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DEDICATION TO DR. SCHUFF

The work which follows stands somewhat outside the presently
accepted method of approach, and it was for this reason rather dif-
ficult to find a publisher ready to undertake publication of such
a work. For this reason I am indebted to the Vieweg Press and es-
pecially to Dr. Schuff for undertaking publication. Dr. Schuff
suggested that a summary be printed in the Journal "Elektronische
Datenverarbeitung" (Electronic Data Processing), which appeared
last year.

The tragic death of Dr. Schuff has deeply shaken his friends,
and we will always remember him with affection.



1. INTRODUCTION

It is obvious to us today that numerical calculations can be /1%

successfully employed in order to illuminate physical relationships.
Thereby we obtain a more or less close interrelationship between

the mathematicians, the physicists and the information processing
specialists, corresponding to Figure 1. Mathematical systems serve
for the construction of physical models, the numerical calculation
of which is carried out today with electronic data processing equip-
ment.

The function of the data processing specialists is primarily
that of finding the most useful numerical solutions for the models
which the mathematicians and physicists have developed. The feed-
back effect of data processing on the models and the physical theo-
ries itself is expressed indirectly in the preferential use of
those methods for which numerical solutions are particularly easy
to obtain.

The close interplay between the mathematicians and the physi-
cists has had a particularly favorable effect on the development of
models in theoretical physics. The modern gquantum theory system is
very largely pure and applied mathematics. The question therefore
appears justified whether data processing can have no more than an
effectuating part in the interplay or whether it can also be the
source of fruitful ideas which themselves influence the physical

theories. The question is all the more justified since a new branch

* Numbers in the margin indicate pagination in the foreign text.



of science, automaton theory, has developed in close cooperation

with data processing.

In the following pages, several ideas along these lines will

be developed. No claim is made to completeness in the treatment of

the subject.

Such a process of influence can issue from two directions:

1.

The development and supplying of algorithmic methods,

which can serve the physicist as new tools by which he can
translate his theoretical knowledge into practical results.
Among these are included first all numerical methods, which
are still the primary tool in the use of electronic calcu-
lating machines. The ideas expressed in the chapters which
follow could contribute particularly to the problem of nu-
merical stability.

Among these are symbolic calculations, which command an
ever-growing importance today. The numerical calculation

of a formula is not meant by this, but the algebraic treat-
ment of the formulas themselves as they are expressed in
symbols. Precisely in quantum mechanics, extensive formula
development is necessary before the actual numerical cal-
culation can be carried out. This very interesting field
will not be covered in the material which follows.

A direct process of influencing, particularly by the thought
patterns of automaton theory, the physical theories them-
selves could be postulated. This subject is without a doubt

the more difficult, but also the more interesting.
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Therein lies the understandable difficulty that different /3
fields of knowledge must be brought into association with one
another. Already the field of physics is splitting up into spe-
cialized areas. The mathematical methods of modern physics alone
are no longer familiar to every mathematician and an understanding

of them requires years of specialized study.



But even the theories and fields of knowledge related to data
processing are already dividing into different special branches.
Formal logic, information theory, automaton theory and the theory
of formula language may be cited as examples. The idea of collect-
ing these fields (to the extent which they are relevant) under the
term '"cybernetics" has not yet become widely accepted. The concep-
tion of cybernetics as a bridge between the sciences is very fruit-
ful, entirely independent of the different definitions of the term
itself,

The author has developed several basic ideas toward this end,
which he considers of value to be presented for discussion. Some
of these ideas in their present, still immature form may not be
reconcilable with the proven concepts of theoretical physics. The
goal has been reached if only discussion occurs and provokes stimu-
lation which one day leads to solutions, which are also acceptable
to the physicists.

The method applied below is at present still heuristic in na-
ture. The author considers the conditions not yet ripe for the
formulation of a precise theoretical system. TFirst of all, the
existing mathematical and physical models will be considered in
Chapter 2 from the viewpoint of the theory of automatons. Several
examples of digital models are presented in Chapter 3, and the ex-
pression "digital particle" is introduced. In Chapter 4, several
general thoughts and considerations based on the results of Chap-
ters 2 and 3 will be developed, and in Chapter 5, the prospects for

the possibility of further developments are considered briefly.
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2. INTRODUCTORY OBSERVATIONS
1. Concerning the Theory of Automatons

The theory of automatons today is already a widely developed,
and to an extent very abstract, theory about which considerable
literature has been written. Nevertheless, the author would like
to distinguish between the actual automaton theory itself and the
thought patterns connected with this theory, of which considerable
use will be made in the following chapters. A thorough understand-
ing of the automaton theory is not necessary to an understanding of
the chapters which follow.

The automaton theory appeared at about the same time as the
development of modern data processing equipment. The design and
the working method of these arrangements necessitated theoretical
investigations based on different mathematical methods; for example,
that of mathematical logic. The first useful result of this devel-
opment was connection mathematics, in which particularly the state-
ment calculus of mathematical logic can play an important part. OFf
particular importance is the realization that all information can
be broken up into yes-no values (bits). The "truth values" of
statement calculus assume only two ratings (true and false). The
connecting operations and the rules of statement calculus can there-
fore be viewed as the elementary operations of information process-
ing. TFigure 2 shows the elementary connections corresponding to
the three basic operations of statement calculus, conjunction, dis-

junction and negation,.
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Further research led to introduction of the term "state" of

an automaton. In additiom, input data and output data play a role.
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From input and initial state the new state and the output are ob-
tained, corresponding to the algorithm built into the automaton.
Figure 3 shows the schematic diagram of an automaton for a two-

place binary register. In the figure, E, and E_. represent the in- /5

1 0 —

A

puts on which a two<place binary number can be entered and A2, 1

and Ay represent the outputs, which have the meaning of a three-
place binary number. The two-place binary number formed from the
figures Al and A0 is relayed back to the automaton and represents
the eventual state of the binary number. (In this case the states
symbolize a number already entered into the addition process, to

which the number El, E, is to be added). The algorithm given by

0
the automaton can be represented by state tables in simple cases.
These have the form of a matrix, and for every state and every in-
put combination they give the resultant state or output combination.
Figure 4 shows the state table for the automaton in Figure 3. 1In

this particular case the state table represents an addition table.

The theory of the automaton investigates the different possible



diffractions of such an automaton and sets forth a series of general
rules concerning its method of operation. It is important for what
follows that the terms finite, autonomous and cellular automaton

be understood., A finite automaton works with a discrete number of
discrete statesj;. it is roughly equivalent to a digital data process-
ing machine, which is made up of a limited number of elements, each
element capable of taking a limited number of states (at least two),
with the result that the whole automaton can éccept only a limited
number of states. Similar conditions hold for the inputs and out-
puts. The autonomous automaton can accept no inputs (the outputs

A T ’ are also relatively inconsequential). It can
E ooj{oL Lo} LL

_ be represented, therefore, by a machine that
00 | 000 | 0OL | OlO | OLL

ot oot | oo | ot La)E operates independently, once started. Its

w0 low | ou La)lOLg states follow linearly in sequence, once the

tL lote | tool Lot | teo initial combination has been started, and the

%i;: 4' operational process cannot be influenced ex-
ternally by the absence of one of the inputs.
The cellular automaton represents a special form of automaton
built out of interrelated, periodically-recurring cells., This
type of automaton is of particular importance for the observations
which follow. ULater it will be discussed in greater detail.
By the term "automaton theoretical way of thinking" we under-
stand a manner of observation according to which a technical, /6
mathematical or physical model is viewed from the standpoint of a

lapse of states, which follow one another according to predeter-

mined rules.



2. About Computers

The automaton theory can be used as an abstract mathematical
system, yet these thought structures can also be related to
technical models, and similarly the automaton theory can be used
for describing automatons, particularly those suited for information
processing. In current expanded usage, the term "compute" is iden-
tical with "information processing." By analogy, the terms "comput-
er' and "information-processing machine" may be taken as identical.

We distinguish between two classes of computers: analog comput-
ers and digital computers. In an analog computer, the steps in the
calculation are performed in an "analog" model. Magnitudes repre-
senting numerical values are theoretically represented through
continual physical magnitudes, such as positions of mechanical parts
(torsion angle), tension, velocities, and the like. The machine
operates essentially without end. The represented values lie ob-
viously below certain technical limits. These are established by
maximum values and by the accuracy of the system. The maximum
values are given by a clearly-defined upper limit which corresponds
to the technical limits of the system. In contrast, the accuracy
has no clearly-defined magnitude, because 1t depends on change and
on external influences (temperature, moisture, the presence of dis-
turbing fields, etc.) One well-known analog computer is the slide
rule. Figure 5 shows a mechanical adding mechanism in the form of
a lever which can be replaced with a rotating mechanism with gears,
as in Figure 6. This mechanism 1s known in engineering by the in-

appropriate term "differential mechanism" and is employed in the



rear axle of every automobile.

A typical construction element of analog machines is represented
by the integration mechanism shown in Figure 7. This operates with
a friction disc A in contact with a friction wheel B. The distance
r of the friction wheel B from the axle of A can be varied. In
this way, the mechanism can be used for integration. In modern
analog instruments, these mechanical elements are replaced by elec-
tronic ones. An integration can, for example, be carried out by
charging a condenser.

Noncontinuous processes are generally not reproducible with
analog instruments; in other words, analog computers are poorly

designed for these processes.
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With digital computers, all values are represented by numbers.
Because a digital computer can hold only a certain limited sum of
numbers, there is available for the representation of continuous
values only a limited supply of values. This implies considerable
divergence from mathematical models. Mathematical values are sub-
'ject to the concept of infinity in two respects.

First, the absolute magnitude of the numbers is unlimited;
furthermore, betWween any two given values an infinite number of
intermediate values may be assumed to exist, For this reason, com-
puters have (independent of the number code employed) maximum
values which, out of technical considerations (number of places of
the register and storage), cannot be exceeded. In addition, the
values proceed in step-fashion. There are neighboring values be-
tween which no additional intermediate values may be inserted.

This results in limited accuracy among other consequences. In con-

trast to the analog computers, the accuracy of digital computers

/7

is strictly defined and is not subject to any coincidental influences,

A further conclusion is that no digital computer can precisely
reproduce the results of processes defined by arithmetic axiom.

Thus, for example, the mathematical formula

has general validity, with the one exception that a cannot be equal
to 0. There is no finite automaton capable of reproducing this
fact precisely and generally. It is possible, nevertheless, by
increasing the number of places before and after the decimal point,
for a digital computer to approach infinitely close to the laws of

arit ic.,
rithmetic 10
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We in the field of mathematics have already become so accustomed
to the concept of infinity that we accept it without considering
that every infinite term is related to a series expansion or to a
limiting process ("for every number there is one which follows it").
By relating this process to automaton theory, we obtain in place of
a static, predetermined, finite automaton a series of automatons
which are constructed according to a definite plan and differ from
one another only in the number of places. The plan for construction
of an automaton with n places is givenj; in addition, there are in-
structions for converting an n-place automaton to one with n+l
places. By use of the limiting process lim n->og with the aid of
series expansion the automaton rule for arithmetic operations is
obtained.

