitial conditions. Ordered systems follow this basic heuristic. If on the edge of chaos, ordered systems may
in addition allow for higher information exchange and perhaps more ‘clever’ (evolvable)

categorization mechanism.

“ Organisms and other entities which interact with their worlds are likely to couple to those worlds in such
away that smooth classification occurs, and theworld is seen asrdatively stable. Then the*knower’ should
not be chaotic, nor should its classification, the ‘known’, be. It is a reasonable guess that both the knowing
system and the known world arein the [ordered] regime, perhaps near the edge of chaos.” [Kauffman, 1993,
page 234]

3.2 G-Type/P-Type Distinction and Emer gent Behavior

“Inthecontext of Artificial Life, weneed to generalizethe notions of genotypeand phenotype, so that we may
apply them in non-biological situations. [...] The GTYPE, essentially, is the specification for a set of
machines, while the PTYPE is the behavior that results as the machines interact with one another in the
context of a specific environment. Thisis the bottom-up approach to the generation of behavior.” [Langton,
1989, pp. 22-23]

Langton's definition of GTYPE and PTYPE is not so much a generalization of the genotype/phenotype
distinction in biology, asit is a framework to conceptualize emergent behavior in Artificial Life. It statesthe
reguirement of aminimum of two levelsof description for models of emergence. Thefirst specifically describes
thelevd of therulesof dynamics (e.g. lawsof physicsor cdlular automatarules). Thesecondisthedescription
of whatever global behavior one decidesto observe (e.g. self-organization, function, patterns, etc.). However,
this distinction fails to generalize the biological genotype/phenotype distinction, since the genotype does not
definethelaws that allow the phenotypeto self-organize (protein folding), those are simply the chemical laws
of the constituents of proteins (aminoacid chains). The genotype merely offers the initial conditions for such
a process of saf-organization, in this sense it can be seen more as data than as a program for a phenotype
[Atlanand Koppel, 1990]. Thisproblem can beeasily recognized whenwerealizethat thebiological genotype,
depending on the level of description chosen, can be seen bothasa GTYPE and asa PTYPE. The GTY PE of
the genotype being the chemical rules of interaction between the components of nucleic acids, and the PTY PE
being its sdf-organization into DNA strands and its subsequent utilization as a genetic information carrier.
Likewise, the biological phenotype may also be granted a GTY PE and PTY PE description. Theformer being
therules of interaction of protein constituents, and the latter being the functions associated with the specific
phenotype (e.g. catalytic behavior).

Historical papersand booksin self-organizationinclude: Farley and Clark [1954], Y ovitsand Cameron[1960],
von Foerster and Zopf [1962], Yovits, Jacobi, and Goldstein [1962], Ashby [1962], Nicolis and Prigogine
[1977], and more recently Kauffman [1993].

Further Readings and Refer ences:
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Ashby, W.R. [1960], Design for a Brain. Wiley.

Ashby, W.R. [1962]."Principles of the self-organizing system.” In: Principles of Self-Organization. H. von Foerster
and G.W. Zopf (Eds.). Pergamon Press. Reprinted in Klir [1991 pp. 521-536.

Atlan, H. And M. Koppd [1990]. “ The cellular computer DNA: program or data’. In: Bulletin of Mathematical
Biology, Vol. 52, No. 3, pp.335-348.

Conrad. M. [1983], Adpatability. Plenum Press.

Conrad, M. [1990], “ The geometry of evolutions’. In BioSystems VVal. 24, pp. 61-81.

Farley, B.G. and W.A. Clark [1954], “ Simulations of self-organizing systems by digital computer. IRE Transactions,
IT-Vol 4 No. 3, pp 76-84.

Forrest, S. (Ed.) [1990]. Emergent Computation. MIT Press/ North-Holland. Special I1ssue of Physica D. Val. 42.

Haken, H. [1977], Synergetics. Springer-Verlag.

Horgan J. [1995], Scientific American, June 1995 issue, “From Complexity to Perplexity”

Kauffman, Stuart A. [1993]. The Origins of Order: Salf-Organization and Selection in Evolution. Oxford University
Press.

