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Improving Tabular Displays, With NAEP 
Tables as Examples and Inspirations 

Howard Wainer 
Educational Testing Service 
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The modem world is rich with data; an inability to effectively utilize these 
data is a real handicap. One common mode of data communication is the 
printed data table. In this article we provide four guidelines the use of 
which can make tables more effective and evocative data displays. We use 
the National Assessment of Educational Progress both to provide inspiration 
for the development of these guidelines and to illustrate their operation. 
We also discuss a theoretical structure to aid in the development of test 
items to tap students' proficiency in extracting information from tables. 

In his 1786 atlas of England and Wales, William Playfair wrote of the 
increasing complexity of modem life. He pointed out that when life was 
simpler and data were less abundant, an understanding of economic structure 
was both more difficult to formulate and less important for success. But by 
the end of the 18th century, this was no longer true. Statistical offices had 
been established and had begun to collect data on which political and commer- 
cial leaders could base their decisions. Yet the complexity of these data 
precluded their easy access by any but the most diligent. 

Playfair's genius was in surmounting this difficulty through his marvelous 
invention of statistical graphs and charts. The complexity of life within 18th- 
century Britain and the massiveness of available data were but trifles in 
comparison to today's complex network of data sources and topics. These 
data are being transformed into graphic forms at a breathless pace. 

Today we have the need to clearly and accurately display summaries of 
huge amounts of information. Computing equipment, software, and electronic 
networks provide the means to summarize information and disseminate 
results. What we lack is a broad understanding of how best to do it. In this 
article we examine the data table as a communicative display and suggest 
four steps which, if followed, can allow tables to communicate better. 

In this report we focus principally on the table because we heartily subscribe 
to the notion that although accurate data can help us to understand the world, 
they can help only 

if they are properly interpreted. There can be no assurance of a proper 
interpretation, however, unless the arrangement of the data on the printed 
page is clear, logical, complete, and properly focused. . .. Incidentally, it 
is our conviction, tested in experience, that language flows more easily and 
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logically from the pen of him whose tabulated data reflect careful and 
precise thinking. (Walker & Durost, 1936, p. iii) 

I have two goals in this article. The primary one is to provide concrete 
guidelines for constructing more communicative tables. My second goal is 
more limited. Because tables are used so often to communicate information, 
it is generally felt that the ability to understand tables is an important skill 
for a literate citizen. It is not uncommon to find tables used as stimuli within 
many tests of basic reading or mathematical skills. Thus my second goal is 
to illustrate how improved tabular presentation immediately lends itself to 
expanding the range of test questions that can be asked. 

For reasons that will become clearer by the end of this article, we have 
chosen to intertwine a general discussion of tabular display with a discussion 
of the use of tables within the National Assessment of Educational Progress 
(NAEP)'-both as stimuli in test items and as communicative media in 
published reports. 

To build any effective display we must have a firm notion of purpose. We 
cannot know what the best answers are unless we know what the questions 
are. Thus we must first understand what questions will be asked of the 
data. Any discussion of data display in the abstract is pointless. To aid in 
understanding the intended purposes for tabular displays, we shall look at 
the sorts of test questions that NAEP pairs with data tables. It does not seem 
far-fetched to assume that the sorts of questions NAEP experts believe children 
ought to be able to answer from tables are the same sorts that everyone else 
should be facile with. 

This exercise is what naturally led us to the second goal, oftentimes 
intermingled in this report with the first, of expanding the range of test 
questions that can be posed when data are well displayed. The advice offered 
here comes from many sources, filtered through me. To the extent that I add 
anything to the wisdom of those who have preceded me on this path, it is 
in the attention devoted to depicting error. 

Tabular Presentation 
Getting information from a table is like extracting sunlight from a cucumber. 
(Farquhar & Farquhar, 1891, p. 55) 

The disdain shown by the two 19th-century economists quoted above 
reflected a minority opinion at that time. As commonly prepared, tables, 
spoken of so disparagingly by the Farquhars, remain to a large extent worthy 
of contempt. 

Before we explore ways to improve a tabular display, it is wise to be 
explicit about the likely audience and goals of the display. In this report we 
examine tables within NAEP that are aimed at three separate audiences: 
children, the lay public, and education professionals. While it might seem 
that this diversity of audience and associated goals ought to yield quite 
different structures for their displays, it appears that the requirements of their 
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shared cognitive and perceptual apparatus dominate their differences in age, 
training, and interests. The sets of rules for table construction that emerge 
for the three groups are virtually identical in general structure and vary 
only because of constraints imposed by the increasing complexity of the 
data themselves. 

Why are tables used to display data? All data displays, including tables, 
are used for one or more of four purposes: 

(1) Exploration. Data can contain answers to questions that may be explicit 
in the viewer's mind or not. Data exploration answers explicit questions 
while posing questions previously unthought of. 

(2) Communication. Once the data are explored they can be displayed to 
convey what has been discovered to a broader audience. 

(3) Storage. Data are expensive to gather; once they have been gathered, 
it is usually imprudent to lose them. In the past they have been stored 
for future use in various sorts of data displays. 

(4) Decoration. Data displays are often used to enliven a presentation. 
Indeed, conversations with reporters on the use of graphics invariably 
center around how to locate a display to attract the eye of the reader. 

A principal tenet of effective data display is that before designing a display 
one must establish a hierarchy of purpose and not try to do too much. A 
display aimed at communication should not try to serve an archival purpose 
as well, since rules governing these two purposes are often antithetical. 

The initial collection, and hence display, of most data sets begins with a 
data table. Thus any discussion of display should start with the table as the 
most basic construction. Rules for table construction are often misguided, 
aimed at the use of a table for data storage rather than data exploration or 
communication. The computer revolution of the past 30 years has obviated the 
need for archiving of data in printed tables, but rules for table preparation have 
not been revised apace with this change in purpose. Modem data storage is 
accomplished well on magnetic disks or tapes, optical disks, and other mechani- 
cal devices. Paper and print are meant for human eyes and human minds. 

Helen Walker and Walter Durost (1936) provided a careful description of 
guidelines for the construction of statistical tables. Ehrenberg (1977) amplifies 
some of these rules to allow tables to become a still more effective multivariate 
display. Among his rules are (a) rounding heavily, (b) ordering and grouping 
the rows and columns by some aspect of the data, (c) framing the display 
with suitable summary statistics, and (d) spacing to aid perception. More 
recent work on effective tabular presentation (Clark, 1987; Wainer, 1992, 1993) 
elaborates and illustrates these simple rules for designing effective tables. 

We shall begin this discussion with a more detailed statement and justifica- 
tion of these four rules of effective tabular display within the context of 
tabular displays in NAEP test items. When this is complete, we shall then 
go on to do the same thing for larger tables used principally for communication 
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in NAEP reports, although they are often expected to serve archival purposes 
as well. 

Tables as Part of NAEP Items 

Example 1: 1992 12th Grade Math, Questions 3 and 4 

This example shows how rounding table entries makes a difference. The 
original table on which Questions 3 and 4 were based is: 

POPULATIONS OF DETROIT AND 
LOS ANGELES 

1920-1970 

City 
Year Detroit Los Angeles 
1920 950,000 500,000 
1930 1,500,000 1,050,000 
1940 1,800,000 1,500,000 
1950 1,900,000 2,000,000 
1960 1,700,000 2,500,000 
1970 1,500,000 2,800,000 

The two questions (omitting the alternatives offered) were: 

3. How many more people were living in Los Angeles in 1960 than 1940? 
4. What was the first year listed in which the population of Los Angeles 

was greater than the population of Detroit? 
If we round to two digits (the nearest hundred thousand) and tidy up the 
display a bit, we get: 

Populations For Two Cities 
Years: 1920-1970 
Units: Millions 

Year Detroit Los Angeles 
1920 1.0 0.5 
1930 1.5 1.1 
1940 1.8 1.5 
1950 1.9 2.0 
1960 1.7 2.5 
1970 1.5 2.8 
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The answer to Question 3 is clearly 1 million, and the answer to Question 
4 is 1950. It awaits empirical verification whether this is easier than before 
revision, but my intuition (and my twelve-year-old son) certainly suggests so. 

Why did I suggest rounding to two digits? Let us explore this in a discussion 
of the first rule of table construction: 

Rule I. Round-a lot! This is for three reasons: 

"* Humans cannot understand more than two digits very easily. 
"* We can almost never justify more than two digits of accuracy statistically. 
"* We almost never care about accuracy of more than two digits. 

Let us take each of these reasons separately. 
Understanding. Consider the statement "This year's school budget is 

$27,329,681." Who can comprehend or remember that? If we remember 
anything, it is almost surely the translation "This year's school budget is 
about 27 million dollars." 