The digital computer, because of its special ability to handle
not only numbers but also general information (in contrast to the
analog computer), has opened up completely new fields, discussed
below in greater detail. In general, all calculation problems can
be solved on a digital computer, whereas analog computers are better
suited to special tasks. It must be stressed that digital computers
work in a strictly determinative way. Using the same algorithmus
(i.e., the same program) and introducing the same input values,
the same results must always be obtained. The limited accuracy al-
ways results 1in the séme degree of inaccuracy in the results when
an operation is performed several times on the same inputs. This
is in contrast to the analog computer, in which the limited accuracy

has a different effect each time the program is run and can be
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expressed only in terms of statistical probability.

By way of supplementary comments, it may be observed that hybrid
systems have been developed which consist of a mixture of the prin-
ciples of the digital and of the analog computer.

This can be simply carried out via a system in which the two /9
computers operate side-by-side. They are joined by a digital-analog
converter and an analog-digital converter (Fig. 8). In systems of
this type, the single parts of the problem are divided in such a
way that the more appropriate device 1is chosen for each subdivision
of the problem.

The joining of the two systems can also be accomplished by the

representation of the values themselves. Thus, for example, a
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magnitude may be characterized by the pulse density (Fig. 9).
Pulses themselves have a digital character, for they are normalized
in intensity and durationj they are therefore digital, but their
density (the number of pulses per unit time) can have any number

of intermediate values, and it is therefore analog in character.

A commonly-held opinion today is that the human nervous system

operates on this principle.
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3. Differential Equations from the Point of View
of the Automaton Theory

Observation of several differential equations reveals that this
way of thinking is by no means self-evident to mathematicians and
physicists. There are at our disposal a number of models of physi-
cal data, which can be represented by differential equations. For
example, we can take a simple differential equation to represent the
upper surface shape of a liquid in a rotating vessel, according to /10
which at every point on the surface, the normal to the surface 1is
determined by the vector sum of the gravitational and centrifugal
accelerations (Fig. 10).

This equation is written:

Pz I¢ (w = angular velocity of the container).

The solution is very easy to obtain analytically:

2
y :Lorz.
g

In reality, we have here an expression valid for the situation
only after equilibrium has been established. For every equilibrium
situation there is an initiating action. In the experiment with a
rotating vessel initially at rest, the rotatory motion must be

transferred to the liquid through frictional forces. Only after

complex wave interaction, which diminishes

i

with time, will equilibrium be established.

3! TFor this reason it is not possible to

describe the actual processes in this

transition by means of our differential

Fig. 10 equation. The processes taking place

13



during this period are considerably more complicated, and they are
almost impossible to describe mathematically. We realize also
that it is not necessary to follow each of these complicated pro-
cesses when only the final state is of interest to us.

The relationships are very similar to many partial differential
equations. These equations are used to describe the stress divi-
sions of an equilibrium situation in plane and solid stress states.
The establishment of equilibrium occurs in actuality via a highly
complicated sequence of steps, in which once again the braking of
these processes is the condition for the eventual establishment of
equilibrium.

Differential equations describe only the final condition in
the case of the theory of ideally incompressible fluids. The actual
process leading to establishment of the end condition of equilibrium
from a state of rest is hardly conceivable without taking compress-
ibility and braking processes into account.

In the case of these differential equations, the issue is not

one of a fundamental law, which can be described in terms of auto-

~
—
[

maton theory as a functional variable of%diffé;entéVégquenti§l¥¥:7
occurring states. This also has an influence on the possible nu-
merical solutions. Differential equations which describe an allowed
sequence of states of a system are often easier to solve numerically
than those which represent no more than a control function over

the final state. In fact, solutions for such end states must
usually be found in a step-wise solution, often with help of a

relaxation process. It is not necessary to attach value to the

step-wise approximations of the final state in order to simulate
14



natural or technical processes; thus, it is possible to apply
mathematically-simpler processes in the approximation.

A differential equation which describes an evolutionary process
from the point of view of the automaton %heory may be called the
"yield" form, because the following state arises from a given state
through operation of the differential on the given state. In the
case of liquids and gases, inclusion of the compression term leads
first to this yield form. The state of a system 1s given by the
pressure and velocity distribution. The differences in pressure
result in forces leading to a new velocity distribution, which it-
self leads to a new density and therefore pressure distribution
through the movement of the masses. The "state" of the field may
be described, therefore, by a scalar density field Yy and a velocity
field v. The equation may be expressed in the yield form as

follows:

! k grad ¥ #57
| ¥ :

7
e =G

(k is a factor which is determined by the physical conditions).
The algorithmic character is even more clearly expressed in the

following form:

| etkEmdnd =
| p- @ive =y

Corresponding to the normal rules of programming language (algo-
rithmic language), the same symbols on both sides of the yield sign

refer to different sequential states of the system K;,Y)-
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In the case of incompressible fluids there is the condition
div y = 0.

This equatilon has no algorithmic character and cannot, as a
result, be transformed into the yield form. It represents merely
one condition for the correctness of a solution obtained by another
means.

4, Maxwell Equations /12

Maxwell equations can also be studied from this point of view.

We will limit ourselves to those equations describing the expansion

of a field in a wvacuum:

rot = lQ_tf, div€ =0

: ¢ ot
‘ rot€=—i—%? divfg=0.

|

Both equations, which contain the differential operator rot, can be

converted to the yield form easily:

Creqotipat =€
' &-c(rqi \‘/’)‘,dt =%y
(the rotor of P%jgives the increment ofﬁ?; the rotor of{?}gives
the increment of @;).
Both divergence equations, on the other hand, have no yield
form. If the wave region of the field is taken into account, we

obtain:

i

! .diV€=4ﬂ’p- k
b -
This equation is not sufficient for the algorithmic.description of

the law of wave propagation. Are Maxwell equations therefore in-

16



complete? They are used to describe the propagation of transverse,
but not longitudinal, waves. The reason that Maxwell equations in
their usual form are sufficient for the description of all processes
occurring in electromagnetic fields rests on the fact that there
exist in nature no growing, newly-appearing or disappearing waves.
Only displacements of charge occur. With this sort of displacement,
Maxwell equations are sufficient to describe the changes in fields
associated with the displacements. The author has been unable to
locate a precise mathematical proof of this in any text, but it

must be assumed. An interesting comment in this regard is found in
"Beckersauter" (page 186), where the field for a uniformly-moving
charge 1s developed. This results, interestingly enough, in
elliptical deformation of the previously spherically-symmetric
field. This deformation corresponds to the Lorentz contraction
hypothesis. It 1is possible to reformulate the statement that "Max-
well equations are invariable in relation to the specialized theory
of relativity": "As a result of nature's use of the trick of
lateral expansion (rotor) in an expanding field, the system of the
specialized theory of relativity 1s logically based".

We can conceive of the functional nature of this lateral ex- /13
pansion as follows: given that we want to calculate the field be-
tween two opposite charges +e and -e, let us assume that we do not
know the field distribution in itself well-known and also easily
derivable., We begin, as shown in Figure 11, with a distribution
sure to be false, by simply joining +e and -e by a linearly-constant

force from the origin to the terminus. Application of the Maxwell

17



equations to this field distribution results in a multistep asymp-
totic approximation of the field to be determined.

It is also demonstrated in this process that we obtain results

without using the equation

mdwe

in the treatment of electromagnetic fields, although, as we have
seen, this equation is necessary for the treatment of compressible
fluids. We need not even introduce the electric field density Y.
The fact that results are obtained

without this term is not proof that

SR | | S

é»fOfE-'_%%i _"‘JL'V"‘“—‘ nature works without resort to field
i\rolH-;gF- ——/\—.J\_—_ density. Assuming that such a condi-
\ EJ __ij}L___ tion did exist, nevertheless, it would
\\ : ' ‘ be nearly impossible to demonstrate its

| é . existence, for both "rotor" equations

1\ ‘ | i.' J establish in themselves a field dis-
\k l tribution such that
N l$ ' !ﬁ‘if9mj
Fig. li

is generally satisfied. As a result, /1lb

the divergent makes no contribution to the field distribution.
Because it is impossible to .create or destroy charges, we have mno
experimental means of testing the validity of the law of longitudinal

expansion in nature.
What, then, is the rationale for examining this law? The

question is interesting in connection with the concept of numerical

18



stability, and it will be considered again below.
5. An Idea about Gravitation

A short consideration of gravitation is introduced in this
regard. If we accept the validity of the Maxwell equations, in
their transmitted sense, for gravitation as well, then a simple
explanation of the expansion of gravitational fields by moving masses
and the invariance of the laws of celestial mechanics based on this
distribution is applied to the special relativity theory. Because
the relative velocity of the heavenly bodies within our observation
range lie on the order of magnitude of 1/10,000 of the speed of
light, the gravitational magnetic fields were simply so weak that
they were immeasurable. To be sure, small damping of planetary
movements must be considered. The author would be very grateful
for a critical observation of these thoughts by the physicists,

6. Differential Equations and Difference Equations,
Digitalization

If differential equations are expressed "yield" form, accord-
ing to the automaton theory, then they can be simulated by a tech-
nical model (an automaton) and solved. In itself the analog com-
puter is the ideal automaton. It works, at least in theory, with
continuous values and operates constantly; in other words, we have
a continuous flow of states, the latter of which is always deter-
mined by that which precedes it. In practice, analog computers
are used primarily for calculation of differential equations.
Nevertheless, there is a rather narrow limit to the capabilities
of the analog computer. For partial differential equations,

analogous technical models are available only under special circum-

stances.
19



The solution of differential equations with a digital automaton
is immediately complicated by the previously-mentioned difficulties:
differential equations operate with continuous values and infinite
field densities. Digital instruments operate with discontinuous
values. An infinite field density . would require an infinite storage
capacity and infinite calculating time. Therefore it 1s necessary
to reach compromises in both regards,

One normally proceeds from differential equations to dif-
ference equations when numerical solutions are sought. In this
process, the values obtained are still regarded as continuous. In
fact, the transition from differential equations to difference
equations involves two boundary transitions: (1) Ax -+ dx, and (2)
enlargement of the number of places of the included magnitudes.

The first boundary transition leads constantly to a limiting value
which the second transition anticipatesj; in other words, construct-
ing difference quotients makes sense only if the gradations between
values are much smaller than the chosen A-value. This fact has a
definite influence on the numerical stability of a calculation.

If the transitions are carried out in such a way that the
values remain of approximately the same order of magnitude as the
step values, the staircase shape of the curve is maintained, and
it is impossible to construct a differential quotient.

In the observations that follow, this distance will be
utilized with design, specifically through consequential further
development of the thoughts on digitalization.

Systematic narrowing of the number of places of the magnitudes

being treated results in the limitation of variables to those en-

20



compassed by elementary logic; for example, yes-no values or triply-
variable values. As we Wwill discover later, triple values and the
trinary number system based on these values has certain advantages,
since rounding up and rounding down are easier to carry out and the
division by 6 necessitated by the division of the field area into

6 neighboring cells is also easier to calculate. By attaching the
values +1, 0 and -1 to the numbers, this corresponds to the possible
electrical particles +e, 0, -e.