Klir, George J. [1991]. Facets of Systems Science. Plenum Press.

Langton, C. [1989], “Artificial Life’” In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47.

Langton, C. [1990]. “ Computation at the edge of chaos. phase transitions and emergent computation”. In Forrest
[1990] pp12-37.

Langton, C. [1992], “Life at the edge of chaos’. In Artificial Lifell. C. Langton (Ed.) Pp 41-91. Addison-Wesley

Leduc, S. [1911], The Mechanisms of Life. Rebman.

Nicolis, G. and I. Prigogine [1977]. Self-Organization in Nonequilibrium Systems: From Dissipative Sructures to
Order through Fluctuations. Wiley-Interscience.

Packard, N. [1988] “ Adaptation toward the edge of chaos’. In. Complexity in Biologic Modelling. S. Kelso and M.
Shlesinger.

Prigogine, 1. [1985]. “ New Perspectives on Complexity”. In the Sciences and Praxis of Complexity. The United
Nations University pp.107-118. Reprinted in Klir [1991] pp.484-492

von Foerster, H. and G.W. Zopf (Eds.) [1962], Principles of Self-Organization. Pergamon Press.

Weaver,W. [1948], “ Science and Complexity”, In American Scientist, Vol. 36. Reprinted in Klir [1991] pp. 449-456.

Yovits, M.C. and S. Cameron (Eds.) [1960], Self-Organizing Systems. Pergamon Press.

Yovits, M.C., G.T. Jacobi, and G.D. Goldstein (Eds.) [1962], Self-Organizing Systems —1962. Spartan Books.

Zdeny, M., G. Klir, and K. Hufford [1989], “Precipitation Membranes, Osmotic Growths and Sythetic Biology”. In
Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 125-139.

For Next Lecture Read:

Chapter 11 of Emmeche’ s[1991], The Garden in the Machine: The Emerging Science of Artificial Life. Princeton
University Press.
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4. Self - Organization and Cellular Automata

Generally, sdf-organization is seen as the process by which systems of many components tend to reach a
particular state, a set of cycling states, or asmall volume of their state space, with no external interference. Al
the mechanisms dictating its behavior are internal to the system: self-organization as opposed to externally
imposed organization. Thus, it is reasonable to further demand that for a system to observe sdlf-organizing
behavior, its order cannot beimpaosed by special initial conditions, which would amount to a special creation.
Therefore, to guarantee that a system is self-organizing, we start it with random initial conditions and see if
it attains the desired order, or attractor behavior.

So far, we have seen two different types of computational systems said to be salf-organizing in this sense: the
discrete logistic equation and Kauffman's NK-Boolean nets. We have seen that the former observes several
ranges of ordered behavior according to its parameter a. For a# 3, the system will convergeto a single point
steady state (independently of itsinitial value). For 3# a# 4 thesystem entersaseriesof bifurcations, meaning
that it starts converging to atwo-state limit cycle which progressively doublesthe number of statesinitscycle
asa increases. Closetoa = 4, the cycles become chaotic. That is, in the chaotic range, the slightest changein
theinitial value, will lead to acompletely different trajectory (though similarly chactic). Thesystem goesfrom
being independent to strongly dependent of initial conditions, though, in each range, the attractor behavior of
theequationisthesamefor randominitial conditions. Thus, we can seethelogistic equation as self-organizing.

But there is another aspect of thelogistic equation that should be understood. In all of its ranges of behavior,
from full order to full chaos, the system is (fairly) reversible. That is, | can always obtain a specific initial
condition which caused some behavior, by formally running the system backwards. This means the systemis
deterministic in both temporal directions. Formally, this meansthe statetransition functionisinvertible. (This
is actually only true, if we decide to work on the lower half of its state space, since the logistic equation is a
quadratic function, it has alwaystwo possible solutionsfor the previous value of the current state, thesevalues
are symmetric about the middle point of its state space). Some, Howard Pattee for instance, resist calling this
kind of reversiblesystems saf-organizing. They reasonthat if a systemis self-organizing, when ran backwards
it should be sdf-disorganizing, that is, it should lead to random initial conditions, or to an incomplete
knowledge of possible initial states. Pattee reserves the term self-organization to those irreversible systems
whose behaviors must be evaluated statistically. The logistic map shows “hints” of this backwards sdf-
disorganization, but we can still work out effectively its backwards trajectory to an initial condition by
restricting the quadratic solutions to half of its state space.

