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Abstract

We visualize the structure of sections of the World Wide Web by
constructing graphical representations in 3D hyperbolic space. The
felicitous property that hyperbolic space has “more room” than Eu-
clidean space allows more information to be seen amid less clut-
ter, and motion by hyperbolic isometries provides for mathemati-
cally elegant navigation. The 3D graphical representations, avail-
able in the WebOOGL or VRML file formats, contain link anchors
which point to the original pages on the Web itself. We use the Ge-
omview/WebOOGL 3D Web browser as an interface between the
3D representation and the actual documents on the Web. The Web
is just one example of a hierarchical tree structure with links “back
up the tree” i.e. a directed graph which contains cycles. Our in-
formation visualization techniques are appropriate for other types
of directed graphs with cycles, such as filesystems with symbolic
links.

1 Introduction

The dominant paradigm for World Wide Web navigation is pointing
and clicking through traditional hypertext browsers. Clicking one’s
way through the Web has become very popular, but can also be
very disorienting. The Web is so interconnected and huge that it is
difficult to establish a mental model of its structure.

Flat one-dimensional history lists are one common navigational
aid. Such lists provide a way to think about many documents at
once, but offer no help in understanding the connections between
them. Traditional two-dimensional Web browsers provide a way to
focus on an individual document and see all of its outgoing connec-
tions, but do not show incoming links or offer an overview of more
than one document at once.

Moving up to three dimensions allows us to see both multiple
documents and the links between them. The Web is far too large to
see all at once, but we can explore sections of it and build 3D graph-
ical representations which can be viewed in a 3D Web browser.
Such browsers are becoming widespread with the recent release of
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Figure 1: Euclidean conetree, showing two levels of the 1994 Ge-
ometry Center Web

the VRML 1 standard. Just as traditional browsers allow one to
follow links in hypertext, the VRML standard provides a way to at-
tach three dimensional link anchors to 3D data files. The graphical
representation of a document is the anchor which points to the doc-
ument itself itself. Actions taken in the 3D browser can control the
2D browser and vice versa. Figure 5 shows a typical session.

Although the Web is non-linear, we can start at any document
and impose a tree structure: the chosen node is the root, each out-
going link is a first-generation child, the links in these documents
are grandchildren, and so on. We construct a 3D graphical represen-
tation of a piece of this structure, drawing tetrahedra at the nodes
and lines between them to represent hyperlinks. Our layout is a
variant of the Xerox PARC Cone Tree [9], where the parent node
is at the tip of the cone and the edges leading to the children are
drawn radiating outwards to the rim.

The problem, as we can see in Figure 1, is that our cone trees
become cluttered very quickly. There is no good way of embed-
ding an exponentially growing tree in Euclidean space that allows
us to simultaneously see both the entire structure and a closeup of
a particular region.

The solution is to use hyperbolic cone trees. Hyperbolic geome-
try offers us an elegant way to see the big picture and the interesting
details at the same time.

2 Hyperbolic Visualization

Mathematically consistent alternatives to Euclidean geometry have
been developed over the past hundred years. The noneuclidean ge-
ometries can be distinguished by the behavior of parallel lines: in
Euclidean space there is exactly one line passing through a given
point which is parallel to a given line, but in hyperbolic geometry

1http://vrml.wired.com



Figure 2: Motion in hyperbolic space (the projective model)

there are many. In this space the area of a circle grows exponen-
tially with respect to its radius, whereas in Euclidean space the area
only grows linearly. Thanks to this property of hyperbolic distance
we have a convenient way to visualize exponentially growing trees.

The simplest way to draw 3D hyperbolic pictures is in the in-
terior of a ball. We use Euclidean straight lines, but the way we
measure distance is changed so that the surface of the ball is in-
finitely far away from the origin. From the outside, objects very
near the center seem almost Euclidean but seem to grow distorted
and smaller as they are translated towards the surface of the ball.
This representation of hyperbolic space is known as theprojective
or Klein model. Luckily we can draw such pictures using 4×4 ma-
trices: since the standard graphics pipeline uses homogeneous co-
ordinates, interactive speeds are easily achieved on modern work-
stations. Figure 2 shows a navigation sequence in the projective
model. The look and feel of the system is difficult to communicate
with still picture, a video is necessary to it justice.

The conformal or Poincaré model is related to the projective

model by a simple transformation. In this model, straight lines are
drawn as arcs and flat faces are drawn as parts of spheres. The ad-
vantage is that angles are always drawn correctly. Unfortunately
we cannot use 4×4 matrices to represent motion in the confor-
mal model, and drawing arcs and curved faces also requires much
greater subdivision than in the projective case. While this model
is more computationally demanding than the projective one, it is
within the reach of most workstations.