Statistical justification. The standard error of most statistics is proportional 
to 1 over the square root of the sample size.2 God did this, and there is 
nothing we can do to change it. Thus suppose we would like to report a 
correlation as .25. If we don't want to report something that is inaccurate, 
we must be sure that the second digit is reasonably likely to be 5 and not 
6 or 4. To accomplish this we need the standard error to be less than 
.005. But since the standard error is proportional to 1/ , the obvious algebra 
(1/, n- .005, therefore - 1/.005 = 200) yields the inexorable con- 
clusion that a sample size of the order of 2002 or 40,000 is required to justify 
the presentation of more than a two-digit correlation. A similar argument can 
be made for most other statistics. 

Who cares? I recently saw a table of average life expectancies that proudly 
reported the mean life expectancy of a male at birth in Australia to be 67.14 
years. What does the 4 mean? Each unit in the hundredths digit of this 
overzealous reportage represents 4 days. What purpose is served in knowing 
a life expectancy to this accuracy? For most communicative (not archival) 
purposes, 67 would have been enough. 

The effects of too many digits is sufficiently pernicious that I would like 
to emphasize the importance of rounding with another short example. The 
following equation is taken from State Court Caseload Statistics: Annual 
Report, 1976 (Court Statistics Project, 1976): 

In (DIAC) = -.10729131 + 1.00716993 x In (FIAC), 

where DIAC is the annual number of case dispositions, and FIAC is the 
annual number of case filings. This is obviously the result of a regression 
analysis with an overgenerous output format. Using the standard error justifi- 
cation for rounding we see that to justify the eight digits shown we would 
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need a standard error that is of the order of .000000005, or a sample size of 
the order of 4 X 10'6. This is a very large number of cases-the population 
of China doesn't put a dent in it. The actual n is the number of states, which 
allows one digit of accuracy at most. If we round to one digit and transform 
out of the log metric we arrive at the more statistically defensible equation 

DIAC = .9 FIAC. 

This can be translated into English as "There are about 90% as many disposi- 
tions as filings." Obviously the equation that is more defensible statistically 
is also much easier to understand. My colleague Al Biderman, who knows 
more about courts than I do, suggested that we needed to round further, to 
the nearest integer (DIAC = FIAC), and so a more correct statement would 
be "There are about as many dispositions as filings." A minute's thought 
about the court process reminds one that it is a pipeline with filings at one 
end and dispositions at the other. They must equal one another, and any 
variation in annual statistics reflects only the vagaries of the calendar. The 
sort of numerical sophistry demonstrated in the first equation can give statisti- 
cians a bad name.3 

Example 2: 1990 8th and 12th Grade Science Assessment 

Any redesign task must first try to develop an understanding of purpose. 
The presentation of the data set in Table 1 must have been intended to help 
the reader answer such questions as: 

(1) What is the general level (in hours) of battery life for the brands chosen? 
(2) How do the battery brands differ with respect to their life expectancies? 

What's the best one? The worst? 
(3) What kinds of equipment use batteries up most quickly? Least quickly? 

TABLE 1 
Table paired with Items 21 and 22 on the 1990 8th and 12th grade 
science assessment 

Battery Life in Hours 
Battery Cassette Portable 
Brands Player Radio Flashlight Computer 
Constant Charge 5 19 10 3 
PowerBat 7 24 13 5 
Servo-Cell 4 21 12 2 
Never Die 8 28 16 6 
Electro-Blaster 10 26 15 4 
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(4) Are there any unusual interactions between equipment and battery 
brand? 

These are obviously parallel to the questions that are ordinarily addressed in 
the analysis of any multifactorial table--overall level, row, column, and 
interaction effects. 

By characterizing the information in the table in this way we are able to 
explicitly lay out areas of questions that might be asked about these data 
in an effort to determine the extent to which students can understand data 
presented in a table. In fact, there were three questions that followed this 
table, but only one asked about the data, and it was parallel to Question 2: 

21. On the basis of the information in the table, which brand do you think 
is the best all-purpose battery? (Assume all batteries cost the same.) 

The next question asked about how the student made this determination: 

22. Briefly explain how you used the information in the table to make 
your decision. 

Before going further, I invite you to read Table 1 carefully and see to what 
extent you can answer the four questions. But don't peek ahead! 

The entries in this table are already rounded, so we can go directly to the 
second rule of table construction: 

Rule II. Order the rows and columns in a way that makes sense. 
Alphabetical order is almost never the best way to go. Three useful ways to 
order the data are: 

"* by size. Often we look most carefully at what is on top and less carefully 
further down. Put the biggest thing first. Also, ordering by some aspect 
of the data often reflects ordering by some hidden variable that can 
be inferred. 

"* naturally. Time is ordered from the past to the future. Showing data in 
that order melds well with what the viewer might expect. This is always 
a good idea. 

"* according to interest. If we are especially interested in comparing a 
particular set of rows or columns, put them adjacent to one another. 

Table 2 is a redone version of Table 1 in which batteries (rows) are ordered 
by battery life in a radio, with the longest-lasting battery first. Types of 
equipment (columns) are ordered by how quickly they use up batteries, least 
voracious first. From this we see that by ordering by radio use we have also 
ordered for flashlights. There is some minor shuffling within the cassette 
player and computer columns. Now that the table is ordered, answering NAEP 
Question 21 is easy, as are most other main effect questions. 

We can improve matters still further by remembering the third rule: 
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TABLE 2 
First revision of battery life table (rows and columns ordered, extraneous 
lines removed) 

Battery Life in Hours 

Battery Cassette Portable 
Brands Radio Flashlight Player Computer 
Never Die 28 16 8 6 
Electro-Blaster 26 15 10 4 
PowerBat 24 13 7 5 
Servo-Cell 21 12 4 2 
Constant Charge 19 10 5 3 

Rule III. ALL is different and important. Summaries of rows and col- 
umns are important as a standard for comparison-they provide a measure 
of usualness. What summary we use to characterize all depends on the 
purpose. Sometimes a sum or a mean is suitable, more often a median. But 
whatever is chosen it should be visually different from the individual entries 
and set spatially apart. 

The summaries (means) surrounding Table 3 make the row and column 
effects explicit. Now we not only see that the Never Die battery the best all 
around, but we have a measure of how much better it is. We also see that a 
computer uses batteries about 6 times as fast as a radio. 

Can we go further? Sure. To see how requires that we consider what 
distinguishes a table from a graph. A graph uses space to convey information. 
A table uses a specific iconic representation. We have made tables more 
understandable by using space-making a table more like a graph. We can 
improve tables further by making them more graphical still. A semigraphical 
display like the stem-and-leaf diagram (Tukey, 1977) is merely a table in 
which the entries are not only ordered but are also spaced according to the 
size of the gaps between adjacent rows or columns. The rule then is: 

TABLE 3 
Second revision of battery life table (row and column means shown and 
emphasized) 

Battery Life in Hours 
Battery Cassette Portable Battery 
Brands Radio Flashlight Player Computer Averages 
Never Die 28 16 8 6 15 
Electro-Blaster 26 15 10 4 14 
PowerBat 24 13 7 5 12 
Servo-Cell 21 12 4 2 10 
Constant Charge 19 10 5 3 9 
Usage averages 24 13 7 4 12 
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Rule IV. Add spacing to aid perception. If there is a clustering among 
rows or columns, space them so that they look clustered. To put this notion 
into practice, consider the next version of Table 1, shown as Table 4. 

The rows have been spaced according to what appear to be significant 
gaps (Wainer & Schacht, 1978), and we see that batteries fall into two groups: 
three relatively strong batteries and two weaker ones. This yields a table that 
is about as good as we can do. Now we can see that a battery lasts about 
twice as long in a radio as in a flashlight, and about twice as long in a 
flashlight as in a cassette player. Moreover, we see clearly that the three best 
batteries yield about 50% more life than the two worst. 

This brings us to an interesting issue. NAEP Questions 21 and 22 could 
be answered trivially if the table were transformed as we have done in Table 
4. Should we transform the table? The way in which we have structured the 
table is not based on the particular questions that were asked, but rather on 
general rules for all tables. We would have done it in exactly the same way 
had we not seen the questions. This transformation merely follows a set of 
rules that characterizes good practice. The original table was flawed in that 
it didn't conform to standards of good practice. 

Basing a characterization of an examinee's ability to understand a data 
display on a question paired with a flawed display is akin to characterizing 
someone's ability to read by asking questions about a passage full of spelling 
and grammatical errors whose sentences were ordered haphazardly. What are 
we really testing? 

One might say that we are examining whether or not someone can under- 
stand what is de facto "out there." I have some sympathy with this view, but 
what is the relationship between the ability to understand illiterate prose and 
the ability to understand proper prose? If we measure the former, do we 
know anything more about the latter? Yet how often do we encounter well 
made displays in the everyday world? Should we be testing what is, or what 
should be? 