Random Boolean Networks are much more complicated than this. They are completely deterministic since a
certain state will always lead to the same next state (state-determinacy), however, we cannot usually know
exactly what the predecessor of a current statewas. Systemslikethis are usually studied with statistical tools.
Even though the rules that dictate the next state of its components are simple and deterministic, the overall
behavior of the systemis generally too complicated to predict and statistical analysis has to be performed. For
instance, Kauffman has shown that when K=2 (number of inputs to each node), his networks will have on
average /N basins of attraction with alength of /N states; if the output of one nodeis switched to the other
boolean value (perturbation), thetrajectory returnsto that cycle 85% of thetime, while ontheremaining 15%
of thetimeit will “jump” into a different basin of attraction.

Cdlular automata (CA) fall into this same category of deterministic, irreversible, sef-organization. We will
discuss Wolfram' s four statistical classes reached by all one-dimensional CA from random initial conditions,

12



Langton’s further refinement of these classes, and Conway’s game of Life. Like the NK-networks, CA sdf-
organize exclusively in accordanceto their local rules. Thisis usually interpreted in boolean networks as the
simulation of some closed abstract dynamics (e.g. chemical reactions, genomic networks with epistasis, etc),
but in CA thelocal rules are often viewed asthe simulation of someartificial physicsinan artificial topological
space, while the patterns of cdlular activation (state cycles) are seen as emergent phenomena. In particular,
when coherent patterns are observed which behave like life in some way (mation, self-reproduction, etc), it is
oftenarguedthat it representstheemergenceof artificial lifefromartificial matter. Thesimplelocal rulesstand
for an artificial physicswith micro-causality (a cdl’ s stateis solely dependent on its spatial neighbors and on
ther previousvalue), and theemergent patternsfor artificial life. Oneaobvious problemwiththisinterpretation
isthat in the real world the local rules leading to some physical causality generate all that we see around us,
living and non-living. In the CA world, arguments are often made for the emergence of artificial life, but not
for anexplicit criteriatodistinguish artificial lifefromartificial non-lifealso generated by theartificial physics.

CA further observe the three ranges of behavior exhibited by boolean networks: ordered, chaotic, and
intermediate. Wewill discuss Langton’ sresultsindicating that CA will perform computations more effectively
intheedgeof chaos, whichisbased on thedefinition of his? parameter. Later on, onceevolutionary algorithms
areintroduced, the evolution of CA rules for the solution of non-trivial tasks is discussed.

Further Readings and References:

Forrest, S. (Ed.) [1990]. Emergent Computation. MIT Press/ North-Holland. Special I1ssue of Physica D. Val. 42.

Kauffman, Stuart A. [1993]. The Origins of Order: Self-Organization and Selection in Evolution. Oxford University
Press.

Langton, C. [1990]. “ Computation at the edge of chaos: phase transitions and emergent computation”. In Forrest
[1990] pp12-37.

Packard, N. [1988]. “Adaptation to the edge of chaos’. In Complexity in Biological Modeling, S.Kelso and M.
Shlesinger (eds.).

Rucker R. And J. Walker [1989]. CA Lab: Rudy Rucker’s Cellular Automata Laboratory. Autodesk, 1989 (book and
software)

Sigmund, K. [1993], Games of Life: Explorationsin Ecology, Evolution, and Behavior. Oxford University Press

Toffoli T. and N. Margolus [1987]. Cellular Automata Machines. MIT Press

Wolfram, S. (Ed.) [1986], Theory and Applications of Cellular Automata, World Scientific Press.