The continuous field density must be separated into single
values for numerical solution, a process which is easiest with a
grid. The simplest grid is doubtless an orthogonal one. There
are other possible choices: the triangular and hexagonal grids in

two dimensions, for example, and a grid in three dimensions cor-

[responding to the most dense packing of spheres. If several

different field values arise in the calculation (for example,
velocity vectors and densities), it is not necessary that these
values be localized on the same grid point. There is no need for
the three components of a spatial vector to be localized. In this
case, a division is possible as well. There is no further neces-
sity in the construction of a digital space structure to approximate
the laws of Euclidean space. A number of general observations on
the presentation of physical problems were presented earlier from
the viewpoint of the automaton theory.
7. Automaton Theory Observations of Physical Theories /16
Up t6 this point we have considered only the problem of using

computers to approximate physical models and to follow physical
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processes numerically. It would be possible in this context to
suggest a fundamentally different question: to what extent are the
realizations gained from study of calculable solutions useful when
applied directly to the physical models? Is nature digital, analog
or hybrid? And is there essentially any justification for asking
such a question?

The classical models of physics are doubtless analog in nature.
The field strength of different potentials, like the force of
gravity, are not subject to a "particularization". There are no
such limits as "threshold values" (minimal size), limiting values
(maximum values) or limits on the density of the field itself.
Even the extension of classical laws by the theory of relativity
is entirely within the conception of the continuum. Only for
velocity is an absolute upper limit assumed to exist (that of the
speed of light), and that concept is completely in accord with
"analog" thought.

It was first with the introduction of the particular nature
of matter through its subdivision into molecules, atoms and ele-
mentary particles that a few quantities assumed a discrete charac-
ter, but this is not necessarily to be equated with a "digital"
interpretation of the laws of nature. The classical many-body
problem was of an analog nature, even when each of the single bodies
possessed individual characteristics with discrete properties
(masses).

Quantum physics is the first to deviate in several respects

from the concept of infinite quantities, to the extent that it
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assumes only discrete values for certain physical quantities. Best
known is the relationship between frequency and energy of a light
quantum, which is defined by the formula E = h-y, where h is a
universal constant of nature. .To be sure, the energy itself is not
quantized, but only the quotient E/y. This is somewhat different
from the case where the energy can have only a discrete number of
values because of the limited number of places in the calculator

of a digital computer.

The postulates of the quantum theory have far-reaching conse-
quences in relation to the quantization of different physical
quantities. The conceptions of the classical spatial continuum
are being abandoned, it is true, but not through replacement of
the continuum by a grid of discrete values, rather through a pro-
cess whereby one moves to fundamentally different starting points,
similar to a configuration room of higher dimensions, in which
probability values are defined (for example, the probability of a
particle being in a certain place at a certain time). Even in
this concept the idea of the continuum is not rejected, for the
differential equations of quantum mechanics are governed by no
restrictions in relation to the magnitudes of fields.

The models of modern physics are concerned, therefore, both
with continuous and discrete values, It.would seem appropriate
to consider a hybrid system. It will be extremely difficult to
find a technical model of a hybrid computer which behaves according

to the laws of quantum physics.

We have recognized the preliminary conclusion that our physical
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models may best be conceived of as hybrid systems. Can conclusions
with respect to nature be drawn from this? Is nature itself there-
fore to be considered a hybrid system?

We have not yet disposed of completely digital physical models.
If we are completely impartial, it appears a justified question
whether infinitely-divisible quantities (in other words, really
continuous quantities) have any reality in nature. What would be
the consequences, for example, 1f we were to shift to complete
quantification of all the laws of nature and were to assume in
principle that every physical magnitude is subject to some sort of
quantification?

Before an examination of the real question is attempted, let
us examine first the classical model of thermodynamics, through
which the relationship of gases 1s treated by the model of rubber
balls moving freely through space and colliding with each other. If
the static behavior of these balls is replaced by a differential
equation, it is valid only for spatial dimensions that are large
in comparison to the average distance between the individual
particles. In effect, the model can be viewed as an analog on a
large scale, yet in detail it is characterized by the particle
nature of matter.

What would the calculated solution look like, if we were to
imitate directly the model of flying, colliding particles?

Of course, the starting point is no longer a differential
equationy the flight paths of single particles are followed with

digital calculations (Figs. 12, 13 and 14). It is quite simple
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for modern electronic computers to draw up a program for this pur-
pose. We do not wish to become involved in these calculations in
the course of our discussion (the calculation itself is relatively
involved and boring) because a large number of particles are neces-
sary for the results to have statistical value, The flight paths
are simple to calculate, since they are rectilinear (gravity ef-
fects disregarded). The collision processes are the interesting
part. Equal mass and equal elasticity of the particles is assumed.
We shall first consider the case in which the particles meet
exactly; i.e., first, that the paths lie in one plane and mutually
intersect, and second, that the centers of both particles meet

simultaneously at the point of intersection. This case is unin-

/18

teresting, for the case of the elastic collision is not significantly

t — -.__...—-'——-—"
| o r
Fig., 12 Fig. 13

different from that in which both particles continue undisturbed
on their ways, if each particle is considered individually.
Furthermore, in general situations, the probability of such a
situation arising approaches 0 as the accuracy of the calculation

is improved. Therefore, only those cases are of interest in which
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the paths do not exactly cross, or in which the centers arrive at

the approximate intersection at only approximately the same time.

! ST ' X In this case, the particles have /19

»
,'

different paths after the collision

.
Q

| ~ : j than before it. It is not necessary
to stop here and establish the col-
lision law firmly. The behavior

depends on the size of the particles

and the law of elasticity. Large

0 )- particles collide more frequently

than small ones., Hard particles

behave differently than soft ones.
Fig. 1t The statistical result of the be-
havior of a large number of particles is the same. If we compare
such a calculation model with the physical model, the following
interesting aspects arise.

In the case of both models, we can see that in general
ordered states give rise to disordered states, or entropykincreases.
In any case, we can devise certain exceptional cases, for which a
given entropy remains constant. Take, for example, a vessel with
exactly parallel sides and a series of particles, the paths of
which are exactly perpendicular to these walls and sufficiently
far apart from edch other that there is no mutual interaction of
the particles. In this case, the paths remain unchanged in the

sense of classical mechanics. This is also the case in the computer

model if the coordinate system on which the calculation is based
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is set parallel or orthogonal to the walls. There are certainly
other interesting special cases for which collision processes be-
tween the particles occur, yet nevertheless a certain ordering
remains in force (Fig. 1u4).

We are now aware that modern physics has replaced this classi-
cal picture. Collision processes between single particles are mnot
precisely determinable, according to modern physics. There exist
only the laws of probability, which correspond to the laws of
classical mechanics, taken as a statistical average. Scattering
is due to this effect, with the result that even for the theoreti-
cally~assumed special cases, the order of the system decreases
with time and the entropy increases. How is this reproduced in the
computer model? As long as wWe do not specifically program this
scattering effect into our model, the <carefully-constructed special
case mentioned above does not exhibit any scattering effect. How-
ever, as soon as the system, through the introduction of a small
scattering input, becomes out of step with the special ordering,
the situation is similar to that obtained with the models of modern
mechanics, It is not generally necessary to pay particular atten-
tion to scattering effects. The error inherent in the computation--
special cases excepted--have the same effect (Fig. 14). The classi-
cal model demands absolute accuracy in calculations, requiring in
the computer model an instrument with an infinite number of places.
Since this is not possible in practice, calculation errors enter
into the collision processes, which have the effect--similar to

the model of modern mechanics--that divergences from the paths
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predicted by the theories of classical mechanics appear. It would
be possible to express these deviations by a statistical law. A
significant difference does exist, however. In the model of modern
mechanics the errors are realy in the computational model everything
is strictly predetermined, not in the sense of classical mechanics
but in the sense of defined calculating inputs, which can only ap-
proach the classical model. Both result in an increase in entropy.

The initially equivalent result (i.e., the increase in entropy)
arises in both cases from the slight deviations from classical
mechanics. In modern physical models, these deviations are defined
by probability laws; in the case of computer models through defined
calculation errors.

This may appear unimportant atAfirst glance. Yet if we extend
this thought process somewhat further, very interesting consequences
in relation to causality may be drawn, which will be developed in
Chapter 4.

Matrix mechanics can also be considered in the automaton
theory. In any case, we need an automaton in which the transition
from one state to the next is determined by probability laws. The
transition matrices of matrix mechanics correspond to the state
tables of the automaton. This possibility of automaton-theoretical
observations will mot be considered at greater length. In the next
chapter, a few examples of digital treatment of field and particle

problems will be presented.
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3. EXAMPLES OF DIGITAL TREATMENT OF FIELDS AND. PARTICLES
1. The Expression "Digital Particle"

Let us first consider one-dimensional space. In this regard /21
we can relate an example from hydromechanics and one from counter
engineering. Let us consider the behavior of frictionless gases
in a straight cylinder. After eliminating and collecting terms
that are irrelevant for our purposes (density, etc.), we can ob-
tain a somewhat simplified relationship of the real physical forces.

Wg have two quantities: p (pressure), which we fix in dis-
crete points 1, 2 and 3, and v (velocity), which we express in in-

termediate points 1', 2' and 3°’.

,Iﬁ;i&f?;'s'
[v 1234’5’

A; and Ai representing the difference in p- and v-values between

neighboring points, A; and AE corresponding to the differences be-
tween p and v in consecutive time intervals.

The following differential equations then hold:

ko) > A

L 2
Expressed in words: +the change in velocity is proportional to the
change in pressure and the difference in pressure is proportional
to the change in velocity. In the second equation, the terminus
A; is converted in order to indicate that it refers to a AP after

that of the first equation. The two factors kg and k;, which
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contain the physical characteristics AX (length component) and A_t
(time component), can be combined for our purposes into a single

factor k. We then obtain:

The sign - is used to indicate that Ap in the second equation is
not identical with that in the first equation.

It is clear that these equations can be converted from differ-
ential equations to difference equations when Ax and At are allowed
to approach 0. Exactly the opposite condition is of interest to
us. Although mathematicians and programmers generally attempt to
set up difference equations in such a way that the differential
equation at the basis of the difference equation is approximated
as nearly as possible, we are able to resolve the question by using
the most general digitalization possible.

We are now able to convert a . physical pulse law to an engin- 22
eering counter law., If we let the quantities p and v and the cor-
responding values AP and AV assume only integral values, we must
choose a whole number value of k in order for the difference equa-
tion to give whole number results. If we first let k = 1, we ob-
tain the equations:

F},"?XF‘

We further attempt to assign p and v the smallest possible

values, i.e. -1, 0 and +1, and to study the behavior of the system
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that satisfies these conditions. We obtain as a result the follow-

ing arithmetic relation:

Figure 15 shows a simple calculating scheme for this rule.
We have the four values v, -Av, p and -Ap per unit time. The spa-
tial sectors are opposed to one another. Zero values are not writ-
ten for purposes of simplicity. TFour stable elementary forms are
represented [(1), (2), (3) and (4)] which we will consider as
mutually-independent "digital particles'". There are two time units,
t; and t,, respectively, for the values v, -Av, p and -Ap; v and p
are assumed for t;. It follows from this that -Av and -Ap corres-
pond to time interval t, and, following through the above equation,

the values v and p correspond to the next time interval tj.
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The equations relate to the traveling of a simple pulse. The
particles are stable only at this velocity. At the same time, this
velocity is the highest one possible for the system. The system
permits no other velocities. Figure 16 shows a graphic version of
this pulse.