TABLE 4 
Third revision of battery life table (rows spaced to accentuate battery clusters) 

Battery Life in Hours 
Battery Cassette Portable Battery 
Brands Radio Flashlight Player Computer Averages 
Never Die 28 16 8 6 15 
Electro-Blaster 26 15 10 4 14 
PowerBat 24 13 7 5 12 

Servo-Cell 21 12 4 2 10 
Constant Charge 19 10 5 3 9 
Usage averages 24 13 7 4 12 

9 



Wainer 

A more practical problem is that if a display is properly constructed, most 
commonly asked questions are easily answered. That is the nature of graphics 
and human information processing ability. It is harder to ask nontrivial ques- 
tions of a well constructed table. This is not an isolated issue. I will discuss 
it further in the conclusion of this article. 

While we cannot hope to resolve these issues here, I would like to add 
one vote toward testing literacy with prose that is correctly composed and 
testing numeracy with data displays that conform to accepted standards of 
good practice. If we do otherwise we may be able to connect our test with 
common practice, but is that what we wish to do? 

In the concluding section of this article I will discuss the kinds of questions 
that can be constructed and suggest a theoretical structure that will aid in 
future tests of this sort. 

Example 3: 1992 4th, 8th, and 12th Grade Math Assessment 

Original Table Revised Table 

Ten Students' Test scores Ten Students' Test scores 

Student Score Student Score 
A 88 C 91 
B 65 A 88 
C 91 H 85 
D 36 
E 72 E 72 
F 57 B 65 
G 50 I 62 
H 85 F 57 
I 62 G 50 
J 48 J 48 

D 36 
Mean 65 

Question 9, associated with the above table, is as follows. 
9. The table above shows the scores of 10 students on a final examination. 

What is the range of these scores? (then four options) 
To answer this question, one needs to know that the range is the difference 
between the largest and the smallest entries, find them, and then subtract 
them. A properly prepared table, which orders the rows by the data rather 
than some arbitrary letter, removes the need for the second step.4 Also, 
introducing spaces where there are data gaps (invisible in the original table) 
provides the opportunity to ask other, deeper questions about the structure 
of these data. 
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Big Tables in NAEP Reports 
NAEP reports are often mother lodes of information, but sometimes it 

takes a considerable amount of effort to mine that information. One reason 
that such effort is required is the format of the data presentation. It appears 
that saving space is sometimes viewed as a more important goal than effective 
communication. Let us examine a single large table from one major NAEP 
report and see how the application of the aforesaid four rules can increase 
its comprehensibility. The table chosen shares enough of its characteristics 
with other tables to allow one example to be broadly generalizable. 

Example 4: Table 2.12 From Data Compendium for the NAEP 1992 
Mathematics Assessment of the Nation and the States 

This table, reproduced as Table 5, shows the average mathematics perfor- 
mance of eighth-grade examinees from all participating jurisdictions in the 
1992 state mathematics assessment as a function of parent's education. Also 
included is the percentage of examinees in each state whose parents' education 
is at each of the designated levels. As is customary, the standard errors of 
all figures are presented in parentheses. 

Before we attempt to revise this table, it is wise to consider its likely 
purpose. Why would anyone want to see data like these? What sorts of 
questions would such data answer? How easily could the reader of this 
table answer the same sorts of questions that were asked of children in the 
assessment? How hard is it to answer a question analogous to Question 21 
about what is the best all-purpose battery (What is the best performing state?)? 
Or one analogous to Question 9 about the range of scores among 10 children 
(What is the range of performances among the 41 participating states?)? Any 
redesign should allow such obvious questions to be answered easily. 

More generally, for this table, as with most two-way displays, the questions 
that can be answered are based on the factors presented, to wit: 

(1) How did the children in each of the jurisdictions perform in math? 
Which states did the best? Which the worst? How much variation is 
there among the states? How does my state compare with others like 
it? With the nation as a whole? What is the clustering among the states? 

(2) What is the relationship between parental education and children's 
math performance? 

(3) Does parental education have the same effect in all jurisdictions? 
In addition, there are questions parallel to these dealing with the percentage 
of children at each parental education level. 

(4) How well educated are the parents of these children in each of the 
jurisdictions? Which states have the best educated parents? Which the 
worst? How much variation is there among the states? How does my 
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state compare with others like it? With the nation as a whole? What 
is the clustering among the states? 

(5) Which level of parental education is most common? Which is least? 
How much parental education is "typical"? 

(6) Does the distribution of parental education have the same shape in 
all jurisdictions? 

After answering the above questions, we would like to be able to know 
which differences we observe are possible artifacts of sampling fluctuation 
and which represent real differences in the populations of interest. 

TABLE 5 
Original Table 2.12 from Data Compendium for the NAEP 1992 Mathematics 
Assessment of the Nation and the States (p. 83): Average mathematics 
proficiency by parents' highest level of education 

Grade 8 - 1992 

Some Education After Did Not Finish High 
Graduated College High School Graduated High School School I Don't Know 