If we allow the camera to go outside of the ball we can see the
entire space at once. When we constrain the camera itself according
to hyperbolic isometries, it can never move outside of the ball and
we see what hyperbolic space would look like from the insider’s
point of view. These three models provide different and useful in-
tuition, so we use whichever of them is appropriate at any given
time. Figure 3 shows two levels of the Geometry Center Weblet in
the three models. (We use “Weblet” to refer to a section of the Web
2.) Here we have drawn the “sphere at infinity” for the two outsider
models but in all other pictures the sphere is not shown.

There has been considerable work at the Geometry Center on vi-
sualizing hyperbolic geometry. The 1991 mathematical animation
Not Knot [3] includes a groundbreaking flythrough of hyperbolic
space. A reference on hyperbolic navigation can be found in [1],
which to the best of our knowledge contains the first recorded sug-
gestion of using hyperbolic space for tree visualization. See also [2]
for more exposition of hyperbolic geometry aimed at the computer
graphics community.

The publicly distributed Geomview 3D viewer [8] includes built-
in support for interactive navigation in noneuclidean geometries,
including hyperbolic geometry. Details on the implementation of
the hyperbolic transformation libraries used in Geomview can be
found in [7].

A recent paper from Lamping et al at Xerox PARC [4] has
brought hyperbolic visualization to the attention of the computer-
human interaction community. They ran user tests of a 2D Poincar´e
model browser visualizing various kinds of hierarchical informa-
tion, including organizational charts and a Weblet. Their work on
information visualization is confined to the 2D hyperbolic plane,
and deals only with acyclic graphs.

Hyperbolic space has a similar visual effect to a fisheye cam-
era lens, used by [10] for information visualization. The fisheye
paradigm calls for several ad-hoc decisions, the advantage of hyper-
bolic geometry is it provides an elegant and powerful mathematical
framework for display and navigation.

3 Layout

The graph can be easily laid out in the hyperbolic plane using uni-
form edge lengths. Indeed, this property of hyperbolic geometry is
one of the motivations behind its use. However, we would like to
optimize our use of space so that as many generations as possible
are visible. (This optimization also forestalls a bit longer the in-
evitable cumulative floating-point error). So we would like edges
that connect nodes to be as short as possible, yet we must also avoid
overlaps between the cone trees of all future generations. In order
to most economically meet these constraints, the hyperbolic length
�ij of the edge connecting nodesi andj should be

�ij = cosh−1
(
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2
)
)
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(
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)

whereθi denotes the smallest angle between edges incident on node
i (see Figure 4).

When the cone tree angle (a user-specifiable parameter) is 90
degrees, cones become flat disks. While this would negate most of

2The word “Weblet” was coined by Al Globus,
globus@nas.nasa.gov.



Figure 3: The projective, conformal, and “insider” models of hy-
perbolic space
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Figure 4: Angle between edges incident on nodei

the advantages of cone trees in Euclidean space, in hyperbolic space
disks are very convenient. The hierarchy of disks has no directional
bias: locally, child nodes are indistinguishable from parent nodes.
Whichever node is closest to the origin of the sphere “feels” like
the root node.

3.1 Cycles

The Web is distributed resource which maintains a (very large) di-
rected graph whose nodes are documents and whose edges are links
between them (labelled by link relationships). Although it may pro-
vide a useful mental picture to think of a Weblet as tree hierarchy,
most Weblets are not even directed acyclic graphs (DAGs), often
containing many cycles due to “backlinks”. Other common infor-
mation hierarchies, such as a Unix filesystem with symbolic or hard
links, also allow cycles.

Again hyperbolic geometry offers an elegant, systematic ap-
proach to visualizing directed graphs containing cycles. Just as
trees can be nicely embedded in standard hyperbolic space (which
contains no topologically significant loops), so too can directed
graphs with cycles be nicely imbedded in hyperbolicmanifolds—
spaces which can wrap around and close up on themselves. Stand-
ing in such a space, you would be able to see many copies of your-
self off in the distance, each image corresponding to one way that a
light ray can loop back to you by following the wraparound topol-
ogy of the space. The effect would be similar to a hall of mirrors,
except that the images would never be right-left reversed. If there
were a graph laid out in such a manifold, you would be able to see,
receding into the distance, images of the current location which rep-
resent longer and longer chains of links leading back to that node.
See [2] for more details on visualizing 3-manifolds from this “in-
sider’s” point of view.

However, due to the multiple images, sophisticated level-of-
detail culling (beyond the abilities our first-generation software) is
required to render the view inside a manifold efficiently. For this
reason, we have initially taken an approach based on laying out an
exhaustive subtree of the graph in standard hyperbolic space and
then filling in the “backlink” edges (which will hopefully be as uni-
formly distributed as possible). The choice of an exhaustive subtree
corresponds in more detail to choosing (1) a “root node”, and (2) for
each other node, one incoming edge as its “main entry point”.

To see how to choose the entry points for best layout, consider
first the (infinite) tree that would be obtained by navigating out from
the root node, and attaching to each node copies of all its children,
without regard to whether those children have already been seen
and placed in the growing tree. This is similar to the manifold pic-
ture, but somewhat misleading as every node has multiple graphical
representations, each variant missing all but one of the incoming
edges. Figure 8, which shows such a layout, was made from the
same data set as Figure 3. Nodes which are multiply represented
are drawn in yellow.