For Next Lecture Read:

Chapter I11 of Emmeche’ s[1991], The Garden in the Machine: The Emerging Science of Artificial Life. Princeton
University Press.
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5. Von Neumann and Natur al Selection

5.1 Von Neumann’s Self-Reproduction Scheme

Von Neumann thought of his logical mode
of sdf-reproduction as an answer to the
observation that, unlike machines, biological
organisms have an ability to sdlf-replicate
while increasing their complexity without
limit. Mechanical artefacts are instead
produced via more complicated factories (as
opposed to sdf-production) and can only
degenerate in ther complexity. He was
searching for a complexity threshold beyond
which systems may sdf-reproduce (no
outside control) while possibly increasing
their complexity.

B
A

BAB,C)
<I>?A,B,Cj B

@A,B,C) A

Von Neumann concluded that this threshold
entails a memory-stored description F(X)
that can be interpreted by a universa
constructor automaton A to produce any
automaton X; if a description of A, F(A), is
fed to A itsdf, then a new copy of A is
obtained. However, to avoid alogical paradox of sdlf-reference, the description, which cannot describeitsdlf,
must be both copied and translated into the described automaton. This way, in addition to the universal
constructor, an automaton B capable of copying any description, F(X), isincluded in the sdf-replication
scheme. A third automaton C is also included to effect all the manipulation of descriptions necessary — a sort
of operative system. To sum it up, the sdf-replicating system contains the set of automata (A + B + C) and a
description F (A+ B + C); thedescription isfed to B which copies it three times (assuming destruction of the
original); one of these copiesis then fed to A which produces another automaton (A + B + C); the second copy
is then handled separately to the new automaton which together with this description is also able to sdf-
reproduce; thethird copy is kept so that the saf-reproducing capability may be maintained (it is also assumed
that A destroys utilized descriptions). Notice that the description, or program, is used in two different ways:
it is both translated and copied. In thefirst role, it controls the construction of an automaton by causing a
sequence of activities (active role of description). In the second role, it is ssimply copied (passive role of
description). Inother words, theinter preted description control sconstruction, and theuninter preted description
is copied separatdly, passing along its stored information (memory) to the next generation.

Thenotion of description-based sdlf-reproductionimpliesasdf-referential linguistic mechanism. A description
must be cast on some symbol systemwhileit must al so beimplemented by somephysical structure. Sincemany
realizations of the same symbol system are possible, viewing descriptions only as physical systems cannot
explain the symbolic nature of the control of construction. When A interprets a description to construct some
automaton, asemantic codeis utilized to map instructionsinto construction commands to beperformed. When
B copies a description, only its syntactic aspects are replicated. Now, the language of this semantic code
presupposes a set of primitives (e.g. parts and processes) for which the instructions are said to “stand for”.
Descriptions are not universal insofar as they refer to these building blocks which cannot be changed without
altering the significance of the descriptions. The building blocks ultimately produce the dynamics, behavior,
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and/or functionality of theoverall system, and may be material or computational (standing for someartificial
materiality). In the genetic system, the parts are amino acids. Computational parts might be for example the
building blocks of neural networks coded by genetic algorithms and L-Systems. We can see that a sdf-
reproducing organism following this schemeis an entanglement of symbolic controls and dynamic constraints
whichis closed on its semantics. Howard Pattee calls such a principle of self-organization semantic closure.

Semantic closure requires the parts problem discussed above to be explicitly taken into account. The
evolvability of a sdf-reproducing system, to be discussed below, is dependent on the dynamic parts used by
the semantic code. If the parts are very simple, then the descriptions will haveto be very complicated, whereas
if the parts possess rich dynamic properties, the descriptions can be simpler sincethey will takefor granted a
lot of the dynamics that otherwise would have to be specified. In the genetic system, genes do not have to
specify the functional characteristics of the proteins produced, but simply the string of amino acids that will
produce that functionality “for freg” [Moreno et al, 1994]. Furthermore, there is a trade-off between
programmability and evolvability [Conrad, 1983, 1990] which renders some sdf-reproducing systems no
evolutionary potential whatsoever. If descriptions require high programmability they will be very sensitiveto
damage (e.g. Langton’s salf-reproducing loops). Low programmability grants self-reproducing systems the
ability to change without destroying their own organization, though it also reduces the space of possible
evolvable configurations. In computational realms this implies that we should move towards modds that
include both programmabl eand self-organi zing components[Rocha, 1997]. Wewill discuss such systemslater
in this course.

