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Dutch artist M. C. Escher wrote in 1958, upon seeing
the pattern of Figure 1, that it “gave me quite a
shock.” This pattern of curvilinear triangles appeared

in a paper by the Canadian geometer H.S.M. Coxeter entitled
C rystal Symmetry and Its Generalizations. Coxeter, and most
likely other mathematicians before him, drew such patterns by
using classical straightedge and compass constructions. Exact-
ly how this was done was a “folk art” until recently when it
was explained by Chaim Goodman-Strauss.

To explain how Escher came to be shocked, we go back a
few years earlier to the 1954 International Congress of Mathe-
maticians, where Coxeter and Escher first met. This led to
friendship and correspondence. A couple of years after their first
meeting, Coxeter wrote Escher asking for permission to use
some of his striking designs in a paper on symmetry, C ry s t a l
S y m m e t ry and Its Generalizations (published in the Tr a n s a c -
tions of the Royal Society of Canada in 1957). As a courtesy,
Coxeter sent Escher a copy of that paper containing a figure with
a hyperbolic tessellation just like that in Figure 1 (in addition to
Escher's designs). Escher was quite excited by that figure, since
it showed him how to solve a problem that he had wondered
about for a long time: how to create a repeating pattern within a
limiting circle, so that the basic subpatterns or m o t i f s b e c a m e
smaller toward the circular boundary. Escher wrote back to Cox-
eter telling of his “shock” upon seeing the figure, since it
showed him at a glance the solution to his long-standing prob-
lem. 

Escher, no stranger to straightedge and compass construc-
tions, was able to reconstruct the circular arcs in Coxeter's
figure. He put these constructions to good use in creating his
first circle limit pattern, C i rcle Limit I which he included with
his letter to Coxeter. Figure 2 shows a rough computer rendi-
tion of that pattern.

It is easy to see that Figures 1 and 2 are related. Here is how

Escher might have created C i rcle Limit I from Figure 1. First
switch the colors of half the triangles of Figure 1 so that trian-
gles sharing a hypotenuse have the same color. The result is a
pattern of “kites,” as shown in Figure 3.

Next, remove small triangular pieces from each of the short
sides of the orange kites and paste them onto the long sides.
Figure 4 shows the result of doing this for just the central kites.
This produces the outlines of the blue fish in Circle Limit I.
The outlines of the white fish are formed by the holes between
the blue fish.

Finally, the pattern of C i rcle Limit I can be reconstructed by
filling in the interior details such as the eyes and backbones. 
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Figure 1. A tessellation of the hyperbolic plane by 30-45-90 tri-
angles.
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A Bit of Hyperbolic
Geometry 

Mathematicians, and geo-
meters in particular, will
recognize the patterns of the
figures above as “living in”
the Poincaré disk model of
hyperbolic geometry. Escher
probably knew this, but wasn't
concerned about it since he
could use Euclidean construc-
tions to build his patterns. T h e
fact that Poincaré's disk
model can be defined in pure-
ly Euclidean terms shows that
hyperbolic geometry is just as consistent as Euclidean geome-
t r y. But that is another story. 

The p o i n t s of the Poincaré disk model of hyperbolic geom-
etry are the interior points of a bounding circle in the Euclid-
ean plane. In this model, hyperbolic l i n e s are represented by
circular arcs that are perpendicular to the bounding circle,
including diameters. Figures 1 and 2 show examples of these
perpendicular circular arcs. Equal hyperbolic distances are
represented by ever smaller Euclidean distances as one
approaches the bounding circle. For example, all the triangles
in Figure 1 are the same hyperbolic size, as are all the blue fish
(or white fish) of Figure 2, and the kites of Figure 3. T h e

patterns of Figures 1, 2, and 3
are closely related to the regu-
lar hyperbolic tessellation
{ 6, 4} shown in Figure 5. In
general, {p, q} denotes the
regular tessellation by regular
p-sided polygons with q o f
them meeting at each vertex.