From the standpoint of the automaton theory, we are concerned
with a linearly-expanded infinite automaton which is repeated peri-
odically in the automaton (cellular automaton). The v- and p-values
represent the states of the automaton; Av and Ap are derived from
them. The above equation establishes the function according to
which the subsequent state arises from the previous one.

Figures 17 and 18 show an instable form of expansion of an
isolated pressure pulse, with which no velocity impulse 1is associ-
ated (as was the case in Figures 15 and 16). In Figure 17, the A-
values are omitted for reasons of generalization.

This form of pulse expansion contradicts our conception of the
expansion of an originally isolated pressure cell in a gas-filled
cylinder. From this model we have derived the difference equation.
The digitalization was carried out so generally that the deviations
from the differential equation result in deviations from the phys-
ical laws. The conservation of pulse rather than of energy is the
key to the calculation behind the difference equation. The graphic
representation of Figure 18 shows, in fact, that the average of
(p = 1) remains constant, and that the average value of v is con-
stant at 0. On the other hand, the expansion of alternating posi-

tive and negative p-values in the graphic representation indicates
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an obvious constant increase in the potential energy. The corres-
ponding is true for the kinetic energy values represented by tﬁe
v-values.

It would be interesting at this point to inquire whether this
sort of deviation is necessarily associated with crude digitaliza-
tion or whether crude digital models can be constructed which obey
all the conditions of the original differential equation, in this

case especially that of conservation of energy. Of course such a

simplified model requires an exact definition of the term "energy".
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This is simply noted without further consideration here.

It is interesting that a pair of isolated pulses yilelds a
stable system: the emission of two diverging digital particles
(Fig. 19). Apparently only certain configurations are possible,
while others are excluded or provide no stable results. This bears
a certain similarity to some situations in quantum mechanics.

Because our chosen calculating

fo PIT 1 Terl=rl- 1T 17 rule has a purely additive charac-
Tl e Rl T s e
+ + : . . .
v £ =T T 1 1+1 i ter, the superposition rule applies;
PRI T T T Ter]

e e e i.e., the single forms can be con-
Fig. 19 sidered independently of one anoth-
er, as a result of which it is nat-
ural that values greater than 1 appear. This means that two oppo-
sitely moving particles do not influence one another, but pass by
or pass through one another without changing shape. In a system
strictly described by the superposition rule, there are no results
possible which correspond to the reactions between elementary par-
ticles known in physicecs. This provides our evidence that it is not
necessary to build linear elements into our models. The simplest
and roughest form is general limiting of the values above and below.
This may be demonstrated from the examples in Figure 20. Here we
have two approaching digital particles, specifically in examples
(1) and (2) on the left, corresponding to the previous reaction
according to the superposition rule. We can see that in example
(1), values+2 and -2 arise. In example (3), the particles pass

through one another without values greater than +1 and -1 arising.
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esting result of crude digi-
talization may be observed.
The course of the collision
process differs with the phase state of the distance between the
two particles. This is not outwardly visible. Figure 20 shows
example (1) with a limiting law corresponding to Figure 21. Here
there are only three values: -, 0 and +. Figure 22 shows the rel-
evant calculating system. It is constructed so that 1 + 1 results
in a value of 1. We can see that in spite of this limitation, the
particles are free to intersect one another, a result which in it-
self would not be expected at first glance, for crude curtailments
of the calculating rule were made. Application of the calculating
rule of Figure 22 to example (2) yields nothing new, of course, be-
cause in the example the values -2 and +2 are not to be found.

It is interesting that in spite of this, a certain reaction

process in particle interaction can be noted. If we consider
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examples (2) and (3), for example, it can be seen that in the case

of (3), in contrast to (2), a certain retardation of the process

may be observed. 1In (2) the particles intersect and proceed away /26
from one another unhindered. 1In (3) we might argue that the par-
ticles first react with one another and that two new digital par-
ticles are emitted as a result of this reaction. The question as

to whether (2) or (3) occurs is again dependent on the distance

phase state and is outwardly a matter of chance. Without knowledge

of the fine spatial structure, it can only be determined that in

our example two fundamental situations are possible in particle

interaction, for each of which the probability of occurrence is 1/2.
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PIT-T T T-171° : Figure 23 shows a summary
Fig. 23 of the eight possible cases in

particle interaction; Figure 24
represents the schematic, idealized particle paths for the two dif-
ferent interaction patterns a and b. It must be explicitly stress-
ed that the paths are idealized particle paths. 1In reality, our
model represents not continuous movement, but a process of step-
wise progress.

It is interesting to note that in the nonlinear calculating

36



rule (Fig. 22), an isolated pressure point results in the emission

of two particles (Fig.

25).

Establishment of limiting values obviously sets limits on the

free superposition processes.

In the case of unlimited values, par-

ticles corresponding to Figure 15 are also theoretically superim-

possible,

That means that we can construct a pressure mountain of

any height with its accompanying velocity distribution which satis-

fies the step-wise extension rule;

i.e.,

which remains stable.

These stable "larger" particles are always divisible into elemen-

tary particles.

to Figure 22 is applied.

This is no longer true when the rule corresponding

Our initial position, in which we have chosen the factor 1 /27

relative to the A-value,

assigned physical pattern of a gas-filled cylinder.

corresponds to a very hard medium in the

A more flex-

ible situation is obtained when the factor is made smaller. In

this case, nonintegral numbers arise in more accurate calculation.
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one.

If we wish to continue with whole

numbers or to introduce only mini-

mal gradations, rounding up and

rounding down must be introduced.

In this respect also the ternary

system is superior to the binary

The value 1/2 lies exactly midway between 0 and 1.

The val-

ues 1/3 and 2/3 can also be precisely inserted between the values

0 and 1.

From there we want to make the following start:
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Values AP/3 and Av/3 rounded up or down to whole numbers.

Figure 26 (1) shows a stable particle in this system with a period
of 3At. The velocity of propagation is 1/3 of that of the particle
in the corresponding figure (Fig. 15). This corresponds as well

to the physical model, in which a soft medium has a slower speed of
sound. Here we have the situation that the "speed of switching"
between neighboring particles is considerably higher (in the example
three times as great) than the particle velocity. In more compli-
cated models of "calculating space", it would be conceivable that
speeds of 1light éorresponding to maximum particle velocities, which
are considerably slower than the speed of switching, exist. This
does not mean, however, that in such a model "signal speeds" great-
er than the speed of light (in the model) are possible. The speed
of switching has a purely local meaning.

It is interesting that a digital particle assumes different
configurations in the course of a period. The pressure pulse ap-
pears in part alone with a value of +2, in part as a pair with the
values +1 and +1. The position of the particle is definable for
the following period, but not without further information for the
single phases of a given period. Is this not analogous to the
quantum theory, which relates position and momentum through the
uncertainty prineciple? In any case the computer model, in spite
of the apparent error, is characterized by strict predetermined
happenings.

Figures 26, 27, 28 and 29 show the process of interaction of
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two such particles, and more specifically Figure 26 (2) shows the
detailed calculating scheme and Figure 27 an excerpt from it, in
which only the p-values are represented, while Figure 28 shows the
idealized particle path. The figures demonstrate that the par-
ticles do not simply pass beyond one another, but that they do re-
act, this time with shortening of the interaction time (in con-
trast to Fig. 24). The process can also be represented as one of
repulsion (Fig. 29). Here it may be seen in the mode of viewing

the figures that terms like "passing through'" and '"repulsion" lose
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meaning when applied to the reac-
tion of digital particles. The
quantum theory has yielded corres-

ponding results, although not in

digital form.

Fig. 29 In particle interaction cor-
responding to Figure 26, there are certainly many more differen-
tiable cases apparent from systematic investigation, in comparison
with the example from Figure 23. We must first investigate which
particles are possible in this system. The influence of the sepa-
ration phases must also be taken into account, and finally the
possibilities of the particles interacting in different phases must
be considered.

It is not the purpose of this paper to carry out an exhaustive
examination. The previous observation of a few simple examples /30

stimulates a whole series of interesting concepts.
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Figure 30 shows the block diagram for a calculating space cor-
responding to the previously-introduced calculating rule. The
squares v and p represent registers to which numbers can be added.
The shifting parts of the system, which serve to carry out subtrac-
tion, are represented by the circles marked with A. The vertical
line at the exit of the A-members means negation. The block dia-
gram can, of course, be subdivided into its single shifting ele-
ments. The symbols in current use reduce the shifting to its single
elements, which correspond to the basic operations of Boolean alge-
bra (conjunction, disjunction and negation). The three value in-
formation elements used here had to be converted to binary elements
via two Boolean variables (2 bit). Out of 4 possible combinations
of these two values, only three are employed. For this reason, a
more detailed representation is omitted. In order to render the
block diagram in Figure 30.operable, clean pulsing is necessary.
Therefore the pulse beats are represented in Figure 30 by I and II.
In this process it is taken for granted that the pure addition mem-
bers work without time delay to build the A-values, while the reg-
isters transmit their information further only with the addition
of the following pulse. This pulsing corresponds to the fine

structure of the time dimension.

2. Two-Dimensional Systems

; Let us examine briefly

.b. .b F.’f the two-dimensional system.

The simplest structure is a
grid corresponding to an
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orthogonal coordinate system. The system possesses two definite
axes which enter into even simple pulse propagation. We shall
start with a simple rule, where every grid point can have the
states 0 and 1. In every time interval one such 1 is transmitted
to every neighboring grid point. The combination of pulses arising
from different neighboring points is carried out in accordance with
the disjunction rule. If the state of the grid point (x, y) is

¢X, y, we obtain the following equation:

r e . o ) T e ey
th-,i.y T¥+ay Yyt Y ye1 2Py |

Expansion along the coordinate axes is faster than along the /31
diagonals. Little can be developed with such a rule, since after
a short time it leads to a state in which all spatial points reach

the state "1" and thereby no configurations, particles, etc. are

possible (Fig. 31).

Next we will consider a similar rule,

f : I - .’} in which nevertheless many-place values
f i . ‘:  5 are allowed and combination occurs by ad-
f»» o: ZQ o dition. In the transfer between the grid
g'——_—'_°g'A:€jﬁ ,Tf-g points the values are multiplied by a fac-
E - 7? *¥! ‘ ;": tor k. We obtain the formula for this
rule:
Fig. 31 ) _
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Two examples for the factors 1/4 and 1/2 are given in Figures

32 and 33. For reasons of symmetry it is necessary to consider
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only a 45° section. As in Figure 32, the values are entered only
for the front of the pulse. The roman numerals correspond to the
individual time phases with a separation time of At. We can see
from the examples that the front moves as represented in Figure 31;
i.e., with its peak along the coordinate axis, although the values
along the diagonals are greater. The forward-rushing point very
soon reaches its4peak.

Because we cannot assume an infinite number of small wvalues
in digital space, the minimum value is soon reached; i.e., the peak
dies out. It would be interesting to follow the progress of such
an expansion with the help of a calculating machine. The question
of particular interest is whether and how quickly the values con-
verge in a circular expansion pattern.