PUBULIC Perce.nage Average Percentage Average Prcentagel Average Per rtage Average Percentage Average 
"SCHOOLS of Students Proficiency of Studens Proficiency of Studenr Proficienc of S ens Proficiency of Students Proficiency 
NATION 40 (1.4) 279 (1.4) 18 (0.6) 270 (1.2) 25 (0.8) 256 (1.4) 8 (0.6) 248 (1.8) 9 (0.5) 251 (1.7) 
Northeast 38 (3.1) 282 (4.2) 18 (1.1) 267 (3.0) 26 (2.2) 259 (4.2) 8 (0.9) 246 (4.2) 10 (1.2) 250 (3.3) 
Southeast 35 (1.9) 270 (1.9) 17 (0.8) 263 (2.0) 28 (1.4) 249 (1.9) 12 (1.6) 246 (4.2) 8 (1.0) 248 (4.3) 
Central 42 (2.7) 283 (2.9) 20 (1.4) 273 (1.6) 26 (1.7) 264 (2.3) 4 (0.7) ** ( ') 7 (0.8) 258 (3.8) 
West 43 (2.9) 279 (2.6) 18 (1.2) 274 (2.6) 19 (1.5) 252 (2.9) 9 (1.1) 248 (2.4) 11 (0.9) 248 (2.9) 
STATES 
Alabama 33 (1.6) 261 (2.5) 18 (0.7) 258 (2.0) 29 (1.1) 244 (1.8) 13 (0.9) 239 (2.0) 7 (0.6) 237 (2.9) 
Arizona 36 (1.5) 277 (1.5) 22 (1.0) 270 (1.5) 21 (0.9j 256 (1.6) 10 (0.7) 245 (2.5) 12 (0.8) 248 (2.7) Arkansas 30 (1.1) 264 (1.9) 20 (0.8) 264 (1.7) 31 (1.1) 248 (1.6) 11 (0.7) 246 (2.4) 8 (0.6) 245 (2.7) 
California 39 (1.8) 275 (2.0) 18 (1.0) 266 (2.1) 17 (0.9) 251 (2.1) 10 (0.9) 241 (2.2) 16 (1.1) 240 (2.9) 
Colorado 46 (1.2) 282 (1.3) 19 (0.9) 276 (1.6) 21 (0.9) 260 (1.5)> 6 (0.6) 250 (2.4) 7 (0.5) 252 (2.6) 
Connecticut 47 (1.3) 288 (1.0)> 16 (0.8) 272 (1.8) 22 (0.9) 260 (1.8) 6 (0.6) 245 (3.3) 9 (0.6) 251 (2.4) 
Delaware 39 (1.2) 274 (1.3) 18 (1.0) 268 (2.3) 30 (1.0) 251 (1.7) 6 (0.5) 248 (4.0) 8 (0.9) 248 (3.4) Dist. Columbia 32 (1.0) 244 (1.7) 17 (0.8) 240 (1.9) 29 (0.8) 224 (1.6) 9 (0.7) 225 (3.2) 12 (0.6) 229 (2.2) 
Florida 39 (1.5) 268 (1.9) 19 (0.7) 266 (1.9) 24 (1.1) 251 (1.8) 8 (0.7) 244 (2.7) 10 (0.7) 244 (3.21 
Georgia 35 (1.7) 271 (2.1) 18 (0.7) 264 (1.7) 30 (1.2) 250 (1.3) 11 (0.8) 244 (2.2) 6 (0.6) 245 (2.6) 
Hawaii 38 (1.1) 267 (1.5) 15 (0.9)< 266 (1.9) 25 (1.0) 246 (1.8) 6 (0.5) 242 (3.5) 16 (0.8) 246 (2.1) Idaho 48 (1.2) 281 (0.9) 20 (0.8) 278 (1.3) 19 (0.9) 268 (1.4)> 7 (0.5) 254 (2.3) 6 (0.5) 254 (2.8) 
Indiana 33 (1.5) 283 (1.5) 21 (0.9) 275 (1.9) 32 (1.1) 260 (1.6) 8 (0.6) 250 (2.6) 6 (0.5) 249 (3.3) Iowa 44 (1.4) 291 (1.2)> 21 (0.8) 285 (1.5) 25 (1.1) 273 (1.3) 4 (0.4) 262 (2.4) 5 (0.4) 266 (2.8) 
Kentucky 28 (1.4) 278 (1.6))) 19(0.8) 267 (1.6) 32 (0.9) 254 (1.6) 15 (0.9) 246 (1.7) 6 (0.4) 242 (2.8) Louisiana 32 (1.4) 256 (2.5) 20 (0.9) 259 (1.8) 30 (1.3) 242 (1.6) 10 (0.7) 237 (2.4) 7 (0.6) 236 (3.7) Maine 40 (1.5) 288 (1.4) 22 (1.0) 281 (1.5) 26 (1.1) 267 (1.1) 6 (0.5) 259 (2.7) 5 (0.5) 266 (2.6i 
Maryland 44 (1.7) 278 (1.8) 18 (0.9) 266 (1.9) 25 (1.2) 250 (1.8) 6 (0.8) 240 (3.7) 7 (0.5) 245 (3.8; 
Massachusetts 48 (1.5) 284 (1.3) 17 (0.8) 272 (1.8) 21 (1.0) 261 (1.4) 7 (0.6) 248 (3.2) 7 (0.6) 248 (2.6) 
Michigan 38 (1.6) 277 (2.2) 23 (0.9) 271 (2.0) 26 (0.9) 257 (1.7) 6 (0.5) 249 (2.0) 7 (0.6) 248 (3.0o Minnesota 48 (1.3)> 290 (1.0)> 21 (0.9) 284 (1.8) 22 (0.9)"< 270 (1.8)> 3 (0.4) 256 (4.2) 7 (0.6) 268 (3.0) 
Mississippi 36 (1.7) 254 (1.6) 16 (0.7) 256 (2.0) 29 (1,4) 239 (1.6) 13 (0.8) 234 (1.8) 7 (0.6) 231 (2.8) Missouri 36 (1.3) 280 (1.7) 22 (0.9) 275 (1.5) 29 (1.0) 264 (1.6) 8 (0.7) 254 (2.4) 6 (0.5) 252 (2.9) Nebraska 46 (1.5) 287 (1.2) 20 (1.0) 280 (1.6) 24 (1.2) 267 (1.7) 4 (0.5) 247 (3.3) 6 (0.6) 256 (3.8) 
New Hampshire 46 (1.5) 287 (1.4) 17 (0.8) 280 (1.5) 24 (1.1) 267 (0.9)>> 6 (0.5) 259 (2.5) 7 (0.5)> 262 (2.5) New Jersey 45 (1.6) 283 (1.8) 18 (0.8) 275 (2.1) 23 (1.2) 259 (2.5) 7 (0.6) 253 (3.8) 8 (0.7) 250 (3.9) New Mexico 34 (1.4) 272 (1.4) 20 (0.7) 264 (1.4) 26 (1.1) 249 (1.4) 11 (0.7) 244 (1.9) 10 (0.6) 245 (2.0): New York 44 (1.8) 277 (1.9) 18 (1.1) 271 (2.4) 23 (1.0) 256 (2.5) 6 (0.8) 243 (4.2) 10 (1.0) 240 (3.8) North Carolina 36 (1.2) 271 (1.4;> 20 (0.8) 265 (1.6)> 27 (0.9)< 246 (1.7) 10 (0.6) 240 (2.3) 6 (0.5) 240 (3.6) North Dakota 54 (1.2)> 289 (1.1) 18 (0.7) 283 (1.9) 19 (1.3) 271 (1.7) 3 (0.5) 259 (4.5) 5 (0.5) 272 (2.8) 
Ohio 37 (1.4) 279 (1.8) 19 (0.7) 272 (1.6) 32 (1.1) 260 (2.3) 7 (0.6) 243 (2.6) 5 (0.S) 249 (4.5) Oklahoma 39 (1.4) 277 (1.5) 21 (0.9) 272 (1.9) 26 (1.0) 257 (1.7) 8 (0.7) 254 (2.9) 6 (0.5) 251 (4.3) 
Pennsylvania 39 (1.8) 282 (1.6) 19 (0.9) 274 (1.9) 30 (1.2) 262 (1.6) 7 (0.8) 252 (2.8) 5 (0.5) 252 (3.81 Rhode Island 43 (1.1) 276 (1.1) 18 (1.5) 271 (1.5) 22 (1.4) 256 (1.6) 8 (0.4) 244 (2.1) 8 (0.6) 239 (2.5) South Carolina 37 (1.4) 272 (1.5) 16(0.7) 268 (1.7) 31 (0.9) 248 (1.4) 9 (0.6) 248 (2.1) 7 (0.3) 247 (3.0) Tennessee 33 (1.5) 267 (2.1) 21 (0.9) 265 (1.8) 29 (1.0) 251 '1.6) 12 (0.8) 245 (2.0) 5 (0.4) 243 (3.6) 
Texas 34 (1.6) 281 (2.1)> 18 (0.8)> 272 (1.6) 21 (1.0) 253 (1.6) 16 11.0) 247 (1.7) 11 (0.8) 244 (2.4! Utah 53 (1.3) 280 (1.0) 22 (1.0) 278 (1.2) 15 (0.8) 258 (1.8) 3 (0.3) 254 (3.2) 7 (0.5) 258 (2.7) 
Virginia 41 (1.5) 282 (1.5) 18 (0.8) 270 (1.6) 24 (0.9) 252 (1.5) 9 (0.6) 248 (2.1) 8 (0.6) 251 (2.51 
West Virginia 29 (1.1) 270 (1.5) 18 (0.8) 269 (1.4) 33 (1.1)< 251 (1.2) 13(0.9) 244 (1.8) 7 (0.4) 239 (2.31 Wisconsin 38 (2.4) 287 (1.8) 24 (0.8) 282 (1.5) 28 (1.8) 270 (1.9) 5 (0.6) 254 (3.4) 6 (0.6) 255 (4.01 
Wyoming 42 (0.9) 281 (0.9) 22 (0.8) 278 (1.7) 23 (0.7) 266 (1.1) 5 (0.6) 258 (3.3) 7 (0.5) 260 (2.2) TERRITORIES 
Guam 28 (1.2) 246 (1.9) 13 (0.7) 244 (2.4) 27 (1.1) 229 (1.9) 10 (0.9) 224 (2.5) 22 (1.2) 226 (2.0) Virgin Islands 23 (1.1) 224 (2.0) 11 (0.8) 232 (2.4) 29 (0.9) 221 (1.9) 14 (0.9) 219 (2.4) 24 (1.0) 217 (1.4) 

The percentages for parents" highest level ofeducation may not add to 100 percent because some students responded I don't know." >>The value for 1992 was significanty higher than the value for 1990 at about the 95 perment certainty level. <<The value for 1992 was significantly lower than the value for 1990 at about the 95 percent certainty level. These notations indicate statistical signiflcance from a multiple comparison procedure based 
on the 37 jurisdictions participating in both 1992 and 1990. If looking at only one state then >and< also indicate differences that are significant. Statistically significant differences between 1990 and 1992 for the state comparison samp!les for the nation and regions are not indicated. 
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Answers to all of these questions lie within the bounds of Table 5, but 
how easily can they be extracted? Can we ease the pain of this extraction 
through a change in the design of the table? 

Let us begin the real work of the redesign by asking why one would want 
to include the percentages in each educational category in the same table as 
the mathematics proficiency, as opposed to placing them in their own table 
on a facing page. The major reason is that the percentages are important for 
calculating state means. Such means are given in other tables, but it would 
seem good practice (remember Rule III) to include them here. Once they are 
calculated, they provide a sensible variable on which to order the states 
(rather than the alphabet-Rule II). Once this ordering has been accomplished 
we can see apparent gaps in the states' performance. A natural visual metaphor 
for these data gaps is to include matching physical gaps.5 The resulting 
table of mean proficiencies by state is shown as Table 6. The percentage 
distributions of parental education elided from this table have been set aside 
for a parallel table; we shall return to these data shortly. 

We have also moved the District of Columbia into the section of nonstates 
that also includes Guam and the Virgin Islands. All ordering is done within 
table section. Note that the key summaries are in boldface type. For ease of 
manipulation the standard errors have temporarily been removed from their 
parentheses. They will shortly be removed altogether. 

Table 6 allows us to answer some of the questions phrased initially quite 
easily, especially those dealing with the relative performance of the states 
(Question 1). The usual finding of Midwestern states having the highest 
average performance and the Southern states the lowest is seen immediately. 
Moreover, we see that there is a 37-point difference between the highest 
states and the lowest. Interpreting 37 points is helped by remembering that 
there is an average increase of 12 NAEP points/year between fourth and 
eighth grade in math. Thus, the 37-point difference can be interpreted as 
corresponding to about a three-year difference in average performance 
between the best and worst performing states. This increases to more than 
four years when one's gaze shifts to the three "other jurisdictions." The gaps 
depicted help keep our eyes from blurring while examining such a large 
table, and they also provide rough groupings that may be suggestive of 
explanatory hypotheses. Note that the data about the various sections of the 
country on the top of Table 5 have been removed entirely. This was done 
because they were the products of a different survey and have larger standard 
errors than the individual states from which those sections are composed. 
Their inclusion just added an unnecessary source of confusion. 