Escher's Criticisms of
Circle Limit I
Escher had several criticisms
of his C i rcle Limit I p a t t e r n .
First, the fish are “rectilin-
e a r,” instead of having the

curved outlines of real fish. Also, there is no “traffic flow”
along the backbone lines - the fish change directions after two
fish, and the fish change colors along lines of fish. A n o t h e r
criticism, which Escher didn't make, is the pattern does not
have color symmetry since the blue and white fish are not con-
gruent. Before reading further, look back at Figure 2 and try to
see why this is true. There are several differences in the shapes
of the blue and white fish; the most obvious is the difference in
their nose angles. 

Some of Escher's criticisms could be overcome by basing
the fish pattern on the {6,6} tessellation, as shown in Figure
6. In fact, Figure 6 can be recolored in three colors to give it

F i g u re 2. A computer ren-
dition of the pattern in Escher's
print Circle Limit I.

F i g u re 3. A pattern of “ k i t e s ”
derived from Figure 1.

F i g u re 4. The outlines of the central fish formed from the
kites of Figure 3.
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Here is one way to get from the {8,3} tessellation to C i rc l e
Limit III. First, connect alternate vertices of the octagons with
slightly curved arcs, which are shown as black arcs in Figure
9. This divides up the hyperbolic plane into “squares” and
“equilateral” triangles.

Then if we orient the arcs by putting arrowheads on one
end, we get the paths of the fish in C i rcle Limit III. This is
shown in Figure 10.

A number of years ago when I was trying to figure out how
to encode the color symmetry of C i rcle Limit III in my com-
puter program, I drew a pattern of colored arrows as in Figure

10. Later, in 1998, it was my
turn to be “shocked” at the
Centennial Exhibition of
Escher's works when I saw a
colored sketch of arrows by
Escher just like mine! He had
used his drawing in prepara-
tion for C i rcle Limit III. 

A Bit More Hyperbolic
Geometry
It is tempting to guess that the
white backbone lines in Fig-
ure 8 are hyperbolic lines (i.e.
circular arcs perpendicular to
the bounding circle). But
careful measurements of C i r -

color symmetry, which means that every symmetry (rotation,
reflection, etc.) of the uncolored pattern exactly permutes the
colors of the fish in the colored pattern. Figure 7 shows that
three-colored pattern, which addresses all of Escher's
criticisms except for the rectilinearity of the fish.

Escher's Solution: Circle Limit III
Escher could have used the methods above to overcome his crit-
icisms, but he didn't. Escher took a different route, which led to
his beautiful print C i rcle Limit III. Figure 8 shows an approxi-
mate computer-generated version of the C i rcle Limit III p a t t e r n .

Escher never publicly
explained how he designed
C i rcle Limit III but here is
how he might have gone
about it. From his correspon-
dence with Coxeter, Escher
knew that regular hyperbolic
tessellations {p, q} existed for
any p and q satisfying (p- 2 ) (q-
2) > 4. In particular, he had
used the {8, 3} tessellation as
the basis for his second hyper-
bolic pattern, C i rcle Limit II,
and he decided to use that tes-
sellation again for C i rcle Limit
I I I. The {8, 3} tessellation is
shown by the heavy red lines
in Figure 9. 

F i g u re 6. A pattern of rectilinear fish based on the {6, 6 }
tessellation.

F i g u re 7. A pattern of rectilinear fish with 3-color symmetry.

F i g u re 5. The regular tessellation {6, 4} of the hyperbolic
plane.
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bolic trigonometry to show
that W is given by the follow-
ing expression: 

The value of W is about
79.97 degrees, which Escher
accurately constructed to high
precision. 

The 2003 MAM 
Poster Pattern

Much as Escher was inspired by Coxeter's figure, I was
inspired by Escher's “Circle Limit” patterns to create a
program that could draw them. More than 20 years ago two
students, David Witte and John Lindgren, and I succeeded in
writing such a program. Having gone to all the trouble to
design a program that was more general than we needed to
accomplish our goal, we put it to other uses. C i rcle Limit III is
certainly Escher's most stunning hyperbolic pattern, so we
thought it would be interesting to find related patterns. 