One thing is clear: it is impossible to construct digital

particles from such a rule. We must find other rules.
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It is possible to take the rules for linear space, which give
rise to stable particles, and apply them to two-dimensional space.
Of course, we then need an interrelationship of the two dimensions,
for without it the single orthogonal grid points would have an in-
dependent existence.

Figure 34 shows one possibility of arranging the v- and p-
values in a checkerboard. Figure 35 shows the individual values
which emerge. Two components, Ve and Vy’ must be considered for v.
One value is sufficient for p. The two axes are coupled through p.

We can now formulate the following rule:

vy = Apy =V

v _ =»
vy — Apy Yy

f P —(Av?‘ +Avy)= p-

Because of the coupling through p, individual pulses corres-

ponding to Figures 15 and 16 vanish. Stable, although not infi-
nitely parallel, wave fronts can be built. Figure 36 shows such a

wave front parallel to one of

Y . . _‘ N the coordinate axes, and Figure
@ - 0

: 37 shows a diagonally-moving
"(:) gﬂl"”(:).- + '(:) | wave. Figure 38 shows a propa-

gation relation between the two

|

i
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waves. The propagation velocities are functions of direction.

It would be interesting to consider the different consequences
of more or less crude digitalization in this case. Because the
rules are related to the equations of rarefied gas dynamics and hy-
drodynamics, it is interesting whether (for example) the hydrody-
namically -stable structure of a vortex can be crudely digitalized
and "digital elements'" can be constructed. This investigation can
be carried out only with the help of calculating machines.

In order to construct stable particles in two-dimensional

space, we shall first consider another manner.

3. Digital Particles in Two-Dimensional Space

We shall assume an orthogonal grid pattern, corresponding to
Figure 39. We no longer make the distinction between v- and p-
points, but allow for each point the values Px> Py. For reasons
of simplicity we first assume that the p-values can take on the
values -, 0, +. We can then speak of p-arrows or of short arrows.
First we establish that an isolated arrow (an arrow which has no
perpendicular arrow arising at the same grid point) is directly
transmitted to the next grid point. Figure 40 shows the four pos-
sible examples of this sort of single isolated pulse. It can be

transmitted forward only in an orthogonal direction. We can first

determine that there are two cases 6f intérécfgon between two ar-

rows approaching in the same orthogonal.

Both of these are shown in Figure #41. In one case, the arrows
continue away from one another; in the other they cancel one anoth-

er. Which case occurs depends on the separation phase. We still
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need a rule for the case of intersecting arrows. This is demon- /36
strated in Figure 42. Two intersecting arrows exist at point Z at
time I. According to our previous rules, they would be propagated
forward, each in its own direction, independent of the other. Now

we establish that the two arrows are in fact propagated forward in
their respective directions toward points B and C, and at points B

and C they exchange direction. We obtain in this way a stable par-
ticle of period 2At, which is propagated diagonally forward (Fig.

43).

It is interestiﬁg to note that pockets arise from this rule
which are fixed to 4 neighboring grid points; they have a period
oAt (Fig. 44). A doubly-stable pocket with period At is also pos-
sible (Fig. 45). As may be seen from additional examples, these
pockets cannot be destroyed.

We now have particles which can be propagated in eight dis-
crete directions in a plane and standing pockets as well. Figures
46-57 give a series of interesting examples for the interaction of
such particles. At first we shall maintain the condition that ar-
rows may have only the values -, 0, +. Two oppositely-directed
aprows cancel one another at the same grid point, and two with the
same orientation act as a single isolated arrow.

It may be seen that the course of the different interactions
is dependent on both time and separation phases. The particles
can cross through one another, cancel omne another or build new
particles. Pockets are insidious because they can destroy parti-

cles without disappearing themselves. On the other hand, pockets
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can arise from specific forms of interaction (Figs. 55 and 57). 1In
the model of a cosmos which functions according to this rule, all
particles would eventually be converted into hard pockets. This
model is therefore of little use.

In the interaction it is highly significant whether the point
of intersection of the particle paths lies on a discrete defined
point in the coordinate system. In this case a reaction occurs

(for example, Figs. 52 and 53).
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The possibilities of this
system can be investigated by per-
mitting the introduction of arrows
of different absolute length. For
arrows pointing in the same direc-

tion we use the addition rule. It

is more difficult to expand the

rule of Figure 42 to include two
intersecting arrows of different
lengths. We can reach the following agreement.
In the case of mutually-orthogonal arrows, the longer arrow
is divided into two parts; the contribution of one is eguivalent
to that of the arrow orthogonal to it and combines with the first
as in Figure 42. The remainder acts as an isolated arrow (Fig. 58).
We are now able to construct particles having different di- /43
rections of propagation. The number of different directions pos-

sible is dependent on the number of values possible for the
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contribution of the arrow.

Figure 59 shows an example with a ratio of the arrows of 5:2.
The direction of movement corresponds to the ratio of the arrows.
The particles pass through different phases. The particle in Fig-
ure 59 has a period of 7At. In the course of one period the par-
ticles pass through a discrete coordinate point Q (zero phase
point). The particles "disappear" at intervals. It is possible
to construct lines of the same phase (phase lines 19 - 71g).

Figure 60 represents an example of the limitation of the pos-
sible discrete directions of motion. It must be stressed that
there exists an interdependence between the velocity of propaga-
tion and direction. The chosen propagation rule permits no dif-
ference in velocity of the particles moving in the same direction.

Figures 61-66 show another series of interesting cases of in- /47
teraction between such particles. Again the process of interaction
is phase-dependent. A reaction between two particles always oc-
curs, when they are respectively at the zero point at intersection
(for example, Figs. 61 and 62). But they can also react under
other circumstances, as the examples in Figures 65 and 66 show. In
these cases, the already-mentioned phase lines play a part. We
could construct a time phase line R, which represents both parti-
cles. If this passes through the point of intersection of the par-
ticle paths S, a reaction is possible (Figs. 65 and 66).

Of course, these examples are very simple and primitive. But
even these simple forms yield an abundance of suggestions; they

show that the basic method of digitalization adopted is of greatest
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interest and that development of the rules will yield additional

concepts.

4. Concerning Three-Dimensional Systems
The concepts deveioped in Sections 3.2 and 3.3 can also be
applied to three-dimensional systems. The studies of the author
are not yet complete in this area and should be reserved for fur-

ther investigation.
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4. GENERAL CONSIDERATIONS
1. Cellular Automatons

The examples of digitalization of fields and particles which
have been presented are in their present unfinished form still far
removed from being able to serve in the formulation of physical
rules. Nevertheless, they give a rough impression of the possi-
bilities for using the tools of the automaton theory to answer
physical questions.

The examples have dealt primarily with point grids. A single
cellular automaton consists, therefore, of a point grid which is
bound to neighboring points through information exchange. 1In the
cases shown in Figures 34 and 35, the grids are checkerboards of
two different values, p and v, in grid form. There exist differ-
ent possibilities for their combination, so that division into
single automatons is not specific. This does not affect the be-
havior of the entire system.

In general, division of the continuum into discrete cellular
automatons has different consequences, depending on the precise
division. The idea of a grid spatial structure is already treated
in various contexts by physicists, although not in regard to autom-
aton theory. Generally speaking, the idea that the cosmos could
really be subdivided into such cells is sharply repudiated by
physicists. We agree that space cannot be viewed as a continuum
even in infinitely small sections. The concept of a smallest

length is already widely accepted today, while not in relation to
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the idea of subdivision into a point grid, but more as the princi-
pal limit in the differentiation of two different particles. The
doubts relating to a grid structure are essentially as follows:

(a) A grid structure would abolish the isotropy of space.

It is clear that a regular grid pattern establishes preferred
directions. This has an effect, for example, in the expansion of
fields (Figs. 31, 38) and in the discrete possible directions in
which a digital particle can mowve (Fig. 60). We know of no phys-
ical experiments which would provide a key to preferred directions
of this type, but the field has not been systematically studied
for this effect. Sober reflection reveals, nevertheless, that it
is worthwhile to comnsider rules for a gridlike spatial structure
which do not allow the grid structure to become visible in regions
of smaller and intermediate energy and frequencies. The grid con-
stant must be assumed to be considerably smaller than the element-

ary shortest length of approximately lO_13

0—56

cm (Bopp assumes even
1 cm). The field of normal optics, for example, works with /h9
wavelengths of extraordinary length in comparison with these

lengths. It is hardly possible to think of an experiment which

could determine the eventual discrete propagation direction of
photons, when we assume the accuracy of such a change in direction

(in circular measure) to be of the same order of magnitude that

we are capable of differentiating between frequencies, namely

10-12 (M8ssbauer effect).

Results of this sort can first be expected in the very high

energy ranges, when wavelength and length of the period approach
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the grid constant. Only today do we have the capability to carry
out such experiments. The author must leave it to the decision of
the physicists whether and within which limits these phenomena
could be observed with the aid of present experimental techniques.

(b) Curved volumes, as they are assumed from the general
theory of relativity, are hard to represent with the grid structure
of space. Bopp has chosen the expedient of assuming a Cartesian
space in which the three spatial coordinates each converge on them-
selves. This can be imagined in two-dimensional space by assuming
a toroid.

There are, of course, many possible deviations from these
consequences. The whole subject is still too young for one to be
able to draw final positive or negative conclusions. The follow-
ing possibilities can be mentioned:

(a) The assumption of fixed circuits in the form of cellular
automatons is not the only logical possibility for defining logical
connections between discrete values in space. If we introduce the
change in the circuits as a function of the results of the previ-
ous process, variable circuits can be regularly developed.

(B) The concept of the growing automaton is closely related
to the regular variability of circuits.

Both possibilities require at first a very well-prepared
theory. Since automaton theory is a young field, the possibilities
of which are in no respect exhausted, we can expect further devel-
opments in the direction being considered.

(y) The assumption of a grid implicitly assumes that of an
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inertial system, which is contradictory to a strict interpretation
of the theory of relativity. This will be considered at greater
length.

In this light, the use of an orthogonal network is the most
convenient way of beginning investigations. The results obtained
in this manner will certainly be Jjust as valid when in the course
of time automaton theory yields new methods for use.

2. Digital Particles and Cellular Automatons

Digital particles may be considered as disturbances in the
normal conditions of a cellular automaton. This disturbance has
a distinct pattern which is subject to periodic changes. Accord-
ing to automaton theory, every state evolves from the preceding
one; nevertheleés, the entire pattern can fluctuate in the process.
To a certain extent we are concerned with "flowing states". In
accordance with this, digital particles can be regarded as "self-
reproducing systems". A given pattern is generated in a neighbor-
ing region of the cellular automaton.

In the examples in Chapter 3, digikal fields and digital
particles are treated separately. Modern field theory takes pains
to explain even elementary particles through singularities and
special forms of fields. Automaton theory is understandably well-
suited to digitalize such interpretations and to subject them to
the rules of automaton theory. The author hopes to be able to
treat this subject in greater depth in another contribution.