5.2 Open-ended emer gent evolution and natural selection

Perhaps the maost important consequence of the requirement of memory-based descriptionsin Von Neumann's
sdf-reproduction scheme s its opening the possibility for open-ended emergent evolution. As Von Neumann
[1966] discussed, if the description of the self-reproducing automata is changed (mutated), in away as to not
affect the basic functioning of (A + B + C) —that is, if the semantic closurein not destroyed — then, the new
automaton (A + B + C)" will be dightly different from its parent. Von Neumann used a new automaton D to
beincluded in the sdf-replicating organism, whose function does not disturb the basic performance of (A + B
+ C); if thereisamutation in the D part of the description, say D', thenthesystem (A+ B+ C + D) + F(A
+ B+ C+ D)) will produce(A+B+C+ D)+ F(A+ B+ C+ D). Von Neumann [1966, page 86] further
proposed that non-trivial salf-reproduction shouldincludethis* ability to undergo inheritable mutationsaswell
asthe ability to make another organism likethe original”, to distinguish it from“ naive’ sef-reproduction like
growing crystals.

Noticethat changesin (A+B +C + D’) arenot heritable, only changesinthedescription,F(A+ B+ C+ D),
areinherited by theautomaton’ soffspring and arethusrelevant for evolution. Thisability totransmit mutations
isprecisaly at thecoreof the principleof natural sdection of modern Darwinism. Through variation (mutation)
populations of different organisms are produced; the statistical bias these mutations impaose on reproduction
rates of organisms will create survival differentials (fitness) on the population which define natural selection.
In principle, if the language of description is rich enough (its material constraints are dynamically rich), an
endless variety of organisms can be evolved: open-ended emergent evolution.

Thethreshold of complexity proposed by VVon Neumann istaken by some(e.g. Pattee, Rosen, Cariani, Kampis
see Rocha[1995]) as another category of sdf-organization which is capable of creative organization and
sdection from outside. Notice that the self-organizing systems we have been studying so far (random nets,
Cdlular Automata) are said to sdf-organize when they converge to small areas of ther state spaces or
attractors. Thissort of evolutionis constrained by the complexity of the attractor landscape of organisms seen
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asdynamical systems. It cannot evolveatruly nove dynamics. In Cariani’ s[1991] terms, it cannot evolve new
functionalities (such as sensors). Non-trivial sdf-replicating systems rely instead on memory-based sel ected
self-organization [Rocha, 1996, 1996; Henry and Rocha, 1996] which can be seen asatype complex adaptive
systems that observe a principle of organization referred to as embodied, evolving semiosis [Rocha, 1997].

Further Readings and Refer ences:

Cariani, Peter [1991]."Some Epistemological Implications of Devices which Construct their own Sensors and
Effectors.” In: Towardsa Practice of Autonomous Systems, F. Varelaand P. Bourgine (Eds.). MIT Press. pp
484-493.

Conrad. M. [1983], Adpatability. Plenum Press.

Conrad, M. [1990], “ The geometry of evolutions’. In BioSystems VVal. 24, pp. 61-81.

Henry, C. and L.M.Rocha [1996]."Language theory: consensual selection of dynamics." In: Cybernetics and
Systems'96. R.Trappl (Ed.).Austrian Society for Cybernetic Studies. pp. 477-482. To be reprinted in
Cybernetics and Systems.