Examining the average proficiency for the nation at each education level 
reveals the unsurprising result that children whose parents are better educated 
score higher in mathematics. In addition, it appears that children who don't 
know their parents' education perform slightly better than children whose 
parents did not finish high school. This is suggestive of a grouping somewhat 
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TABLE 6 
Reformatted version of Table 5 in which standard errors are in separately labeled 
columns, categories of parental education are separated, average state 
performance is shown, and rows are ordered and spaced by average performance 

Some 
Education Did Not 

PUBLIC Graduated After Graduated Finish 
SCHOOLS College High School High School High School I don't Know Average 

0 so 0 so e se 0 se e so e se 
Nation 279 1.4 270 1.2 256 1.4 248 1.8 251 1.7 267 1.4 

States 
Iowa 291 1.2 285 1.5 273 1.3 262 2.4 266 2.8 283 1.4 

North Dakota 289 1.1 283 1.9 271 1.7 259 4.5 272 2.8 283 1.5 
Minnesota 290 1.0 284 1.8 270 1.8 256 4.2 268 3.0 282 1.6 

Maine 288 1.4 281 1.5 267 1.1 259 2.7 266 2.6 278 1.5 
Wisconsin 287 1.4 280 1.5 267 0.9 259 2.5 262 2.1 278 1.4 

New Hampshire 287 1.8 282 1.5 270 1.9 254 3.4 255 4.0 278 2.0 
Nebraska 287 1.2 280 1.6 267 1.7 247 3.3 256 3.8 277 1.6 

Idaho 281 0.9 278 1.3 268 1.4 254 2.3 254 2.8 274 1.3 
Wyoming 281 0.9 278 1.7 266 1.1 258 3.3 260 2.2 274 1.3 

Utah 280 1.0 278 1.2 258 1.8 254 3.2 258 2.7 274 1.3 
Connecticut 288 1.0 272 1.8 260 1.8 245 3.3 251 2.4 273 1.6 

Colorado 282 1.3 276 1.6 260 1.5 250 2.4 252 2.6 272 1.6 
Massachusetts 284 1.3 272 1.8 261 1.4 248 3.2 248 2.6 272 1.6 

New Jersey 283 1.8 275 2.1 259 2.5 253 3.8 250 3.9 271 2.3 
Pennsylvania 282 1.6 274 1.9 262 1.6 252 2.8 252 3.8 271 1.9 

Missouri 280 1.7 275 1.5 264 1.6 254 2.4 252 2.9 271 1.8 
Indiana 283 1.5 275 1.9 260 1.6 250 2.6 249 3.3 269 1.8 

Ohio 279 1.8 272 1.6 260 2.3 243 2.6 249 4.5 268 2.1 
Oklahoma 277 1.5 272 1.9 257 1.7 254 2.9 251 4.3 267 1.9 

Virginia 282 1.5 270 1.6 252 1.5 248 2.1 251 2.5 267 1.7 
Michigan 277 2.2 271 2.0 257 1.7 249 2.0 248 3.0 267 2.1 

New York 277 1.9 271 2.4 256 2.5 243 4.2 240 3.8 265 2.5 
Rhode Island 276 1.1 271 1.5 256 1.6 244 2.1 239 2.5 265 1.5 

Arizona 277 1.5 270 1.5 256 1.6 245 2.5 248 2.7 264 1.8 
Maryland 278 1.8 266 1.9 250 1.8 240 3.7 245 3.8 264 2.1 

Texas 281 2.1 272 1.6 253 1.6 247 1.0 244 2.4 264 1.8 

Delaware 274 1.3 268 2.3 251 1.7 248 4.0 248 3.4 262 1.9 
Kentucky 278 1.6 267 1.6 254 1.6 246 1.7 242 2.8 261 1.7 
California 275 2.0 266 2.1 251 2.1 241 2.2 240 2.9 260 2.2 

South Carolina 272 1.5 268 1.7 248 1.4 248 2.1 247 3.0 260 1.7 
Florida 268 1.9 266 1.9 251 1.8 244 2.7 244 3.2 259 2.1 

Georgia 271 2.1 264 1.7 250 1.3 244 2.2 245 2.6 259 1.8 
New Mexico 272 1.4 264 1.4 249 1.4 244 1.9 245 2.0 259 1.5 
Tennessee 267 2.1 265 1.8 251 1.6 245 2.0 243 3.6 258 2.0 

West Virginia 270 1.5 269 1.4 251 1.2 244 1.8 239 2.3 258 1.5 
North Carolina 271 1.4 265 1.6 246 1.7 240 2.3 240 3.6 258 1.7 

Hawaii 267 1.5 266 1.9 246 1.8 242 3.5 246 2.1 257 1.9 
Arkansas 264 1.9 264 1.7 248 1.6 246 2.4 245 2.7 256 1.9 

Alabama 261 2.5 258 2.0 244 1.8 239 2.0 237 2.9 251 2.2 
Louisiania 256 2.5 259 1.8 242 1.6 237 2.4 236 3.7 249 2.2 

Mississippi 254 1.6 256 2.0 239 1.6 234 1.8 231 2.8 246 1.8 

Other Jurisdictions 
Guam 246 1.9 244 2.4 229 1.9 224 2.5 226 2.0 235 2.0 

District of Columbia 244 1.7 240 1.9 224 1.6 225 3.2 229 2.2 234 1.9 
Virgin Islands 224 2.0 232 2.4 221 1.9 219 2.4 217 1.4 222 1.9 



Improving Tabular Displays 

heterogeneous in parental education. A small plot of mean math performance 
against parents' education (Figure 1), with a rough reference line drawn in, 
makes the quantitative aspect of this relationship clearer and provides a 
reasonable answer to Question 2. 

Scanning down the first column of the table shows that the higher-scoring 
states also tend to have a greater proportion of children coming from homes 
with a parent who was a college graduate. But even among just these children 
(conditioning on parents' education), there is still a 37-point difference between 
the highest- and lowest-scoring states. This is part of an answer to the third 
kind of question, although more complete answers can be built by constructing 
graphs like Figure 1 for individual states. Such a graph, shown as Figure 2, 
contradicts the hypothesis that differences in states' overall performance are 
due to differences in parents' education. Aside from being mildly startling in 
its own right, this result reduces still further the need to include the percentage 
of children in each parental education category within this table. 

280 

270 '0 
0 

260 

250 

240 
Graduated Some Education High School I Don't High School 

College After High School Graduate Know Dropout 

Parents' Education 
FIGURE 1. A plot showing children's mathematics proficiency and their parents' 
education. A reference line drawn in shows roughly the relationship between the 
(mostly) ordered categories of parental education and children's performance. 
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FIGURE 2. A comparison of the performance of 8th graders in mathematics in Iowa, 
New Jersey, and Mississippi, shown as a function of their parents' education. The 
difference in the performance of children in mathematics by state is not solely due 
to differences in parental education. 

What About the Standard Errors? 

Questions about the statistical significance of these observed differences 
can be answered after doing a little arithmetic on the standard errors included 
within the table. A natural question to ask is why that arithmetic hasn't 

already been done by the generators of the table. One possible answer to this 

question is that there are too many plausible questions of statistical signifi- 
cance that might be asked to calculate all of the possible error terms. But, 
playing devil's advocate, couldn't some conservative error term be calculated 
that would save all of the clutter introduced by the many columns of standard 
errors? The answer to this, simply put, is yes. And the next version of this 
table (shown as Table 7) segregates the standard errors into a separate table 
and substitutes instead (for quick and dirty significance judgments) three 
estimates of the standard error of the difference between any two entries in 
that column. The first is an upper bound on the standard error of the difference. 
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This is obtained by multiplying the largest value of the standard error in that 
column by ,J. The second entry, labeled 40 Bonferroni, is the first entry 
multiplied by 3.2. This is obtained from the Bonferroni inequality and based 
on the idea that a user is interested in making comparisons of his/her own 
state with each of the others. This controls the family of tests protection 
beyond the .05 level. The last entry, labeled 820 Bonferroni, is the first entry 
multiplied by 4.0 and controls the family of tests significance for someone 
who compares each state with all others. It is likely that this last estimate is 
unnecessary, since anyone expecting to make that many comparisons will 
almost surely want the tighter error bounds constructed from the individual 
standard errors and perhaps use more powerful procedures for multiple com- 
parisons (e.g., Benjamini & Hochberg, 1995).6 

A table augmented with these error summaries, but relieved of the burden 
of individual accompanying standard errors, is not only a good deal clearer 
to look at but, for most prospective users, a good deal easier to use for 
making inferences about statistical significance of observed differences. 