3. On the Theory of Relativity

The question of the isotropy of space obviously requires coming
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to grips with the theory of relativity. The Lorentz transformations,
so important to the special theory of relativity, can obviously be
infinitely approximated by numerical estimates. Nevertheless,

it is very difficult to simulate in digital form the consistent
form of the model of the theory of relativity. Our physical exper-
ience tells us immediately that no excellent coordinate system can
be proven to exist, and that we are justified in considering each
coordinate system to be as valid as the next one, in which case

the Lorentz transformations formulate the relationships between
these inertial systems. The strict interpretation of the special
theory of relativity leads, however, to the conclusion that in
reality no superior coordinate system exists, and that it is use-
less to search for such a system experimentally. In any represen-
tation of the cosmos as cellular automatons, it is almost impos-
sible to avoid the assumption of a superior system of movement.

We can construct the structure of cellular automatons in such a

way that a greater number, although still a finite quantity, of
superior coordinate systems are available. The constance of the
speed of light in all inertial systems is represented by the digit-
al simulation of the Lorentz transformations and the related
shortening of bodies.

In any case, a relation between the speed of light and the
speed of transmission between the individual cells of the cellular
automaton must result from such a model. These do not need to be
identical. In contrast, it may be assumed that the speed of trans-

mission from cell to cell must be greater than the speed of
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propagation of the signal obtained from this transmission. This
greater speed of transmission has only a local meaning. Because /51
of the anisotropy of the calculating space it is different in dif-
ferent directions. In any case the "digital" model, in comparison
with the analog model of the relativity theory, yields a signifi-
cant difference: the closer the velocity of the inertial system
approaches the standard of the speed of light, the more critical
the digital simulation of the processes becomes. In the case of
energy-rich particles, we come to processes which can be character-
ized (at least to some extent) as a "miscalculation" of calculating
space. In this way the essentially different behavior of particles
of very high energy (high velacity, high frequency) can be explained.
A strict interpretation of the special theory of relativity
has as a consequence that for every inertial system another one can
be imagined, which moves with an initial velocity less than c¢c. The
physical rules are just as valid in the second system as in the

first. This process can be repeated as often as desired, at least

in principle. The complete monstrosity of this thought is only
vaguely clear. Here it must be said again that every conception
of infinity presupposes a limiting process. Here we are concerned

with an infinitely frequent repetition of reaction of another
inertial system which moves relative to the previous one. This
process has a few consequences if observations of an information
theoretical nature are applied, as we will consider in the fol-
lowing.

The following statement is also of interest.
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We shall first introduce the term "shifting veolume". This is
equal to the number of shifting parts involved multiplied by the
number of shifting beats which take part in a given process, for
example the period of a digital particle. Tigure 67 shows a sim-
plified representation, in which it may be assumed that a distur-

bance representing the digital

o o 7

! particle extends for a distance

PO - Pl' The particle is assumed

to be stationary in the inertial

system x, t. In this case, the

space PO’ Pl’ P2, P3 is equal to

the shifting volume of a period.

If this particle moves relative

R 77102> b,,w,’A > to the system x, t we can speak

Fig. 67 of a second inertial system x', t'

according to the special theory of relativity, relative to which
the moving particle is stationary. The inversion corresponding to

the Lorentz transformations yieldsthe shifting volume P p.', P!

0* "1 2

'
P3 .

This is equal in area to the shifting volume PO’ Pl’ PQ, P3.
We can speak therefore, of imvariance of the shifting volume.
4. Considerations of Information Theory
The term information gains considerable meaning in the process
of these different considerations. Information theory has formu-

lated the term "information content" with clarity in regard to

news-transmitting systems. TFor this reason, we are inclined to

67



consider information theory as the theory of information processing.

This is not correct, however. The easily accomplished application
of terms from information theory in the neighboring field of news
transmission unfortunately leads to frequent confusion. Even in
the present observations we must be clear of our understanding of
information content. It is difficult to speak of physical pro-
cesses in terms of news transmission. This would be of interest
in itself only insofar as we could include people in our consider-
ation. If we assume an infinitely fine propagation of our news,
transmitted through electromagnetic waves, it must be infinitely
conserved, as long as limits are not established for them by the
temporal finiteness of the universe., Metaphorically we can also
consider the rays in the universe approaching us from other stars
as news for people, in which case the question of the information
content of this news makes sense.

Such a relationship between man and nature is to be found in
the modern statement of the quantum theory, which attempts to
relate all measureable quantities in a mathematical system. The
information which we obtain from nature about the structure of
atomic shells consists largely of the frequencies of the emitted
light quanta. In this case, the use of the term "information con-
tent" is meaningful. The matter will not be further investigated
here.

If we disregard this definition of information as the means
of news transmission, it is still not possible to speak of infor-
mation content of inhabited systems, if we consider the width of

variation of the possible shapes of an object, a pattern or the
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like. Thus, a punch card may contain, due to its variability, a
definite information content, measured in bits.

The technical characteristics of the punch card itself, includ-
ing the accompanying punching and readout systems, set upper limits
to the amount of information which can be entered, which is defined
as information capacity. In news transmission this capacity does
not need to be completely used, so that the information transmitted
from sender to receiver on the punch card can be below capacity.

It is also possible to speak of a maximum possible information
capacity of a finite automaton, if we consider the number of its
possible states as a measure. If this is equal to n, the informa-
tion content is log2(n) (logarithm to the base two). A programmed
calculating machine represents this type of automaton, as we are
aware. If such an instrument has m members, for each of which
there are two possible positions (for example, flip-flops, ferrite
nuclear rings in the storage, etc.), then the number of possible
states is 2™ and the information capacity is egqual to m. In this
process no distinctions are made between the individual possible
states. In the total of 2" possible states every state is counted
in which every register and storage unit is dissolved (i.e., set
at zero) as are the states, as a result of which the solution of
a very complicated differential equation is held in storage.
Emotionally, we naturally tend to assume that the equipment con-
tains no information in its zero state, although in the second
state mentioned extremely interesting scientific results are avail-

able for use by mathematicians. This example shows the necessity

69



for great caution in the definition of terms in information theory.
The difference in this situation is that for the receiver, the two
states have a fundamentally different meaning. The state of "every-
thing diésolved" is only an extension of the receiver's knowledge
that the machine is in the ground state at the moment, while in

the second case, the receiver's knowledge is increased with regard
to significant results.

If no account is taken of these individual values of informa-
tion for the receiver, then the conclusion may be drawn that the
information content of a finite automaton cannot be increased while
running a calculation. Because the calculation is made completely
automatically after introduction of the program and the input
values, the results are established from the beginning. The
results have greater value for the person using the equipment:
for why would he let the computer perform a calculation if not to
increase his knowledge, which is only possible if the final state
of the automaton has a greater information content than the start-
ing state.

The first result of viewing the cosmos as a cellular automaton
is that the single cells represent a finite automaton. The gues-
tion to what extent it is possible to consider the entire universe
as a finite automaton depends on the assumption which we make in
relation to its dimensions. If we take the toroid of higher order,
as already suggested by Bopp, we are dealing with a finite autom-
aton on the whole. It is originally valid that the individual /54

cells can accept a limited number of states and have therefore
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only a limited information content. This is equally true for the
entire cosmos, if we make suitable assumptions about its limits.

Automaton thedry demonstrates that different characteristic
running patterns are possible for a finite automaton, several of
which will be considered.

For every given state there is a succeeding state. It is there-
fore possible to express the relation "state A dissolves state B"
as relation F(A, B) and to represent it in the form of an arrow
diagram. Such an arrow diagram is often called a "graph". Fig-
ures 68a-d show different types of arrow diagrams. It is important
to remember that every state can have only one succeeding state,
although there are several preceding states which can dissolve it.
The procéss figures show that an autonomous automaton must end in
a periodic cycle in every case, which under certain conditions can

also degenerate into a single final state.

T T Ty T ' . T
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This knowledge cannot be transferred to the individual cells
of a cellular automaton, for they are related to neighboring cells
through information exchange and therefore do not result in an
autonomous finite automaton. In the assumptions of limits on the
cosmos in the universe, we are concerned with a finite autonomous
automaton as soon as we exclude any sort of influences of a great-
er external world. The first result is the somewhat disillusioning
consequence that the cosmic process must of necessity end in a
periodic cycle. This realization, in itself logically unassail-
able, has other implications when examined quantitatively.

The dimensions of the universe are assumed to be on the order

13

of magnitude of lO'1Ll elementary lengths (10 cm) by some physi-

cists (approximately 10 million light years). We are concerned
therefore with a volume of approximately lO123 elementary cubes

of the elementary length on a side. If an individual bit of infor-
mation content is assigned to each of these elementary cubes, then
we have already 210123 different states of the universe to consid-
er. This number represents only a lower limit. In reality, a

much finer grid must be assumed, for which it is not yet known how
many variations at each grid point are possible. It must further
be considered that space calculates extremely exactly. The rela-
tion of electrostatic interactions to those from gravitational

4o . .
1. The interaction of nuclear forces are

fields is about 10
again orders of magnitude stronger. The higher of the two values

represents in reality only a lower limit, which is most likely many

orders of magnitude too small.
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If we assume the number of time pulses to approach the order

ul, the result

of magnitude of the spatial expansion, in effect 10
is obtained that in spite of this long time only a vanishingly

small portion of the possible states of the cosmos can exist.

There are 21082 types of reaction ways possible, each of which is
independent of any other. This also means that the number of de-
flections and branchings is incomprehensibly great. The previously-
considered observations of automaton theory relating to Figure 68
lose all predictive value. Of what value is the realization that
the evolution of the universe follows a periodic cycle, when even
within the already very large range of time being considered one
single period at most can pass, and most likely not even that?

The consideration of closed processes, i.e. of shifting pro-
cesses involving a digital particle, appears more fruitful. Ve
have already observed that a digital particle consists of a series
of periodically-repeating patterns in a cellular automaton and
that they are not fixed in position, but can move in the space of
the single cells like the moving writing machine. The term
"flowing state" was already introduced.

The question of the information content of a digital particle /56
can be considered from several points of view. At first the digi-
tal particle accepts a set position in space at a particular point
in time. The information content of the digital particle cannot
be greater than the information capacity of this position in space,
which is determined by the sum of the possible states of this re-
gion. It is highly unlikely that every variation in state of such

a limited region corresponds to a digital particle. It is much
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more likely that a limited selection dissolves individual stable
pPeriod patterns.

We can inquire, entirely independent of the space associated
with a digital particle, how many pattern variations representing
phases of a digital particle are in fact possible? It is advanta-
geous to classify the patterns along different lines:

(1) type;

(2) direction and velocity (pulse);

(3) phase state;

(4) position of the particle.

An answer to Question 1 assumes that we have at our disposal
a model which permits different types of digital particles, as we
have in nature with photons and electrons, etc.

An answer to Question 2 requires that our model accept differ-
ent velocities and directions of propagation of the periodic pat-
tern.

The phase sequence results from the periodic pattern sequence
associated with the special type of particle and pulse.

Question 4 has meaning only when the interrelationship of the
particles is considered. It is, of course, impossible for a closed
region of space to hold the information about its own state.