The required subtree can now be selected by choosing a traversal
order for the above tree, and then only retaining the first copy of
each graph node. The choice of traversal order has a major impact
on the comprehensibility of the picture. Breadth-first search starting
at the root node results in a more balanced, clearer picture than
depth-first search. Compare Figures 6 and 7, which show the highly
connected Weblet of an index of German cities3.

3http://www.leo.org/demap/cities/index.html



4 Implementation

We use an adapted version of Nierstrasz’sexplore 4 perl script as a
Web spider to construct a raw list of Weblet links. The adaptations
include the use of thelibwww-perl 5 libraries. The C++ program
that creates a graphical representation of the Weblet links with the
OOGL transformation libraries [7], which support 3D hyperbolic
transformations. The original Euclidean version demonstrated in
1994 was calledwebspace. Due to the release of the popular VRML
browser by that name from SGI6, we have renamed the hyperbolic
versionwebviz.

For a 3D Web browser we use the Geomview/ WebOOGL7 soft-
ware system. Geomview is a public domain 3D viewer which runs
on SGI, X, and NeXTStep workstations8. The original WebOOGL
system demoed in 1994 [6] had a very different structure than the
current WebOOGL 2.0 configuration. See [5] for details on the We-
bOOGL system.

5 Additional Directions

The structure of the Web is just one of many potential applications
of visualizing directed graphs with cycles. The file format expected
by the webviz program can easily be generated by programs other
than a Webspider. We have implemented a straightforward Unix
filesystem explorer usingfind andperl. Figure 9 shows the
directories on the SFB 288 filesystem and the symbolic links be-
tween them. The complex subtree at the lower left is/usr, the node
with the most children at the upper left is/u (the index of all home
directories), and the many symbolic links at the top connect NFS-
mounted disks local to individual machines to the main filesystem.
We would like to try visualizing other kind of information, such as
object class hierarchies.

The system is currently limited by rendering speed. Level of
detail control will be crucial to extending its reach.

The current Webviz system is batch-oriented: the Webspider ex-
plores a Weblet to a specified depth and then the graphical repre-
sentation is constructed and written out into a 3D data file. The file
is then loaded into Geomview through the WebOOGL system. The
current WebOOGL interface controls the click action, toggling be-
tween showing information about the node and following its link.
A nice extension would be a user interface for interactive control
of the Weblet exploration, where possible click actions would be
collapsing or exploring nodes, selecting which backlinks to draw or
hide, etc.

There are a number of possible directions for the layout. We
now always avoid overlapping nodes by erring on the side of over-
allocating space for the children of a node. Not only can this ob-
scure the big picture, but also the current scheme runs into floating-
point precision difficulties after several generations. (Of course,
without level of detail culling we are often render-bound after three
or four generations.) Distributing the child nodes on the surface of
spheres instead of cones would use space more efficiently. An in-
teresting approach would be to use the currently computed layout
as the starting point for a dynamical system where the edges act as
repulsive springs. The system could evolve until it converged to a
solution which fits (no overlap) and fits well (each node occupies
just as much space as it needs). Because of the self-similar nature
of trees, this dynamical system would probably need to be applied

4http://cui www.unige.ch/ftp/PUBLIC/oscar/-
scripts/README.html

5http://www.ics.uci.edu/WebSoft/libwww-perl/
6http://www.sgi.com/Products/WebFORCE/WebSpace/
7http://www.geom.umn.edu/locate/weboogl
8http://www.geom.umn.edu/locate/download/-

geomview.html

in a hierarchical way similar to multi-grid techniques. Another in-
teresting tactic would be to draw the backlinks as splines instead
of straight lines. While splines in Euclidean space have been ex-
tensively investigated, hyperbolic splines have received much less
attention.

Much more could be done to graphically represent the contents
of the node. Color coding is now used to show link directionality
and to crudely show the generation in the tree. For example, color
coding and edge thickness could represent attributes such as docu-
ment size, number of accesses, modification times, and so on. All
nodes are now HTML documents and are just drawn as tetrahedra,
but if the Web spider were improved to gather information for all
recognized MIME types the node shape could represent the docu-
ment content type.

6 Conclusion

We have implemented a system for visualizing information hier-
archies, specifically directed graphs with cycles, in 3D hyperbolic
space. We have used this system to construct graphical representa-
tions of the structure of the World-Wide Web and Unix filesystems.
Our approach offers a seamless framework for both a visual gestalt
of the entire system and closeup detail at any level of the hierarchy.
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Figure 5: Using the WebOOGL system for information visualization in hyperbolic space



Figure 6: Breadth-first search

Figure 7: Depth-first search

Figure 8: No backlinks

Figure 9: Filesystem visualization