Next, while there was no good reason to combine mathematics achievement 
and percentage of children in each category into the same table, these percentage 
distributions are important in their own right. It was just that their presentation 
was clearer after they were separated into two tables. To examine this, consider 
the two variables, shown as Tables 7 and 8. Table 7 contains just mean 
mathematics proficiency; Table 8 just the distribution of children across levels 
of parental education. It appears that the benefits associated with housing both 
of these variables within the same table are too few to offset the increases in 
perceptual complexity that accrue by mixing them. It seems, however, worth- 
while to keep them contiguous. Thus we would recommend placing them on 
facing pages. Note that the states in Table 8 are ordered by the state means 
from Table 7. This facilitates comparisons between the two tables. It also 
raises the interesting question of whether the increased ease of comprehension 
yielded by ordering a table by its contents is more than offset by the increased 
difficulty in making comparisons across tables ordered in different ways. This 
issue will be discussed further at the end of this section. 

On both tables we have highlighted unusual entries by putting them in 
boldface type and boxing them in. Entries that are unusually large are also 
shaded. Entries that are unusually small are boxed but unshaded. We have 
also appended a positive or negative sign as a further reminder of the direction 
of the entry's variation. Thus in Table 7 we see that the average score of 
children whose parents had only some post-high school education was unusu- 
ally high in West Virginia. Similarly, Nebraska's and Connecticut's children 
of high school dropouts scored unusually poorly. 

The determination of which entries were unusual was made by fitting a 
simple additive model to the data and examining the residuals. Those residuals 
that stuck out excessively (more than 2 times the square root of the mean of 
the squared residuals) were then highlighted. Table 7 goes about as far as 
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TABLE 7 
Revision of Table 6 with individual standard errors replaced by conservative 
estimates, unusual entries highlighted, and a state locator index inserted 

Some 
Education Did Not 

PUBLIC Graduated After Graduated Finish 
SCHOOLS College High High High I Don't 

School School School Know Mean 
Nation 279 270 256 248 251 267 

States 
1 Iowa 291 285 273 262 266 283 
2 North Dakota 289 283 271 259 272 283 
3 Minnesota 290 284 270 256 268 282 

4 Maine 288 281 267 259 266 278 
5 Wisconsin 287 282 270 254 255 278 
6 New Hampshire 287 280 267 259 262 278 
7 Nebraska 287 280 267 [ 247- 256 277 

8 Idaho 281 278 268 254 254 274 
9 Wyoming 281 278 266 258 260 274 

10 Utah 280 278 258 254 258 274 
11 Connecticut 288 272 260 f 245- 251 273 

12 Colorado 282 276 260 250 252 272 
13 Massachusetts 284 272 261 248 1 248- 272 
14 New Jersey 283 275 259 253 250 271 
15 Pennsylvania 282 274 262 252 252 271 
16 Missouri 280 275 264 254 252 271 
17 Indiana 283 275 260 250 249 269 

18 Ohio 279 272 260 243 249 268 
19 Oklahoma 277 272 257 254 251 267 
20 Virginia 282 270 252 248 251 267 
21 Michigan 277 271 257 249 248 267 
22 New York 277 271 256 243 240- 265 
23 Rhode Island 276 271 256 244 239- 265 
24 Arizona 277 270 256 245 248 264 
25 Maryland 278 266 250 240 245 264 
26 Texas 281 272 253 247 244 264 

27 Delaware 274 268 251 248 248 262 
28 Kentucky 278 267 254 246 242 261 
29 California 275 266 251 241 240 260 
30 South Carolina 272 268 248 248 247 260 
31 Florida 268 266 251 244 244 259 
32 Georgia 271 264 250 244 245 259 
33 New Mexico 272 264 249 244 245 259 
34 Tennessee 267 265 251 245 243 258 
35 West Virginia 270 269+ 251 244 239 258 
36 North Carolina 271 265 246 240 240 258 
37 Hawaii 267 266 246 242 246 257 
38 Arkansas 264 264 248 1 246 + 245 256 

39 Alabama 261 258 244 239 237 251 
40 Louisiania 256 259 242 237 236 249 
41 Mississippi 254 256 239 234 231 246 

Other Jurisdictions 
42 Guam 246 244 229 224 226 235 
43 District of Columbia 244 240 224 225 229 234 
44 Virgin Islands 224 232 221 219 217 222 

Error terms for comparisons 
Max Std error of diff 3.5 3.4 3.5 6.4 6.4 3.5 

40 Bonferroni 11.3 11.0 11.3 20.7 20.7 11.3 
820 Bonferroni 14.0 13.6 14.0 25.6 25.6 14.0 



TABLE 8 
A parallel of Table 7 including instead percentage distribution of parental 
education 

Some 
Education Did Not 

PUBLIC Graduated After Graduated Finish 
SCHOOLS College High High High I Don't 

School School School Know 
Nation 40 18 25 8 9 

States 
1 Iowa 44 21 25 4 5 
2 North Dakota 64 + 18 19 3 5 
3 Minnesota 48 21 22 3 7 

4 Maine 40 22 26 6 5 
5 Wisconsin 38 24 28 5 6 
6 New Hampshire 46 17 24 6 7 
7 Nebraska 46 20 24 4 6 

8 Idaho 48 20 19 7 6 
9 Wyoming 42 22 23 5 7 

10 Utah 53+ 22 15- 3 7 
11 Connecticut 47 16 22 6 9 

12 Colorado 46 19 21 6 7 
13 Massachusetts 48 17 21 7 7 
14 New Jersey 45 18 23 7 8 
15 Pennsylvania 39 19 30 7 5 
16 Missouri 36 22 29 8 6 
17 Indiana 33 21 32 8 6 

18 Ohio 37 19 32 7 5 
19 Oklahoma 39 21 26 8 6 
20 Virginia 41 18 24 9 8 
21 Michigan 38 23 26 6 7 
22 New York 44 18 23 6 10 
23 Rhode Island 43 18 22 8 8 
24 Arizona 36 22 21 10 12 
25 Maryland 44 18 25 6 7 
26 Texas 34 18 21 16 11 

27 Delaware 39 18 30 6 8 
28 Kentucky 28- 19 32 15 6 
29 California 39 18 17 - 10 16 
30 South Carolina 37 16 31 9 7 
31 Florida 39 19 24 8 10 
32 Georgia 35 18 30 11 6 
33 New Mexico 34 20 26 11 10 
34 Tennessee 33 21 29 12 5 
35 West Virginia 29- 18 33 13 7 
36 North Carolina 36 20 27 10 6 
37 Hawaii 38 15 25 6 16 
38 Arkansas 30- 20 31 11 8 

39 Alabama 33 18 29 13 7 
40 Louisiania L 32- 20 30 10 7 
41 Mississippi 36 16 29 13 7 

Other Jurisdictions 
42 Guam 28 13 27 10 22 
43 District of Columbia 32 17 29 9 12 
44 Virgin Islands 23 11 29 14 24 

Error terms for comparisons 
Max Std error of diff 3.4 2.1 2.5 1.4 1.7 

40 Bonferroni 11.0 6.8 8.1 4.5 5.5 
820 Bonferroni 13.6 8.4 10.0 5.6 6.8 



Wainer 

we might expect in displaying the results to answer all of the questions about 
achievement scores phrased earlier. 

Last, the individual standard errors that were previously housed in the 
original table have been combined and piled into two tables of standard 
errors matching Tables 7 and 8. These are available from the author at 
hwainer@ets.org. I believe that these will be so rarely consulted that it isn't 
worth using up extra pages here. Future experience will inform this judgment, 
and I am prepared to change the format if I am wrong. 

Thus we have found that separating variables that are only tangentially 
related into separate tables yields increased comprehensibility. Once the sepa- 
ration is completed, the tables should be structured according to the four 
rules specified earlier. The questions posed at the beginning of this section, 
which characterize the most plausible reasons why anyone would want to 
see these data, are all answered more easily from these revised tables. 

What about order? Clearly, if we wish to compare data values on different 
variables from the same set of states it is often helpful if those data are ordered 
in the same way in those different tables. This is currently accomplished by 
ordering all tables alphabetically. Is this a good idea? I think that there are 
several alternatives. The most attractive one to me is to order each table as 
an independent entity, to be looked at and understood on its own. Secondary 
analyses that require combining information from several tables should be 
done from a different data source than the table; almost surely it should be 
some electronic database that would allow easy subsequent manipulations. 
But if we are to think of the tables as the first available archive, there may 
be an argument for ordering all tables on a similar topic in the same way, 
so that various pieces of information about a particular state can be picked 
out easily. If so, alphabetical ordering is only one possibility among many. 
Is it the best one? Alphabetical ordering has only one thing going for it: It 
makes locating a specific state easier.7 Its principal drawback is that it usually 
obscures the structure that the table was constructed to inform us about. If 
a set of tables like those that grew out of Table 5 are constructed and ordered 
by overall performance (instead of alphabetically), we have made finding a 
particular state a bit more difficult.s I believe that this is a small cost in 
comparison to the gain in comprehensibility. But even this can be ameliorated 
through the inclusion of a "locator table." All we need to do is number the 
jurisdictions in the table sequentially from 1 to 44, as was done in the first 
column of Tables 7 and 8, and then have a small, alphabetically ordered 
locator index table (Table 9) that connects alphabetically ordered state names 
to row numbers in the empirically ordered tables. 