The examples of Figures 42-66 from Chapter 3 satisfy these con-
ditions only to a limited extent. First, the model permits repre-
sentation of only one type of particle. Further only the direction
may be varied, but not the velocity. The length of the periods of

the individual particles is not constant, but this is not of
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interest to our consideration. The information content of this
type of particle depends on the accuracy of representation of the
arrow length or on the number of places with which it is digitally
represented. If we assume absolute lengths of a component for
Example 4, then we obtain 9 different arrow lengths, including the
zero value, for that component; in two-dimensional space there

are 81 different pulse variations. On the basis of these possible
variations in the particles, even within the given limits it is
possible to determine the information content of a particle. Each
of these particles has a series of associated phase states, so
that the number of possible patterns of digital particles is still
greater. The particle in Figure 59 has, for example, 7 different
phase states (13 - 714).

The question of information retention in the reaction between
digital pafticles is an interesting one. In the examples given
in Chapter 3, pulse arrows are added in the course of reaction.
This means that the number of places in the pulse arrow of the new
resultant particle must be greater than the number of places in
the reacting particle. If we eliminate arrow length of 0 for pur-
poses of simplicity and assume that the arrow of the reacting par-
ticle can be represented by binary places, then the arrow of the
resultant particle must be represented by 4 binary places. Before
the reaction we have 2 particles, each of which has an information

content of 2 x 3 bits (a total of 12 bits). After the reaction we

have a particle with an information capacity of only 2 x 4 = 8 bits.

During the reaction we have lost 4 bits of information. In this
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process we have permitted the arrow of the resultant particle to
be represented by a greater number of places. This already means
in itself the admission of a new type of particle. If this is not
permitted, a rule must be found which takes effect whenever the
permitted number of places are exceeded in the process of addition.
If we simply assume that the maximum value may not be exceeded,
then successive reactions lead after a certain period of time to
the result that we are left with particles with the absolute maxi-
mum pulse arrows.

The examples chosen here for digital particles are still much
too simple to be strictly related to physical processes. Actually,
we are never confronted in nature with the situation that particles
of the same type react with one another, not to mention the result
that two such particles react to give a particle of a higher type.
Conservation of energy, of pulse, of spin charge and so forth holds
for elementary particles in physics. It is only when models of
digital particles are at our disposal, with the help of which
terms can be represented, that comparative observations with ele=
mentary particles in physics and their reactions are possible.

It is a question of obvious interest whether conservation of
the different magnitudes cited in correspondingly-constructed
digital particles is related to a corresponding conservation of
information. The problem becomes even more complicated when fields
are also considered. The author can only state the question with-
out offering an answer to it. Perhaps the question is not so

terribly important. Somehow the question amounts to the problem
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of "configuration", which is known to be very difficult to handle
mathematically.

Here we come squarely into contact with one of the difficult-
ies of information theory. In news transmission, the greatest pos-
sible information content i1s obtained when the probability of the
individual signals is distributed as uniformly as possible., This
situation is referred to as the maximum entropy of information.

It is easily possible to consider this in such a way that every
possibility of relating previously-received news to the following 58
symbol must of necessity diminish the information content, which

limits through related redundancy the freedom on the selection of
symbols (news, the content of which one can already predict, has

no information content). Every sort of configuration necessarily
represents through its rules a limitation of the possible means of
representation and diminishes thereby the information content.
Conservation of information and conservation of configuration are
therefore contradictory to a certain extent.

The question whether or not tested terms in physics (energy,
effective quantum, elementary charge, mass, etc.) can be inter-
preted by the terms of information theory or of information pro-
cessing cannot yet be answered. In the model of a cellular autom-
aton constructed so that processes occur in it which can be re-
lated to the listed physical quantities, these quantities must be
represented by the construction of the circuits; i.e., by the
values represented in the circuits.

Even more important than the term information content is that
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of information exchange. Something dynamic, not something static,
results from circuit principles. Perhaps it could be called con-
servation of events or complication of events (Dr. Reche suggested
the idea of "conservation of complicatedness'", although in another
connection). Viewed this way, the shifting process acquires added
meaning. If the effective quantum is assigned the dimension "shift-
ing process", we obtain the dimension "shifting process per unit
time" for energy. The principle of conservation of energy can

then be interpreted.as the principle of conservation of events.

The term "effective quantum" already points to a close relationship
to shiftlike effects, namely the shifting process. The representa-
tion of energy as an "event" makes the relationship between energy
and frequency more easily understandable. These thoughts are for
the time being only simple speculation. Their purpose is to stim-
ulate the application of automaton theoretical means of observation
in physics.

A consideration of the Heisenberg uncertainty principle in the
light of information theory follows. If a storage capacity of m
bits is available for the digital representation of two guantities
A and B, we are free to distribute the two quantities with differ-
ent numbers of places and even differing precisions on the number
of places. If n places are assigned to A, B has m-n places. The
error in A is on the order of magnitude of 2—n, that of B the or-

2—(m—n).

der of magnitude of The product of both errors yields

the constant 2 "

It is possible to assume that both conjugated quantities A and
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B are not directly represented by the pattern of digital particles,
but represent derived quantities which appear only in certain pro-
cesses. The limitations on the information content of the digital
particles do not permit both quantities to be represented with the
maximum possible accuracy. In the case of digital particles, even 59
if one of the quantities is completely indeterminate, the other
cannot be represented with ideal accuracy, but only with the maxi-
mum accuracy permitted by the limitations on the number of places.
The following can be stated with regard to the principles of con-
servation: 1limiting values of the upper and lower sums must be
considered. The laws of addition do not have unlimited validity.
Similarly losses enter in the construction of models by falling
below the threshold values. Digital models are possible in which,
in spite of this occurrence, laws of conservation can be defined.
5. About Determination and Causality

The question of determination and causality is closely related
to observations from information and automaton theory. The expres-
sion "causality" is not strictly used in the literature. In the
following it is always used to mean that which is generally referred
to as "determination", namely the definition of the succeeding
state of a closed system as a function of the preceding state.
The entire universe can be seen as a closed system, to the extent
the necessary consequences of this assumption are taken into ac-
count.

Automaton theory works with the concept of the state of an

automaton. Finite automatons can receive a limited number of
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states. If there is no entrance signal, the resultant state re-
sults from that which preceded it because of the algorithmus basic
to the automaton. Because automaton theory works with abstract
concepts, this conversion from one state to the next occurs in
theory without intermediate steps. Automaton theory does not ask
the question exactly how this conversion occurs in an operating
automaton. It is concerned solely with the fact that, for example,
a flip-flop takes place from one state to another in the space of
a certain time, the pulse time. The technological analysis of

the turnover process, which is possible, lies outside the range of
automaton theory observations, as long as it is not concermned with
the comprehension of such details.

The opinion is held by some physicists, for instance Arthur
Marchl, that direct conversion of an atom from one stable state to
another is difficult to reconcile with the rule of causality. He
understands the idea of causality in such a way that conversion
from one closed system to the next requires a continual process.
This interpretation can hardly resist the automaton theoretical
consideration of physical processes. It cannot be assumed that
this idea is based on reality. The process of thinking in whole
numbers and in discrete states requires a thought process of non- /60
continuous transitions, in which the law of causality is formulated
in algorithms. Work with discrete states and quantification as
such does not necessarily require rejection of the causal manner

of observation.

lror example, see March, Arthur: Die physikalische Erkenntnis und
ihre Grenzen (Physical Perception and Its Limits), p. 19.
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This continuous transition in the sense of automaton theory
must be differentiated from the thought of the continuous tran-
sition between the individual stable states of an atom. Since we
are not able to analyze the process of such a transition experi-
mentally, all theories on this subject belong to the realm of
speculation. In the automaton theoretical sense, the natural ob-
jective is to create models which enable these transitions to be
followed individually and permit explanation of the emission or
absorption of photons in the associated process. We cannot pre-
dict whether this goal will ever be reached. The often-argued
opinion that such transitions are essentially unanalyzable and
that such experiments should be subordinated to more fruitful
endeavors can, however, be refuted. Quantum physics prowvides
statistical laws for such processes through which individual deter-
minations are supplanted by statistical determinations. This sub-
ject will be pursued further in connection with the discussion of
probability.

It is important to inquire whether the determination is valid
in both time directions; i.e., whether later states of the system
are clearly functions of the previous states as well as the re-
verse. The classical model of mechanics satisfies this demand for
time symmetry ideally. Statistical guantum mechanics introduces
the idea of probability and observes a deviation from time sym-
metry in the increase in entropy. In general, finite automatons
follow laws determined in only the positive direction. The algor-

ithm establishes only which state arises from the given one, not
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the reverse. It is possible to construct automatons in which the
previous state is determined by the one which follows it, but this
does not necessarily imply symmetry in the time direction. A
consideration of computers may clarify this. A computer is--assum-
ing unobjectionable work--determined in the positive time direction.
In general, calculating processes are not reversible, which may be
seen from consideration of the basic operations on which all high-
er calculations are based and which are not reversible (for example,
avb = c). A calculator is one example of a calculating machine
which is effectively determined in both directions, because it
counts forward in one time direction and backward in the other, to
the extent that we consider only the state tables and do not ana-
lyze the processes individually.

The different characteristic types of operation of an auton- 61
omous automaton were already discussed in 4.4 in connection with
Figure 68. Type 68b would correspond to an automaton determined
in both directions, as is the calculator mentioned.

A difference remains nevertheless: 1in the positive time di-
rection, the rule by which the following state is related to the
preceding one is explicitly given by the algorithm. In the nega-
tive time direction, there exists a single correlation, to be
sure, but this correlation is only implicitly given; i.e., it
cannot be directly calculated without further knowledge. This
difference is not clearly visible in the diagrams corresponding to
Figure 68 and in the state table corresponding to Figure 4. 1In

any case, this type of representation is possible only for very
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simple automatons and serves more for primary experiments than for
practical determinations of the automaton operation process. The
actual rule for the formation of the following state from the pre-
ceding one is given by the automaton circuits. We are able to say
that an autonomous automaton is determined in the positive time
direction and that in special cases of negative time direction a
"pseudodetermination" exists.

The relationships of digital particles are similar in the cases
discussed in Chapter 4.4. As long as such a particle follows its
path independent of outside influences, a single sequence of states
occurs. As soon as we consider the sequence of two particles, the
conditions are immediately different. In this case, the sxamples
in Chapter 3, Figures 42-66 refer to irrevérsible processes. The
basic shifting rule regulates the processes in the interaction of
the particles. There is no sort of inducement for a particle to
divide into two particles at any time. This statement makes only
one assertion about the models used in Chapter 3. The question
whether it is possible to construct usable models of digital par-
ticles which do not have this characteristic is difficult to
answer. This is the same problem as the one confronting the
physicist in the decay of elementary particles or atomic nuclei.
The present state of theoretical physics is such that we can only
give probability laws for such processes. In a model which follows
a predetermined operation process and excludes working elements,
in accordance with the probability laws, there are only two means

of solution:
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(a) the digital model is constructed in such a way that it con-
tains a sort of clock which dissolves the process when a certain
state has been reached;

(b) the influence of the environment, (for example that of fields
through which the digital particle moves) is taken into account.
In the process of moving through its different phases, a particle
can pass through critical states in which the influence of the
environment (frequency, etc.) causes particle division.

The present state of physical theories does not permit the
drawing of conclusions about physical laws from these possibilities
of digital models. What has already been said for the transition
from one atomic state to another is equally relevant here: no /62
experiment permits an examination behind the scenes, and all
theories are essentially speculative in character. Nevertheless,
it has been possible to determine a certain dependence of radio-
activity at high temperatures, which corresponds to the assumption
of critical situations influenced by the environment.