Moreno, A., A. Etxeberria, and J. Umerez [1994], “ Universality Without Matter?’. InArtificial LifelV, R. Brooksand
P. Maes (Eds). MIT Press. pp 406-410

Pattee, Howard H. [1982]."Cdll psychology: an evolutionary approach to the symbol-matter problem.” In: Cognition
and Brain Theory VVol. 5, no. 4, pp 325-341.

Pollack, R. [1994]. Sgns of Life: The Language and Meanings of DNA. Houghton Mifflin.

Rocha, LuisM.(Ed.) [1995]. special issuein Salf-Referencein Biological and Cognitive Systems. Communication and
Cognition - Al Vol. 12, nos. 1-2 .

Rocha, LuisM. [1996]." Selected self-organi zation: from eigenbehavior todescriptions.” In: Proceedings of theIntern.
Seminar on Evolving Systems, Vienna 1995. S. Salthe and G. Van de Vijver (Eds.). MIT Press. (in press).

Rocha, Luis M. [1996]."Eigenbehavior and symbols." In: Systems Research Vol. 12, No. 3 (In Press).

Rocha, Luis M. [1997]. Evidence Sets and Contextual Genetic Algorithms: Exploring Uncertainty, Context, and
Embodiment in Cognitive and Biological Systems. PhD. Dissertation. SUNY Binghamton.

vonNeumann, John[1966]. The Theory of Self-Reproducing Automata. Arthur Burks(Ed.) University of lllinoisPress.

For Next Lecture Read:
Chapter V of Emmeche’ s[1991], The Garden in the Machine: The Emerging Science of Artificial Life. Princeton
University Press.
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6. Evolutionary Computation

“How does evolution produce increasingly fit organisms in environments which are highly uncertain for
individual organisms?How does an organism useits experienceto modify its behavior in beneficial ways(i.e.
how doesit learn or ‘adapt under sensory guidance')? How can computers be programmed so that problem-
solving capabilitiesarebuilt up by specifying ‘what isto bedone' rather than‘howtodoit’?’ [Holland, 1975,

page 1]

These were some of the questions concerning John Holland when he thought of Genetic Algorithms (GA’s) in
the1960's. Basically, all these problemswere shownto bereduced to a problem of optimizing amultiparameter
function necessary for solving a particular problem. Nature' s* problem” isto create organismsthat reproduce
more (are more fit) in a particular environment: the environment dictates the selective pressures, and the
solutions to these pressures are organisms themsdves. In the language of optimization, the solutions to a
particular problem (say, an engineering problem), will be sdlected according to how wel they solve that
problem. GA’ sareinspired by natural seection asthesolutionsto our problemarenot algebraically cal culated,
but rather found by a population of solution alternatives which is altered in each time step of the algorithmin
order to increase the probability of having better solutions in the population. In other words, GA’s (or other
Evolutionary Strategies (ES) such as Evolutionary Programming (EP)), explore the multi-parameter space of
solution alternatives for a particular problem, by means of a population of encoded strings (standing for
alternatives) which undergo variation (crossover and mutation) and are reproduced in a way as to lead the
population to ever more promising regions of this search space (selection).

6.1. Evolutionary Strategies and Self-Organization

Theunderlyingideaof computational ESistheseparation of solutionsfor aparticular problem (e.g. amachine)
from descriptions of those solutions (memory). GA’s work on these descriptions and not on the solutions
themsdlves, that is, variation is applied to descriptions, while the respective solutions are evaluated, and the
whole (description-solution) sd ected according to thiseval uation. Such machine/description separationfollows
aspects of von Neumann's sdf-reproducing schemewhich is able to increase the complexity of the machines
described. However, theform of organization attained by GA’sis not sdf-organizing in the sense of aboolean
network of cdlular automata. Even though the solutions are abtained from the interaction of a population of
elements, and in this sensefollowing the general rules usually observed by computationally emergent systems
(e.g. Langton [1988], Mitchell [1992]), they do not self-organize since they rely on the sdective pressures of
somefitnessfunction. Theorder so attainedisnot aresult of theinternal dynamics of a collection of interacting
elements (likearandom net), but is instead dictated by theexternal sdection criteria. In this sense, ES follow
a memory-based sdlective organization scheme.