Compound Tables 

Table 7 is a rectangular array showing a single dependent variable, mean 
mathematics proficiency, as a function of two independent variables, parents' 
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TABLE 9 
Alphabetically ordered locator index table of the states in Tables 7 and 8, to be 
used in case of an emergency loss of any particular jurisdiction 
State Position State Position 
Alabama 39 
Arizona 24 
Arkansas 38 
California 29 
Colorado 12 

Connecticut 11 
Delaware 27 
Florida 31 
Georgia 32 
Hawaii 37 

Idaho 8 
Indiana 17 
Iowa 1 
Kentucky 28 
Louisiana 40 

Maine 4 
Maryland 25 
Massachusetts 13 
Michigan 21 
Minnesota 3 

Mississippi 41 
Missouri 16 
Nebraska 7 

New York 22 
New Jersey 14 
New Mexico 33 
New Hampshire 5 
North Dakota 2 

North Carolina 36 
Ohio 18 
Oklahoma 19 
Pennsylvania 15 
Rhode Island 23 

South Carolina 30 
Tennessee 34 
Texas 26 
Utah 10 
Virginia 20 

West Virginia 35 
Wisconsin 6 
Wyoming 9 

Other 
Jurisdictions 
District of Columbia 43 
Guam 42 
Virgin Islands 44 

education and geographic location. As we have seen, when properly designed 
such a table can be a clear and evocative communicator of information. 
Unfortunately, clear design is too commonly abandoned in favor of compound 
tables when multivariate or multilevel data are to be displayed. Such tables 
are very hard to understand. In fact, in a survey of education policymakers, 
Hambleton and Slater (1995) found that such compound tables were the most 
frequently misunderstood of any data display in NAEP executive summaries. 
In one such display, parallel in structure to Table 10, more than half of the 
education professionals answered a simple data extraction question 
incorrectly. 

To illustrate the negative effects of a compound table, consider Table 10, 
a somewhat tidied up version of Table 2.3 from the 1992 NAEP Reading 
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Improving Tabular Displays 

Assessment. This display can be improved by breaking it up into smaller 

displays. For example, the average proficiencies are best shown as a two- 
way table by themselves (see Table 11). This table shows quantitatively the 
modest size of the region effects and the much larger grade effects. There 
are no large interactions, and so no entries are boxed in. Of course, an even 
more evocative image could be obtained by subtracting out the grade means 
and then plotting the residuals. Such a table would make clear just how 
different the Southeast is. Similar tables containing the percentage of children 
at each of the NAEP reading levels could also be constructed. 

Why is it that it is often easier to understand several simple displays than 
one compound one? To understand a display involves two distinct phases of 
perception (Bertin, 1973/1983) which are characterized by two questions: 
What are the components of data that are being reported? What are the 
relations among them? 

The first phase is easy if the horizontal and vertical components are unitary, 
for example, grade level versus region. It becomes more difficult if they are 
not, for example, level of proficiency and average proficiency and percent 
versus region and grade. The second phase of perception is addressed by the 
four rules, but it is made more difficult if the first phase is complex. In 
this report we have suggested that unless the simultaneous presentation of 
multidimensional information is critical to understanding, comprehension is 
aided by keeping the components of data simple and presenting tables paired. 
This was illustrated earlier when we separated the percentage distributions 
and the achievement scores into separate tables. 

Discussion and Conclusions 

Just as there are no good or bad tests, neither are there good or poor graphs 
nor good or poor tables. Their value depends on the uses to which they are 
put. Some constructions answer the questions one is entitled to ask, and 

TABLE 11 
Reformatted version of Table 10 in which only regional proficiencies by grade 
level are included. It is arranged to emphasize the two-way structure of the 
data. It is bordered by means and main effects 

Average Proficiency 
Regional Regional 

Region Grade 4 Grade 8 Grade 12 Means Effects 
Northeast 223 263 293 260 4 

Central 221 264 294 260 4 
West 215 260 292 256 0 

Southeast 214 254 284 251 -5 
Grade Means 216 260 291 256 
Grade Effects -40 4 35 
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others do not. By making the hierarchy of possible questions explicit, we 
emphasize the fact that one cannot look at a graph or table as one looks at 
a painting or a traffic signal. One does not passively read a graph; one queries 
it. And one must know how to ask useful questions. 

What are the questions that can be asked? To some extent we explored 
this in the second section. In general they are the same questions that would 
be asked of data from any factorial experiment: What are the row effects? 
What are the column effects? What are the interactions? How do the rows 
and columns group as functions of these effects? 

The goal of effective display is to ease the viewer's task in answering 
these questions. We have found that wisely ordering, rounding, summarizing, 
and spacing go a long way toward accomplishing this. In addition, we must 
confront the likely use of a table head-on before including various mixtures 
of variables into it. Adding extra stuff always affects comprehensibility, and 
we must make the triage decision between saving space by combining two 
or more tables into one and communicating clearly. It has been our experience 
that breaking up complex displays sensibly often communicates more effi- 
ciently, em for em, than a large compound table. 

Measuring Numeracy 
Earlier we showed that if tables that are used as stimuli within a test item 

are prepared properly, the questions associated with them are usually reduced 
in difficulty, often dramatically. This does not mean that the practice of 
asking such questions ought to be discontinued, any more than we advocate 
continuing to use poorly constructed tables to make such questions less trivial. 
The test's usefulness as a learning instrument would be enhanced if it served 
as a model for how tables ought to be prepared as well as illustrating the 
depth of information readily available from well prepared tables. 

Well prepared tables will also allow us to construct questions that probe 
the deep structure of the data in a way that is too difficult with poorly prepared 
tables. What are such questions like? To answer this we need a little theory. 
And, to illustrate this theory, we will use the battery life item from the 1990 
Science Assessment introduced earlier and reproduced here as Table 12. This 
is identical to Table 4, shown earlier, except that four unusual entries have 
been indicated by boxing them in. A shaded box with a positive sign indicates 
a higher than expected entry; an unshaded box with a negative sign means 
a lower than expected entry. 

Ehrenberg (1977) calls the ability to understand data presented in a table 
"numeracy." This term may have broader application, but we shall use it in 
this narrow context for the nonce. 

How can we measure someone's proficiency in understanding quantitative 
phenomena that are presented in a tabular way (an individual's numeracy)? 
Obviously there are NAEP test items written that purport to do exactly this; 
the items described earlier are some typical examples. We can do better 
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TABLE 12 
Revision of Table 4 with unusual entries highlighted 

Battery Life in Hours 
Battery Cassette Portable Battery 
Brands Radio Flashlight Player Computer Averages 

Never Diel 28 + 16 8 6 15 
Electro-Blaster 26 15 10 [ 4- 1 14 

PowerBat 24 13 7 5 12 

Servo-Cell 21 12 4 2 10 
Constant Charge 19 - 10 5 F 3 + 9 

Usage averages 24 13 7 4 12 

with the guidance of a formal theory of graphic communication (Wainer, 
1980, 1992). 

Rudiments of a Theory of Numeracy 

Fundamental to the measurement of numeracy is the broader issue of what 
kinds of questions tables can be used to answer. My revisions of Bertin's 
(1973/1983) three levels of questions are: 

"* Elementary-level questions involve data extraction, for example, How 
long does a Servo-Cell last in a cassette player? 

"* Intermediate-level questions involve trends seen in parts of the data, for 
example, How much longer is a battery likely to last in a radio than in 
a portable computer? 

"* Overall-level questions involve the deep structure of the data being 
presented in their totality, usually comparing trends and seeing group- 
ings, for example, Which two appliances show the same pattern of 
battery usage?, or, Which brands of batteries show the same pattern of 
battery life? 

They are often used in combination; for example, Zabell (1976) referred to 
their use in the detection of outliers-unusual data points. To accomplish 
this objective we need a sense of what is usual (i.e., a trend at the intermediate 
level), and then we look for points that do not conform to this trend (the 
elementary level). Such questions are hard to answer from a raw table such 
as Table I but are trivial in Table 11, where such interactions (this time from 
an additive model) are highlighted. 