One result is important, in any respect: the assumption of
valid determination only in the positive time direction is not
influenced in the least by the dissolution of physical laws into
the laws of probability. Similarly, the increase in entropy is
not necessarily related to this question. From the viewpoint of
automaton theory, each of these questions takes on another meaning.
Entropy can be explained in a digital model, the operation of which

is strictly determined.

Let us consider the classical model of physics from this point
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of view. As already mentioned, the validity of the determination,
particularly in both time directions, requires absolute accuracy

of the individual processes. It may hardly be assumed that serious
considerations of the extreme significance of this assumption in
regard to information theory have been made. Such a model requires
an infinitely fine structure of spatial and temporal relationships.
An infinite information content is required for an unlimited space-
time element. It is practically impossible to simulate such a
model with computers because of the necessity of infinite number

of places required. The sources of error are correspondingly great
in the extremely large number of collisions between gas molecules,
and these errors quickly lead to deviations from theoretical pro-
cesses. This means that the better the causality rule is approxi-
mated in the reverse time direction, the more calculations we must
be prepared to carry out in our model. This leads to the result
that simulations of universal systems with causality functioning

in both time directions belong to the category of "unsolvable"
Problems.

Of course, it can be said that this is true only for calculat-
ing simulative models. But this result should encourage us to
reconsider the matter. Are we justified in assuming a model of
nature for which no calculable simulation is possible?

From this point of view, it appears that the frequently-
advanced argument of determination in both time directions should

be fundamentally reexamined.

The question of time symmetry of the physical laws is frequently
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discussed in connection with the reflective characteristics of
space. The observations of automaton theory might be of signifi-
cant value in furthering this discussion.
6. On Probability

The problem of determination in modern physics is closely re-
lated to the laws of probability. An observation from automaton
theory may be inserted here. It is of course possible to build
mathematical systems, such as matrix mechanics and wave mechanics,
in which probability values play a significant part. The autom-
aton theoretician can introduce the idea of probability into his
theories and can establish a successive state dependent on proba-
bility values. To this point, the process is a simple mathematical
game on paper. It becomes critical when we attempt to construct
finished forms of such mechanisms which operate according to the
laws of probability. Such calculations have been carried out in
our calculating automatons with considerable success for some time
(Monte-Carlo method). The element of chance is introduced into
the calculation in the form of "chance values'". The generation of
these chance values is the decisive problem. There are two ways
to accomplish this.
(&) The values are generated by simulation of the dice method

and that type of number series, in which no sort of depend-

ence between the numbers exists. Such a number series can

be developed from the calculation of irrational numbers (mw,

for example). 1In reality, this process is strictly deter-

mined. Nevertheless, we speak of pseudo-chance values.
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This process is completely sufficient when the generation rule
for such chance values is carefully chosen.

(b) A mechanism is taken from nature which is either so compli-
cated that it cannot be shown to be regular or for which it
can be said that, according to the valid laws of physics, it
provides "real'" probability values. The dice mechanism be-
longs to the first sort, where causal rules play a role but
for which, in the case of a sufficiently carefully built die,
equal probability for every case can be shown. The same is
true for all games of chance (roulette, etc.). In the other
case we rely on the fact that, for example, the radicactivity
of a certain material is subject to strict probability laws.
Whether the probability process is in reality determined in
these atoms is not significant, for experience shows that in
any case the laws of probability can be assumed without lead-
ing to incorrect results. In this case the calculating autom-
aton regards the probability values to a certain extent as
external input values. It remains true, however, that real
probability values are hardly possible in technical automatons.

It must also be remembered that the choice of algorithm for
creation of the pseudo-chance values is highly significant in

Case (a). This means that only those choices from the range of

basic number series are possible which follow one énother as ir-

regularly as possible and which have the most uniform possible
distribution of probability. This means that longer series of the

same number and series of numbers in the same separation (1,2,3,..
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must be excluded, although these series are just as probable or im-

probable in real series of chance values as any other number series.

Of course, we can ask the purely speculative question whether
true probability laws are admissible to automaton theoretical ob-
servations of physical processes. This question is a philosophic-
al one, and is only noted here,without an answer.

7. Representation of Intensity

The representation of intensity of field strengths and other
numerical quantities in cellular automatons must be specially con-
sidered. For this reason, a few basic possibilities are considered
here.

Figure 69 shows a two-dimensional grid in which individual grid
points are occupied by elementary logical values; for example, yes-
no values. If we assign to these values the numbers 0 and 1, the
statistical distribution of the 1 values represents a scale for
field strength. This sort of representation can accomplish little,
of course, if many orders of magnitude of density must be taken
into account. As already mentioned, the relationships of electro-
static interactions to gravitational interactions is on the order
of quO:l. If we wanted to represent these intensity differences
in a three-dimensional space corresponding to Figure 69 using yes-
no values, a cube with a side length of approximately lO13 grid
units would be necessary. This represents only a lower limit, for
in reality field strengths can differ by even greater orders of
13

magnitude. If we take a grid with the elementary length of 10

cm accepted by physicists, it would mean that a space of many
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cubic centimeters would be necessary, according to these calcula-

tions,

not be very useful,

to represent the field intensity.

entirely independent of the fact that it is

This type of model can-

extremely difficult to establish laws for stable digital particles
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adding machine consisting of neighboring cells and among which a

hierarchical ordering is seen.

nated with numbers of different value.

with this sort of statistical distribu-

tion.

A much more rational method is of-

fered by the principle of place values.

This does not lead to the idea to con-

struct calculating automatons according

to the principle of Figure 69.

70 shows the ideal arrangement of an

This is reflected in the

The individual cells are coordi-

one-sided construction of the transmission process u, - u
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Figure 71 shows the

T e

transmission of this thought

process to a linear cellular

automaton.

allied with a complete add-

ing machine.

Each cell is

Fach cell Ci

is subdivided into the indi-

vidual addition steps AO

In the construction of such

a shifting system it must be remembered that the transmissions
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among levels within the cell must be coordinated in time with the
transmission of information between the individual cells.

This principle is relatively easy to put into practice for
one-dimensional and two-dimensional cellular automatons. Theoret-
ically it can be applied to three- and more-dimensional automatons
without any modifications. 1In addition to the dimensions, which
correspond to the topological arrangement of neighboring cells
(space dimension), there is also a level dimension. This is only
imaginable in three-dimensional space and must be constructively
built into (projected into) three-dimensional space.

The further question can be asked whether in a symmetrically
built cellular automaton a hierarchical ordering can be introduced

by the manner of occupancy. Figure 72 demonstrates the principle.
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The single cells can contain, for example, single addition steps
and are not able to accept several-place numbers. These are di-
vided among several neighboring cells, according to the place value
principle. The difficulty arises in the fact that this sort of
arrangement is of the nature of occupancy.‘ If the concept is ap-
plied to a several-dimensional automaton, it is easy to see that
major complications develop.

Cellular automatons provide an elegant solution when each
cell contains a complete calculating system, as symbolically rep-
resented in Figure 73. These single calculating systems contain
both information-processing and information-storing elements.

The net automaton represented in Figure 74 is a further devel-
opment of the cellular automaton corresponding to Figure 73. The
individual cells are responsible here
for only information processing.
Branching lines B connect the individ-
ual cells and serve both for informa-
tion transmission and for information

storage. The individual cells can

consist of single-place adding units,
according to the series principle valid for calculating machines.

Preliminary investigations by the author have shown that this type
of automaton is highly successful, specifically in the solution of
numerical problems as well as in simulation of physical processes.

More specific consideration will be the subject of another paper.
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Even if these observations do not result in new, easily under- /68

5. CONCLUSIONS

stood sclutions, it may still be demonstrated that the methods sug-

gested have opened several new perspectives which are worthy of be-

ing pursued.

Incorporation of the concepts of information and the

automaton theory in physical observations will become even more

critical,

states and the like.

as even more use is made of whole numbers,

discrete

A relating of different possible conceptualizations 1s attempt-

ed in the following table:

CLASSICAL PHYSICS

Point mechanics
Particles
Analog

Analysis

All wvalues continu-
ous

No limiting values

Infinitely accurate

Causality in both
time directions

QUANTUM PHYSICS

Wave mechanics
Wave-particle

Hybrid

Differential equa-
tions

A number of wvalues
quantized

With the exception
of the speed of
light, no limit-
ing values

Probability relation

Only static causal-
ity, division into
probabilities
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CALCULATING SPACE

Automaton theory
Counter algebra

Counter state, digital

particle
Digital

Difference equations
and logical opera-
tions

All values have only
discrete values

Minimum and maximum
values for every pos-
sible magnitude

Limits on calculation
accuracy

Causality only in the
positive time direc-
tion, introduction
of probability terms
possible, but not
necessary



CLASSICAL PHYSICS QUANTUM PHYSICS CALCULATING SPACE

Classical mechanics Are the limits of proba-
is statistically bility of quantum
approximated Physics explainable

with determinate
space structures?

Based on formulas Based on counters

In view of the possibilities listed, it is clear that there
are several different points of view possible:

(1) "The ideas of calculating space contradict some recognized
concepts of present-day physics (for example, space iso-
tropy); therefore, the fundamental basis must be Ffalse."

(2) "The lawé of calcﬁlating space must be revised with the
object of eliminating the existing contradictions."

(3) "The possibilities arising from the ideas of calculating
space are in themselves so interesting that it is worth-
while to reconsider those concepts of traditional physics
which are called into question and to examine their valid-
ity from new points of view."

The author has greatly enjoyed being able to discuss this sub-
ject with a few mathematicians and physicists. The greatest handi-
cap to cooperation is certainly the difference in terms between
the individual, specialized fields of knowledge. We hope that this
chasm will be bridged in time and that through cybernetics, a true
bridge between physics and the automaton theory can be built.

Independent of the possibility that the idea of calculating
space can be directly applied to physical determinations, there

remains the major task of providing theoretical physics with an
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aid in calculating and of finding numerical solutions to very com-
plicated relationships. In spite of the use of huge computers in
the field of physices, the applications of "software" in physics are
still much more limited than the applications of "hardware". With
huge accelerators that cost hundreds of million dollars we are able
to obtain particles of very great energy, requiring a fundamental
reexamination of the general validity of our basic theoretical hy-
potheses. 1Is there not a considerable danger that the software
lags behind the hardware of physics, and that we will soon be un-
able to evaluate the determinative results of our practical experi-
ments?

In the field of information processing we are already spending
equivalent amounts on hardware and software. In physics the ratio
of expenditures is probably between 1:20 and 1:100. The result in
chemistry is about the same. Although the laws of electron shells
have been generally known for a long time, young scientists are
able to explore them only within circumscribed 1limits in precise,
analytical chemistry. The author hopes that the ideas of calculat-

ing space after a period of adaptation will be of assistance. The

first step would be further development of the models of the autom- /70

aton theory approximately along the lines suggested in this ar-
ticle. When this process has reached a certain maturity, then
specific goals can be set.

It must be stressed that the experiments of the author are
confined to pen and paper experiments. Further experimentation

must be carried out with the help of modern computers.
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