Sdf-organization is instead equated with those behaviors of organizations that are unavoidable and solely
dependent on their internal dynamics. This is usually thought of in terms of the attractor behavior of state-
determined dynamic systems. ES rely on different concepts: first, with the description-solution dichotomy the
concept of memory is introduced (state-determined, sdf-organizing, systems are memoryless); second, the
transition rules of ES are not state-determined — variation is stochastic; third, as already discussed, sdection
is external to the populations of descriptions. This way, we can hardly say that a population of memoriesis
interacting with any sort of “ self-dynamics’ : the solutions reached by a GA do not self-organize but are a
result of stochastic (population) variation and external selection.
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Systems which are able to develop the mechanisms to harness this variation based on an internally defined
description-solution dichotomy may follow the kind of selective based self-organizing principle described as
semantic closurein section 5. However, (computational) GA's are not closed in this sense, the coding relation
is externally imposed and not evolved within the system itself. For all the reasons aboveit is therefore natural
to think of ES as completely distinct from sdf-organization. It is perhaps useful to think that ES are moddling
avery different aspect of biological systemsthat isrelated to natural selection. Self-organizing systems model
the abstract, internal, characteristics of matter, while ES modd the existence of, external, seective pressures
on populations of varying memory based descriptions of some system.

6.2. development and mor phogenesis: self-or ganization and selection come together

Many of the new developments of GA’s have to do with the inclusion of a developmental stage between
genotype and phenotype, in other words, the creation of some artificial morphogenesis. Basically, theidea has
been to encoderulesthat will themselves self-organizeto produce a phenotype, rather than the direct encoding
of the phenotype itsdf. As discussed in class, these rules often use L-System grammars which dictate
production system programs [Wilson, 1988] |eading to some phenotype. The most important advantage of this
intermediate stage, asexplored by Kitano [1990], Gruau [1993], Belew [1992] and others, istheability to code
for much larger structures than a direct encoding allows. In practical terms, they have solved some of the
scalability problems of encoding (e.g.) neural networks in GA’s, by reducing the search space dramatically.

The L-system grammars are higher level descriptions of self-organizing developmental processes. However,
thesefirst approaches used soldy context-free, state-determined, L-Systemgrammars, compromising epistasis
(or mutual, non-linear, influenceof genetic descriptionsamongst each other) inthesimulation of sef-organizing
development. Dellaert and Beer [1994] and Kitano [1994], for instance, used Kauffman's boolean networks
to simulate genetic epistasis and sdf-organization. In other words, the GA will code for rules which will
construct boolean networks whose nodes stand for aspects of the phenotypes we wish to evolve on some
physical simulation. In Dellaert and Beer’s modd, the nodes stand for cell mitosis and other characteristics.
This way, the solutions of the GA are sdlf-organizing systems whose attractor behavior dictates pre-defined
phenotypic traits.

These approaches in effect offer an emergent morphology, that is, they code for rules which will themseves
sdf-organizeinto somephenotype (instead of strict programming of morphology). Theindirect encoding further
allows the search to occur in a reduced space, amplified through development. An interesting side effect has
to do with the appearance of modularity traits on the evolved phenotypes [Wagner, 1995]. In Rocha [1995,
1997] | have proposed a scheme where the contextual eements of development might be themselves evolved.
Instead of boolean networks | utilize operations between fuzzy sets to simulate a material phenotype. This
scheme represents a general purpose GA which searches the same search space for any size of phenotypic
behaviors.