Note that although these levels of questions involve an increasingly broad 
understanding of the data, they do not necessarily imply an increase in the 
empirical difficulty of the questions.9 

Reading a table at the intermediate level is clearly different from reading 
a table at the elementary level; a concept of trend requires the notion of 

25 



Wainer 

connectivity. If the columns were not four appliances but instead four decreas- 
ing levels of parental education (as in Table 5), the idea of an increasing 
trend would be more meaningful. Comparing trends among different states 
likewise requires an additional notion of connectivity, but this time across 
the dependent variable (NAEP math scores). This connectedness is character- 
ized by a common variable and emphasizes the inferential costs of mixing 
together different dependent variables in the same display. 

I hope that this brief introduction conveys a sense of how this formal 
structure can make it easier to construct tests of numeracy, and to understand 
better which characteristic of numeracy we are measuring. Of course, to ask 
questions at higher levels requires data of sufficient richness to support them, 
as well as tables clear enough for the quantitative phenomena to show through. 
It is much more difficult to answer intermediate- or overall-level questions 
from Table 1 than from Table 12. It is also easier to see trends, and deviations 
from them, with a different display format altogether (see Figure 3). Once 
again we see that the format we choose must be based upon our purpose in 

30 

25 

20 

- 15 

S10 

Never Die 
5 PowerBat 

Electro-Blaster 
Constant Charge 
Servo-Cell 

0 
Radio Flashlight Cassette Portable 

Player Computer 

Appliances 
FIGURE 3. A graph that emphasizes the large differences in battery life span among 
possible usages compared to the somewhat smaller differences among batteries. 
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constructing the display. While elementary-level questions are best answered 
with a table, intermediate- and overall-level questions may be easier with a 
graph. However, as we have demonstrated, well prepared tables can be useful 
at higher levels. 

My experience is that test items associated with tables tend to be questions 
of the first kind, although often they are compounded through the use of 
nontabular complexity. This is not an isolated practice confined to the mea- 
surement of numeracy. In the testing of verbal reasoning it is common practice 
to make a reasoning question more difficult simply by using more arcane 
vocabulary. This practice stems from the fact that it is almost impossible to 
write questions that are more difficult than the questioner is smart. When we 
try to test the upper reaches of reasoning ability, we must find item writers 
who are more clever still. 

Of course, when we record a certain level of performance by an examinee 
on a table-based item, we can only infer a lower bound on someone's numer- 
acy;'0 a better table of the same data ought to make the item easier. Similarly, 
a more numerate audience makes a table appear more efficacious. 

Software 
There is an enormous wealth of software available to make tables. I have 

found that the versatility of spreadsheet programs is especially useful. All 
tables in this article were prepared using Microsoft's EXCEL'" on a Macin- 
tosh computer. Such software allows pretty complete control of fonts, type 
sizes, borders, and shading. Ordering rows is trivial; ordering columns requires 
a little work. Transforming data from a spreadsheet table into the graph of 
your choice is easily accomplished within EXCEL'" for most common 
graphic forms. For more esoteric formats the data are easily moved into 
special-purpose programs. 

The real power of spreadsheets emerges when calculations of some com- 
plexity are required. This lifts the spreadsheet from being merely handy to 
being essential for preparing tables. The identification of unusual data points 
in a two-way table requires calculating row and column effects and then 
subtracting them out. Determining which gaps in a univariate data string are 
likely to be worth emphasizing requires ordering the data, calculating the 
gaps as well as a vector of inverse logistic weights, and combining and 
summarizing them. All of these tasks can be done on the fly within a spread- 
sheet. Specially designed table software does not always measure up in 
this regard. 

Before one can use this or any software on NAEP data, one must first 
extract those data from rather complex NAEP data files and transform them 
into a format acceptable to a spreadsheet. This formerly onerous task has 
been eased considerably through the development of some special-purpose 
software (NAEPEX) that is distributed with the NAEP Secondary-Use Data 
products. NAEPEX allows the user to define, extract, and analyze subsets 
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of NAEP data in a relatively painless manner. Further details about NAEPEX 
are contained in its user guide (Rogers, 1995). 

Summing Up 
Tables are used for many purposes within NAEP: as stimuli in test items, 

as containers to archive data, and as a communicative medium. Believing 
that the archival purpose is anachronistic, we focused our attention on rules 
for building tables to facilitate their efficacy as communicative devices. We 
found that the same four rules apply to the simplest tables used as stimuli 
within the assessment and to the most complex tables aimed at scientists. 
While the rules are objective and as such can be applied through a completely 
automatic procedure, human judgment and wisdom are still required. Before 
applying the rules, one must decide on the most likely prospective uses for 
the data in the table and include only those data that facilitate those uses. 

Of foremost importance is the notion that we are typically not looking at 
a table to simply extract a number. To become involved in a problem and to 
understand it is to shift from extracting individual entries to understanding 
quantitative phenomena. The construction of efficacious data displays aims 
to promote this transition, allowing the reader a graceful change from spectator 
to participant. 

Notes 
This work was sponsored by the National Center for Education Statistics through 

Contact Number R999B40013 to the Educational Testing Service, Howard Wainer, 
Principal Investigator. Although I am pleased to express my gratitude for this support, 
I must reexpress the usual caveat that all opinions expressed here are those of the 
author and do not necessarily reflect the views of either NCES or the U.S. Government. 
I am delighted to be able to thank Jeremy Finn for his critical and constructive 
comments on this work as it developed. Of course, he shouldn't be held responsible 
for what has resulted from his good advice. I would also like to thank Brent Bridgeman, 
John Mazzeo, Keith Reid-Green, Linda Steinberg, and an unusually helpful associate 
editor and two sharp-eyed, thoughtful, but anonymous referees for their comments 
on an earlier draft. Last, my gratitude to John Tukey for his helpful suggestions on 
the choice of an error term for large tables. This article was abstracted from a 
considerably longer technical report (Wainer, 1995); readers interested in receiving 
a copy of that report can request it from Martha Thompson at Educational Testing 
Service (mthompson @ets.org). 

'NAEP is a congressionally mandated survey of the educational achievement of 
American students and of changes in that achievement across time. This survey has 
been operational for nearly 25 years and utilizes technically sophisticated sampling 
and assessment methodology. The results of NAEP are made available to both the 
professional and lay public continuously and are cited with increasing frequency as 
evidence in public debates about educational topics. 

NAEP's results are complex, consisting, as they do, of (a) outcomes on achievement 
tests of complex character on a variety of subjects; (b) attitude and behavioral 
information from the children, teachers, and others associated with the children's 

28 



Improving Tabular Displays 

schooling; and (c) detailed demographic information about the children who took 
the assessment instruments. These data are reported in a variety of ways that vary 
with the character of the data, their prospective audience, and the purposes of the data. 

2One can easily construct pathological exceptions (e.g., a sample mean from a 
Cauchy distribution), but for most normal situations this is a pretty good general rule. 

3I sometimes hear from colleagues that my ideas about rounding are too radical- 
that such extreme rounding would be "OK if we knew that a particular result was 
final. But our final results may be used by someone else as intermediate in further 
calculations. Too-early rounding would result in unnecessary propagation of error." 
Keep in mind that tables are for communication, not archiving. Round the numbers 
and, if you must, insert a footnote proclaiming that the unrounded details are available 
from the author. Then sit back and wait for the deluge of requests. 

40f course, teachers' grade books are usually alphabetical and so yield tables like 
the original. But I suspect many teachers (myself included) now use electronic grade 
books which are alphabetized for ease of data entry and have a second version for 
retrieval. This discussion is about retrieval. 

"5These gaps were determined to be largish through consideration of both their size 
and their location. A big gap in the tails is not as unlikely as one of similar size in 
the middle. In this instance we used inverse logistic weights on the gaps to adjust 
for location (Wainer & Schacht, 1978). 

6Choosing the maximum may be too conservative for many users. Two alternatives 
may be considered. The first is shrinking the maximum inward based upon the 
stability of the estimates of the standard error. In this instance the standard errors 
are based on about 30 degrees of freedom. This would suggest some modest shrinkage. 
If the degrees of freedom were 3 or 300, quite different decisions would be reached. 
The second alternative is replacing MAX(se) with a more average figure-for 
example, 

I se2/n. k=l 

This second alternative seems especially attractive in this instance, since the 
distribution of standard errors across states is not too far from the null 
distribution expected from a chi-square variable with 30 degrees of freedom. 
The issues surrounding the best choice of error term is a bit afield from our 
purpose, and so we shall be content to raise it and leave its resolution to 
other accounts. 

7Although not that easy. I have discovered, to my chagrin, that the two- 
letter state abbreviations do not yield the same alphabetic ordering as the 
full state names. 

8An especially difficult task is finding out that the state you are looking 
for did not participate in the assessment. 

9Although one small empirical study among 3rd-, 4th-, and 5th-grade 
children (Wainer, 1980) showed that, on average, item difficulty increased 
with level and graphicacy increased with age. 
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"?It is like trying to decide on Mozart's worth as a composer on the basis 
of a performance of his works by Spike Jones on the washboard. 
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