Here is my analysis of C i rcle Limit III fish patterns: one
can imagine a three parameter family (k, l, m) in which k r i g h t
fins, l left fins, and m noses meet, where m must be odd so

cos W =
3 2 - 4

8

cle Limit III show that all the
white arcs make angles of
approximately 80 degrees
with the bounding circle. This
is as it should be, since the
backbone arcs are not hyper-
bolic lines, but e q u i d i s t a n t
c u rv e s, each point of which is
an equal hyperbolic distance
from a hyperbolic line. 

In the Poincaré model,
equidistant curves are repre-
sented by circular arcs that
intersect the bounding circle
in acute (or obtuse) angles. Points on such arcs are an equal
hyperbolic distance from the hyperbolic line with the same
endpoints on the bounding circle. For any acute angle and
hyperbolic line, there are two equidistant curves (“branches”),
one on each side of the line, making that angle with the bound-
ing circle. Equidistant curves are the hyperbolic analog of
small circles in spherical geometry. For example, every point
on a small circle of latitude is an equal distance from the
equatorial great circle; and there is another small circle in the
opposite hemisphere the same distance from the equator. 

Each of the backbone arcs in C i rcle Limit III makes the
same angle W with the bounding circle. Coxeter used hyper-

F i g u re 8. A computer rendition
of the Circle Limit III p a t t e r n
and the {8, 3} tessellation (black
arcs) upon which it is based.

Figure 9. The {8, 3} tessellation
(heavy red lines) together with
“ s q u a r e s ” and triangles (black
lines).

Figure 10. The paths of the fish in Circle Limit III.



that the fish swim head to tail. The pattern would be
hyperbolic, Euclidean, or spherical depending on whether 1/k
+ 1/l + 1/m is less than, equal to, or greater than 1. C i rc l e
Limit III would be denoted (4, 3, 3) in this system. Escher
created a Euclidean pattern in this family, his notebook draw-
ing number 123, denoted (3, 3, 3), in which each fish swims
in one of three directions. The pattern on the 2003 Math
Awareness Month poster is (5, 3, 3) in this system, and is
s h o wn in Figure 11 .

Summary
Over a period of five decades, a series of mathematical inspi-
rations and “shocks” have led from Coxeter's figure to the
2003 Math Awareness Month poster. Many people have been
inspired by Escher's work, including the authors of articles in
the recent book M.C. Escher's Legacy. My article and elec-
tronic file on the CDRom that accompanies that book contain
a number of other examples of computer-generated hyperbol-
ic tessellations inspired by Escher's art. I only hope that the
reader has as many enjoyable inspirations and “shocks” in his
or her mathematical investigations. !

For Further Reading
There are illuminating quotes from Escher's correspon-

dence with H. S. M. Coxeter in Coxeter's paper “The non-
Euclidean symmetry of Escher's Picture ‘Circle Limit III,’”
L e o n a rd o 12 (1979), 19–25, 32, which also shows Coxeter's
calculation of the angle of intersection of the white arcs with
the bounding circle in C i rcle Limit III. Read about artists who
have been inspired by Escher and are currently creating new
mathematical “Escher” art in the book M. C. Escher's Legacy:
A Centennial Celebration, Doris Schattschneider and Michele
E m m e r, editors, Springer Verlag, 2003. Euclidean and Non-
Euclidean Geometries, Marvin Greenberg, 3rd Edition, W. H.
Freeman and Co., 1993, has a good account of the history of

hyperbolic geometry and the Poincaré disk model. If you want
to construct your own hyperbolic tessellation by classical
methods, see “Compass and straightedge in the Poincaré disk,”
Chaim Goodman-Strauss, American Mathematical Monthly,
108 (2001), no. 1, 38-49; to do it by computer, see “Hyperbol-
ic symmetry,” Douglas Dunham, Computers and Mathematics
with A p p l i c a t i o n s, Part B 12 (1986), no. 1-2, 139-153. 
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Figure 11. The Math Awareness Month poster.

Whirled White Web
Team Minnesota’s (Stan Wa g o n , C a r l o
S é q u i n , B rent Collins, Steve Reinmuth, a n d
Dan Schwalbe) silver-medal-winning entry
in the Bre c ke n r i d g e, C o l o rado snow sculp-
t u re competition. See www. s t a n w a g o n . c o m
for details. T