The most important aspect of these GA’s with emergent morphologies is the utilization in the same modd of
an external selection engine (the GA) coupled to aparticular self-organizing dynamics (e.g. boolean networks)
standing for some materiality. Such schemes bring together, computationally, the two most important aspects
of evolutionary systems: self-organization and selection. Thesemodd sbelongtoacategory of sef-organization
referred to as Selected Self-Organization which is based on local memory [Rocha, 1996a, 1996b]. Selected
Sdf-Organization with distributed memory is also possiblein autocatal ytic structures, though its evol utionary
potential is much smaller than thelocal memory kind. Thereason liesin Von Neumann's notion of non-trivial
sdf-reproduction. The introduction of symbolic descriptions allows a much more sophisticated form of
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communication: structures are constructed from
static descriptions and do not have to reproduce
through some complicated process of sdf-
inspection. In other words, descriptions can
construct any kind of structure, while sdf- . .
inspection relies on only those structures that Selected Self' Or. ganization

happen to be ableto make copies of themselves. As Capable of structural change to classify
an example, anon-genetic protein-based life form environment; structural coupling, eigenbehavior

would have to rely only on those proteins that
could make direct copies of themsdves [These |yith distributed

Self~-Organization

Restricted to attractor behavior

with local memory

fgg%caretreated indetail in Rocha, 19963, 1996h, memory Open-ended

) Restricted evolution: semantic
_ evolution: template closure
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7. Artificial Life: Self-Organizing and Evolutionary Systems

Throughout this course emphasis was put on identifying the most important tools utilized in the field of
Artificial Life. We started with self-organizing systems, exemplified with the logistics equation, random
boolean networks, cdlular automata (e.g. Conway’ sgameof Life), and all characterized in terms of dynamics
systemstheory. Later, withthevon Neumann self-reproduction scheme, | argued that state-determined (purely
dynamic) systems are not ableto offer open-ended evolution, that is, to increasetheir complexity with genuine
emergenceof new functionalities. Dynamic systemsarerestricted tothecomplexity of their attractor landscape.

For this purpose, systems inspired by von Neumann's scheme, which demand the separation between the
description of a machine from the machineitsalf, and therefore introduce the concept of memory and external
sdection, were introduced. Such systems offer a modd of the mechanisms utilized by natural selection, and
are accordingly known as evolutionary systems (or evolutionary strategies) — e.g. genetic algorithms and
evolutionary programming. We can also refer to the mechanisms utilized to mode the kind of evolution that
natural selection offers as memory based selective strategies: seection acting on memory eements in order
to change the dynamic structure they encode.

| further emphasized hybrid systems which try to model both the self-organizing and sel ective mechanisms of
biological systems, and can therefore offer amore complete understanding of evolutionary systems. | referred
tothesesystems as getting closeto thecategory of local memory based sel ective sel f-or gani zation, or semantic
closure. Inpracticel showed those approachesaiming at theintroduction of non-deterministic, self-organizing,
developmental steps between genotypeand phenotypesuch astheevolution of boolean/neural networksencoded
through L-System rulesin a genetic algorithm. Also discussed were models capable of emergent computation
by coupling genetic algorithms to cdlular automata in order to have the latter solve non-trivial tasks.

The understanding of the relative importance the two basic categories of organization in artificial systems
introduces a very powerful way to study the reative importance of salf-organization and natural selection in
biological systems themsdves. In other words, by creating different forms of life-as-it-could-be with different
degrees of both these categories, we may shed some light on the credit assignment problem of biology: how
much of evolutionisaresult of natural selection and how muchisaresult of the self-organizing characteristics
of its specific materiality.

| was ableto introduce many of the usual applications of Artificial Life, from bugs and boids, to evolutionary
robots and social evolution. Each of these applications can bea universe of investigation initsef, so emphasis
wasinstead put on the basic categories of organization and their respective simulation tools referred above. In
one way or another, all of these applications utilize in different degrees such tools described throughout the
course. For instance, evolutionary robots may use a genetic algorithm to evolve a boolean network for its
control system allowing it to solve some maze. T o the extent that its control system was evolved and uses sdlf-
organizing mechanisms, we can say that such control system was subjected to a memory based selective type
of sdlf-organization. Naturally, therobot itsdf (its moving parts and sensors) were not evolved but engineered;
the complete evolution of a robot through self-organization and selection represents probably the most
ambitious long-term goal of Artificial Life, showing us how far behind we still are from getting there.
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